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1. INTRODUCTION

This note describes a process that derives robust state-
feedback controllers for nonlinear systems with unknown
description. As opposed to linear systems, where tech-
niques for controlling systems with unknown description
are well established (Astrom and Wittenmark (2008)),
it seems that no such techniques are available for broad
families of nonlinear systems.

The design framework presented in this note yields robust
state-feedback controllers for nonlinear systems whose
model is unknown. It is valid for large families of nonlinear
systems. It does not attempt to estimate parameters of the
unknown systems that need to be controlled. In fact, the
systems under consideration are nonlinear systems that
may not be characterizable by finite sets of parameters.
Rather than focus on system parameters, we concentrate
on the use of signals that are inherently finitary: bang-bang
signals.

Bang-bang signals switch between the upper and the
lower input amplitude bounds of the controlled system.
Thus, bang-bang signals admit only a finite number of
values at each instant of time. This fact allows us to
develop a finitary process for testing an unknown nonlinear
system to derive information that is sufficient for the
design of bang-bang state feedback controllers that fulfill
desired control objectives. In view of (Hammer (2021,
2025)), bang-bang controllers, or closely related pseudo
bang-bang controllers, can approximate the performance
of any controller. Consequently, restriction to bang-bang
controllers does not limit performance options.

The design framework of this note can be incorporated into
artificial intelligence/machine learning algorithms to auto-
matically build robust controllers for unknown nonlinear
systems.

The control configuration is shown in Figure 1, where
the state-feedback controller ¢ controls the system 3;
the latter’s state is z(t), and its input is w(t). Structural
limitations impose a constraint of K > 0 on the input

) u(t) by

*

Fig. 1. The control configuration

x() =Z(xg,u,t) R

amplitude and a constraint of A > 0 on the state norm of
3.

The objective is to derive state-feedback controllers ¢ that
asymptotically stabilize 3. As the description of ¥ is not
known, testing of an available sample Y, of ¥ is performed
to derive data that facilitates the design of ¢. The tested
system Y, may differ from the system 3 placed in the
configuration of Figure 1. We allow ¥ to be any member
of a family F.,(3) of systems that differ by no more than
v from X.

As asymptotic stabilization with bang-bang controllers
may involve infinite switchings near the zero state, we
exchange to a linear controller near the origin of state
space. To that end, we assume that X can be approxi-
mated by a stabilizable linear system A within a small
neighborhood N of the zero state. Then, ¢ operates as a
bang-bang controller outside N and as a linear controller
inside V. This note concentrates on bang-bang controllers
that guide ¥ to A; derivation of linear controllers is well
known. Denote by p(a) a ball of radius a centered at zero.
Let x > 0 be such that

p(2x) CN. (1)
Problem 1. Faced with a family F.,(Xy) of unknown sys-
tems closely related to an unknown system 3y available
for testing, develop a testing protocol for ¥, that leads
to the construction of robust bang-bang state-feedback

controllers ¢ that guide all members of F,(2¢) to p(2x).
U

This note continues the extensive literature of adaptive
control that was seeded more than half a century ago
by the works of Kalman (1958); Belman (1961); Mishkin
and Braun (1961), and others. To mention a few recent
contributions in this area, we list the paper by Ren and
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Fig. 2. The testing process

Yang (2019) on adaptive control of a certain class of
input-affine cyber-physical systems subject to unknown
nonlinearities and false data injection; the paper by Liu
et al. (2020) on integral barrier Lyapunov functions that
investigates adaptive control of a certain class of switched
input-affine nonlinear systems; and the paper by Ortega
et al. (2020) on identification of systems with a linear
regression model for their unknown parameters. More
generally, this note contributes to the general theory of
nonlinear control (e.g., Nijmeijer and van der Schaft (2016)
and the references cited there).

Regarding organization, Section 2 provides an overview
of the framework developed in this paper. Section 3 de-
scribes the class of nonlinear systems considered; Section
4 discusses the impact of uncertainty; Sections 5 and 6
build the technical foundation; Section 7 designs robust
bang-bang state-feedback controllers; Section 8 analyzes
an example; and Section 9 is a brief summary.

2. DESIGN OUTLINE

The framework of this paper consists of two stages: (i)
testing of a sample of the controlled system; and (i)
using the test results to derive a controller. The utilization
of bang-bang controllers substantially simplifies the task
since, for a system with m inputs, a bang-bang controller
o generates at each instant of time a constant signal from
the family of 2 members

Cim)={v= ("% ...,.v™" P |=Ki=1,....,m}.
For example, for a single input system, C(1) = {K, —K}.

To derive the controller ¢, we monitor the response of the
tested system Yo to constant inputs from C(m), using a
grid T' of initial states. The grid I' consists of spherical
shells of thickness A > 0 (Section 5); it is produced by
spheres o(r;) of radii r; centered at zero, where A is
selected so that p := (A — x)/A is an integer; then,

ry =x+1A,i=0,1,...,p. (2)

Each sphere o(r;) is partitioned into segments {P{}, k =
1,2, ..., q(i), that are determined by a real number § > 0:
each segment P,z is included in a ball of radius ¢ centered
at a designated state xi € p(r;). The number ¢(i) of {P{}
members is often not overly large.

In testing, the response of ¥y to constant inputs v € C(m)
is monitored from each designated state xj, to record the

first member P,zl, reached by ¥, as shown in Figure 2.

This information is recorded in a directed graph G(A),
where each vertex represents one member Pp; directed
edges point from the vertex P} to the vertex Pf,. On each
edge, we mark (v,7), where v € C(m) is the input used
and 7 is the time it took to reach Pf, from P} (Section 7).
Next, methods of graph theory (e.g., Bollobas (1998)) are
deployed to find directed paths IT = { P}, P,g , PIZ? Py

from each vertex P} to the vertex P representing the
target A. The pairs (v, 7) on the path’s edges engender a
bang-bang input signal, forming a robust bang-bang state-
feedback controller ¢ that guides every system ¥ € F,(Z¢)
to N (Section 7).

3. BASICS
3.1 Notation

Denote by R the real numbers and by RT the non-
negative real numbers. The absolute value of a number
7 is |r|. For a vector z = (21,%2,...,7,)" € R", denote
|z| == max{|z1|, |z2], ..., |zn|} and |z|y = (z"T2)/2. Given
a function u : RT™ — R™, denote |u|s := sup,~ |u(t)|. For
a real number M > 0, denote by [—M, M]™ the set of all
x € R™ with |z| < M. The ball of radius r > 0 centered at
x=01is p(r) := {x € R™ : |z]a < r}; the ball centered at
yis p(r,y) :=={x € R" : |x —y|2 <r}. For aset S C R,
p(r,S) = p(r,y).
yeSs

The sphere of radius r around the origin is o(r) := {z €
R": |zl =r},and o(r,y) :={z € R" : |z —y|a = r} is
the sphere of radius r centered at y.

3.2 The controlled system

The system X of Figure 1 is time-invariant:

() = f(a(t),u(t),t =2 0,2(0) = xo, (3)
where the recursion function f : R™ x R™ — R"™ is
unknown, but continuously differentiable; x(¢t) € R™ is
the state; and u(t) € R™ is the input. The amplitude
constraints are |z(t)]s < A and |u(t)] < K for all ¢t > 0.
The class of input signals is then
UK):={u:R" = R™: |u| < K and u is measurable}.
Initial states zy are taken from the ball p(n), where 7 €
(0, A) is specified. We also assume that f(0,0) = 0.

To incorporate model uncertainty, set

f(x,u):fo(x,u)Jrfy(x,u); (4)
fO(Ovo) = Oa f’y(oa O) = 07

where fj is the recursion function of the tested system ¥,

and f, represents modeling uncertainty. The functions fy

and f, are both unknown but continuously differentiable.

The tested system X is given by @(t) = fo(x(t), u(t)),t >

0, (L'(O) = Xy.

To avoid ‘freezing’ of ¥ outside the origin, we require

Assumption 2. For every state © € p(A), except possibly
x = 0, there is an input v € C(m) for which fo(z,v) # 0.
O

3.8 Effects of uncertainty

Considering that the functions fy and f, are continuously
differentiable over the compact domain p(A) x [—K, K™,
it follows that there are constants B,y > 0 such that

[fo(z,u) = fo(a',u)] < B(lw — 2’| + [u — u]), (5)
[y (@, u) = fr(2", W) < vz — 2" + [u — )
for all (z,u), (2’,u') € p(A)x[-K, K]™, where 7 is the un-
certainty parameter. The family of all systems represented



by (3) and satisfying (4) and (5) is denoted by F,(X). We
seek robust bang-bang state-feedback controllers ¢ that
properly control all members of F, ().

4. PRELIMINARIES
4.1 Bang-bang steps

A bang-bang step is a time during which a bang-bang
controller provides a constant input to the controlled
system Y. It is possible that consecutive bang-bang steps
provide the same input, so the number of switchings may
be lower than the number of bang-bang steps. We impose
the following.

Assumption 3. A bang-bang controller ¢ drives the con-
trolled system X from initial states in p(n) to N within a
time of ©® > 0, with no more than d bang-bang steps of
duration not exceeding T > 0. O

The values of O, d, and T can be changed later, if needed.

During a bang-bang step, g is an autonomous system
given by the equation #(t) = fo(z(t),v), where v € C(m)
is a constant input. For a set S C p(A) of states at
t = 0, the states ¥y can reach at a time ¢t > 0 with
the input v is called the reachable set Ro(t,v,S). The
flow function Fy(t,v) : S — Ro(t,v,S) is known to be a
homeomorphism (e.g., Hirsch et al. (2012)).

The set of all states that ¢ can reach with a constant
input v € C(m) during a time interval [0, 7], after starting
from states in S at t =0, is

Oo(r,0,9) = |J Rolt,v,S). (6)
te[0,7]
Allowing all constant inputs v € C(m), the system ¥ can
reach the states

@0(7—7 S) = U (I)O(T7U7 S)
veC(m)
To reach a particular state in ®o(7, S), the system X must
start from an appropriate initial state in S, and receive an
appropriate constant input v € C(m) for an appropriate
time ¢t < 7.

4.2 The impact of uncertainty

The next statement, which follows from (3), (4), (5),
and Assumption 3, clarifies the impact of the uncertainty
parameter 7y (see Hammer (2025) for proof).

Proposition 4. There is a real constant ¢ > 0 such that
|X (20, u,t) —3o(x0, u,t)| < e for all systems ¥ € F,(Xo),
all states o € p(n), all input signals u € U(K), and all
times ¢ € [0, ©)]. O

5. THE SPACING INTERVAL

The interval A of (2) is called the spacing interval. It
creates a family S of spheres that help determine the
switching points of the bang-bang controller ¢. Basically,
A is determined by requiring that a constant input v €
C(m) move the state of Xy by at least A in one bang-bang
step. We need the following notation to show that A exists.

A neighborhood of radius € > 0 on a sphere o(r) around a
state x € o(r) is s(r,e,x) := o(r)Np(e, x); its complement

s¢(r,e,x) ==o(r)\ s(r,e, ) (7)
consists of states on o(r) no closer than e to . Denote
Uo(rya, A, v, x) :=

Oo(T,v,z) N{o(r—A)Uo(r+A)Us(r,A/a,x)} (8)
Then, following holds.

Lemma 5. Thereis a Ag > 0 such that, for every r € [x, 4]
and z € o(r), there is a constant input v € C(m) satisfying
‘I’O(T,Q,Aoyv,x) 7é a. (9)

Proof. (outline) By contradiction, assume that there
are sequences {zp}p2, C o(r) and {0x}p2,, where
limg 00 0 = 0, such that Uy (r, a, dg, v, xx) = S forallv €
C(m) and all k =1,2,... By compactness, {zx}7>, has a
limit point ' € o(r). Then, we get Uo(r,a,d’,v,2") = &
for all & > 0 and all v € C(m). This entails that
fo(a',v) = 0 for all v € C(m), contradicting Assumption

0

By continuity of the flow function, any A < Ay also satis-
fies Lemma 5. A value of A can be found experimentally
as follows (the selection of « is discussed in Section 5).

Procedure 6. (Finding Ag). Fix an o > 0.

Step 1: Select Ay > 0; build a grid T" in p(A), using radial
spacing of Ay and tangential spacing of Ay /a.

Step 2: Test the response of ¥y with constant inputs v €
C(m) for a duration not exceeding 7', using states of
I' as initial states. If, for every state of I', there is an
input v € C(m) for which (9) holds, then terminate the
procedure and record Ag.

Step 3: Else, repeat from Step 1, using Ay/2 for Ag. O

By Lemma 5, Procedure 6 terminates.
6. THE PARTITION
6.1 Mode of operation

We select a real number 6 > 0 so that states not further
than § apart have ‘similar’ behavior over short period of
time; selection of ¢ is discussed below. Using §, we partition
each sphere o(r;) of (2) into a finite number of subsets
{P{}. Each P} is determined by a designated state xi and
4, so that ‘ .
Pi C p(6,2}).

To select d, we need to describe the mode of operation of
the bang-bang controller ¢ we aim to design.

Refer to Figure 3. Assume that the initial state xg of ¥g is
within the subset P,ig, The designated state of P,ég is xZ”U
Let v; € C(m) be a constant input that drives ¥y from
x}% to a state x; € P,g in a time 7;. Now, apply vy to g
from zg, and let 2’ be the state reached at the time 7.
The resulting deviation is Dy := |z’ — ;1|. This is the first
bang-bang step deviation.

For the second bang-bang step, use a constant input
vg € C(m) that drives ¥ from the designated state m?l of
Pﬁ to reach a state xo € PIZ in 75 time. Now, apply the
constant input vy to 3¢ starting from z’ for the same time



Fig. 3. Principle of operation

T9; let z” be the state reached. The resulting deviation is
Dy :=|z" — x4

In general, we have two progressions:

(i) A progression among subsets {P}}, where, at step
j €{0,1,...}, the state of 3o moves from the designated
state ) of P’ to a subset P!, while driven by a

J J J+1 i
constant input v;11 € C(m) and reaching P,:ji after
Tj+1 time. This is a potentially discontinuous path, since,
after reaching a state x in P,Z , the next step starts at

:Z?;:J, which may be a state different from z.

Assume that a state 2* € o(x) is reached after ¢ such
steps, where ¢ < d by Assumption 3. Denote P} := o(x).
We obtain a sequence

o ={P, P}, .. .,P,zz} (10)
of subsets through which the system traveled, where
P = P,

(ii) A continuous path progression, starting o from the
initial state xg, which is in P]ig, and using the bang-bang
input sequence

vy t€|0,7),
vy tE [T, T+ T2),
Ugy (T) 1=

q—1

vg t€ [ZTJ,ZTJ].

j=1  j=1

This induces the bang-bang state-feedback controller
w(xo) = uy, (¢ bang-bang steps). (11)

Let xf be the state ¥y reached at the end of the input
Ug,, Starting from xg.
The largest deviation between progressions (i) and (i1) is
D:= sup |z —z"| (12)
zo€p(n)
The deviation D depends, among other factors, on the
distance between the initial state zo and the designated
state x)? of the initial subset P;? to which z¢ belongs.

Denote by e the largest distance between zp and the
designated state z;) of P°. We define the deviation ratio
1 given by

u:=max{D/e,1}. (13)

Now, the last member of the sequence IIy of (10) is
PIZ = PP = o(x). If the deviation satisfies D < x/2, then
the controller ¢ of (11) guides X to the ball p(3x/2) from
every initial state in p(n). As p(3x/2) C p(2x) C N (see
(1)), the controller ¢ guides 3¢ to /. Given the deviation
ratio x4 and the requirement D < x/2, we obtain the
maximal distance € as

e = x/(2p)-
An estimate of u is derived later in this section.

(14)

6.1.1 The spacing interval A

Consider an initial condition zy that is between adja-
cent spheres o(r;), o(r;+1). A slight reflection shows that
the largest radial distance between xy and a designated
state occurs when g is in the middle between the two
spheres, namely, at a radial distance of A/2 from each.
Tangentially, the largest distance is §. Thus, the overall
distance between xy and the closest designated state is
(62 +(A/2)?)Y/2. As ¢ is the maximal allowed distance, we
need 62 + (A/2)? < g2. Using A/2 = § for simplicity, we
get § = €//2. Substituting into (14) yields

6 = x/(2/2p). (15)
Having selected A/2 = §, and using A of Procedure 6
with a = 1/2, the spacing interval is

A = min{26, Ag}. (16)

6.2 The deviation ratio

It is shown in Hammer (2025) that the system X, has a
finite deviation ratio p. To find p experimentally, we can
use

Procedure 7. (Finding a deviation ratio y).

Let Ag be given by Procedure 6. In p(A), construct a grid
I' with interval Ag. Denote by c1,ca, ..., ¢4 the cells of the
grid, and by v1,vs,...,vam the members of C(m).

Step 1: Set € = Ag/2.

Step 2: Set s = 1.

Step 3 Let x, 2’ be states, where x is the center of cell ¢,
and |2/ —z| = €.

Step 4: Set £ = 1.

Step 5: At the time ¢ at which Xo(x, vy, t) enters an-
other cell, record the distance a(s, ) := |Xo(z,ve,t) —
Yo(a!, v, t)|. If Zo(z, ve, t) does not reach a different cell
within the time 7', then set a(s, ) := 0 and proceed to
Step 6.

Step 6: If £ < 2™, replace ¢ by £ + 1; return to Step 5.

Step 7: If £ =2™ and s < g, replace s by s + 1; return to
Step 3.

Step 8: If £ = 2™ and s = g, set 8 = max{a(k, k') : Kk €
{1,2,...,9},k €{1,2,...,2™}}; end procedure. O

When ¢ is not too large, Procedure 7 provides an estimate
of the maximal deviation over one bang-bang step. Recall-
ing the bound d of Assumption 3, it can be shown that
the deviation of d steps satisfies D < e(8¢ + Z?;é B7//2)

(see Hammer (2025) for details). Consequently,

d—1
u:max{ﬂu\}i;ml}. (17)



6.3 The partition P = {P}}

Construction 8. (The partition P).
(15), and A of (16).

Step 1: Build the spheres o(r;), r; = x + A, i =
1,2,...,p. For i =0, set P° = {PY}, where P} := o(x),
q(0) :=1, and 29 = 0.

Step 2: Set i:=1.

Step 3: On o(r;), build a partition P* of disjoint subsets
{P;} with designated states {z }, so that P} C p(d,x%)N
a(r;). Let q(i) be the number of members of P

Step 4: For i < p, replace i by i + 1; return to Step 3.

End: If i = p, set P:={P° Pl ... PP}. O

Use p of (17), § of

7. ROBUST BANG-BANG CONTROLLERS

A bang-bang state-feedback controller ¢ is built in two
steps, qualitatively described as follows.

(i) The partition P = {P{} of Construction 8 is used to
build a directed graph G(A) with vertices named after
the members of {P}} and directed edges showing the
propagation of the state of 3y from designated states
{zi} to neighboring members of {P{}, when driven by
constant inputs from C(m).

(i) The directed graph G(A) is analyzed to find directed
paths from each vertex to the vertex P = o(x). These
paths induce the bang-bang state-feedback controller ¢
of (11).

Construction 9. (of the directed graph G(A)). Let vy, ve,

..., Vam be the members of C(m), and let P = { P} } be the

partition of Procedure 8 with the designated states {z},

1=0,1,2,...,p, k=1,2,...,q(3).

Step 1: Build a graph with vertices P]i, i€{0,1,2,...
ke{1,2,...,4(i)} and no edges.

Step 2: Set i = 1.

Step 3: Set k = 1.

Step 4: Set j = 1.

Step 5: Apply to ¥y the constant input v; from the initial
state xi for no longer than T'. If the state of Xy does not
enter a member different from P}, go to Step 7.

Step 6: Let P,ii # Pi be the first member of P met by
the state of ¥y. Mark a directed edge from the vertex
P} to the vertex P,ii; on this edge, mark the pair (v;, 1),
where 7 is the duration of the path from % to P,z:

Step 7: If j < 2™, replace j by j + 1, and go to Step 5.
If j = 2™ and k < ¢(i), replace k by kK + 1, and go to
Step 4.

If j = 2™ and k = ¢(i) and @ < p, replace i by i + 1, and
go to Step 3.

End: If j = 2™ and k = ¢(¢) and ¢ = p, the construction

of G(A) ends. O

P}

Recall that initial states are restricted to the ball p(n).
Denote by A > 0 the smallest integer for which

AA > 1. (18)
Procedure 10. (Analysis of G(A)). Let A > 0 be given by
(18), and let G(A) be the directed graph of Construction
9.

Step 0: Use methods of graph theory (e.g., Bollobas
(1998)) to mark directed paths in G(A) from every

vertex P{ to PP, i € {1,2,...,0}, k € {1,2,...,q(i)},
if such paths exist.

Step 1: If there is a directed path from every vertex P}
to P, i € {1,2,...,A}, k € {1,2,...,q(7)}, terminate
the procedure.

Step 2: Otherwise, under the conditions of Theorem 12
below, there is no controller that satisfies the require-
ments of Problem 1. Terminate the procedure. (]

When Procedure 10 ends in Step 1, there are bang-bang
state-feedback controllers ¢ that take Xg to p(3x/2), as
follows.

Construction 11. (Building a bang-bang controller ).
Assume that Procedure 10 ends in Step 1. Let x¢ be the
initial state of g, let :52% be a designated state for which
xo € p(a,x?o), where ¢ is given by (14); and let IIy be
a directed path in G(A) from P/° to P{. Then, ¢(zo) is
given by (11). O
Theorem 12. The following are true for ¢ € {1,2,..., A}
and k € {1,2,...,q(i)}.

(i) If the directed graph G(A) includes a directed path
from every vertex P} to the vertex PP, then the bang-
bang state-feedback controller of Construction 11 takes
the tested system Yy from every initial state in p(AA)
to p(3x/2).

(ii) If, for every A > 0, there are i, k for which the vertex
P} of G(A) has no directed path to any vertex of a
partition P? | where p(ri) D p(&,N) for some & > 0
and ¢ > ¥, then there is no bang-bang state-feedback

controller that guides ¥y from every initial state in
p(AA) to N. O

Recent work (Hammer (2024, 2025)) has shown that
bang-bang, or closely related pseudo bang-bang, state-
feedback controllers can approximate the performance of
any controller for most practical nonlinear systems. Thus,
when Theorem 12(7i) holds, there are no controllers that
achieve the objective of Problem 1.

Proof. (of Theorem 12) Referring to (12) and (13), Part
(i) of the theorem follows from the inequality D < x/2.
Part (ii) of the theorem is proved in Hammer (2025). O

The controller ¢ of Theorem 12(7) takes the tested system
Yo into p(3x/2). As we have p(2x) € N by (1), there
is further /2 flexibility to reach the target set N. This
allows ¢ to accommodate the family F.,(3), as follows.

Corollary 13. Let ¢ be as given in Proposition 4. If v <
X/(2c¢), then the bang-bang state-feedback controller ¢ of
Construction 11 takes every system ¥ € F, (o) to N. O

8. EXAMPLE

The unknown controlled system is related to the Michaelis-
Menten equation (Cao (2011)):

-
P 9 1 (19)

5+ax2(t)
here, the state is x(t) = (z!(t),22(t))T; the input is u(t);
the bounds are K = 2, A = 2, and T' = 3; initial states



Fig. 5. Part of G(0.2) that starts at P2.

are in p(1); and y = 0.2. The parameters a € [2.9,3.1],
b € [4.9,5.1], and d € [4.9,5.1] are constants. The user
does not know the system’s model (19). For the tested
system X, take a = 3.0, b = 5.0, and d = 5.0.

Initial testing shows that we can use A = 0.2 and that
the system can be guided to p(0.2) from initial states in
p(1) without exiting p(1). Consequently, for the balls p(r;),
we have r; = 0.2 4+ 10.2, ¢« = 1,2,3,4. For the partition
of the spheres o(r;) (circles in this case), it is simpler
here to use angular sections [k7/10 — /20, k7 /104 7 /20],
k=0,1,...,19. The designated states z}, are on the circles
o(r;) at the angles ¢, = kn/10, k € {0,1,...,19}.

In Construction 9, apply the constant inputs v = 2 and
v = —2 at each designated state x}C for a time not
exceeding 3. The results appear in Figure 4, where light
lines show the response to v = 2 and darker lines show
the response to v = —2. From Figure 4 we can build the
directed graph G(A). Figure 5 shows the part of G(A) for
the initial state 21. From Figure 5 we obtain the bang-bang
state-feedback controller ¢(z) shown below.

start with —2 at @ = (cos(37/5), sin(37/5));

(@) = hold —2 for a time of 0.46;
)= switch to 2 at time 0.46;
hold 2 until reaching P).

This controller is for initial states x located in the vicinity
of #2, i.e., within the ball p(0.1, 2%). The response induced
by o(x) from the initial state 2% is shown in Figure 6.

9. CONCLUSION

This note introduces a framework for the design of robust
bang-bang state-feedback controllers for systems with un-

Fig. 6. Closed-loop system performance

known model. The design is based on data collected by
testing a sample of the controlled system. The results of
the testing lead to a a directed graph G(A); directed paths
in this graph determine robust bang-bang controllers.

REFERENCES

Astrom, K.J. and Wittenmark, B. (2008). Adaptive Con-
trol. Dover Publications, Mineola. NY, 2 edition.

Belman, R. (1961). Adaptive Control-A Guided Tour.
Princeton University Press, Princeton, N.J.

Bollobés, B. (1998). Modern Graph Theory, volume 184 of
Graduate Texts in Mathematics. Springer-Verlag, New
York.

Cao, J. (2011). Michaelis-menten equation and detailed
balance in enzymatic networks. The Journal of Physical
Chemistry B, 5493-5498.

Hammer, J. (2021). Optimal robust state-feedback control
of nonlinear systems: Minimal time to target. Interna-
tional Journal of Control, 94(2), 433-451.

Hammer, J. (2024). Optimal robust control of nonlin-
ear systems: Inter-sample optimization in sampled-data
control. International Journal of Control, 97(10), 2213~
2232.

Hammer, J. (2025). On global feedback control of unknown
nonlinear systems. International Journal of Control,
98(3), 493-509.

Hirsch, M.W., Smale, S., and Devaney, R.L. (2012). Differ-
ential equations, dynamical systems, and linear algebra.
Academic Press, Waltham, MA, USA, 3 edition.

Kalman, R. (1958). Design of self-optimizing control
systems. ASMFE Transactions, 80, 468-478.

Liu, L., Liu, Y.J., Chen, A., Tong, S., and Chen, C.L.P.
(2020). Integral barrier lyapunov function-based adap-
tive control for switched nonlinear systems. Science
China Information Sciences, 63(3), 132203.

Mishkin, E. and Braun, L. (1961). Adaptive Control
Systems. McGraw-Hill, New York, NY.

Nijmeijer, H. and van der Schaft, A. (2016). Nonlinear
Dynamical Control Systems. Springer, New York, NY.
Ortega, R., Nikiforov, V., and Gerasimov, D. (2020). On
modified parameter estimators for identification and
adaptive control. a unified framework and some new

schemes. Annual Reviews in Control, 50, 278-293.

Ren, X.X. and Yang, G.H. (2019). Adaptive control
for nonlinear cyber-physical systems under false data
injection attacks through sensor networks. International
Journal of Robust and Nonlinear Control, 30(1), 65-79.



