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ABSTRACT
A methodology is presented for the design and implementation of robust controllers that optimise inter-
sample performance for a broad range of nonlinear systems operatedwithin a sampled-data environment.
Themethodology applies to nonlinear continuous-time systemsdescribedby state equations, and it allows
for modelling uncertainties and constraints on maximal control effort. It is shown that there exist optimal
robust state-feedback controllers thatminimise inter-sample tracking errors for such systems, as long as an
appropriate controllability requirement is met. A relatively simple design and implementation procedure
for such controllers is described.
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1. Introduction

The quest for control methodologies that facilitate robust con-
trol of broad families of nonlinear systems – and accede to
relatively simple design and implementation – has been a feature
of control engineering since its inception. The present paper
revisits this quest by o!ering a methodology that establishes
the existence of optimal robust controllers for a broad range of
nonlinear systems and provides a relatively simple design and
implementation technique. The focus is on nonlinear sampled-
data control – the control of continuous-time systems by digital
controllers via periodic sampling. The methodology presented
in this paper is valid for a broad family of nonlinear continuous-
time systems, including most systems of practical interest. It
o!ers tools for proving existence and tools for design and
implementation of sampled-data state-feedback controllers that
robustly achieve minimal inter-sample errors for tracking con-
trol systems. The techniques introduced in this paper form a
foundation for generalising earlier work (Chakraborty & Ham-
mer, 2008, 2010; Choi & Hammer, 2019; Hammer, 2022; Yu
& Hammer, 2016) from input-a"ne systems to a much broader
class of nonlinear systems.

Motivated by low-cost and implementation convenience,
current control engineering practice is largely based on the
use of digital controllers that interface with continuous-time
systems through a process of periodic sampling. Such control
systems are often referred to as sampled-data systems. Their
basic control con#guration is depicted in Figure 1, where! is a
nonlinear system controlled by the state-feedback controller C.
The controller C links to the state x(t) of ! through a periodic
sampler of period T> 0. Based on the state sample it receives, C
generates the input signal u(t) of!. This input signal is updated
after every sample.

More speci#cally, the kth sample occurs at the time kT. At
that time, the controller C receives the state x(kT). Based on the
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state x(kT), the controller generates a signal u(t) = C(t, x(kT))

that is applied as input to the controlled system ! during the
time interval [kT, (k + 1)T]. This process repeats at every sam-
ple k = 0, 1, . . .The paper concentrates on optimising the signal
C(t, x(kT)) to reduce inter-sample tracking errors. We assume
that the sampling period T is speci#ed based on independent
considerations.

Most often, practical systems come with restrictions on the
maximal control e!ort they can tolerate. These restrictions
ensure safe operation and integrity of the controlled system !.
To incorporate such restrictions into our framework, we impose
input and state amplitude constraints on !. Speci#cally, the
input amplitude of!maynot exceed a speci#ed bound ofK> 0,
while the state amplitude of!may not exceed a speci#ed bound
of A> 0.

An important aspect of control engineering is managing
uncertainty, as the available description of ! is susceptible
to modelling uncertainty, disturbances, and noises. The con-
troller C must cope with such uncertainties; namely, it must be
robust.

Our objective is to design a controller C that guides the
closed-loop system to track a speci#ed state xtarget . By shifting
coordinates, we can take xtarget = 0, the origin. It is convenient
to use the square of the L2-norm to quantify the deviation of the
state x(t) from the target state x = 0. In this way, the deviation,
or the tracking error, at a time t is simply |x(t)|22 = x!(t)x(t).
The supremal tracking error over the sampling interval [0,T]
is often referred to as the inter-sample tracking error, since it
describes the highest error between the two consecutive sam-
ples received by the controller C, namely, the samples at t = 0
and t = T. Explicitly, the inter-sample tracking error is given
by " = supt∈[0,T] |x(t)|22. Our objective is to design and imple-
ment robust controllers C that minimise ", thus optimising
inter-sample performance.
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Figure 1. Control configuration.

1.1 The family of controlled systems

The controlled system ! is described by the di!erential
equation

! :
ẋ(t) = f (t, x(t), u(t)),

x(0) = x0;
(1)

here, x(t) ∈ Rn is the state, and u(t) ∈ Rm is the input. The
only restriction is that the recursion functionf be continuously
di!erentiable. The initial state x0 is a member of the ball

ρ(σ ) :=
{
x : x!x ≤ σ

⎧
,

where σ > 0 is speci#ed. The class of systems (1) is denoted by
S ; it forms a broad class of nonlinear systems that includesmost
systems of practical interest.

1.2 Continuous signals

To facilitate some of the mathematical considerations that
underlie our discussion, we impose a restriction on the per-
missible input signals u(t) that the controlled system ! may
receive. We require that all input signals of ! be continuous
functions of time. From a practical perspective, this is hardly a
consequential restriction, since truly discontinuous signals are
not implementable in a continuous-time environment. Con-
sider, for example, an electrical or electronic system. Here, the
presence of spurious capacitance, inductance, and resistance
prevents discontinuities in signals. Of course, we are all familiar
with idealizations referring to ‘switchings’, or ‘jumps’, in sig-
nal values, but these are just idealizations. An examination on
a su"ciently #ne time scale would reveal that such signals are
continuous functions of time. We show in Section 6 that, by
restricting our attention to continuous input signals, we can
prove existence of optimal robust controllers formembers of the
broad family S of controlled systems.

In this paper, we construct sampled-data state-feedback con-
trollers that achieve optimal robust inter-sample tracking per-
formance for systems belonging to the family S . The existence
of such controllers depends on a certain notion of controllabil-
ity: the notion of constrained controllability of Choi and Ham-
mer (2019). Basically, constrained controllability means that
there is an input signal that drives the controlled system !

from its initial state to the vicinity of the origin, without vio-
lating input and state amplitude constraints. As we discuss in
Section 5, constrained controllability is very close to also being
a necessary condition for the existence of optimal controllers.

In other words, constrained controllability is a tight su"cient
condition for the existence of optimal robust controllers.

Optimal controllers can be di"cult to design and imple-
ment, since they require the computation and implementation
of potentially involved multivariable vector-valued functions of
time. We address this issue in Section 7, where we show that
optimal performance can be approximated by controllers that
are relatively easy to design and implement. Speci#cally, recall
that a bang-bang signal switches between the values of K and
−K; here, K is the input amplitude bound of the controlled
system !. Bang-bang controllers – controllers that generate
bang-bang input signals for the controlled system– are relatively
simple to design and implement, and they can approximate
optimal performance for input-a"ne systems (Chakraborty
& Hammer, 2008, 2010; Choi & Hammer, 2019; Hammer, 2022;
Yu & Hammer, 2016). Alas, bang-bang signals are not suitable
for the general class S of systems due to certain mathemati-
cal requirements. Instead, we introduce the following class of
bang-bang related signals.

1.3 Pseudo bang-bang signals

The class of pseudo bang-bang signals consists of di!erentiable
functions of time that mimic bang-bang signals. Pseudo bang-
bang signals, introduced in Section 7, have bounded slopes –
instead of jumps – at their ‘switching’ times and somewhat
rounded corners. Figure 2 compares a bang-bang signal to a
related pseudo bang-bang signal. Pseudo bang-bang signals can
be fairly similar to bang-bang signals, depending on the maxi-
mal permitted slope. They allow us to prove existence of rela-
tively simple optimal controllers for a large family of nonlinear
systems.

1.4 Themain objectives

The objectives of our current discussion are as follows.

Problem1.1: The controlled system! of Figure 1 is a!ected by
modelling uncertainties, disturbances, and noises; it is subject
to an input amplitude constraint of K > 0 and a state amplitude
constraint of A> 0; it is operated in a sampled-data setting with
a speci#ed sampling period T> 0.

(i) Find conditions for the existence of optimal robust con-
trollers C that minimise inter-sample tracking error.

(ii) Develop controllers that approximate optimal performance
and are relatively easy to design and implement. !

The current paper expands the optimisation framework
of Chakraborty and Hammer (2008, 2010), Yu and Ham-
mer (2016), Choi and Hammer (2019) and Hammer (2022)
from input-a"ne systems to a very broad family of nonlinear
systems that encompasses most systems of practical interest.
The material of this paper is within the general scope of opti-
mal control theory, a broad area with a venerable history of
a century or more. It is not possible in this limited space to
provide fair credit to the innumerable researchers that con-
tributed to the evolution of modern optimal control theory. In
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Figure 2. Comparing bang-bang and pseudo bang-bang signals. (a) bang-bang signal and (b) pseudo bang-bang signal.

brief terms, the current paper generalises classical optimisa-
tion theory (Gamkrelidze, 1965; Kelendzheridze, 1961; Luen-
berger, 1969; Neustadt, 1966, 1967; Pontryagin et al., 1962;
Warga, 1972; Young, 1969) by proving existence of optimal
solutions for a very broad family of nonlinear systems; by
proving the robustness of these solutions; and by proving the
existence of simple-to-implement controllers that approximate
optimal performance as closely as desired. To mention a sam-
pling of recent publications, Allan et al. (2017) use model

predictive control techniques to show the robustness of sub-
optimal predictive control solutions of optimal control prob-
lems with hard terminal constraints; Zhang et al. (2021) use
the sliding-mode control framework to develop adaptive opti-
mal controllers for a class of continuous-time switched non-
linear systems; and Zhao et al. (2023) study optimal decen-
tralised control of interconnected nonlinear systems with
stochastic dynamics by using event-triggered adaptive dynamic
algorithms.
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Thematerial of the current paper builds a framework of opti-
mal robust control that is valid for rather general families of
nonlinear systems; it optimises performance and robustness of
controllers. In addition, it yields simple controllers that approx-
imate optimal performance as closely as desired. These approx-
imating controllers are bang-bang controllers; as such, they are
characterised by #nite lists of scalars formed by their switching
times, and thus require only sparse implementation resources.

The current paper concentrates on inter-sample optimisation
of sampled-data systems, but its theoretical framework provides
tools for proving the existence of optimal robust controllers for
other classes of nonlinear optimisation problems as well. This
framework also includes tools for creating simple-to-implement
controllers that approximate optimal performance as closely as
desired.

The paper is organised as follows. Section 2 introduces our
framework of continuous input signals, and Section 3 intro-
duces our robustness framework. A formal statement of Prob-
lem 1.1 is provided in Sections 4 and 5 reviews the notion
of constrained controllability. Section 6 proves the existence
of robust controllers that achieve minimal inter-sample track-
ing errors. Section 7 introduces the class of pseudo bang-bang
controllers – controllers that are relatively easy to design and
implement, and shows that such controllers can closely approx-
imate optimal performance. Section 8 applies the methodology
of this paper to an example and compares the results to classical
sample-and-hold implementation. Finally, the paper concludes
in Section 9 with a brief summary.

2. The class of input signals

In real-world continuous-time environments, abrupt changes in
signal values, i.e. discontinuous jumps, are an idealisation and
are not implementable. If the time scale is su"ciently re#ned,
what appears like a discontinuity turns out to be a gradual
– di!erentiable – change (see Figure 2). This fact leads us to
restrict our attention to di!erentiable input signals; practically
all signals in applications are di!erentiable. A restriction to dif-
ferentiable input signals results in a simpli#cation of the mathe-
matical framework; it leads to more powerful results that apply
to the broad family of nonlinear systems of (1).

First, some notation. We denote by C the set of complex
numbers; by Cm the set of column vectors with m complex
numbers as components, and by R+ the set of non-negative
real numbers. The absolute value of a complex number c is
denoted by |c|. For a matrix V ∈ Cn×m, the L∞-norm is |V| :=
maxi,j |Vij|. For a function of timeV : R+ → Cn×m : t (→ V(t),
the L∞-norm is |V|∞ := supt≥0 |V(t)|.

The class of signals that underlies our discussion is intro-
duced through the Fourier transform. Although we are dealing
with nonlinear systems, and the Fourier transform is a linear
tool, we will see that its use here is convenient and appropriate.
To set our notation, the Fourier transform of a real vector-
valued signal u : R → Rm : t (→ u(t) is υ = Fu : R → Cm :
ω (→ υ(ω), where ω is the Fourier variable (the frequency).
Considering that input signals of the controlled system ! are
real vector-valued functions of time, we are interested only in
functions υ : R → Cm whose inverse Fourier transform F−1υ
is a real valued function of time. Recall that this is the case if and

only if for each component υ i of υ , i ∈ {1, 2, . . . ,m}, the mag-
nitude |υ i(ω)| is an even function of ω, while the phase∠υ i(ω)

is an odd function of ω. Thus, in the Fourier domain, we are
interested only in complex vector-valued Lebesgue measurable
functions υ that are members of the family

' :=
⎪
υ : R → Cm |υ i(ω)|is even and ∠υ i(ω) is odd

as a function of ω, i = 1, 2, . . . ,m.

⎨

(2)

According to Parseval’s theorem, the ‘energy’ of a signal is given
by the integral of the square magnitude of its Fourier trans-
form. As only signals of #nite energy are of interest to us, the
square magnitude of the Fourier transform of our signals must
be bounded and integrable over the entire axis. This leads us
to the following subfamily of ', which plays a basic role in our
discussion. Let W, ( > 0 be two real numbers. We introduce a
family of complex valued exponentially-bounded functions of
frequency, given by

'(W, () :=
{
υ ∈ ' : |υ(ω)| ≤ We−(|ω| for all ω ∈ R

⎧
. (3)

Members of'(W, () have magnitude bounded byW, and their
magnitude decays exponentially with increasing frequency. As a
result, the square of their magnitude is integrable over the entire
frequency axis.We show in a short while that the inverse Fourier
transform ofmembers of'(W, () are di!erentiable real vector-
valued functions of time. The number ( is the smoothing factor;
it determines the steepest slope of signals obtained by inverse
Fourier transform of '(W, () members. Smaller values of (
lead to steeper slopes.

For example, Figure 2(b) was obtained by taking the Fourier
transform of Figure 2(a); multiplying it by e−(|ω| with ( =
0.001; and applying the inverse Fourier transform to the result.
As the #gure indicates, inverse Fourier transforms of '(W, ()
members can closely mimic bang-bang signals by selecting a
small value of ( > 0. This point is discussed in further detail
in Section 7 below.

The class of time domain signals corresponding to the family
'(W, () is given by

U(W, () =
⎩
F−1υ : υ ∈ '(W, ()

⎛
; (4)

it consists of functions u : R → Rm : t (→ u(t), where

u(t) = 1
2)

⎝ ∞

−∞
υ(ω)ejωtdω, υ ∈ '(W, (). (5)

(We use the form of the inverse Fourier transform commonly
used in engineering, where j :=

√
−1.) Practically every signal

that appears in real-world control systems belongs to the family
U(W, () for some values ofW and ( . The next statement lists a
few properties of members of U(W, ().

Lemma 2.1: Functions u ∈ U(W, () satisfy:

(i) All are bounded with the same bound.
(ii) All are uniformly continuous functions of timewith the same

uniformity.



INTERNATIONAL JOURNAL OF CONTROL 2217

(iii) All have bounded and uniformly continuous derivatives
with respect to time.

Proof: (i) By (4), u(t) = F−1υ for a υ ∈ '(W, (), so that

|u(t)| ≤ 1
2)

⎝ ∞

−∞
|υ(ω)|dω ≤ 2

2)

⎝ ∞

0
We−(ωdω = W

)(
.

(ii) For times t1 < t2 and a real number ω0 > 0, we have

|u(t2) − u(t1)|

= 1
2)

⎞⎞⎞⎞

⎝ ∞

−∞
υ(ω)(ejωt2 − ejωt1)dω

⎞⎞⎞⎞

≤ 1
2)

⎝ ω0

−ω0
We−(|ω| ⎞⎞ejωt2 − ejωt1

⎞⎞ dω + 4
2)

⎝ ∞

ω0

We−(ωdω

≤ 1
2)

⎝ ω0

−ω0

⎞⎞⎞We−(|ω|
⎞⎞⎞
⎞⎞ejωt2 − ejωt1

⎞⎞ dω + 2W
)(

e−(ω0 . (6)

To continue, regard ω as #xed for a moment; using the
mean value theorem yields ejωt2 − ejωt1 = −ω sin(ωt+)(t2 −
t1) + jω cos(ωt++)(t2 − t1), where t+, t++ ∈ [t1, t2] are appropriate
times. This implies that

⎞⎞ejωt2 − ejωt1
⎞⎞ ≤ |ω| (t2 − t1)

⎠
sin2(ωt+) + cos2(ωt++)

≤
√
2|ω|(t2 − t1).

Substituting into (6), we get

|u(t2) − u(t1)|

≤
√
2W
)

(t2 − t1)
⎝ ω0

0
e−(ωωdω + 2W

)(
e−(ω0

≤
√
2W
)(2

[
1 − e−(ω0((ω0 + 1)

]
(t2 − t1) + 2W

)(
e−(ω0 (7)

Now, let ε > 0 be a real number. Select the frequency ω0 so
that 2W

)( e
−(ω0 < ε/2; then, select a real number δ > 0 such that√

2W
)(2

[1 − e−(ω0((ω0 + 1)]δ < ε/2. Substituting these inequal-
ities into (7), we get that |u(t2) − u(t1)| < ε for all |t2 − t1| < δ.
This is true for any u ∈ U(W, ().

(iii) Di!erentiating (5), we get

du(t)/dt = 1
2)

⎝ ∞

−∞
jωυ(ω)ejωtdω. (8)

Therefore,

|du(t)/dt| ≤ 1
)

⎝ ∞

0
ωWe−(ωdω = W

)(2
, (9)

so that the derivative is bounded independently of u.
Regarding uniform continuity, replace υ(ω) in (6) by jωυ(ω)

to re$ect (8). We obtain
⎞⎞⎞⎞
du(t2)
dt

− du(t1)
dt

⎞⎞⎞⎞

= 1
2)

⎞⎞⎞⎞

⎝ ∞

−∞
ωυ(ω)(ejωt2 − ejωt1)dω

⎞⎞⎞⎞

≤ 1
2)

⎝ ω0

−ω0

⎞⎞⎞Wωe−(|ω|
⎞⎞⎞
⎞⎞ejωt2 − ejωt1

⎞⎞ dω

+ 4
2)

⎝ ∞

ω0

Wωe−(ωdω

≤ 1
2)

⎝ ω0

−ω0

⎞⎞⎞Wωe−(|ω|
⎞⎞⎞
⎞⎞ejωt2 − ejωt1

⎞⎞ dω

+ 2W((ω0 + 1)
)(2

e−(ω0

Then, an argument similar to the one leading to (7) yields
⎞⎞⎞⎞
du(t2)
dt

− du(t1)
dt

⎞⎞⎞⎞

≤
√
2W
)

(t2 − t1)
⎝ ω0

0
e−(ωω2dω + 2W((ω0 + 1)

)(2
e−(ω0

≤
√
2W
)(3

[
2 − e−(ω0((2ω2

0 + 2(ω0 + 2)
]
(t2 − t1)

+ 2W((ω0 + 1)
)(2

e−(ω0 . (10)

Given ε > 0, select ω0 to satisfy 2W((ω0+1)
)(2

e−(ω0 < ε/2; then,
select δ > 0 so that

√
2W
)(3

[2 − e−(ω0 ((2ω2
0 + 2(ω0 + 2)]δ <

ε/2. Substituting into (10), we get |du(t2)/dt − du(t1)/dt| <

ε for all |t2 − t1| < δ and all u(t) ∈ U(W, (), concluding the
proof. #

A consequence of (9) is that the maximal slope magnitude
achievable by a member of U(W, () is W/()(2). Thus, any
#nite slope magnitude can be achieved by selectingW or ( .

As the controlled system ! of Figure 1 permits only inputs
bounded by K > 0, the class of permissible input signals is

U(K,W, () := {u ∈ U(W, () : |u|∞ ≤ K} . (11)

We explore next some features of this class of input signals.

2.1 Features of the family U(K,W, κ)

Let H be the Hilbert space of Lebesgue measurable functions
: R → Cm with the usual L2-inner product. Speci#cally, given
two Lebesgue measurable functions f , g : R → Cm, and letting
f̄ be the complex conjugate of f, the inner product is

〈
f , g
〉
=
⎝ ∞

−∞
f̄!(ω)g(ω)dω. (12)

The inner product of members f , g ∈ '(W, () is bounded:

⎞⎞〈f , g
〉⎞⎞ =

⎞⎞⎞⎞

⎝ ∞

−∞
f̄!(ω)g(ω)dω

⎞⎞⎞⎞

≤ mW2
⎝ ∞

−∞
e−2(|ω|dω = mW2/( .

We review somemathematical notions (e.g. Lusternik&Sobolev,
1961).

De!nition 2.2: Let H be a Hilbert space with inner product
〈·, ·〉. A sequence {υn}∞n=1 ⊆ H is weakly convergent to υ ∈ H
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if limn→∞〈υn, y〉 = 〈υ , y〉 for every y ∈ H. A subset G ⊆ H is
weakly compact if every sequence of G members has a subse-
quence that weakly converges to a member of G. !

We claim that the set '(W, () of (3) is weakly compact in
the Hilbert spaceH, as follows.

Lemma 2.3: The set'(W, () is weakly compact in the topology
of the Hilbert spaceH.

Proof: This proof paraphrases a proof of Chakraborty and
Hammer (2009, 2010). Consider a sequence {υi}∞i=1 ⊆ '(W, ().
By (3), all members of'(W, () are bounded byW. By Alaoglu’s
theorem (e.g. Halmos, 1982), this implies that {υi}∞i=1 has a
subsequence {υik}∞k=1 that converges weakly to a member υ ∈
H. To show that υ ∈ '(W, (), we use Mazur’s theorem (e.g.
Halmos, 1982).

First, we show that '(W, () is a convex set. Consider two
members υ +,υ ++ ∈ '(W, (), let 0 ≤ r ≤ 1 be a real number,
and let υ +++(ω) := rυ +(ω) + (1 − r)υ ++(ω). Then, |υ +++(ω)| ≤
r|υ +(ω)| + (1 − r)|υ ++(ω)| ≤ rWe−(|ω| + (1 − r)We−(|ω| =
We−(|ω|. In addition, since F−1υ +++ = rF−1υ + + (1 − r)
F−1υ ++, and F−1υ + and F−1υ ++ are both real by (3), it fol-
lows that F−1υ +++ is a real-valued function as well. Thus, υ +++ ∈
'(W, () and'(W, () is convex.

Next, we show that '(W, () is strongly closed. To do so,
let {wi}∞i=1 ⊆ '(W, () be a strongly convergent sequence with
strong limit w, namely,

lim
i→∞

〈(w − wi), (w − wi)〉 = 0. (13)

Note that w, as the limit of a sequence of Lebesgue measur-
able functions, is Lebesgue measurable. Also, since w is the
limit of members of '(W, (), its magnitude and phase satisfy
the conditions of (2), so w ∈ '. Now assume, by contradic-
tion, that w /∈ '(W, (), namely, that w violates the bound (3).
Then, there must be a real number ε > 0 and a Lebesgue mea-
surable subset δ ⊂ (−∞,∞) of non-zero measure such that
|w(ω)| > (W + ε)e−(|ω| for all ω ∈ δ. This implies that w has
a component, say component wq, for which there is a subset of
non-zero measure δq ⊂ δ satisfying

|wq(ω)| − We−(|ω| ≥ εe−(|ω| for all ω ∈ δq. (14)

Using (12) and letting wq
i be component q of wi yields

〈(w − wi), (w − wi)〉

=
⎝ ∞

−∞
[w̄(ω) − w̄i(ω)]![w(ω) − wi(ω)]dω

≥
⎝

δq

[w̄(ω) − w̄i(ω)]![w(ω) − wi(ω)]dω

≥
⎝

δq

⎞⎞wq(ω) − wq
i (ω)

⎞⎞2 dω. (15)

As wi ∈ '(W, (), we have |wi(t)| ≤ We−(|ω| for all ω ∈
(−∞,∞), so that |wq

i (t)| ≤ We−(|ω| for all ω ∈ (−∞,∞).
Thus, |wq(ω) − wq

i (ω)| ≥ |wq(ω)| − |wq
i (ω)| ≥ |wq(ω)| −

We−(|ω|. Applying (14), we get |wq(ω) − wq
i (ω)| ≥ εe−(|ω| for

all ω ∈ δq. Inserting this into (15) yields

〈(w − wi), (w − wi)〉 ≥
⎝

δq

⎞⎞wq(ω) − wq
i (ω)

⎞⎞2 dω

≥
⎝

δq

(εe−(|ω|)2dt

independently of i for all i = 1, 2, . . ., thus contradicting (13).
Therefore, w ∈ '(W, (), so that '(W, () is strongly closed.
Consequently, it is weakly compact by Mazur’s theorem. This
concludes our proof. #

We need the following terms.

De!nition 2.4: A family G of functions mapping R+ → Rm is
pointwise compact if every sequence of functions {gi}∞i=1 ⊆ G
has a subsequence {gik}∞k=1 that is pointwise convergent to a
member g ∈ G, namely, if limk→∞ gik(t) = g(t) for all t ∈ R+.
The family G is uniformly pointwise compact if, for every two
times t1 ≤ t2 and for every real number ε > 0, there is an inte-
ger N ≥ 1 such that |gik(t) − g(t)| < ε for all k ≥ N and all
t ∈ [t1, t2]. !

The next statement highlights a property of the set
U(K,W, () of (11) that is critical to our discussion.

Lemma 2.5: U(K,W, () is uniformly pointwise compact.

Proof: For a real number a> 0 and an integer r ∈ {1, 2, . . . ,m},
de#ne the ‘pulse’ function pa(ω, r) : R → Cm:

pa(ω, r)

=
{

(0, . . . , 0, 1, 0, . . . , 0)!(1 in entry r) ifω ∈ [−a, a]
0 else,

which has #nite norm in the Hilbert space H. Denote by wr

component r of a member w ∈ '(W, k); then,
⎞⎞⎞⎞

⎝ ∞

−∞
wr(ω)dω −

⎝ ∞

−∞
p!
a (ω, r)w(ω)dω

⎞⎞⎞⎞

≤
⎞⎞⎞⎞

⎝ −a

−∞
wr(ω)dω

⎞⎞⎞⎞+
⎞⎞⎞⎞

⎝ ∞

a
wr(ω)dω

⎞⎞⎞⎞

≤ 2
⎝ ∞

a
We−(ωdω = 2W

(
e−(a =: ,(a) (16)

Thus, for every real δ > 0, there is an a> 0 such that,(a) < δ

for all w ∈ '(W, () and all r ∈ {1, 2, . . . ,m}.
Now, let {uk}∞k=1 ⊆ U(K,W, () be a sequence. In view

of (4), (5), and (11), there is a corresponding sequence of func-
tions υk = Fuk ∈ '(W, (), k = 1, 2, . . ., such that

uk(t) = 1
2)

⎝ ∞

−∞
υk(ω)ejωtdω, k = 1, 2, . . . (17)

By Lemma 2.3, the family '(W, () is weakly compact. Con-
sequently, there is a subsequence {υki}∞i=1 that is weakly con-
vergent to a member υ ∈ '(W, (). This means that, for every
member h ∈ H with #nite norm, we have

lim
i→∞

⎝ ∞

−∞
h̄!(ω)(υki(ω) − υ(ω))dω = 0.
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Now, #x a time t, and consider the expression

1
2)

⎝ ∞

−∞
h̄!(ω)[υki(ω) − υ(ω)]ejωtdω

= 1
2)

⎝ ∞

−∞
[h(ω)e−jωt]

!
[υki(ω) − υ(ω)]dω.

As h(ω)e−jωt is also a #nite norm member of H, we conclude
that, for any h ∈ H of #nite norm,

lim
i→∞

1
2)

⎝ ∞

−∞
h̄!(ω)[(υki(ω) − υ(ω))ejωt]dω = 0.

To continue, choose h(ω) = pa(ω, r). Then, we get

lim
i→∞

1
2)

⎝ ∞

−∞
p̄!
a (ω, r)[(υki(ω) − υ(ω))ejωt]dω

= lim
i→∞

1
2)

⎝ a

−a
(υrki(ω) − υr(ω))ejωtdω = 0. (18)

Since {υk}∞k=1 and υ are all member of '(W, (), so are
{υkejωt}∞k=1 and υe

jωt ; hence, their di!erences are members of
'(2W, (). Using (18) and (16), we get

lim
i→∞

⎞⎞⎞⎞

⎝ ∞

−∞
(υrki(ω) − υr(ω))ejωtdω

⎞⎞⎞⎞

≤ lim
i→∞

⎪⎞⎞⎞⎞

⎝ a

−a
(υrki(ω) − υr(ω))ejωtdω

⎞⎞⎞⎞

+
⎞⎞⎞⎞

⎝ ∞

−∞
(υrki(ω) − υr(ω))ejωtdω

−
⎝ a

−a
(υrki(ω) − υr(ω))ejωtdω

⎞⎞⎞⎞

⎨

≤ 2,(a).

Since,(a) → 0 as a → ∞, it follows that

lim
i→∞

1
2)

⎝ ∞

−∞
(υrki(ω) − υr(ω))ejωtdω = 0

for all r = 1, . . . ,m.

Recalling (17) and setting u(t) = F−1υ(ω), this yields

lim
i→∞

uki(t) = u(t), (19)

which proves pointwise convergence for every time t.
This convergence is uniform; indeed, by (19), for every ε > 0

and time t, there is an integer N+(t) ≥ 1 such that
⎞⎞uki(t) − u(t)

⎞⎞ < ε for all i ≥ N+(t).

Let N(t) be the smallest integer among all values of N+(t); then,
N(t) exists, since it belongs to the #nite set {1, . . . ,N +(t)}.

Now, #x a time interval [t+, t++], t+ < t++, and let N∗ :=
supt∈[t+,t++] N(t). To show thatN∗ is #nite, assume, by contradic-
tion, that N∗ is not #nite. Then, there is a sequence {tp}∞p=1 ⊆
[t+, t++] for which the sequence of integers N(t1),N(t2), . . . is
unbounded. As [t+, t++] is compact, there is a subsequence

{tpq}∞q=1 convergent to a time t∗ ∈ [t+, t++]. But then, by (19),
there is an integer N ≥ 1 such that |uki(t∗) − u(t∗)| < ε/2 for
all integers i ≥ N. Fix an integer i+ ≥ N. By Lemma 2.1(ii), there
is a real number δi+ > 0 such that |uki+ (θ1) − uki+ (θ2)| ≤ ε/4 and
|u(θ1) − u(θ2)| < ε/4 for all θ1, θ2 ∈ (t∗ − δi+ , t∗ + δi+). Com-
bining these inequalities, we obtain that |uki+ (t) − u(t)| < ε for
all t ∈ (t∗ − δi+ , t∗ + δi+).

Further, by Lemma2.1(ii), the number δi+ > 0 can be selected
independently of i+. For such δi+ , the previous paragraph is
valid for every integers i+ ≥ N. This implies that N(t) ≤ N for
all t ∈ (t∗ − δi+ , t∗ + δi+), contradicting the assumption that the
sequence {N(tp)}∞p=1 is unbounded. Thus, there is a #nite inte-
ger N∗ ≥ 1 for which |uki(t) − u(t)| < ε for all i ≥ N∗ and all
t ∈ [t+, t++]. This concludes our proof. #

Next, we study systems with inputs from U(K,W, ().

3. The family of nonlinear systems

The controlled system ! of Figure 1 is subject to uncertain-
ties that a!ect its recursion function f of (1). To represent these
uncertainties, we decompose f into a sum

f (t, x, u) = f0(x, u) + f. (t, x, u), (20)

where f0 is a speci#ed nominal recursion function, while f. is an
unknown uncertainty function representing uncertainties and
disturbances. We invoke the following.

Assumption 3.1: The functions f0 and f. of (20) are continu-
ously di!erentiable. !

The nominal system is a nonlinear time-invariant system:

!0 :
ẋ(t) = f0(x(t), u(t)),

x(0) = x0.
(21)

As mentioned earlier, to re$ect conditions encountered in prac-
tice, we impose two constraints on !: (i) the input amplitude
may not exceed a speci#ed bound K > 0; and (ii) the state
amplitude may not exceed a speci#ed bound A> 0.

3.1 The recursion function

As input signals of the controlled system ! are bounded by K
and states are bounded byA, the functions f0 and f. of (20) have
the domain (x, u) ∈ [−A,A]n × [−K,K]m. By Assumption 3.1,
the mean value theorem (e.g. Hubbard &Hubbard, 2015) yields

f0(x, u) − f0(x+, u+) = /f0(c)
/
( x
u
)
(

x − x+

u − u+

)
,

f. (t, x, u) − f. (t, x+, u+) =
/f. (t, c+(t))
/
( x
u
)

(
x − x+

u − u+

)
, t ≥ 0,

where x, x+ ∈ [−A,A]n, u, u+ ∈ [−K,K]m, and c, c+(t) ∈
[−A,A]n × [−K,K]m. As /f0//(x, u) and /f. //(x, u) are con-
tinuous by Assumption 3.1, and the domain [−A,A]n ×
[−K,K]m is compact, there are bounds B> 0 and . (t) > 0:
⎞⎞⎞⎞⎞
/f0(c)
/
( x
u
)

⎞⎞⎞⎞⎞ ≤ B and

⎞⎞⎞⎞⎞
/f. (t, c+(t))
/
( x
u
)

⎞⎞⎞⎞⎞ ≤ . (t), t ≥ 0, (22)
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for all c, c+(t) ∈ [−A,A]n × [−K,K]m. Most often, the magni-
tude bound of uncertainties is constant:

Assumption 3.2: Referring to (22), there is a known constant
bound . > 0 such that . (t) ≤ . for all t ≥ 0. !

Under this assumption, we rewrite (22) in the form
⎞⎞⎞⎞⎞
/f0(c)
/
( x
u
)

⎞⎞⎞⎞⎞ ≤ B and

⎞⎞⎞⎞⎞
/f. (t, c+(t))
/
( x
u
)

⎞⎞⎞⎞⎞ ≤ . (23)

for all t ≥ 0 and for all c, c+(t) ∈ [−A,A]n × [−K,K]m. As .
represents uncertainty, it is often small. For notational conve-
nience, we use the same bounds for the values at the origin:

|f0(0, 0)| ≤ B and |f. (t, 0, 0)| ≤ . , t ≥ 0. (24)

This leads us to the following family of systems.

Notation 3.3: Let K,A, σ , . > 0 be speci#ed. The family of
systems S. (!0,K,A) consists of all systems described by (1),
(20), (23), and (24), where!0 is the nominal system of (21). For
all members of S. (!0,K,A), input amplitude is bounded by K,
state amplitude is bounded by A, and initial states are in ρ(σ ).
In addition, the following apply.

(i) All input signals are members of U(K,W, ().
(ii) All members of S. (!0,K,A) share the same initial state

x0 ∈ ρ(σ ).
(iii) All members of S. (!0,K,A) share the same controller C

of Figure 1. !

Item (ii) of Notation 3.3 re$ects the fact that the actual initial
state x(0) = x0 is provided by the sampler of Figure 1. Item (iii)
of Notation 3.3 guarantees robustness of the controller C, as it is
not known which member of S. (!0,K,A) the active model !
is. So Cmust properly control every member of S. (!0,K,A).

4. Inter-sample tracking

Over the last few decades, continuous-time control engineer-
ing has experienced a transition from pervasive use of analog
controllers to almost exclusive use of sampled-data systems that
employ digital controllers. Many sampled-data systems utilise
periodic sampling, where the sampling period T is speci#ed by
separate technical considerations.

The design of controllers for sampled-data systems can be
simpli#ed by building a periodic framework based on the spec-
i#ed sampling period T. This periodic framework relies on time
invariance of the nominal controlled system !0 of (21). In this
periodic framework, we design the controller C of Figure 1
based on the #rst sampling interval [0,T]. Then, by periodic-
ity, the same controller C can be utilised during any sampling
interval [kT, (k + 1)T], k = 0, 1, . . ., after an appropriate time
shift, as follows.

During a sampling interval [kT, (k + 1)T], k ∈ {0, 1, . . .}, the
response of the controller C is determined by the state x(kT) =
x of! at the start of that sampling interval, since no more sam-
ples arrive until (k + 1)T. If ! is at the same state x(k+T) = x

at the start of another sampling interval [k+T, (k+ + 1)T], then,
by periodicity, C can generate the same input to !, appropri-
ately shifted in time. Thus, within a periodic framework, all we
need to do is design the controller C for the initial sampling
interval [0,T]. The action of the controller C during other sam-
pling intervals is then obtained simply by shifting its response
in time. This results in a substantial simpli#cation of the pro-
cess of designing the controller C. For this to be possible, we
must guarantee that ‘similar’ states appear at the start of all
sampling intervals. This leads to the following notion (Choi
& Hammer, 2020).

De!nition 4.1: Let T> 0 be the speci#ed sampling period of
the family S. (!0,K,A). Denote by x(t) the state of the con-
trolled system! at a time t. A real number σ ∈ (0,A) is a sam-
pling radius for S. (!0,K,A) if the following holds for all inte-
gers k ≥ 0: for every state x(kT) ∈ ρ(σ ), there is an input signal
ux(kT) ∈ U(K,W, () that takes every system ! ∈ S. (!0,K,A)

to a state x((k + 1)T) ∈ ρ(σ ), while maintaining |x(t)| ≤ A at
all times t ∈ [kT, (k + 1)T]. !

Wediscuss the existence of sampling radii in Section 5 below.
For now, we turn to some technical considerations in prepara-
tion for proving existence of optimal robust controllers.

4.1 More on input signals

We proceed to examine the operation of the controller C of
Figure 1 during the #rst sampling interval [0,T]. Let σ > 0 be
a sampling radius of the family S. (!0,K,A), and let x(0) =
x0 ∈ ρ(σ ) be the initial state. In response to x0, the controller
C generates a signal u ∈ U(K,W, () as input to the controlled
system !. Because σ is a sampling radius (De#nition 4.1), the
state of! must return to ρ(σ ) at the end of the sampling inter-
val [0,T], without exceeding the amplitude bound A along the
way. Therefore, umust be in the family

U(A,!, x0)

:=
⎪
u ∈ U(K,W, () : supt∈[0,T] |!(x0, u, t)| ≤ A

and!(x0, u,T) ∈ ρ(σ )

⎨
.

(25)

As it is not known which member of S. (!0,K,A) the con-
trolled system ! is, the input signal umust be compatible with
all members ! ∈ S. (!0,K,A). Therefore, the class of signals
that Cmay produce in response to x0 is

U(A, . , x0) =
⋂

!∈S. (!0,K,A)

U(A,!, x0). (26)

4.2 Continuity and compactness

The next statement brings to light an important continuity
feature of members of the family of systems S. (!0,K,A).

Lemma 4.2: Let! be a member of the family S. (!0,K,A)with
initial state x0 ∈ ρ(σ ). Let {ui}∞i=1 ⊆ U(A, . , x0) be a sequence
of input signals that is uniformly pointwise convergent to the
input signal u ∈ U(K,W, (). Then, the sequence {!(x0, ui, t)}∞i=1
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converges to!(x0, u, t) at every time t ≥ 0.Moreover, this conver-
gence is uniform in time.

Proof: Recall that members of S. (!0,K,A) are restricted to
inputs bounded by K and to states bounded by A, so we can
use (20) and (23). Denoting B+ := B + . , we have

|/f (t, x, u)//(x, u)| ≤ B+ (27)

for all (t, x, u) ∈ R+ × [−A,A]n × [−K,K]m. By the mean
value theorem,

f (t, x, u) − f (0, 0, 0) = /f (t, c(t))//(x, u)
(

x
u

)
, (28)

for some c(t) ∈ [−A,A]n × [−K,K]m. Using (27), we get

|f (t, x, u) − f (0, 0, 0)| ≤ (n + m)B+
⎞⎞⎞⎞

(
x
u

)⎞⎞⎞⎞ . (29)

Denote x(t, ui) := !(x0, ui, t), x(t, u) := !(x0, u, t), and

x(t, i) := x(t, u) − x(t, ui), i ∈ {1, 2, . . .},

where x(0, i) = x0 − x0 = 0 for all i ≥ 1. Let t1, t2 ≥ 0, t1 < t2,
be times. Using (1) and (28), we get

x(t2, i) = x(t1, i) +
⎝ t2

t1
[f (s, x(s, u), u(s))

− f (s, x(s, ui), ui(s))]ds

= x(t1, i) +
⎝ t2

t1
/f (s, c(s))//(x, u)

×
(
x(s, u) − x(s, ui)
u(s) − ui(s)

)
ds;

here c(s) ∈ [−A,A]n × [−K,K]m for all s. Then, (29) yields

sup
s∈[t1,t2]

|x(s, i)|

≤ |x(t1, i)| +
⎝ t2

t1
(n + m)B+

[

sup
s∈[t1,t2]

|x(s, u) − x(s, ui)|

+ sup
s∈[t1,t2]

|u(s) − ui(s)|
]

ds

≤ |x(t1, i)| + (n + m)B+(t2 − t1)

[

sup
s∈[t1,t2]

|x(s, i)|

+ sup
s∈[t1,t2]

|u(s) − ui(s)|
]

.

Rearranging terms and denoting η := t2 − t1, we obtain

[1 − (n + m)B+η] sup
s∈[t1,t1+η]

|x(s, i)|

≤ |x(t1, i)| + (n + m)B+η sup
s∈[t1,t1+η]

|u(s) − ui(s)|. (30)

Now, set a time τ > 0, and select η to satisfy η > 0, η ≤ τ ,
(n + m)B+η ≤ 1/2, where r := τ/η is an integer. Then, pick
times t1 ∈ [0, τ − η], t2 := t1 + η. Inserting into (30) yields

sup
s∈[t1,t1+η]

|x(s, i)| ≤ 2|x(t1, i)| + sup
s∈[t1,t1+η]

|u(s) − ui(s)|. (31)

Next, partition [0, τ ] into segments of length η:

{[0, η], [η, 2η], . . . , [(r − 1)η, rη]}.

Introduce the scalar quantities

ζp := sup
s∈[(p−1)η, pη]

|x(s, i)|, p = 1, 2, . . . , r,

ζ0 = 0.
(32)

Then, using (31) and setting t1 = pη, we obtain

ζp+1 ≤ 2ζp + sup
s∈[pη,(p+1)η]

|u(s) − ui(s)|,

ζ0 = 0, p = 0, . . . , r − 1.
(33)

Further, by the lemma’s statement, {ui}∞i=1 is uniformly point-
wise convergent to u; so, for every ε > 0, there is an integer
N ≥ 1 such that sups∈[0,τ ] |u(s) − ui(s)| < ε for all i ≥ N. Then,
for i ≥ N, we obtain from (33) that

ζp+1 ≤ 2ζp + ε, p = 1, . . . , r − 1,

ζ0 = 0.

This linear recursion yields

ζp ≤ ε

r−1∑

q=0
2q, p = 0, . . . , r − 1. (34)

Then, since ε > 0 can be taken arbitrarily small by increasingN,
it follows by (34) and (32) that sups∈[0,τ ] |x(s, i)| → 0 as i → ∞.
This concludes our proof. #

Lemma 4.2 is an important step toward proving the existence
of optimal robust controllers; we prove the existence of such
controllers in Section 5. For now, we proceed to show that the
set of input signals U(A, . , x0) of (26) is compact.

Lemma 4.3: The set of input signals U(A, . , x0) of (26) is uni-
formly pointwise compact.

Proof: Let! ∈ S. (!0,K,A) be a system with initial state x0 ∈
ρ(σ ), and refer to U(A,!, x0) of (25). Clearly, if U(A,!, x0) is
empty, it is compact. Otherwise, U(A,!, x0) is not empty; let
{ui}∞i=1 ⊆ U(A,!, x0) be a sequence. By Lemma 2.5, there is a
subsequence {uik}∞k=1 that is uniformly pointwise convergent to
a member u ∈ U(K,W, (). Then, {!(x0, uik , t)}∞k=1 converges
to !(x0, u, t) uniformly in time by Lemma 4.2. Also, since
{ui}∞i=1 ⊆ U(A,!, x0), it follows by (25) that !(x0, uik ,T) ∈
ρ(σ ) and |!(x0, uik , t)| ≤ A for all t ∈ [0,T] and all k ≥ 1.
Considering that [−A,A]n and ρ(σ ) are closed in Rn, and
!(x0, uik , t) → !(x0, u, t), it follows that |!(x0, u, t)| ≤ A for
all t ∈ [0,T] and !(x0, u,T) ∈ ρ(σ ); whence, u ∈ U(A,!, x0)
and U(A,!, x0) is uniformly pointwise compact. But then,
U(A, . , x0) is an intersection of compact sets by (26), and hence
is compact. This concludes our proof. #
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4.3 Inter-sample tracking errors

Consider a controlled system! with initial state x0 ∈ ρ(σ ), and
recall that the target state is the origin x = 0. Then, for a speci#c
input signal u ∈ U(A, . , x0), the supremal inter-sample track-
ing error over the sampling interval [0,T] and over all members
! ∈ S. (!0,K,A) is

"(σ ,K,A, . ,T, x0, u) := sup
!∈S. (!0,K,A)

t∈[0,T]

|!(x0, u, t)|22 (35)

The in#mal inter-sample tracking error over all inputs u ∈
U(A, . , x0) is

"∗(σ ,K,A, . ,T, x0) = inf
u∈U(A,. ,x0)

"(σ ,K,A, . ,T, x0, u) (36)

where "∗(σ ,K,A, . ,T, x0) := ∞ if U(A, . , x0) is empty. Now,
there are two questions: (i) when is U(A, . , x0) not empty; and
(ii) if it is not empty, is there an input signal u∗(x0) that achieves
the in#mum (36), namely,

"∗(σ ,K,A, . ,T, x0) = "(σ ,K,A, . ,T, x0, u∗(x0)). (37)

If a signal u∗(x0) exists, it forms an optimal robust solution to
Problem 1.1(i), guiding every member ! ∈ S. (!0,K,A) from
the initial state x0 to the end of the sampling interval [0,T]
with minimal inter-sample tracking error. Accordingly, an opti-
mal robust tracking controller C of Figure 1 delivers the signal
u∗(x0) as input to the controlled system!, after having received
the initial state x0 from the sampler at t = 0. Such controller
C is robust since S. (!0,K,A) represents modelling errors and
uncertainties that may a!ect the controlled system.

The quantity "∗(σ ,K,A, . ,T, x0) represents the in#mal
inter-sample tracking error from the initial state x0 ∈ ρ(σ ). The
lower bound on inter-sample tracking errors over all permissi-
ble initial states x0 ∈ ρ(σ ) is then

"∗(σ ,K,A, . ,T) = sup
x0∈ρ(σ )

"∗(σ ,K,A, . ,T, x0).

These facts lead to the following restatement of Problem 1.1.

Problem 4.4: Refer to (36) and (37).

(i) Find conditions underwhich there are optimal robust input
signals u∗(x0) for every initial state x0 ∈ ρ(σ ).

(ii) If u∗(x0) exists, #nd signals that approximate optimal per-
formance and are easy to design and implement. !

We show in Section 6 that optimal input signals u∗(x0) exist,
as long as the nominal controlled system !0 satis#es a certain
controllability condition discussed in Section 5. We show in
Section 7 that optimal performance can be approximated by
pseudo bang-bang controllers – controllers that produce pseudo
bang-bang signals. Such controllers are relatively easy to design
and implement.

5. Constrained controllability

Constrained controllability a"rms the existence of input signals
that drive a system to the vicinity of the origin, without violating
input and state amplitude constraints (Choi & Hammer, 2019).

De!nition 5.1: Let ! ∈ S. (!0,K,A) be a system operated
with sampling period T> 0, and let σ > 0 be a real number.
Then, ! is (K,A, σ ,T)-controllable if there is a number σ + ∈
(0, σ ) such that, for every initial state x ∈ ρ(σ ), there is an
input signal ux ∈ U(K,W, () satisfying!(x, ux,T) ∈ρ(σ +) and
|!(x, ux, t)| ≤ A for all t ∈ [0,T]. !

Note that (K,A, σ ,T)-controllability is close to being a nec-
essary condition for tracking in a periodic environment. Indeed,
De#nition 4.1 requires that it be possible to guide the con-
trolled system ! from a state in ρ(σ ) at t = 0 to a state in
ρ(σ ) at t = T, without violating input and state amplitude con-
straints; (K,A, σ ,T)-controllability adds a contractive require-
ment: at the end of the sampling interval, the state must be in
ρ(σ +), where σ + < σ . Accordingly, (K,A, σ ,T)-controllability
is a slightly stronger requirement than the existence of a sam-
pling radius. As shown later, this allows accommodation of
uncertainties.

In practice, constrained controllability can often be deduced
from physical characteristics of the controlled system and its
performance limitations.

The following are established mathematical facts (e.g.
Willard, 2004; Zeidler, 1985).

Theorem 5.2: (i) A continuous functional is lower semi-
continuous.

(ii) Let S and V be topological spaces. Assume that, for every
member a ∈ V, there is a lower semi-continuous functional
fa : S → R. If supa∈V fa(s) exists at every point s ∈ S, then
the functional f (s) := supa∈V fa(s) is lower semi-continuous
on S.

(iii) The Weierstrass Theorem: A lower semi-continuous func-
tional attains a minimum in a compact set. !

We have seen in Lemma 4.2 that the response !(x0, u, t)
is a uniformly continuous function of the input signal u
over the domain U(A, . , x0). This implies that the functional
|!(x0, u, t)|22 is similarly continuous as a function of u, since
the square of a continuous function is continuous. Together
with (35) and Theorem 5.2(ii), this yields the following.

Corollary 5.3: The functional "(σ ,K,A, . ,T, x0, u) of (35) is a
lower semi-continuous functional of the input signal u over the
domain U(A, . , x0). !

Next, we show that (K,A, σ ,T)-controllability of the nom-
inal controlled system !0 entails (K,A, σ ,T)-controllability of
all members of the family S. (!0,K,A), as long as the uncer-
tainty parameter . is not too large (Choi & Hammer, 2020
includes a similar result for input-a"ne systems).

Proposition 5.4: Let K,A0, σ > 0 be real numbers and let
T> 0 be the sampling period. If the nominal system !0 is
(K,A0, σ ,T)-controllable, then, for every real number A > A0,
there is an uncertainty parameter . > 0 for which the entire
family S. (!0,K,A) is (K,A, σ ,T)-controllable.

Proof: Let x0 ∈ ρ(σ ) be an initial state of the nominal
system !0, and let . > 0 be an uncertainty parameter.
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As !0 is (K,A0, σ ,T)-controllable, there is an input sig-
nal u ∈ U(A0,!0, x0) of (25) for which !0(x0, u,T) ∈ ρ(σ +),
where σ + ∈ (0, σ ). Now, consider a member ! ∈ S. (!0,K,A)

with the same initial state x0 and the same input signal
u. Denote x+(t) := !(x0, u, t), x(t) := !0(x0, u, t), and ξ(t) =
x+(t) − x(t); then ξ(0) = x0 − x0 = 0. Further, let t1, t2 ∈
[0,T], t1 < t2, be times, and let t ∈ [t1, t2]. By (1), we have

ξ(t) = ξ(t1) +
⎝ t

t1

[
f0(x+(s), u(s)) + f. (s, x+(s), u(s))

]
ds

−
⎝ t

t1
f0(x(s), u(s))ds.

Then, since!0 and! have the same u, x0, and state dimension
n, the mean value theorem together with (20), (23), and (24)
yields

|ξ(t)| ≤ |ξ(t1)| +
⎞⎞⎞⎞

⎝ t

t1

[
(/f0(c)//x) ξ(s)

+(/f. (s, c+(s))//x)x+(s) + f. (s, 0, 0)
]
ds
⎞⎞

≤ |ξ(t1)| +
⎝ t

t1

[
nB|ξ(s)| + n. |x+(s)| + .

]
ds,

so that

sup
s∈[t1,t2]

|ξ(s)| ≤ |ξ(t1)| + nB sup
s∈[t1,t2]

|ξ(s)|(t2 − t1)

+ n.A(t2 − t1) + . (t2 − t1).

This leads to the inequality

[1 − nB(t2 − t1)] sup
s∈[t1,t2]

|ξ(s)|

≤ |ξ(t1)| + . (nA + 1)(t2 − t1). (38)

Next, select η > 0 satisfying nBη ≤ 1/2 and for which p := T/η

is an integer. Taking t2 = t1 + η in (38), we get

sup
t1≤s≤t1+η

|ξ(s)| ≤ 2|ξ(t1)| + 2. η(nA + 1). (39)

Now, create the partition

[0,T] = {[0, η], [η, 2η], . . . , [(p − 1)η,T]},

and set t1 := iη, i ∈ {0, 1, . . . , p − 1}. Then, (39) yields

sup
iη≤s≤(i+1)η

|ξ(s)| ≤ 2|ξ(iη)| + 2. η(nA+ 1), i = 0, . . . , p− 1

ξ(0) = 0.

From here, properties of linear recursions yield the inequality

sup
0≤s≤T

|ξ(s)| ≤ . η(nA + 1)
p∑

i=1
2i = . η(nA + 1)2(2p − 1).

(40)

Denote ε := A − A0. Then, by (40), it follows that any uncer-
tainty parameter . + > 0 that satis#es the inequality

. + < ε/
[
η(nA + 1)2(2p − 1)

]

assures that the response from x0 is bounded by A for all t ∈
[0,T].

Next, by De#nition 5.1 of (K,A0, σ ,T)-controllability, at the
end of the sampling interval, the state of !0 satis#es x(T) ∈
ρ(σ +), where 0 < σ + < σ . Let ε+ : = (σ − σ +)/2, and consider
an uncertainty parameter . > 0 satisfying

0 < . <
min{ε, ε+}

η(nA + 1)2(2p − 1)
. (41)

Then, setting σ ++ := σ + ε+, and noting that σ ++ < σ , it follows
by (40) that the response x+(t) to the input signal u from the ini-
tial state x0 satis#es |x+(t)| ≤ A, t ∈ [0,T], and x+(T) ∈ ρ(σ ++)
for every member ! ∈ S. (!0,K,A). As the inequalities used
above are valid for every initial state x0 ∈ ρ(σ ), it follows that
every member ! ∈ S. (!0,K,A) is (K,A, σ ,T)-controllable.
This concludes our proof. #

Remark 5.5: Values of the uncertainty parameter . that are
compatible with Proposition 5.4 are indicated by (41). !

When De#nition 5.1 of (K,A, σ ,T)-controllability is com-
bined with Proposition 5.4, we reach the following conclusion.

Corollary 5.6: Under the conditions of Proposition 5.4, the class
of input signals U(A, . , x0) of (26) is not empty for any initial
state x0 ∈ ρ(σ ). !

Corollary 5.6 forms another step toward proving the exis-
tence of optimal solutions to Problem 4.4(i), as discussed in the
next section.

6. Existence of optimal robust controllers

In this section, we prove existence of controllers that achieve
optimal robust tracking for the broad family of nonlinear sys-
tems S. (!0,K,A). These controllers operate in a sampled-data
setting, where access to the controlled system’s state is avail-
able only at the sampling times 0,T, 2T, . . . Between sampling
times, the controller C operates in open-loop, providing an
input signal u to the controlled system !, based on the state
x received at the preceding sampling time. Our task is to prove
existence of such an optimal robust input signal that guides all
members ! ∈ S. (!0,K,A) to track the target state xtarget =
0 as closely as possible during the sampling interval, without
violating amplitude constraints.

The existence of optimal controllers is a consequence of two
facts: (a) the set of input signals U(A, . , x0) is compact and not
empty (Lemma 4.3 and Corollary 5.6); and (b) the inter-sample
tracking error "(σ ,K,A, . , u,T, x0) is a lower semi-continuous
functional of the input signal u (Corollary 5.3). Combining with
the Weierstrass theorem, we obtain the following con#rmation
of the existence of optimal solutions.

Theorem 6.1: Assume the conditions and notation of Proposi-
tion 5.4, (35), and (36). Then, for every initial state x0 ∈ ρ(σ ),
there is an optimal robust input signal u∗(x0) ∈ U(A, . , x0) sat-
isfying "∗(σ ,K,A, . ,T, x0) = "(σ ,K,A, . ,T, x0, u∗(x0)). !
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The signal u∗(x0) of Theorem 6.1 is produced by the con-
troller C of Figure 1 as an optimal input signal to the controlled
system! during the sampling interval [0,T]. This is an optimal
robust solution, since u∗(x0) is optimised over the entire family
of systems S. (!0,K,A). The initial state x0 is provided to the
controller by the sampler of Figure 1.

Next, we show that, after an appropriate shift in time, the
optimal input signal u∗(x0) of Theorem 6.1 is suitable dur-
ing any sampling interval that starts from the state x0, not just
the sampling interval [0,T]. In qualitative terms, this is a con-
sequence of the facts that the nominal system !0 of (21) is
time-invariant, and that the bound . of (23) is a constant; note
that the uncertainty function f. can be time varying, as long as
the bound . of (23) holds.

In detail, let x(kT) be the state communicated by the sam-
pler at the start of the sampling interval [kT, (k + 1)T], k ∈
{0, 1, . . .}. The next statement shows that the optimal input sig-
nal during this sampling interval is u∗(x(kT)), appropriately
shifted in time. In this way, Theorem 6.1 provides a complete
solution to the problem of optimal inter-sample tracking in
sampled-data systems. We have the following statement, which
is the main result of this section.

Theorem 6.2: Let ! ∈ S. (!0,K,A) be the controlled system
of Figure 1, and let x(t) be its state at the time t. Under the
assumptions and notation of Theorem 6.1, let u∗(x0, t), t ∈ [0,T],
be an optimal input signal, and let k ≥ 0 be an integer. Then,
u∗(x(kT), t − kT), t ∈ [kT, (k + 1)T], is an optimal input signal
during the sampling interval [kT, (k + 1)T]. It achieves the min-
imal inter-sample tracking error "∗(σ ,K,A, . ,T, x(kT)) in this
sampling interval.

Proof: Consider a sampling interval [kT, (k + 1)T], k ∈ {0, 1,
. . .}, and let ! ∈ S. (!0,K,A). Note that, according to Propo-
sition 5.4, the system ! is (K,A, σ ,T)-controllable. As a result,
for an initial state x0 ∈ ρ(σ ), the input signal u∗(x0, t) of
Theorem 6.1 takes ! to a state x(T) ∈ ρ(σ ) at the end of the
sampling interval [0,T].

Further, according to (20), the recursion function f decom-
poses into f = f0 + f. , where the nominal recursion function f0
has no explicit dependence on the time t. The uncertainty func-
tion f. may depend on the time t, but, according to (23), the
bound on the derivative |/f. (t, x, u)//(x, u)!| ≤ . is indepen-
dent of the time t. Now, the arguments leading to Theorem 6.1
depend only on the nominal recursion function f0, on the bound
. , and on the state at the start of the sampling interval. Conse-
quently, the fact that x(T) ∈ ρ(σ ) implies that the time-shifted
input signal u∗(x(T), t − T), t ∈ [T, 2T] is an optimal input
signal during the sampling interval [T, 2T], and that x(2T) ∈
ρ(σ ).

Induction based on the arguments of the previous para-
graph leads to the conclusions that (i) x(kT) ∈ ρ(σ ) for all k
∈{0, 1, . . .}; and (ii) the shifted signal u∗(x(kT), t − kT), t ∈
[kT, (k + 1)T], is an optimal input signal during the interval
[kT, (k + 1)T]. This concludes our proof. #

Theorem 6.2 shows that the problem of tracking in sampled-
data systems has an optimal robust solution under two

conditions: #rst, the nominal system !0 must be (K,A0, σ ,T)-
controllable; and, second, the uncertainty parameter . must
not be too large. In the paragraph following De#nition 5.1, we
have seen that the requirement of (K,A0, σ ,T)-controllability
is close to being a necessary condition for the existence of
tracking controllers in a periodic sampled-data setting. Thus,
(K,A0, σ ,T)-controllability of the nominal controlled system
!0 is a tight su"cient condition for the existence of optimal
robust solutions to our tracking problem.Note that Theorem6.2
applies to the general class of nonlinear systems described by
di!erential equations of the form (1).

Theorem 6.2 leads to the following process of constructing
optimal robust inter-sample controllers for the control con#gu-
ration of Figure 1.

6.1 Controller operation (outline)

Assume the conditions and notation of Theorem 6.2.

• At a sampling time kT, k ∈ {0, 1, . . .}, the feedback sampler
provides the state x(kT) to the controller C.

• During the sampling interval [kT, (k + 1)T], the controller
C generates the signal u∗(x(kT), t − kT) as input to the
controlled system !. This robustly minimises inter-sample
tracking errors. !

Generally, the signal u∗(x(kT)) of Theorem 6.2 is a vector
valued function of the time t and the state vector x(kT). Cal-
culating and implementing such signals may be a challenge.
In the next section, we show that optimal performance can
be approximated by signals that are easier to calculate and
implement.

7. Pseudo bang-bang controllers

By Theorem 6.2, there are optimal robust controllers that
achieve minimal inter-sample tracking error for the sampled-
data con#guration of Figure 1. Yet, optimal controllers may be
di"cult to design and implement, since they require the cal-
culation and implementation of potentially intricate signals. In
the present section, we show that the performance of optimal
robust controllers can be approximated by controllers that gen-
erate pseudo bang-bang input signals for the controlled system
!. Such controllers are relatively easy to design and imple-
ment, since pseudo bang-bang signals are determined by a list
of scalars – their switching times.

We start by listing a formal de#nition of pseudo bang-
bang signals. Recall that a bang-bang signal is a signal whose
components switch between the values of K and −K a #nite
number of times in each #nite time interval. Bang-bang sig-
nals are members of the family U(K) of Lebesgue measurable
functions with amplitude bounded by K, where

U(K) = {u : R+ → Rm : |u|∞ ≤ K, u is measurable}. (42)

De!nition 7.1: A pseudo-bang-bang signal upbb is a member of
U(K,W, () that is derived from a bang-bang signal ubb ∈ U(K)

in three steps: (i) obtain the Fourier transform υbb(ω) := Fubb;
(ii) multiply υbb(ω) by e−(|ω|, where ( > 0 is a smoothing
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factor; and, #nally, (iii) perform the inverse Fourier transform
upbb(t) = F−1(υbb(ω)e−(|ω|).

A pseudo bang-bang controller generates pseudo bang-bang
input signals for the controlled system. !

Figure 2 shows a pseudo bang-bang signal and its associ-
ated bang-bang signal for smoothing factor ( = 0.001. Like a
bang-bang signal, a pseudo bang-bang signal is determined by
a string of scalars – its switching times. Hence, pseudo bang-
bang signals are easy to implement. Next is the main result of
this section; it shows that pseudo bang-bang signals can approx-
imate the performance of any input signal. The proof of this
theorem appears later.

Theorem 7.2: Let ! be a member of the family of systems
S. (!0,K,A) with initial state x0 and sampling period T> 0,
and let ( ,W > 0 be real numbers. Then, for every input sig-
nal u ∈ U(K,W, () and for every real number ε > 0, there is a
real number ( + > 0 and a pseudo bang-bang input signal u± ∈
U(K + ε,W, ( +) for which the following are true:

(i) u± has a "nite number of switchings during [0,T].
(ii) The discrepancy between the response to u and the response

to u± satis"es the relation |!(x0, u, t) −!(x0, u±, t)| < ε

for all t ∈ [0,T]. !

By Theorem 7.2, the amplitudes of the pseudo bang-bang
input signal u± and its response !(x0, u±, t) may exceed by ε
the input bound K and the state bound A of!. Yet, since ε > 0
can be selected as small as desired, this excess has minor practi-
cal implications. Before proving Theorem 7.2, we address a few
preliminary issues, starting with the following comparison.

7.1 Comparing bang-bang and pseudo bang-bang signals

Figure 2 visually illustrates the di!erence between a bang-bang
signal and its associated pseudo bang-bang signal. To further
examine this di!erence, note the obvious fact that a bang-bang
signal u± is a combination of pulses of the form depicted in
Figure 2(A); the corresponding pseudo bang-bang signal ũ±

is then a combination of signals of the form depicted in Figure
2(B). To obtain a quantitative estimate of the di!erence between
bang-bang and pseudo bang-bang signals, let us examine #rst
one pulse

h±(t) = ) [heaviside(1 − t) − heaviside(−t − 1)] .

The Fourier transform is

H±(ω) = Fh±(t) = (sinω)/ω.

For a smoothing factor ( , the pseudo bang-bang signal is

h̃±(t, () = F−1
(
h±(ω)e−(|ω|

)

= arctan
(
t + 1
(

)
− arctan

(
t − 1
(

)
. (43)

To gauge the discrepancy between the pulse and its correspond-
ing pseudo bang-bang signal, we examine the following integral
as a function of the smoothing factor ( . (Note that these signals

are centred at the origin of the time axis.)

E1(() :=
⎝ 5

−5

⎞⎞⎞h±(s) − h̃±(s, ()
⎞⎞⎞ ds.

There seems to be no closed form available for this integral, so
we examine it numerically. Figure 3 depicts E1(() as a function
of −log10( for ( ∈ [10−6, 10−3], showing that E1(() tends to
zero as ( tends to zero, namely,

lim
(→0
(>0

E1(() = 0. (44)

By (43) and the fact that arctangent is a monotone func-
tion in this domain, it follows that h̃±(t, () has no ‘spikes’; this
is also demonstrated in Figure 2(B). As a result, the fact that
E1(() tends to zero also implies that the discrepancy between
the signal amplitudes tends to zero as ( → 0, namely, that

lim
(→0
(>0

[

sup
t∈[−5,5]

⎞⎞h±(t)
⎞⎞− sup

t∈[−5,5]

⎞⎞⎞h̃±(t, ()
⎞⎞⎞

]

= 0. (45)

More generally, consider a bang-bang signal u±(t) with its
associated pseudo bang-bang signal ũ±(t, (). Focusing on the
sampling interval [0,T], de#ne the discrepancy

E(() :=
⎝ T

0

⎞⎞u±(s) − ũ±(s, ()
⎞⎞ ds. (46)

As u± consists of a #nite number of pulses similar to h±, we
heuristically reach from (44) and (45) the conclusions

lim
(→0
(>0

E(() = 0, and

lim
(→0
(>0

[

sup
t∈[0,T]

⎞⎞u±(t)
⎞⎞− sup

t∈[0,T]

⎞⎞ũ±(t, ()
⎞⎞
]

= 0.

For future reference, we record these in the following.

Conclusion 7.3: Let u±(t) ∈ U(K) be a bang-bang signal, and
let ũ±(t, () be the pseudo bang-bang signal associated with
u±(t), using the smoothing factor ( > 0. Then, for every real
number ε > 0, there are real numbers ( ,W > 0 such that
E(() < ε and ũ±(t, () ∈ U(K + ε,W, (). !

This helps us show in the next subsection that optimal per-
formance is approximated by pseudo bang-bang signals.

7.2 Approximating optimal performance

We need the following auxiliary statement.

Lemma 7.4: Let f : R+ × Rn × Rm → Rn be a continuously dif-
ferentiable function. Then, there is an n × (n + m) continuous
matrix function D(t, x, u, x+, u+) that satis"es

f (t, x, u) − f (t, x+, u+) = D(t, x, u, x+, u+)

(
x − x+

u − u+

)

for all x, x+ ∈ Rn and u, u+ ∈ Rm.



2226 J. HAMMER

Figure 3. The effect of decreasing ( .

Proof: Consider a continuously di!erentiable function g :
R+ × Rq → Rp : (t, z) (→ g(t, z), where q, p ≥ 1. We show that
g(t, z) − g(t, z+) = D(t, z, z+)(z − z+), where D(t, z, z+) is a con-
tinuous function of its variables. Denote by gi the ith component
of g; we proceed by induction on q. When q = 1, the variable z
is a scalar, and, for z /= z+ we have

Di(t, z, z+) = gi(t, z) − gi(t, z+)
z − z+

, i = 1, 2, . . . , p.

Thus, Di(t, z, z+) is a ratio of continuous functions; therefore, it
is a continuous function (e.g. Hubbard & Hubbard, 2015). Fur-
thermore, since g is continuously di!erentiable, this continuity
is preserved as z − z+ → 0, validating our assertion for q = 1.

By induction, assume that D(t, z, z+) is continuous for q ≤ r,
where r ≥ 1 is an integer, and consider the case q = r+ 1. Keep
one component of z and z+ constant, say component zj, z+j, j ∈
{1, 2, . . . , r + 1}. Then, by the induction assumption, D(t, z, z+)
is continuous over the remaining r variables, for any values of
zj, z+j. As this is true for every j ∈ {1, 2, . . . , r + 1}, and for any
values of zj, z+j, it follows that D(t, z, z+) is a continuous func-
tion of z and z+ for the dimension q = r+ 1. This proves that
D(t, z, z+) is a continuous function of its variables for any dimen-
sion q. The lemma then follows by replacing g by f ; z by (x, u)!;
and z+ by (x+, u+)!. This concludes our proof. #

We turn now to a proof of Theorem 7.2.

Proof (of Theorem 7.2): The proof consists of three parts: Part
I constructs a bang-bang signal v±(t) over a subinterval of
[0,T]. Part II, extends v±(t) into a bang-bang signal over the
entire sampling interval [0,T]. Finally, in Part III, we use this
bang-bang signal to build a pseudo bang-bang signal u± that
ful#ls the requirements of the theorem.

7.2.1 Part I: building a basic bang-bang signal
Let u = (u1, u2, . . . , um)! ∈ U(K,W, () be an input signal of
!. As U(K,W, () ⊆ U(K), also u ∈ U(K). Let t1 ∈ [0,T), and
let η ∈ (0,T − t1] and λ ∈ (0, η] be real numbers for which the
following two ratios are integers:

p := T/η and r := η/λ. (47)

Partition the interval [t1, t1 + η] into segments of length λ:

{[t1, t1 + λ], [t1 + λ, t1 + 2λ], . . . , [t1 + (r − 1)λ, t1 + η} .
(48)

Based on this partition, build a bang-bang signal v± =
(v±,1, v±,2, . . . , v±,m)! ∈ U(K) as follows. For each k ∈ {0, 1,
. . . , r − 1} and for each component v±,i, i ∈ {1, 2, . . . ,m}, solve
for a point ski ∈ [t1 + kλ, t1 + (k + 1)λ] that satis#es

K[2(ski − (t1 + kλ)) − λ] =
⎝ t1+(k+1)λ

t1+kλ
ui(θ)dθ ; (49)

here, ui is component i of u. There is a solution for ski , since
u(t) is bounded by K. Then, use ski as a switching point for
component i of the bang-bang signal v± by setting

v±,i(t) :=
{
K for t ∈ [t1 + kλ, ski), and
−K for t ∈ [ski , t1 + (k + 1)λ),

(50)

k = 0, 1, . . . , r − 1, i = 1, 2, . . . ,m. By (49), the resulting signal
v± satis#es the relation

⎝ t1+(k+1)λ

t1+kλ
[ui(θ) − v±,i(θ)]dθ = 0 (51)

for all i ∈ {1, 2, . . . ,m} and all k ∈ {0, 1, . . . , r − 1}.



INTERNATIONAL JOURNAL OF CONTROL 2227

To continue, denote x(t) := !(x0, u, t), x±(t) = !(x0, v±, t),
and

ξ(t) := x(t) − x±(t). (52)

Note that ξ(0) = x0 − x0 = 0. Also, referring to Lemma 7.4, we
use the short-hand notation

f (t, x(t), u(t) − f (t, x±(t), v±(t))

:= a(t)(x(t) − x±(t)) + b(t)(u(t) − v±(t)), (53)

where a(t) is an n × nmatrix consisting of the #rst n columns of
D(t, x(t), u(t), x±(t), v±(t)), while b(t) is an n × mmatrix con-
sisting of the lastm columns of D(t, x(t), u(t), x±(t), v±(t)). By
Lemma 7.4, thematrixD(t, x(t), u(t), x±(t), v±(t)) is a continu-
ous function of its variables. Asu is amember ofU(K,W, (), it is
continuous by Lemma 2.1. Also, since x(t) and x±(t) are, by (1),
integrals of bounded piecewise continuous functions, they are
continuous functions of time as well.

We examine the dependence of a(t) and b(t) on v±. Con-
sider the interval [t1 + kλ, t1 + (k + 1)λ], k ∈ {0, 1, . . . , r − 1}.
By (50), the component v±,i is constant over each of the sub-
intervals [t1 + kλ, ski) and [ski , t1 + (k + 1)λ). This implies that
the limits of v±,i from the interior exist at both endpoints of each
of these subintervals (although these limits may not be equal on
both sides of endpoints). Now, for an integer k ∈ {0, 1, . . . , r −
1}, consider the closed intervals

,k,i,1 := [t1 + kλ, ski] and ,k,i,2 := [ski , t1 + (k + 1)λ],

i = 1, 2, . . . ,m. Using these, #x an integer k ∈ {0, 1, . . . , r − 1},
and consider the family of closed subintervals

5k :=
{ m⋂

i=1
,k,i,φ(i) : φ(i) ∈ {1, 2}

}

.

Let αk be the number of non-empty distinct members of 5k;
denote these members by ψk,1, ψk,2, . . . , ψk,αk . Then, ψk,1, ψk,2,
. . . , ψk,αk have disjoint interiors, and

αk⋃

d=1
ψk,d = [t1 + kλ, t1 + (k + 1)λ]. (54)

As a bang-bang signal, all components of v± are constant inside
ψk,d, d ∈ {1, 2, . . . ,αk}; hence, their limits from the interior of
ψk,d exist at the endpoints of ψk,d.

In view of the previous paragraph, the functions a(t) and b(t)
are compositions of functions that are continuous and bounded
over the interior of each subintervalψk,d, d ∈ {1, 2, . . . ,αk}, and
their limits from the interior exist at the endpoints of these
subintervals. Consequently, a(t) and b(t) are uniformly con-
tinuous over ψk,d, d ∈ {1, 2, . . . ,αk}. As the entire sampling
interval [0,T] consists of a #nite number of such subintervals,
this has two implications:

(1) a(t) and b(t) are bounded over the entire time interval
[0,T], namely, there is a real number N > 0 satisfying

|a(t)| ≤ N and |b(t)| ≤ N for all t ∈ [0,T]. (55)

(2)For every real number δ > 0, there is a real numberβ(δ) > 0
such that

|a(t) − a(t+)| < δ and |b(t) − b(t+)| < δ (56)

for all t, t+ ∈ ψk,d satisfying |t − t+| < β(δ), for all d ∈ {1, 2,
. . . ,αk} and all k ∈ {1, 2, . . . , r − 1}.

Now, returning to (52), letting t ∈ [t1, t1 + η], substitut-
ing (53) into (1), and integrating, we get

sup
θ∈[t1,t1+η]

|ξ(θ)| ≤ |ξ(t1)| + sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
[a(θ)(x(θ)

− x±(θ)) + b(θ)(u(θ) − v±(θ))

]
dθ
⎞⎞⎞⎞ . (57)

Using (55), we obtain

sup
θ∈[t1,t1+η]

|ξ(θ)| ≤ |ξ(t1)| + Nnη sup
θ∈[t1,t1+η]

|ξ(θ)|

+ sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞

so that

(1 − Nnη) sup
θ∈[t1,t1+η]

|ξ(θ)|

≤ |ξ(t1)| + sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞ .

Now, choose a value of η such that

Nnη ≤ 1/2. (58)

This yields the inequality

sup
θ∈[t1,t1+η]

|ξ(θ)| ≤ 2 |ξ(t1)| + 2 sup
t∈[t1,t1+η]

×
⎞⎞⎞⎞

⎝ t

t1
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞ . (59)

Consider the supremum on the right side of (59) and denote by
q(t) ∈ {0, 1, . . . , r − 1} the integer satisfying t ∈ [q(t)λ, (q(t) +
1)λ]. From (50) we obtain

sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞

= sup
t∈[t1,t1+η]

⎞⎞⎞⎞⎞⎞

q(t)−1∑

i=0

⎝ t1+(i+1)λ

t1+iλ
b(θ)(u(θ) − v±(θ))dθ

+
⎝ t

t1+q(t)λ
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞⎞⎞

≤ sup
t∈[t1,t1+η]

⎞⎞⎞⎞⎞⎞




q(t)−1∑

i=0

⎝ t1+(i+1)λ

t1+iλ
{b(t1 + iλ) − b(t1 + iλ)

+ b(θ)}
(
u(θ) − v±(θ)

)
dθ





⎞⎞⎞⎞⎞⎞
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+ sup
t∈[t1+q(t)λ,t1+(q(t)+1)λ]

⎞⎞⎞⎞⎞

⎝ t

t1+q(t)λ
b(θ)

(
u(θ)− v±(θ)

)
dθ

⎞⎞⎞⎞⎞

≤ sup
t∈[t1,t1+η]

⎞⎞⎞⎞⎞⎞

q(t)−1∑

i=0
b(t1 + iλ)

⎝ t1+(i+1)λ

t1+iλ

(
u(θ) − v±(θ)

)
dθ

⎞⎞⎞⎞⎞⎞

+ sup
t∈[t1,t1+η]

⎞⎞⎞⎞⎞⎞

q(t)−1∑

i=0

⎝ t1+(i+1)λ

t1+iλ
[b(θ) − b(t1 + iλ)]

×
(
u(θ) − v±(θ)

)
dθ

⎞⎞⎞⎞⎞⎞

+ sup
t∈[t1+q(t)λ,t1+(q(t)+1)λ]

⎞⎞⎞⎞⎞

⎝ t

t1+q(t)λ
b(θ)

(
u(θ)− v±(θ)

)
dθ

⎞⎞⎞⎞⎞

Taking advantage of (51), we get

sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)(u(θ) − v±(θ))dθ

⎞⎞⎞⎞

≤
q(t)−1∑

i=0
sup

⎞⎞⎞⎞⎞

⎝ t1+(i+1)λ

t1+iλ
[b(θ) − b(t1 + iλ)][u(θ) − v±(θ)]dθ

⎞⎞⎞⎞⎞

+ sup
t∈[t1+q(t)λ,t1+(q(t)+1)λ]

⎞⎞⎞⎞⎞

⎝ t

t1+q(t)λ
b(θ)

(
u(θ) − v±(θ)

)
dθ

⎞⎞⎞⎞⎞
(60)

Consider for a moment one of the integrals in the summation
in (60). By (54), we can split this integral into a sum of integrals
over the sub-intervals ψk,d, d ∈ {1, 2, . . . ,αk}:
⎞⎞⎞⎞⎞

⎝ t1+(i+1)λ

t1+iλ
[b(θ) − b(t1 + iλ)][u(θ) − v±(θ)]dθ

⎞⎞⎞⎞⎞

=
⎞⎞⎞⎞⎞

αk∑

d=1

⎝

ψk,d

[b(θ) − b(t1 + iλ)][u(θ) − v±(θ)]dθ

⎞⎞⎞⎞⎞

≤
αk∑

d=1

⎝

ψk,d

m |[b(θ) − b(t1 + iλ)]|
⎞⎞[u(θ) − v±(θ)]

⎞⎞ dθ .

(61)

In (56), choose λ ≤ β(δ). Denote by L(ψk,d) (≤ λ) the length of
ψk,d. Then, the last integral satis#es

⎝

ψk,d

m |[b(θ) − b(t1 + iλ)]|
⎞⎞[u(θ) − v±(θ)]

⎞⎞ dθ

≤ mL(ψk,d)δ2K.

Substituting into (61) and considering that
∑αk

d=1 L(ψk,d) = λ,
we get
⎞⎞⎞⎞⎞

⎝ t1+(i+1)λ

t1+iλ
[b(θ) − b(t1 + iλ)][u(θ) − v±(θ)]dθ

⎞⎞⎞⎞⎞ ≤ mλδ2K.

(62)

Regarding the last integral of (60), it follows from (55) that
⎞⎞⎞⎞⎞

⎝ t

t1+q(t)λ
b(θ)

(
u(θ) − v±(θ)

)
dθ

⎞⎞⎞⎞⎞

≤ m
⎝ t

t1+q(t)λ
|b(θ)||

(
u(θ) − v±(θ)

)
|dθ ≤ Nm2Kλ. (63)

Inserting (62) and (63) into (60), we obtain

sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)

(
u(θ) − v±(θ)

)
dθ
⎞⎞⎞⎞

≤ q(t)mλδ2K + Nm2Kλ.

Further, since η is the entire length of the interval [t1, t1 + η],
we have that q(t)λ ≤ η, and we get

sup
t∈[t1,t1+η]

⎞⎞⎞⎞

⎝ t

t1
b(θ)

(
u(θ) − v±(θ)

)
dθ
⎞⎞⎞⎞ ≤ 2mKδη + 2mKNλ.

Substituting this into (59) yields

sup
θ∈[t1,t1+η]

|ξ(θ)| ≤ 2 |ξ(t1)| + 4mK(δη + Nλ). (64)

Let ε+ > 0; select δ < ε+/(8mKη) and λ < min{β(δ),
ε+/(8mKN)}. Inserting into (64), we get

sup
θ∈[t1,t1+η]

|ξ(θ)| ≤ 2 |ξ(t1)| + ε+. (65)

7.2.2 Part II: extending the bang-bang signal
We extend v±(t) from the interval [t1, t1 + η] to the interval
[0,T]. First, referring to (47) and (58), create the partition

[0,T] =
⎩
[0, η], [η, 2η], . . . , [(p − 1)η,T]

⎛
.

Set t1 := iη, i ∈ {0, . . . , p − 1}; using the process leading to (65),
create over [iη, (i + 1)η] a bang-bang signal v±(i, t) satisfy-
ing (65). Assemble a bang-bang signal over [0,T]:

v±(x0, t) =






v±(0, t) for t ∈ [0, η],
v±(1, t) for t ∈ (η, 2η],
...
v±(p − 1, t) for t ∈ ((p − 1)η,T].

As ξ(0) = 0, we obtain from (65) the relation

sup
θ∈[iη,(i+1)η]

|ξ(θ)| ≤ 2 |ξ(iη)| + ε+,

ξ(0) = 0.

By properties of linear recursions, this yields

sup
θ∈[0,T]

|ξ(θ)| ≤




p−1∑

i=0
2i


 ε+.

Referring to the number ε > 0 of the theorem, select ε+ <

ε/(2
∑p−1

i=0 2i), ε+ > 0. As ξ(t) = x(t) − x±(t), this yields

sup
θ∈[0,T]

⎞⎞x(θ) − x±(θ)
⎞⎞ < ε/2. (66)
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7.2.3 Part III: deriving a pseudo bang-bang signal
We use v±(x0, t) to derive a pseudo bang-bang signal u±(x0, t)
that ful#ls the theorem’s requirements, as follows. Let χ , ( + >

0 be real numbers; set V(ω) = F (v±(x0, t)) and u±(x0, t) =
F−1(V(ω)e−( +|ω|). According to Conclusion 7.3, ( + can be
selected so that

⎝ T

0
|v±(x0, θ) − u±(x0, θ)|dθ < χ , (67)

where u±(x0) ∈ U(K + χ ,W, ( +).
To proceed, denote z(t) := !(x0, u±, t), set

ζ(t) := x±(t) − z(t), (68)

and note that ζ(0) = 0. Let µ > 0 be a number to be selected
later for which c := T/µ is an integer. Build the partition

[0,T] = {[0,µ], [µ, 2µ], . . . , [(c − 1),T]}. (69)

Adapting (57) for our present situation yields

sup
θ∈[t1,t1+µ]

|ζ(θ)| ≤ |ζ(t1)|

+ sup
t∈[t1,t1+µ]

⎞⎞⎞⎞

⎝ t1+µ

t1

[
a(θ)(x±(θ) − z(θ)) + b(θ)(v±(θ)

−u±(θ))
]
dθ
⎞⎞⎞⎞ .

Employing (55) and (67), we get

sup
θ∈[t1,t1+µ]

|ζ(θ)|

≤ |ζ(t1)| + Nn sup
θ∈[t1,t1+µ]

|ζ(θ)|µ

+ Nm sup
t∈[t1,t1+µ]

⎝ t1+µ

t1
|(v±(θ) − u±(θ)|dθ

≤ |ζ(t1)| + Nnµ sup
θ∈[t1,t1+µ]

|ζ(θ)| + Nmχ ,

or

(1 − Nnµ) sup
θ∈[t1,t1+µ]

|ζ(θ)| ≤ |ζ(t1)| + Nmχ . (70)

Now, choose µ so that Nnµ ≤ 1/2. Then, (70) becomes

sup
θ∈[t1,t1+µ]

|ζ(θ)| ≤ 2|ζ(t1)| + 2Nmχ .

Referring to (69) and using t1 = iµ, the last inequality yields

sup
θ∈[iµ,(i+1)µ]

|ζ(θ)| ≤ 2|ζ(iµ)| + 2Nmχ , i = 1, 2, . . . , c − 1,

ζ(0) = 0.

Invoking properties of linear recursions, this yields

sup
θ∈[0,T]

|ζ(θ)| ≤
( c∑

i=1
2i
)

Nmχ .

Next, choose the smoothing factor ( + so that χ < ε/(2Nm∑c
i=1 2i). Then, the last inequality yields

sup
θ∈[0,T]

|ζ(θ)| = sup
θ∈[0,T]

|x±(θ) − z(θ)| < ε/2. (71)

Combining (66) with (71), we get |x(t) − z(t)| ≤ |ξ(t)| +
|ζ(t)| < ε, so that the pseudo bang-bang signal u± satis#es the
theorem’s requirements. This concludes our proof. #

By Theorem 7.2, the response to any input signal in
U(K,W, () can be approximated as closely as desired by the
response to a pseudo bang-bang signal. An argument simi-
lar to the one used to prove Theorem 6.2 yields the following
consequence of Theorem 7.2.

Theorem 7.5: Let u± ∈ U(K + ε,W, ( +) be the signal of
Theorem 7.2. Then, under the conditions of Theorem 7.2, the fol-
lowing is true. The discrepancy between the response to u and the
response to u± satis"es |!(x0, u, t) −!(x0, u±(t − kT), t)| < ε

for all t ∈ [kT, (k + 1)T], k ∈ {0, 1, 2, . . .}. !

In particular, Theorem 7.5 implies that optimal performance
can be closely approximated by pseudo bang-bang signals, since
u of the theorem can be taken to be the optimal input sig-
nal u∗(x0) of Theorem 6.2. Consequently, optimal performance
x∗(t) can be approximated within ε by the response generated
by a pseudo bang-bang input signal, where ε > 0 can be as small
as desired. Thus, optimal performance can be approximated
by pseudo bang-bang signals. The next statement, which is the
main result of this section, re$ects this fact.

Corollary 7.6: Assume the conditions and notation of Propo-
sition 5.4 and Theorems 6.2 and 7.2. Let x(kT) ∈ ρ(σ ), k ∈
{0, 1, . . .}, be the state of the controlled system ! at the start of
the sampling interval [kT, (k + 1)T]. Then, for every real number
ε > 0, there are real numbers ( +,W > 0 and a pseudo bang-
bang input signal u±(x(kT)) ∈ U(K + ε,W, ( +) that satisfy the
following. Compared to the optimal response x∗(t), the response
x±(t) to the time-shifted input signal u±(x(kT), t − kT) satis-
"es |x∗(t) − x±(t)| < ε for all t ∈ [kT, (k + 1)T]. Furthermore,
x±((k + 1)T) ∈ ρ(σ ). !

When implementing the controller C of Figure 1, it is most
convenient to implement it as a pseudo bang-bang controller,
using the input signal u± of Corollary 7.6. This simpli#es the
design and implementation of C. Replacing the optimal con-
troller by its pseudo bang-bang counterpart increases the track-
ing error by ε of Corollary 7.6. The value of ε can be made as
small as desired at the cost of potentially increasing the number
of switchings or reducing the smoothing factor ( +. The pseudo
bang-bang controller C operates as follows.

7.3 Operation of a pseudo bang-bang controller C

In the notation of Corollary 7.6 and Theorem 6.2, let k ∈
{0, 1, . . .} be an integer.

• The state x(kT) ∈ ρ(σ ) is provided to the controller C at the
time t = kT by the feedback sampler of Figure 1.
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• In response to x(kT), the controller C generates the sig-
nal u±(x(kT), t − kT) as input to the controlled system !

during the sampling interval [kT, (k + 1)T].
• By construction, the input signal u±(x(kT), t − kT) pre-

serves the sampling radius σ , i.e. x±((k + 1)T) ∈ ρ(σ ). This
results in a cyclical action that approximates minimal inter-
sample tracking error over all sampling intervals [kT, (k +
1)T], k ∈ {0, 1, . . .}.

• The performance of a pseudo bang-bang controller can be as
close as desired to optimal performance. !

8. Example

To demonstrate the techniques of the present paper, we use
a modi#ed version of the Michaelis-Menten equation, an
equation that plays an important role in mathematical biology
and in environmental science. Its many applications include the
mathematical modelling of predator-prey processes in environ-
mental biology (Michaelis & Menten, 1913); the mathematical
modelling of certain enzymatic signalling chains in molecular
biology (e.g. Cao, 2011); and themathematicalmodelling of cer-
tain processes in pharmacokinetics (e.g. Wagner, 1973). Here,

Figure 4. The input signal and its response. (A) Pseudo bang-bang input and (B) Response (magnified scale); showing |x(t)|22.
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we slightly modi#ed the Michaelis-Menten equation to include
a scalar input signal u(t). In cases where the equation describes
a predator-prey process, this input could represent control over
the external food supply. The equation is of the following form.

! :
ẋ1(t) = d(b + u(t))x2(t)

(b + x2(t))
,

ẋ2(t) = (−a + u(t))x1(t)
(c + x2(t))

,
(72)

where the state is x(t) = (x1(t), x2(t))!, and the input is u(t).
The parameters a, b, c, and d are constants with nominal val-
ues a0 = 1, b0 = 2, c0 = 5, and d0 = 8 and with uncertainty
ranges 0.95 ≤ a ≤ 1.05, 1.9 ≤ b ≤ 2.1, 4.8 ≤ c ≤ 5.2, and 7.6 ≤
d ≤ 8.4. The input signal amplitude bound is K = 2, and the
state amplitude bound is A = 0.5. We use the sampling radius
σ = 0.08, so that the domain of initial states is ρ(0.08). The
sampling period is speci#ed as T = 10. We are looking for
pseudo bang-bang signals u± that approximate minimal inter-
sample tracking error, where the target state is x = 0. Referring
to Theorem 7.2, we take the approximation error bound to be
ε = 0.005.

In general, when designing a controller, it is easiest to follow
the path used in the proof of Theorem 7.2: start with the deriva-
tion of a bang-bang signal, and then ‘soften’ it into a pseudo
bang-bang signal. The latter is done by applying the Fourier
transform to the bang-bang signal, multiplying the results by
e−(|ω| for a suitable value of ( > 0, and then applying the
inverse Fourier transform to the product. The process follows
then along the following outline.

Procedure 8.1 (Building Pseudo Bang-Bang Controllers):

Step 1: Implement a search process similar to the one described
in Choi and Hammer (2019) to #nd a bang-bang input

signal for ! that yields minimal inter-sample tracking
error over the sampling interval [0,T], starting froman ini-
tial state x0. Brie$y, the search is conducted numerically by
searching over bang-bang input signals with an increasing
number of switchings in [0,T]. For each number of switch-
ings, search over all switching times combinations to #nd
one that yields the lowest inter-sample tracking error. The
process terminates when further increase of the number
of switchings does not reduce inter-sample tracking error.
Denote the resulting bang-bang signal by v±(x0).

Step 2: Obtain the transform V±(x0) = F v±(x0).
Step 3:MultiplyV±(x0) by e−(|ω|, where ( is a smoothing factor

achieving a su"ciently low discrepancy E(() of (46).
Step 4: An appropriate pseudo bang-bang signal is then

u±(x0) = F−1(V±(x0,ω)e−(|ω|).
Step 5: Repeat Steps 1 to 4 over a grid of permissible initial states

to complete the controller’s derivation. !

For the system ! of (72), we followed the steps of Proce-
dure 8.1, using ( = 0.001. This value of ( guarantees an ade-
quately low discrepancy E(() of (46). For demonstration, we
use the initial state x0 = (0.2, 0.2)!, with the parameter val-
ues a0, b0, c0 and d0 listed above. Note that this initial state is
permissible, since 0.22 + 0.22 = 0.08 ∈ ρ(0.08); being on the
boundary of ρ(0.08), this initial state is, in a sense, a worst case
example. The results are depicted in Figure 4, where Figure 4(A)
shows the pseudo bang-bang input signal (which, in this scale,
looks similar to a bang-bang signal), and Figure 4(B) shows the
response.

As can be seen in Figure 4(B), the inter-sample tracking error
is " = 0.08. In this case, theminimal inter-sample tracking error
cannot be less than 0.08, since "∗ = supt∈[0,T] |x(t)|22 ≥ |x0|22 =
0.08, so this controller achieves the best tracking error possible.
The additional amplitude error of ε = 0.005 that is permitted is
not utilised in this case.

Figure 5. The best sample-and-hold response compared to the optimal response of Figure 4(B); showing |x(t)|22. Best sample-and-hold input is -1.8 (constant).
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At the end of the sampling interval, Figure 4(B) shows
that |x(10)|22 = 0.025, which is in ρ(0.08). Thus, the state
is back in the domain ρ(0.08), as required by the sam-
pling radius σ = 0.08. Consequently, the sampled-data con-
trol process can continue cyclically using the sampling period
T = 10.

For comparison, we derive the lowest tracking error that
can be achieved by a sample-and-hold controller in this case.
A sample-and-hold controller provides a constant input sig-
nal during each sampling interval. For the current initial state,
the lowest tracking error with constant input signal is obtained
with input u(t) = −1.8. As can be seen in Figure 5, this input
achieves a tracking error of 0.095, which is larger by about
20% than the optimal tracking error. Furthermore, at the end
of the sampling interval, the sample-and-hold controller yields
|x(10)|22 = 0.089, which violates the sampling radius σ = 0.08.
Consequently, this sample-and-hold controller is not compati-
ble with cyclical operation.

9. Conclusion

The paper presents a methodology for the design and imple-
mentation of optimal robust sampled-data controllers that min-
imise inter-sample tracking errors for a wide range of nonlinear
systems. Themethodology is applicable to any nonlinear system
described by a state representation with a continuously di!er-
entiable recursion function. It takes into consideration uncer-
tainties and disturbances that may a!ect the controlled system,
and it incorporates constraints on the control e!ort. Tools to
simplify design and implementation are o!ered by showing that
optimal performance can be approximated as closely as desired
by pseudo bang-bang controllers – controllers that are relatively
easy to implement.
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