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1. INTRODUCTION

This note describes a process that derives robust state-
feedback controllers for nonlinear systems with unknown
description. As opposed to linear systems, where tech-
niques for controlling systems with unknown description
are well established (Astrom and Wittenmark (2008)),
it seems that no such techniques are available for broad
families of nonlinear systems.

The design framework presented in this note yields robust
state-feedback controllers for nonlinear systems whose
model is unknown. It is valid for large families of nonlinear
systems. It does not attempt to estimate parameters of the
unknown systems that need to be controlled. In fact, the
systems under consideration are nonlinear systems that
may not be characterizable by finite sets of parameters.
Rather than focus on system parameters, we concentrate
on the use of signals that are inherently finitary: bang-bang
signals.

Bang-bang signals switch between the upper and the
lower input amplitude bounds of the controlled system.
Thus, bang-bang signals admit only a finite number of
values at each instant of time. This fact allows us to
develop a finitary process for testing an unknown nonlinear
system to derive information that is sufficient for the
design of bang-bang state feedback controllers that fulfill
desired control objectives. In view of (Hammer (2021,
2025)), bang-bang controllers, or closely related pseudo
bang-bang controllers, can approximate the performance
of any controller. Consequently, restriction to bang-bang
controllers does not limit performance options.

The design framework of this note can be incorporated into
artificial intelligence/machine learning algorithms to auto-
matically build robust controllers for unknown nonlinear
systems.

The control configuration is shown in Figure 1, where
the state-feedback controller φ controls the system Σ;
the latter’s state is x(t), and its input is u(t). Structural
limitations impose a constraint of K > 0 on the input

 

Σ
x (t) = Σ(x0, u , t)u(t)φ

Fig. 1. The control configuration

amplitude and a constraint of A > 0 on the state norm of
Σ.

The objective is to derive state-feedback controllers φ that
asymptotically stabilize Σ. As the description of Σ is not
known, testing of an available sample Σ0 of Σ is performed
to derive data that facilitates the design of φ. The tested
system Σ0 may differ from the system Σ placed in the
configuration of Figure 1. We allow Σ to be any member
of a family Fγ(Σ0) of systems that differ by no more than
γ from Σ0.

As asymptotic stabilization with bang-bang controllers
may involve infinite switchings near the zero state, we
exchange to a linear controller near the origin of state
space. To that end, we assume that Σ can be approxi-
mated by a stabilizable linear system Λ within a small
neighborhood N of the zero state. Then, φ operates as a
bang-bang controller outside N and as a linear controller
inside N . This note concentrates on bang-bang controllers
that guide Σ to N ; derivation of linear controllers is well
known. Denote by ρ(a) a ball of radius a centered at zero.
Let χ > 0 be such that

ρ(2χ) ⊆ N . (1)

Problem 1. Faced with a family Fγ(Σ0) of unknown sys-
tems closely related to an unknown system Σ0 available
for testing, develop a testing protocol for Σ0 that leads
to the construction of robust bang-bang state-feedback
controllers φ that guide all members of Fγ(Σ0) to ρ(2χ).
□

This note continues the extensive literature of adaptive
control that was seeded more than half a century ago
by the works of Kalman (1958); Belman (1961); Mishkin
and Braun (1961), and others. To mention a few recent
contributions in this area, we list the paper by Ren and
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Fig. 2. The testing process

Yang (2019) on adaptive control of a certain class of
input-affine cyber-physical systems subject to unknown
nonlinearities and false data injection; the paper by Liu
et al. (2020) on integral barrier Lyapunov functions that
investigates adaptive control of a certain class of switched
input-affine nonlinear systems; and the paper by Ortega
et al. (2020) on identification of systems with a linear
regression model for their unknown parameters. More
generally, this note contributes to the general theory of
nonlinear control (e.g., Nijmeijer and van der Schaft (2016)
and the references cited there).

Regarding organization, Section 2 provides an overview
of the framework developed in this paper. Section 3 de-
scribes the class of nonlinear systems considered; Section
4 discusses the impact of uncertainty; Sections 5 and 6
build the technical foundation; Section 7 designs robust
bang-bang state-feedback controllers; Section 8 analyzes
an example; and Section 9 is a brief summary.

2. DESIGN OUTLINE

The framework of this paper consists of two stages: (i)
testing of a sample of the controlled system; and (ii)
using the test results to derive a controller. The utilization
of bang-bang controllers substantially simplifies the task
since, for a system with m inputs, a bang-bang controller
φ generates at each instant of time a constant signal from
the family of 2m members

C(m) =
{
υ = (υ1, υ2, . . . , υm)⊤ : |υi| = K, i = 1, . . . ,m

}
.

For example, for a single input system, C(1) = {K,−K}.
To derive the controller φ, we monitor the response of the
tested system Σ0 to constant inputs from C(m), using a
grid Γ of initial states. The grid Γ consists of spherical
shells of thickness ∆ > 0 (Section 5); it is produced by
spheres σ(ri) of radii ri centered at zero, where ∆ is
selected so that p := (A− χ)/∆ is an integer; then,

ri = χ+ i∆, i = 0, 1, . . . , p. (2)

Each sphere σ(ri) is partitioned into segments {P i
k}, k =

1, 2, . . . , q(i), that are determined by a real number δ > 0:
each segment P i

k is included in a ball of radius δ centered
at a designated state xi

k ∈ ρ(ri). The number q(i) of {P i
k}

members is often not overly large.

In testing, the response of Σ0 to constant inputs υ ∈ C(m)
is monitored from each designated state xi

k to record the

first member P i′

k′ reached by Σ0, as shown in Figure 2.

This information is recorded in a directed graph G(∆),
where each vertex represents one member P i

k; directed

edges point from the vertex P i
k to the vertex P i′

k′ . On each
edge, we mark (υ, τ), where υ ∈ C(m) is the input used

and τ is the time it took to reach P i′

k′ from P i
k (Section 7).

Next, methods of graph theory (e.g., Bollobás (1998)) are

deployed to find directed paths Π = {P i
k, P

i1
k1
, P i2

k2
, . . . , P 0

1 }

from each vertex P i
k to the vertex P 0

1 representing the
target N . The pairs (υ, τ) on the path’s edges engender a
bang-bang input signal, forming a robust bang-bang state-
feedback controller φ that guides every system Σ ∈ Fγ(Σ0)
to N (Section 7).

3. BASICS

3.1 Notation

Denote by R the real numbers and by R+ the non-
negative real numbers. The absolute value of a number
r is |r|. For a vector x = (x1, x2, . . . , xn)

⊤ ∈ Rn, denote
|x| := max{|x1|, |x2|, . . . , |xn|} and |x|2 = (x⊤x)1/2. Given
a function u : R+ → Rm, denote |u|∞ := supt≥0 |u(t)|. For
a real number M > 0, denote by [−M,M ]n the set of all
x ∈ Rn with |x| ≤ M . The ball of radius r > 0 centered at
x = 0 is ρ(r) := {x ∈ Rn : |x|2 ≤ r}; the ball centered at
y is ρ(r, y) := {x ∈ Rn : |x− y|2 ≤ r}. For a set S ⊆ Rn,

ρ(r, S) :=
⋃
y∈S

ρ(r, y).

The sphere of radius r around the origin is σ(r) := {x ∈
Rn : |x|2 = r}, and σ(r, y) := {x ∈ Rn : |x − y|2 = r} is
the sphere of radius r centered at y.

3.2 The controlled system

The system Σ of Figure 1 is time-invariant:

Σ : ẋ(t) = f(x(t), u(t)), t ≥ 0, x(0) = x0, (3)

where the recursion function f : Rn × Rm → Rn is
unknown, but continuously differentiable; x(t) ∈ Rn is
the state; and u(t) ∈ Rm is the input. The amplitude
constraints are |x(t)|2 ≤ A and |u(t)| ≤ K for all t ≥ 0.
The class of input signals is then

U(K) := {u : R+ → Rm : |u|∞ ≤ K and u is measurable}.
Initial states x0 are taken from the ball ρ(η), where η ∈
(0, A) is specified. We also assume that f(0, 0) = 0.

To incorporate model uncertainty, set

f(x, u) = f0(x, u) + fγ(x, u);

f0(0, 0) = 0, fγ(0, 0) = 0,
(4)

where f0 is the recursion function of the tested system Σ0,
and fγ represents modeling uncertainty. The functions f0
and fγ are both unknown but continuously differentiable.
The tested system Σ0 is given by ẋ(t) = f0(x(t), u(t)), t ≥
0, x(0) = x0.

To avoid ‘freezing’ of Σ outside the origin, we require

Assumption 2. For every state x ∈ ρ(A), except possibly
x = 0, there is an input υ ∈ C(m) for which f0(x, υ) ̸= 0.
□

3.3 Effects of uncertainty

Considering that the functions f0 and fγ are continuously
differentiable over the compact domain ρ(A)× [−K,K]m,
it follows that there are constants B, γ > 0 such that

|f0(x, u)− f0(x
′, u′)| ≤ B(|x− x′|+ |u− u′|),

|fγ(x, u)− fγ(x
′, u′)| ≤ γ(|x− x′|+ |u− u′|)

(5)

for all (x, u), (x′, u′) ∈ ρ(A)×[−K,K]m, where γ is the un-
certainty parameter. The family of all systems represented



by (3) and satisfying (4) and (5) is denoted by Fγ(Σ0). We
seek robust bang-bang state-feedback controllers φ that
properly control all members of Fγ(Σ0).

4. PRELIMINARIES

4.1 Bang-bang steps

A bang-bang step is a time during which a bang-bang
controller provides a constant input to the controlled
system Σ. It is possible that consecutive bang-bang steps
provide the same input, so the number of switchings may
be lower than the number of bang-bang steps. We impose
the following.

Assumption 3. A bang-bang controller φ drives the con-
trolled system Σ from initial states in ρ(η) to N within a
time of Θ > 0, with no more than d bang-bang steps of
duration not exceeding T > 0. □

The values of Θ, d, and T can be changed later, if needed.

During a bang-bang step, Σ0 is an autonomous system
given by the equation ẋ(t) = f0(x(t), υ), where υ ∈ C(m)
is a constant input. For a set S ⊆ ρ(A) of states at
t = 0, the states Σ0 can reach at a time t ≥ 0 with
the input υ is called the reachable set R0(t, υ, S). The
flow function F0(t, υ) : S → R0(t, υ, S) is known to be a
homeomorphism (e.g., Hirsch et al. (2012)).

The set of all states that Σ0 can reach with a constant
input υ ∈ C(m) during a time interval [0, τ ], after starting
from states in S at t = 0, is

Φ0(τ, υ, S) =
⋃

t∈[0,τ ]

R0(t, υ, S). (6)

Allowing all constant inputs υ ∈ C(m), the system Σ0 can
reach the states

Φ0(τ, S) =
⋃

υ∈C(m)

Φ0(τ, υ, S).

To reach a particular state in Φ0(τ, S), the system Σ0 must
start from an appropriate initial state in S, and receive an
appropriate constant input υ ∈ C(m) for an appropriate
time t ≤ τ .

4.2 The impact of uncertainty

The next statement, which follows from (3), (4), (5),
and Assumption 3, clarifies the impact of the uncertainty
parameter γ (see Hammer (2025) for proof).

Proposition 4. There is a real constant c > 0 such that
|Σ(x0, u, t) −Σ0(x0, u, t)| ≤ γc for all systems Σ ∈ Fγ(Σ0),
all states x0 ∈ ρ(η), all input signals u ∈ U(K), and all
times t ∈ [0,Θ]. □

5. THE SPACING INTERVAL

The interval ∆ of (2) is called the spacing interval. It
creates a family S of spheres that help determine the
switching points of the bang-bang controller φ. Basically,
∆ is determined by requiring that a constant input υ ∈
C(m) move the state of Σ0 by at least ∆ in one bang-bang
step. We need the following notation to show that ∆ exists.

A neighborhood of radius ε > 0 on a sphere σ(r) around a
state x ∈ σ(r) is s(r, ε, x) := σ(r)∩ρ(ε, x); its complement

sc(r, ε, x) := σ(r) \ s(r, ε, x) (7)

consists of states on σ(r) no closer than ε to x. Denote

Ψ0(r, α,∆, υ, x) :=

Φ0(T, υ, x) ∩ {σ(r −∆) ∪ σ(r +∆) ∪ sc(r,∆/α, x)} (8)

Then, following holds.

Lemma 5. There is a ∆0 > 0 such that, for every r ∈ [χ,A]
and x ∈ σ(r), there is a constant input υ ∈ C(m) satisfying

Ψ0(r, α,∆0, υ, x) ̸= ∅. (9)

Proof. (outline) By contradiction, assume that there
are sequences {xk}∞k=1 ⊆ σ(r) and {δk}∞k=1, where
limk→∞ δk = 0, such that Ψ0(r, α, δk, υ, xk) = ∅ for all υ ∈
C(m) and all k = 1, 2, . . . By compactness, {xk}∞k=1 has a
limit point x′ ∈ σ(r). Then, we get Ψ0(r, α, δ

′, υ, x′) = ∅
for all δ′ ≥ 0 and all υ ∈ C(m). This entails that
f0(x

′, υ) = 0 for all υ ∈ C(m), contradicting Assumption
2. □

By continuity of the flow function, any ∆ ≤ ∆0 also satis-
fies Lemma 5. A value of ∆ can be found experimentally
as follows (the selection of α is discussed in Section 5).

Procedure 6. (Finding ∆0). Fix an α > 0.

Step 1: Select ∆0 > 0; build a grid Γ in ρ(A), using radial
spacing of ∆0 and tangential spacing of ∆0/α.

Step 2: Test the response of Σ0 with constant inputs υ ∈
C(m) for a duration not exceeding T , using states of
Γ as initial states. If, for every state of Γ, there is an
input υ ∈ C(m) for which (9) holds, then terminate the
procedure and record ∆0.

Step 3: Else, repeat from Step 1, using ∆0/2 for ∆0. □

By Lemma 5, Procedure 6 terminates.

6. THE PARTITION

6.1 Mode of operation

We select a real number δ > 0 so that states not further
than δ apart have ‘similar’ behavior over short period of
time; selection of δ is discussed below. Using δ, we partition
each sphere σ(ri) of (2) into a finite number of subsets
{P i

k}. Each P i
k is determined by a designated state xi

k and
δ, so that

P i
k ⊆ ρ(δ, xi

k).

To select δ, we need to describe the mode of operation of
the bang-bang controller φ we aim to design.

Refer to Figure 3. Assume that the initial state x0 of Σ0 is
within the subset P i0

k0
, The designated state of P i0

k0
is xi0

k0
.

Let υ1 ∈ C(m) be a constant input that drives Σ0 from

xi0
k0

to a state x1 ∈ P i1
k1

in a time τ1. Now, apply υ1 to Σ0

from x0, and let x′ be the state reached at the time τ1.
The resulting deviation is D1 := |x′ − x1|. This is the first
bang-bang step deviation.

For the second bang-bang step, use a constant input
υ2 ∈ C(m) that drives Σ0 from the designated state xi1

k1
of

P i1
k1

to reach a state x2 ∈ P i2
k2

in τ2 time. Now, apply the

constant input υ2 to Σ0 starting from x′ for the same time
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Fig. 3. Principle of operation

τ2; let x
′′ be the state reached. The resulting deviation is

D2 := |x′′ − x2|.
In general, we have two progressions:

(i) A progression among subsets {P i
k}, where, at step

j ∈ {0, 1, . . . }, the state of Σ0 moves from the designated

state x
ij
kj

of P
ij
kj

to a subset P
ij+1

kj+1
, while driven by a

constant input υj+1 ∈ C(m) and reaching P
ij+1

kj+1
after

τj+1 time. This is a potentially discontinuous path, since,

after reaching a state x in P
ij
kj
, the next step starts at

x
ij
kj
, which may be a state different from x.

Assume that a state x∗ ∈ σ(χ) is reached after q such
steps, where q ≤ d by Assumption 3. Denote P 0

1 := σ(χ).
We obtain a sequence

Π0 = {P i0
k0
, P i1

k1
, . . . , P

iq
kq
} (10)

of subsets through which the system traveled, where

P
iq
kq

= P 0
1 .

(ii) A continuous path progression, starting Σ0 from the

initial state x0, which is in P i0
k0
, and using the bang-bang

input sequence

ux0(t) :=



υ1 t ∈ [0, τ1),

υ2 t ∈ [τ1, τ1 + τ2),

. . .

υq t ∈ [

q−1∑
j=1

τj ,

q∑
j=1

τj ].

This induces the bang-bang state-feedback controller

φ(x0) := ux0
(q bang-bang steps). (11)

Let x∗
0 be the state Σ0 reached at the end of the input

ux0 , starting from x0.

The largest deviation between progressions (i) and (ii) is

D := sup
x0∈ρ(η)

|x∗
0 − x∗|. (12)

The deviation D depends, among other factors, on the
distance between the initial state x0 and the designated
state xi0

k0
of the initial subset P i0

k0
to which x0 belongs.

Denote by ε the largest distance between x0 and the
designated state xi0

k0
of P i0

k0
. We define the deviation ratio

µ given by

µ := max{D/ε, 1}. (13)

Now, the last member of the sequence Π0 of (10) is

P
iq
kq

= P 0
1 = σ(χ). If the deviation satisfies D ≤ χ/2, then

the controller φ of (11) guides Σ0 to the ball ρ(3χ/2) from
every initial state in ρ(η). As ρ(3χ/2) ⊂ ρ(2χ) ⊆ N (see
(1)), the controller φ guides Σ0 to N . Given the deviation
ratio µ and the requirement D ≤ χ/2, we obtain the
maximal distance ε as

ε = χ/(2µ). (14)

An estimate of µ is derived later in this section.

6.1.1 The spacing interval ∆

Consider an initial condition x0 that is between adja-
cent spheres σ(ri), σ(ri+1). A slight reflection shows that
the largest radial distance between x0 and a designated
state occurs when x0 is in the middle between the two
spheres, namely, at a radial distance of ∆/2 from each.
Tangentially, the largest distance is δ. Thus, the overall
distance between x0 and the closest designated state is
(δ2+(∆/2)2)1/2. As ε is the maximal allowed distance, we
need δ2 + (∆/2)2 ≤ ε2. Using ∆/2 = δ for simplicity, we

get δ = ε/
√
2. Substituting into (14) yields

δ = χ/(23/2µ). (15)

Having selected ∆/2 = δ, and using ∆0 of Procedure 6
with α = 1/2, the spacing interval is

∆ = min{2δ,∆0}. (16)

6.2 The deviation ratio

It is shown in Hammer (2025) that the system Σ0 has a
finite deviation ratio µ. To find µ experimentally, we can
use

Procedure 7. (Finding a deviation ratio µ).
Let ∆0 be given by Procedure 6. In ρ(A), construct a grid
Γ with interval ∆0. Denote by c1, c2, . . . , cg the cells of the
grid, and by υ1, υ2, . . . , υ2m the members of C(m).

Step 1: Set ε = ∆0/2.
Step 2: Set s = 1.
Step 3 Let x, x′ be states, where x is the center of cell cs
and |x′ − x| = ε.

Step 4: Set ℓ = 1.
Step 5: At the time t at which Σ0(x, υℓ, t) enters an-
other cell, record the distance a(s, ℓ) := |Σ0(x, υℓ, t) −
Σ0(x

′, υℓ, t)|. If Σ0(x, υℓ, t) does not reach a different cell
within the time T , then set a(s, ℓ) := 0 and proceed to
Step 6.

Step 6: If ℓ < 2m, replace ℓ by ℓ+ 1; return to Step 5.
Step 7: If ℓ = 2m and s < g, replace s by s+ 1; return to
Step 3.

Step 8: If ℓ = 2m and s = g, set β = max{a(κ, κ′) : κ ∈
{1, 2, . . . , g}, κ′ ∈ {1, 2, . . . , 2m}}; end procedure. □

When ε is not too large, Procedure 7 provides an estimate
of the maximal deviation over one bang-bang step. Recall-
ing the bound d of Assumption 3, it can be shown that

the deviation of d steps satisfies D ≤ ε(βd+
∑d−1

j=0 β
j/
√
2)

(see Hammer (2025) for details). Consequently,

µ = max{βd +
1√
2

d−1∑
j=0

βj , 1}. (17)



6.3 The partition P = {P i
k}

Construction 8. (The partition P ). Use µ of (17), δ of
(15), and ∆ of (16).

Step 1: Build the spheres σ(ri), ri = χ + i∆, i =
1, 2, . . . , p. For i = 0, set P 0 = {P 0

1 }, where P 0
1 := σ(χ),

q(0) := 1, and x0
1 = 0.

Step 2: Set i := 1.
Step 3: On σ(ri), build a partition P i of disjoint subsets
{P i

k} with designated states {xi
k}, so that P i

k ⊆ ρ(δ, xi
k)∩

σ(ri). Let q(i) be the number of members of P i.
Step 4: For i < p, replace i by i+ 1; return to Step 3.
End: If i = p, set P := {P 0, P 1, . . . , P p}. □

7. ROBUST BANG-BANG CONTROLLERS

A bang-bang state-feedback controller φ is built in two
steps, qualitatively described as follows.

(i) The partition P = {P i
k} of Construction 8 is used to

build a directed graph G(∆) with vertices named after
the members of {P i

k} and directed edges showing the
propagation of the state of Σ0 from designated states
{xi

k} to neighboring members of {P i
k}, when driven by

constant inputs from C(m).
(ii) The directed graph G(∆) is analyzed to find directed
paths from each vertex to the vertex P 0

1 = σ(χ). These
paths induce the bang-bang state-feedback controller φ
of (11).

Construction 9. (of the directed graph G(∆)). Let υ1, υ2,
. . . , υ2m be the members of C(m), and let P = {P i

k} be the
partition of Procedure 8 with the designated states {xi

k},
i = 0, 1, 2, . . . , p, k = 1, 2, . . . , q(i).

Step 1: Build a graph with vertices P i
k, i ∈ {0, 1, 2, . . . , p},

k ∈ {1, 2, . . . , q(i)} and no edges.
Step 2: Set i = 1.
Step 3: Set k = 1.
Step 4: Set j = 1.
Step 5: Apply to Σ0 the constant input υj from the initial
state xi

k for no longer than T . If the state of Σ0 does not
enter a member different from P i

k, go to Step 7.

Step 6: Let P i′

k′ ̸= P i
k be the first member of P met by

the state of Σ0. Mark a directed edge from the vertex
P i
k to the vertex P i′

k′ ; on this edge, mark the pair (υj , τ),

where τ is the duration of the path from xi
k to P i′

k′ .
Step 7: If j < 2m, replace j by j + 1, and go to Step 5.
If j = 2m and k < q(i), replace k by k + 1, and go to
Step 4.
If j = 2m and k = q(i) and i < p, replace i by i+1, and
go to Step 3.

End: If j = 2m and k = q(i) and i = p, the construction
of G(∆) ends. □

Recall that initial states are restricted to the ball ρ(η).
Denote by λ > 0 the smallest integer for which

λ∆ ≥ η. (18)

Procedure 10. (Analysis of G(∆)). Let λ > 0 be given by
(18), and let G(∆) be the directed graph of Construction
9.

Step 0: Use methods of graph theory (e.g., Bollobás
(1998)) to mark directed paths in G(∆) from every

vertex P i
k to P 0

1 , i ∈ {1, 2, . . . , λ}, k ∈ {1, 2, . . . , q(i)},
if such paths exist.

Step 1: If there is a directed path from every vertex P i
k

to P 0
1 , i ∈ {1, 2, . . . , λ}, k ∈ {1, 2, . . . , q(i)}, terminate

the procedure.
Step 2: Otherwise, under the conditions of Theorem 12
below, there is no controller that satisfies the require-
ments of Problem 1. Terminate the procedure. □

When Procedure 10 ends in Step 1, there are bang-bang
state-feedback controllers φ that take Σ0 to ρ(3χ/2), as
follows.

Construction 11. (Building a bang-bang controller φ).
Assume that Procedure 10 ends in Step 1. Let x0 be the
initial state of Σ0, let x

i0
k0

be a designated state for which

x0 ∈ ρ(ε, xi0
k0
), where ε is given by (14); and let Π0 be

a directed path in G(∆) from P i0
k0

to P 0
1 . Then, φ(x0) is

given by (11). □
Theorem 12. The following are true for i ∈ {1, 2, . . . , λ}
and k ∈ {1, 2, . . . , q(i)}.
(i) If the directed graph G(∆) includes a directed path
from every vertex P i

k to the vertex P 0
1 , then the bang-

bang state-feedback controller of Construction 11 takes
the tested system Σ0 from every initial state in ρ(λ∆)
to ρ(3χ/2).

(ii) If, for every ∆ > 0, there are i, k for which the vertex
P i
k of G(∆) has no directed path to any vertex of a

partition P i∗ , where ρ(ri∗) ⊇ ρ(ξ,N ) for some ξ > 0
and i > i∗, then there is no bang-bang state-feedback
controller that guides Σ0 from every initial state in
ρ(λ∆) to N . □

Recent work (Hammer (2024, 2025)) has shown that
bang-bang, or closely related pseudo bang-bang, state-
feedback controllers can approximate the performance of
any controller for most practical nonlinear systems. Thus,
when Theorem 12(ii) holds, there are no controllers that
achieve the objective of Problem 1.

Proof. (of Theorem 12) Referring to (12) and (13), Part
(i) of the theorem follows from the inequality D ≤ χ/2.
Part (ii) of the theorem is proved in Hammer (2025). □

The controller φ of Theorem 12(i) takes the tested system
Σ0 into ρ(3χ/2). As we have ρ(2χ) ⊆ N by (1), there
is further χ/2 flexibility to reach the target set N . This
allows φ to accommodate the family Fγ(Σ0), as follows.

Corollary 13. Let c be as given in Proposition 4. If γ ≤
χ/(2c), then the bang-bang state-feedback controller φ of
Construction 11 takes every system Σ ∈ Fγ(Σ0) to N . □

8. EXAMPLE

The unknown controlled system is related to the Michaelis-
Menten equation (Cao (2011)):

Σ :

ẋ1(t) =
a(x2(t) + 2)x1(t)

b+ x2(t)
− u(t),

ẋ2(t) = −dx2(t)(x1(t) + 2)

5 + x2(t)
;

(19)

here, the state is x(t) = (x1(t), x2(t))⊤; the input is u(t);
the bounds are K = 2, A = 2, and T = 3; initial states
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Fig. 5. Part of G(0.2) that starts at P 4
7 .

are in ρ(1); and χ = 0.2. The parameters a ∈ [2.9, 3.1],
b ∈ [4.9, 5.1], and d ∈ [4.9, 5.1] are constants. The user
does not know the system’s model (19). For the tested
system Σ0, take a = 3.0, b = 5.0, and d = 5.0.

Initial testing shows that we can use ∆ = 0.2 and that
the system can be guided to ρ(0.2) from initial states in
ρ(1) without exiting ρ(1). Consequently, for the balls ρ(ri),
we have ri = 0.2 + i0.2, i = 1, 2, 3, 4. For the partition
of the spheres σ(ri) (circles in this case), it is simpler
here to use angular sections [kπ/10−π/20, kπ/10+π/20],
k = 0, 1, . . . , 19. The designated states xi

k are on the circles
σ(ri) at the angles ϕk = kπ/10, k ∈ {0, 1, . . . , 19}.
In Construction 9, apply the constant inputs υ = 2 and
υ = −2 at each designated state xi

k for a time not
exceeding 3. The results appear in Figure 4, where light
lines show the response to υ = 2 and darker lines show
the response to υ = −2. From Figure 4 we can build the
directed graph G(∆). Figure 5 shows the part of G(∆) for
the initial state x4

7. From Figure 5 we obtain the bang-bang
state-feedback controller φ(x) shown below.

φ(x) :=


start with − 2 at x = (cos(3π/5), sin(3π/5));

hold − 2 for a time of 0.46;

switch to 2 at time 0.46;

hold 2 until reaching P 0
1 .

This controller is for initial states x located in the vicinity
of x4

7, i.e., within the ball ρ(0.1, x4
7). The response induced

by φ(x) from the initial state x4
7 is shown in Figure 6.

9. CONCLUSION

This note introduces a framework for the design of robust
bang-bang state-feedback controllers for systems with un-

time

(x1^2+x2^2)^.5
input

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

	1.8

	2

	2.2

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

Fig. 6. Closed-loop system performance

known model. The design is based on data collected by
testing a sample of the controlled system. The results of
the testing lead to a a directed graph G(∆); directed paths
in this graph determine robust bang-bang controllers.

REFERENCES

Astrom, K.J. and Wittenmark, B. (2008). Adaptive Con-
trol. Dover Publications, Mineola. NY, 2 edition.

Belman, R. (1961). Adaptive Control-A Guided Tour.
Princeton University Press, Princeton, N.J.

Bollobás, B. (1998). Modern Graph Theory, volume 184 of
Graduate Texts in Mathematics. Springer-Verlag, New
York.

Cao, J. (2011). Michaelis-menten equation and detailed
balance in enzymatic networks. The Journal of Physical
Chemistry B, 5493–5498.

Hammer, J. (2021). Optimal robust state-feedback control
of nonlinear systems: Minimal time to target. Interna-
tional Journal of Control, 94(2), 433–451.

Hammer, J. (2024). Optimal robust control of nonlin-
ear systems: Inter-sample optimization in sampled-data
control. International Journal of Control, 97(10), 2213–
2232.

Hammer, J. (2025). On global feedback control of unknown
nonlinear systems. International Journal of Control,
98(3), 493–509.

Hirsch, M.W., Smale, S., and Devaney, R.L. (2012). Differ-
ential equations, dynamical systems, and linear algebra.
Academic Press, Waltham, MA, USA, 3 edition.

Kalman, R. (1958). Design of self-optimizing control
systems. ASME Transactions, 80, 468–478.

Liu, L., Liu, Y.J., Chen, A., Tong, S., and Chen, C.L.P.
(2020). Integral barrier lyapunov function-based adap-
tive control for switched nonlinear systems. Science
China Information Sciences, 63(3), 132203.

Mishkin, E. and Braun, L. (1961). Adaptive Control
Systems. McGraw-Hill, New York, NY.

Nijmeijer, H. and van der Schaft, A. (2016). Nonlinear
Dynamical Control Systems. Springer, New York, NY.

Ortega, R., Nikiforov, V., and Gerasimov, D. (2020). On
modified parameter estimators for identification and
adaptive control. a unified framework and some new
schemes. Annual Reviews in Control, 50, 278–293.

Ren, X.X. and Yang, G.H. (2019). Adaptive control
for nonlinear cyber-physical systems under false data
injection attacks through sensor networks. International
Journal of Robust and Nonlinear Control, 30(1), 65–79.


