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ABSTRACT. The problem of designing robust optimal controllers to reduce in minimal time operating errors that had accu-
mulated during a period of feedback loss is revisited, with the objective of imposing a constraint on the maximal overshoot
of the controlled system. It is shown that robust optimal controllers that satisfy this constraint exist under rather broad condi-
tions. It is also shown that optimal performance can be closely approximated by bang-bang controllers – controllers that are
relatively easy to design and implement.

1. INTRODUCTION

Sound operating policies of automatic control systems often require compliance with constraints on the maximal
overshoot of the controlled system’s response. Such overshoot constraints come to secure a safe operating environment
by protecting the system and its operators from overload, over-stress, and over-strain. The present paper considers the
design of controllers that guide a system toward a quick recovery from a period of feedback loss, while complying with
a specified bound on overshoots of the controlled system. The objective is to reduce as quickly as possible operating
errors that may have accumulated during a period of feedback service loss, without overloading the controlled system.
The methodology developed in this paper is also applicable to other problems in minimal-time optimal control.

The configuration we consider is depicted in Figure 1.1, where ⌃ is the controlled system and C is a controller. As
can be seen in the figure, feedback service to the controller C had been lost for some time, before having been restored
at the time t = 0. During the period of feedback loss, operating errors may have increased. The goal of the controller
C is to guide ⌃ so as to reduce operating errors to an acceptable level as quickly as possible, once feedback has been
restored. Importantly, the controller C must achieve this goal without overloading the controlled system ⌃. We show
below that optimal controllers that achieve this goal exist under rather general conditions. We also show that optimal
performance can be approximated as closely as desired by bang-bang controllers – controllers that are relatively easy
to design and implement.

C �

t = 0

x(t)u(t)

FIGURE 1.1. The control configuration

The current paper expands the work of Chakraborty and Hammer (2009b, 2010), Yu and Hammer (2016a,b), and
Choi and Hammer (2019) by imposing a constraint on the maximal state amplitude the controlled system ⌃ may
experience during the control process. This additional constraint prevents overload of the controlled system ⌃ at the
cost of a potential increase in the time required to reduce operating errors to an acceptable level.

Loss of feedback service is not uncommon in the practice of control systems engineering. Loss of feedback may
occur as a result of malfunctions or failures of components in the feedback channel; it may occur as a result of
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deteriorating operating conditions, such as the loss of line-of-sight to a satellite; or it may be a feature of a system’s
mode of operation, as in sampled-data systems, where no feedback is available between samples. Another example
of an application where loss of feedback is an integral part of operating procedure is networked control systems,
where feedback may be disrupted due to capacity limitations of feedback communication channels (Nair et al. (2007),
Zhivogyladov and Middleton (2003), Montestruque and Antsaklis (2004)).

Feedback control theory reminds us that operating errors may increase during periods of feedback loss. Our ob-
jective is to develop controllers that reduce such operating errors to an acceptable level as quickly as possible, once
feedback has been restored.

Referring to Figure 1.1 at a time t, the state of the controlled system ⌃ is x(t), and the input signal of ⌃ is u(t). The
system ⌃ is controlled by the controller C. As depicted, the controller’s feedback channel was open for some time until
the time t = 0. At t = 0, feedback was momentarily restored, providing a reading of the state x(0) = x0. The controller
C must utilize this reading to guide ⌃ toward lower operating error. This must be accomplished without violating two
constraints imposed by structural limitations of the controlled system ⌃: (1) the input signal of ⌃ may not exceed an
amplitude bound of K; and (2) the response of ⌃ may not exceed a signal amplitude bound of A. Here, K and A are
specified bounds.

After possibly applying a shift transformation to the state coordinates of ⌃, we assume that nominal operation of ⌃
is near its zero state x = 0. The disruption in feedback service may have increased operating errors, bringing ⌃ to the
state x(0) = x0 communicated by the restored feedback channel at t = 0. The controller C must guide ⌃ back from x0
to the vicinity of the zero state.

Needless to say, inaccuracies, noises, and modeling errors prevent ⌃ from being driven exactly to the zero state. To
accommodate such uncertainties, a deviation of ` from the zero state is permitted. The goal of the controller C is then
to guide ⌃ as quickly as possible from the state x0 to within ` of the zero state; specifically, C must guide ⌃ to a state
x satisfying x>x  `. This process of guiding ⌃ must progress without violating the aforementioned input and output
constraints imposed by structural limitations of ⌃.

Optimal controllers are often hard to design and construct, since, in general, their design and construction involve
the calculation and implementation of vector valued functions of time. An important goal of our discussion is to
develop controllers that approximate optimal performance, while being relatively easy to design and implement.

We can summarize our objectives as follows.

Problem 1.1. In the control configuration of Figure 1.1, the controller C experienced a period of feedback loss that
ended at the time t = 0. Feedback was restored momentarily at t = 0, providing C with a reading of the state x(0) = x0
of the controlled system ⌃. During the period of feedback loss, operating errors may have increased, possibly taking
the state x of ⌃ out of the desired operating domain ⇢(`) given by

(1.2) ⇢(`) :=
�

x : x>x  `
 
,

where ` > 0 is a specified operating error bound.
The goal of the controller C is to guide ⌃ so as to reduce operating errors as quickly as possible by bringing ⌃ from

x0 to ⇢(`) in minimal time. During this process, C must comply with two constraints: (1) the input of ⌃ cannot exceed
a signal amplitude bound of K , and (2) the state of ⌃ cannot exceed a signal amplitude bound of A; here, K > 0 and
A > 0 are specified real numbers. To this end:
(i) Determine conditions under which there is an optimal controller C that guides ⌃ in minimal time from the state x0
to the domain ⇢(`), without violating input and state constraints.
(ii) Find simple-to-calculate-and-implement controllers that approximate optimal performance. ⇤

The current paper is a study of constrained optimization; it employs tools developed, referenced, and applied
in earlier studies in the area of optimal control, including the studies of Kelendzheridze (1961), Pontryagin et al.
(1962), Gamkrelidze (1965), Neustadt (1966, 1967), Luenberger (1969), Young (1969), Warga (1972), Chakraborty
and Hammer (2007, 2008a,b,c, 2009a,b, 2010), Chakraborty and Shaikshavali (2009), Yu and Hammer (2016a,b),
Choi and Hammer (2019, 2017), the references cited in these studies, and many others. A survey of more recent
progress in the area of optimal control can be found in Tonon et al. (2017). Yet, to the best of our knowledge, there
are no earlier reports that address existence and implementation of automatic controllers that reduce operating errors
in minimal time under overshoot constraints.

The current paper is organized as follows. Section 2 introduces notation and setup, and Section 3 covers a few
preliminary observations. The existence of optimal controllers is proved in Section 4, where we show that optimal
controllers exist as long as the controlled system ⌃ satisfies a certain controllability condition. Section 5 shows
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that optimal performance can be approximated as closely as desired by bang-bang controllers – controllers that are
relatively easy to calculate and implement. Section 6 consists of two examples. Finally, concluding remarks are
offered in Section 7.

2. MATHEMATICAL FRAMEWORK

2.1. Notation. Denote by R the set of real numbers and by R+ the set of non-negative real numbers. Here, R is the
compactified set of real numbers, i.e., the real numbers augmented by the points �1 and 1. The absolute value of a
real number r is denoted, as usual, by |r |. The L1�norm of a vector x = (x1,x2, . . . ,xn)> 2 Rn is

|x | := max
i=1,2,...,n

|xi | .

For a real number A > 0, it is often convenient to use the notation

(2.1) [�A,A]n := {x 2 Rn : |x |  A}.
For a constant n⇥m matrix G = (Gi j) 2 Rn⇥m, the L1�norm is

|G | := max
i=1,2,...,n
j=1,2,...,m

|Gi j |,

and for a matrix function of time g : R+! Rn⇥m : t 7! g(t), the L1�norm is

|g |1 := sup
t�0

|g(t)|.

We refer to |g |1 as the amplitude of g. The L2�norm of vector x 2 Rn is denoted by |x |2, where

|x |22 = x>x.

2.2. Description of the system. The controlled system ⌃ of Figure 1.1 is an input-affine time-varying nonlinear
system described by a differential equation of the form

(2.2) ⌃ :
€x(t) = a(t,x(t))+ b(t,x(t))u(t),

x(0) = x0,

where x(t) 2 Rn is the state of ⌃ at the time t, and u(t) 2 Rm is the input signal of ⌃ at the time t. The functions
a : R+ ⇥ Rn ! Rn : (t,x) 7! a(t,x) and b : R+ ⇥ Rn ! Rn⇥m : (t,x) 7! b(t,x) are continuous functions subject to the
Lipchitz conditions

(2.3)

|a(t,x 0)� a(t,x)|  ↵+ |x 0 � x |,
|b(t,x 0)� b(t,x)|  ↵+ |x 0 � x |,

a(t,0) = 0, |b(t,0)|  ↵+,
where ↵+ > 0 is a specified constant bound. We use the same bound ↵+ in all inequalities to simplify notation; the
qualitative results derived in this paper remain valid when a different bound is used in each inequality.

To incorporate modeling uncertainties that are prevalent in practice, and to build robustness into our results, we
introduce uncertainty into the model (2.2) of ⌃ by decomposing the functions a and b into nominal and uncertain
parts:

(2.4)
a(t,x) = a0(t,x)+ a�(t,x),
b(t,x) = b0(t,x)+ b�(t,x).

Here, a0 : R+ ⇥ Rn ! Rn and b0 : R+ ⇥ Rn ! Rn⇥m are specified continuous functions describing the nominal model
of the controlled system ⌃; they are subject to the Lipschitz conditions

(2.5)

|a0(t,x 0)� a0(t,x)|  ↵ |x 0 � x |,
|b0(t,x 0)� b0(t,x)|  ↵ |x 0 � x |,

a0(t,0) = 0, |b0(t,0)|  ↵,
where ↵ � 0 is a specified constant bound. The nominal controlled system ⌃0 is then

(2.6) ⌃0 :
€x(t) = a0(t,x(t))+ b0(t,x(t))u(t), t � 0,

x(0) = x0.
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The functions a� : R+⇥Rn ! Rn and b� : R+⇥Rn ! Rn⇥m of (2.4) are unspecified continuous functions that represent
modeling uncertainties; they are subject to the Lipschitz conditions

(2.7)

|a�(t,x 0)� a�(t,x)|  � |x 0 � x |,
|b�(t,x 0)� b�(t,x)|  � |x 0 � x |,

a�(t,0) = 0, |b�(t,0)|  �,

where � > 0 is a specified constant bound that describes the uncertainty level. In many applications, � is a relatively
small number, as modeling uncertainties are often modest. Comparing (2.3), (2.4), (2.5) and (2.7), we can set

↵+ = ↵+�.

2.3. Input signals. The space of input signals of the controlled system ⌃ of Figure 1.1 is the Hilbert space L!,m
2 that

consists of all Lebesgue measurable functions f ,g : R+! Rm with the inner product

h f ,gi :=
π 1

0
e�!s f >(s)g(s)ds,

where ! > 0 is a real number (Chakraborty and Hammer (2009b, 2010)). Note that the exponential term inside the
integral guarantees that the inner product is finite for all bounded functions f and g.

For a function g 2 L!,m
2 and an n⇥m matrix D(t) with rows D1(t), D2(t), . . ., Dn(t) 2 L!,m

2 , we use the notation

hD,gi :=
n’
j=1

D
D>

j ,g
E
.

Like most practical systems, the system ⌃ of Figure 1.1 imposes a bound K > 0 on the largest input signal amplitude
it permits. Thus, only input signals u that belong to the family

(2.8) U(K) :=
�
u 2 L!,m

2 : |u|1  K
 

are allowed; U(K) serves as the set of input signals throughout our discussion.

2.4. Notation and formal statement of the problem. In this subsection, we restate Problem 1.1 in formal terms.
Recall that there are five bounds that are critical to our discussion: the input signal amplitude bound K > 0 of (2.8); the
permissible operating error bound ` > 0 of (1.2); the uncertainty bound � > 0 of (2.7); the bound ↵ > 0 of the Lipschitz
inequalities (2.5); and the state amplitude bound A > 0 that represents the largest permissible amplitude of the state
x(t) of the controlled system ⌃. The latter enforces the constraint

(2.9) |x(t)|  A for all t � 0.

Notation 2.10. Let ⌃0 be the nominal system of (2.6), and, given real numbers K,↵,� > 0, denote by F�(⌃0) the family
of all systems of the form (2.2), subject to the requirements (2.3), (2.4), (2.5) and (2.7). All members of F�(⌃0) share
the same initial state x(0) = x0, and their set of permissible input signals is U(K) of (2.8). For a member ⌃ 2 F�(⌃0),
the state x(t) in response to an input signal u is denoted by ⌃(x0,u,t) := x(t).

A state amplitude bound A > 0 is associated with the family F�(⌃0); every member ⌃ 2 F�(⌃0) must satisfy
|⌃(x0,u,t)|  A at all times t during the control process. In particular, the initial state satisfies |x0 |  A. ⇤

Consider a member ⌃ 2 F�(⌃0) and refer to the specified state amplitude bound A > 0. Given a time t � 0, denote
by U(K,A,⌃,t) the set of all input signals u 2 U(K) for which the state of ⌃ remains bounded by A up to the time t,
namely,

U(K,A,⌃,t) := {u 2 U(K) : |⌃(x0,u,✓)|  A for all ✓ 2 [0,t]} .
Now, the state of every member ⌃ 2 F�(⌃0) must not exceed the amplitude bound A.

Since the functions a� and b� of (2.4) are not specified, it is not known which member of F�(⌃0) serves as the active
controlled system ⌃ of Figure 1.1. Therefore, the only input signals that are permitted are those for which the state of
every member of F�(⌃0) remains bounded by the specified state amplitude bound A. In explicit terms this means that,
for the time interval [0,t], the set of all permissible input signals is

(2.11) U(K,A,�,t) :=
Ÿ

⌃2F� (⌃0)
U(K,A,⌃,t).

Note that, since the initial state satisfies |x0 |  A, it follows that U(K,A,�,0) =U(K).
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Further, it is required to bring the state of our system into the domain ⇢(`) of (1.2) as quickly as possible. The earliest
time t(x0,`,A,⌃,u) at which a specific input signal u 2 U(K) can bring the state of a specific member ⌃ 2 F�(⌃0) from
the initial state x0 to ⇢(`) without violating the state amplitude bound A is

t(x0,`,A,⌃,u) = inf
t�0

�
|⌃(x0,u,t)|22  `,u 2 U(K,A,⌃,t)

 
;

here, t(x0,`,A,⌃,u) :=1 if the infimum does not exist, i.e., if there is no time t � 0 at which both of the conditions
|⌃(x0,u,t)|22  ` and u 2 U(K,A,⌃,t) are met.

The earliest time t(x0,`,A,�,u) at which the input signal u 2 U(K) can bring the state of every member of F�(⌃0)
from the initial state x0 to the domain ⇢(`), without violating the state amplitude bound A, is

(2.12) t(x0,`,A,�,u) := inf
t�0

( 
sup

⌃2F� (⌃0)
|⌃(x0,u,t)|22

!
 `,u 2 U(K,A,�,t)

)
.

Here, t(x0,`,A,�,u) := 1 if the infimum does not exist, namely, if there is no time t � 0 at which both conditions
sup⌃2F� (⌃0) |⌃(x0,u,t)|22  ` and u 2U(K,A,�,t) are met. In particular, this includes cases where sup⌃2F� (⌃0) |⌃(x0,u,t)|22 
` for some time t � 0, but the input signal u is not in U(K,A,�,t).

The earliest time at which any input signal u 2 U(K) can bring the state of every member of F�(⌃0) from the initial
state x0 into the domain ⇢(`), without violating the state amplitude bound A, is

(2.13) t⇤(x0,`,A,�) = inf
u2U(K)

t(x0,`,A,�,u),

where t⇤(x0,`,A,�) :=1 if the infimum does not exist.
We show in Section 4 that t⇤(x0,`,A,�) <1 under rather broad conditions, and that there is an optimal input signal

u⇤(x0,`,A,�) 2 U(K) that achieves the minimal time t⇤(x0,`,A,�), namely, that

t⇤(x0,`,A,�) = t(x0,`,A,�,u⇤(x0,`,A,�)).
In qualitative terms, the main condition under which an optimal input signal u⇤(x0,`,A,�)) exists is a controllability-
type condition on the nominal system ⌃0. It requires that there be an input signal in U(K) that drives ⌃0 from the initial
state x0 to the zero state in finite time, without violating the state amplitude bound A. If the uncertainty parameter � is
not too large, then the existence of an optimal input signal can be determined from an inspection of a single system –
the nominal system ⌃0; it is not necessary to check every member of the family F�(⌃0).

An optimal input signal u⇤(x0,`,A,�) reduces operating errors as quickly as possible to a magnitude not exceeding
`, without violating the state amplitude bound A of the controlled system ⌃. As u⇤(x0,`,A,�) is generally a vector
valued function of time, it may be difficult to calculate it and implement it in practice. In Section 5, we show that
an optimal input signal u⇤(x0,`,A,�) can be replaced by a bang-bang input signal u± 2 U(K) without a significant
departure from optimal performance. Bang-bang signals are relatively easy to calculate and implement, since they are
determined by a finite string of scalars – their switching times.

For future reference, we summarize now our objectives in formal terms.

Problem 2.14. Let K,A,`,� > 0 be specified real numbers. Using Notation 2.10, (2.12), and (2.13), address the fol-
lowing issues:
(i) Find conditions under which there is an optimal input signal u⇤(x0,`,A,�) 2U(K) satisfying t⇤(x0,`,A,�)= t(x0,`,A,�,u⇤(x0,`,A,�)).
(ii) If u⇤(x0,`,A,�) exists, find a simple-to-calculate-and-implement input signal that can replace u⇤(x0,`,A,�) without
causing significant departure from optimal performance. ⇤

3. BASIC FACTS

3.1. Preliminaries. Our current discussion continues the work of Yu and Hammer (2016a,b) and Choi and Hammer
(2019). We start by reproducing the following result from Yu and Hammer (2016a,b). It states that our systems
generate a response that is bounded at all finite times.

Proposition 3.1. Let K,� > 0 be real numbers and let ⌃ be a member of the family F�(⌃0). Then, for every finite time
T � 0, there is a real number M(T) � 0 such that |⌃(x0,u,t)|  M(T) for all t 2 [0,T], for all input signals u 2 U(K),
and for all members ⌃ 2 F�(⌃0). ⇤

The next statement, which is also reproduced here from Yu and Hammer (2016a,b), is a consequence of Proposition
3.1 and the fact that continuous functions are bounded over compact domains.
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Corollary 3.2. Let n and p be two positive integers, let c : R⇥Rn ! Rp : (t,x) 7! c(t,x) be a continuous function, let
K,� > 0 be real numbers, and let ⌃ be a member of F�(⌃0). Then, for every finite time T � 0, there is a real number
Mc(T) � 0 such that

(3.3) |c(t,⌃(x0,u,t)|  Mc(T)
for all t 2 [0,T], for all input signals u 2 U(K), and for all ⌃ 2 F�(⌃0). ⇤

According to Problem 2.14, our objective is to drive every member ⌃ 2 F�(⌃0) from the initial state x0 into the
domain ⇢(`), without violating the state amplitude bound A. Whether this is possible or not depends on a number of
factors, including the initial state x0, the input amplitude bound K , and the state amplitude bound A. In this context, it
is useful to introduce the following notion.

Definition 3.4. Let K,A > 0 be real numbers. A system ⌃ 2 F�(⌃0) is (K,A)�controllable from the initial state x0 if
there is an input signal u 2 U(K) and a finite time tA � 0 such that ⌃(x0,u,tA) = 0 and |⌃(x0,u,t)|  A for all t 2 [0,tA].
⇤

The following statement shows that, if the nominal system ⌃0 is (K,A)�controllable, then the minimal time
t⇤(x0,`,A,�) of (2.13) is finite, as long as the uncertainty parameter � is not too large. In other words, if � is not
too large, then (K,A)�controllability of the nominal system guarantees that every member of the family F�(⌃0) can be
brought into the domain ⇢(`) in finite time, without violating specified constraints. This is an important fact, since it
shows that by checking properties of a single system – the nominal system ⌃0 – one can assure proper performance of
the entire family F�(⌃0). In more precise terms, the following is true.

Proposition 3.5. Let K,A0 > 0 be two real numbers, and assume that the nominal system ⌃0 is (K,A0)�controllable
from the initial state x0. Then, for every pair of real numbers ` > 0 and A > A0, there is an uncertainty parameter
� > 0 for which the minimal time t⇤(x0,`,A,�) of (2.13) is finite.

Remark 3.6. Inequality (3.11), which forms part of the proof of Proposition 3.5, points out values of the uncertainty
parameter � that are compatible with the statement of Proposition 3.5; there may be additional values as well. ⇤

Proof of Proposition 3.5. As the nominal system ⌃0 is (K,A0)�controllable, there is a time tA0 � 0 and an input signal
uA0 2 U(K) such that ⌃0(x0,uA0,tA0 ) = 0 and |⌃0(x0,uA0,t)|  A0 for all t 2 [0,tA0 ]. Now, let � > 0 be a real number, let
⌃ be a member of F�(⌃0), and, for a time t � 0, denote x(t) := ⌃0(x0,uA0,t), x 0(t) := ⌃(x0,uA0,t), and ⇠(t) = x 0(t)� x(t).
As both ⌃ and ⌃0 start from the same initial state x0, we have

(3.7) ⇠(0) = 0.
Consider now two times t1,t2 2 [0,tA0 ], t1 < t2, and examine a time t 2 [t1,t2]. Using the same input signal uA0 2 U(K)
for both ⌃ and ⌃0, and invoking (2.2), (2.4), (2.5), and (2.7), together with the facts that a�(t,0,0)= 0 and b�(t,0,0)  �,
we get

|⇠(t)| =
���⇠(t1)+

π t

t1

[a(s,x 0(s))� a0(s,x(s))]ds+
π t

t1

[b(s,x 0(s))� b0(s,x(s))]uA0 (s)ds
���

 |⇠(t1)|+
π t

t1

(↵ |⇠(s)|+� |x 0(s)|)ds+
π t

t1

(↵ |⇠(s)|+� |x 0(s)|+�) |uA0 (s)|ds.

Applying Proposition 3.1 and the fact that uA0 2 U(K), we obtain

(3.8) sup
s2[t1 ,t2]

|⇠(s)|  |⇠(t1)|+↵(1+K)(t2 � t1) sup
s2[t1 ,t2]

|⇠(s)|+�[M(tA0 )(1+K)+K](t2 � t1).

Now, choose a real number µ > 0 such that
↵(1+K)µ < 1,

and set
t2 := t1+ µ.

Substituting into (3.8) and rearranging terms, we get

(1�↵(1+K)µ) sup
s2[t1 ,t1+µ]

|⇠(s)|  |⇠(t1)|+�[M(tA0 )(1+K)+K]µ.

Define the positive numbers
⌘ := [1�↵(1+K)µ]�1,

⌘1 := [M(tA0 )(1+K)+K]µ⌘.
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Then,

(3.9) sup
s2[t1 ,t1+µ]

|⇠(s)|  ⌘ |⇠(t1)|+�⌘1.

Next, let q be an integer that satisfies the inequality q � tA0/µ and build the partition

[0,tA0 ] ✓ {[0, µ],[µ,2µ], . . . ,[(q�1)µ,qµ]}.
Then, letting k 2 [0,q�1] be an integer and choosing t1 := kµ, we obtain from (3.9) the recursion

sup
s2[kµ,(k+1)µ]

|⇠(s)|  ⌘ |⇠(kµ)|+�⌘1,k = 0,1,2, . . . ,q�1.

Further, considering that ⇠(0) = 0 by (3.7) and utilizing properties of linear recursions, we obtain

sup
s2[0,(k+1)µ]

|⇠(s)|  �⌘1⌘
k,k = 0,1,2, . . . ,

so that

(3.10) sup
s2[0,tA0 ]

|⇠(s)|  �⌘1⌘
q�1.

Finally, setting � :=min{(A� A0),`}, it follows that the proposition is valid for any number � satisfying

(3.11) 0 < � < �

⌘1⌘q�1 .

This concludes our proof. ⇤

In view of Proposition 3.5, checking (K,A0)�controllability of a single system – the nominal system ⌃0 – is suffi-
cient to ensure that the objective of Problem 2.14(i) can be met in finite time, as long as the uncertainty parameter � is
not too large.

3.2. Some basic features. We start this subsection with a review of a few mathematical notions (e.g., Willard (2004),
Zeidler (1985)).

Definition 3.12. Let H be a Hilbert space with inner product h·, ·i.
(i) A sequence {vi}1i=1 of members of H converges weakly to a member v 2 H if limi!1 hvi,yi = hv,yi for every y 2 H.
(ii) A subset W of H is weakly compact if every sequence of members of W has a subsequence that converges weakly
to a member of W . ⇤

The following statement is reproduced from Chakraborty and Hammer (2009b, 2010).

Lemma 3.13. The set of signals U(K) is weakly compact in L!,m
2 . ⇤

Next, we review a few more mathematical notions (Willard (2004), Zeidler (1985)).

Definition 3.14. Let S be a subset of a Hilbert space H, and let z be a member of S. A functional F : S ! R is
weakly lower semi-continuous at z if the following is true for every sequence {zi}1i=1 ✓ S that converges weakly to z:
whenever F(z) is bounded, there is, for every real number " > 0, an integer N > 0 such that F(z)� F(zi) < " for all
i � N .

A function G : S ⇥ R ! Rn : (s,t) 7! G(s,t) is weakly continuous at z at a time t if the following is true for every
sequence {zi}1i=1 ✓ S that converges weakly to z: for every real number " > 0, there is an integer N > 0 such that
|G(z,t)�G(zi,t)| < " for all i � N .

Given two times t1 < t2, the function G is uniformly weakly continuous over the interval [t1,t2] if the following is
true for every sequence {zi}1i=1 ✓ S that converges weakly to z: for every real number " > 0, there is an integer N > 0
such that supt2[t1 ,t2] |G(z,t)�G(zi,t)| < " for all integers i � N . ⇤

The following continuity feature of systems belonging to the family F�(⌃0) is reproduced here from Yu and Hammer
(2016a,b).

Lemma 3.15. For a member ⌃ 2 F�(⌃0), the function ⌃(x0, ·, ·) : U(K)⇥ R+ ! Rn : (u,t) 7! ⌃(x0,u,t) is uniformly
weakly continuous over every finite interval of time. ⇤
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Returning to our discussion of Subsection 2.4, we rewrite (2.11) in the form

(3.16) U(K,A,�,t) =
8>>><
>>>:

u 2 U(K) : sup
⌃2F� (⌃0)

0st

|⌃(x0,u,s)|  A

9>>>=
>>>;
.

A slight reflection shows that

(3.17) U(K,A,�,t2) ✓ U(K,A,�,t1) for all t2 � t1,

so that the set U(K,A,�,t) is monotone decreasing as a function of t. Another feature of U(K,A,�,t) that is of interest
is the following.

Proposition 3.18. The set U(K,A,�,t) of (3.16) is weakly compact.

Proof. Let T � 0 be a fixed time, and consider a sequence of signals {ui}1i=1 ✓ U(K,A,�,T). As U(K,A,�,T) ✓ U(K),
it follows by Lemma 3.13 that the sequence {ui}1i=1 has a subsequence {uik }1k=1 that converges weakly to a signal
u 2 U(K). We must show that, in fact, u 2 U(K,A,�,T). Applying Lemma 3.15 over the finite time interval [0,T],
it follows that, for every real number " > 0, there is an integer N > 0 such that |⌃(x0,u,t)� ⌃(x0,uik ,t)| < " for all
k � N and for all t 2 [0,T]. In addition, since uik 2 U(K,A,�,T) for all k � 1, we have that |⌃(x0,uik ,t)|  A or, in the
notation of (2.1), that |⌃(x0,uik ,t)| 2 [�A,A]n for all t 2 [0,T] and for all k � 1. Now, at a particular time t 2 [0,T],
this implies that the sequence of vectors {⌃(x0,uik ,t)}1k=1 ✓ [�A,A]n converges to the vector ⌃(x0,u,t) 2 Rn, i.e., that
limk!1⌃(x0,uik ,t)= ⌃(x0,u,t). But then, since [�A,A]n is a compact subset of Rn, we must have that this limit belongs
to [�A,A]n, so that ⌃(x0,u,t) 2 [�A,A]n. As this is true for all t 2 [0,T], we conclude that u 2 U(K,A,�,T), and the
proposition follows. ⇤

4. EXISTENCE OF OPTIMAL SOLUTIONS

We turn now to an examination of conditions under which Problem 2.14(i) has an optimal solution u⇤(x0,`,A,�).
This examination depends on the following mathematical facts (e.g., Zeidler (1985), Willard (2004)).

Theorem 4.1. (i) A weakly continuous functional is weakly lower semi-continuous.
(ii) Let S and A be topological spaces and assume that, for every member a 2 A, there is a weakly lower semi-
continuous functional fa : S ! R. If supa2A fa(s) exists at each point s 2 S, then the functional f (s) := supa2A fa(s)
is weakly lower semi-continuous on S. ⇤

To continue, we adapt to our present framework a methodology used in Yu and Hammer (2016a,b). In these
references, no state amplitude bound was imposed on the response of the controlled system ⌃. To incorporate the state
amplitude bound (2.9), we proceed as follows. For a time t � 0, define the functional  (t, ·) : U(K)! R : u 7!  (t,u)
by setting

(4.2)  (t,u) :=
(

sup⌃2F� (⌃0) |⌃(x0,u,t)|22 if u 2 U(K,A,�,t),
1 if u <U(K,A,�,t).

Then, the following is valid.

Lemma 4.3. At every time t � 0, the functional  (t, ·) : U(K)! R of (4.2) is weakly lower semi-continuous over U(K).

Proof. By Lemma 3.15, the function ⌃(x0,u,t) is weakly continuous over U(K) at any finite time t � 0. Consider-
ing that a continuous function of a weakly continuous function is weakly continuous, it follows that the functional
|⌃(x0,v,t)|22 is weakly continuous over U(K) at every finite time t � 0. Then, Theorem 4.1(i) implies that the func-
tional |⌃(x0,v,t)|22 is also weakly lower semi-continuous on U(K) at every finite time t � 0. But then, in view of (4.2)
and Theorem 4.1(ii), we conclude that  (t, ·) is weakly lower semi-continuous on U(K) at every finite time t � 0. ⇤

Based on Lemma 4.3, we can prove the following statement (compare to Yu and Hammer (2016a,b), where an
analogous statement is proved for cases in which no amplitude bound is imposed on the response of the controlled
system ⌃).

Proposition 4.4. Let A0,A,`,� > 0 be real numbers, where A > A0. Assume that the nominal system ⌃0 is (K,A0)-
controllable from the initial state x0, and that the uncertainty parameter � is compatible with Proposition 3.5 for the
current A, A0, and `. Then, the functional t(x0,`,A,�,u) of (2.12) is weakly lower semi-continuous as a function of u
over U(K).
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Proof. Let ⌃ 2 F�(⌃0) be a system, and let u 2 U(K) be an input signal. Using (4.2), we can write

t(x0,`,A,�,u) = inf {t � 0 :  (t,u)  `} .
To temporarily simplify notation, set

(4.5) ✓(u) := inf
t
{t � 0 :  (t,u)  `} .

By the proposition’s assumption, � is compatible with Proposition 3.5. Consequently, according to Proposition 3.5,
there are input signals u 2 U(K) for which ✓(u) <1, and all such input signals u are included in U(K,A,�,t) for some
t � ✓(u). By (3.17), this implies that all such input signals u are members of U(K,A,�,✓(u)). Note that ✓(u) � 0 by
(4.5). As the case ✓(u) = 0 is degenerate – the initial state x0 already satisfies the requirement |x0 |  `, we assume
below that ✓(u) > 0.

Let u 2 U(K) be an input signal for which ✓(u) <1, and consider a sequence of input signals {ui}1i=1 ✓ U(K) that
converges weakly to u. Denote  i(t) :=  (t,ui), i = 1,2, . . ., and  0(t) :=  (t,u). Then, ✓(ui) := inf {t � 0 :  i(t)  `}
and ✓(u) := inf {t � 0 :  0(t)  `}. We claim that ✓(u) is a weakly lower semi-continuous functional of u over U(K).
For this, we need to show that, for every real number " > 0, there is an integer N > 0 such that

(4.6) ✓(ui) > ✓(u)� " for all i � N .

To prove (4.6), choose " > 0 satisfying " < ✓(u), and examine the following two cases:
Case 1: There is an integer N > 0 such that ✓(ui) � ✓(u) for all i � N .
Case 2: Case 1 is not valid.
In Case 1, inequality (4.6) is valid for all i � N . Since ✓(u) < 1, this case includes all cases of sequences {ui} for
which there is an integer N > 0 such that ✓(ui) =1 for all i � N . This completes the discussion of Case 1.

Proceeding to Case 2, there is in this case a sequence of integers j1 < j2 < j3 < · · · such that ✓(u jk ) < ✓(u) for all
integers k � 1. As ✓(u) < 1, the fact that ✓(u jk ) < ✓(u) entails that ✓(u jk ) < 1 for all k � 1. Now, the infimum (4.5)
implies that  0(t) > ` for all t 2 [0,✓(u)); in particular, any time

(4.7) t̄ 2 [✓(u)� ",✓(u))
satisfies  0(t̄) > `, so that

(4.8)  0(t̄)� ` > 0.
Now,  (t,u) is weakly lower semi-continuous in u by Lemma 4.3. Consequently, there is, for every real number µ > 0,
an integer N > 0 for which

(4.9)  0(t̄)� jk (t̄) < µ for all k � N .

Recalling (4.8), we can choose µ := ( 0(t̄)� `)/2. Substituting this value of µ into (4.9), we obtain that

 0(t̄)� jk (t̄) < ( 0(t̄)� `)/2 for all k � N,

so that
 jk (t̄) > ( 0(t̄)+ `)/2 for all k � N .

As  0(t̄) > ` by (4.8), this yields that  jk (t̄) > ` for all k � N . Thus, ✓(u jk ) > t̄. In view of (4.7), we obtain that
✓(u jk ) > ✓(u)� " for all k � N , so that weakly lower semi-continuity holds in Case 2. Combining this with the earlier
discussion of Case 1, we conclude that ✓ is a weakly lower semi-continuous functional over U(K). The proposition
then follows by observing that t(x0,`,A,�,u) = ✓(u). ⇤

The following statement, which is the main result of the present section, follows from Proposition 4.4 and Lemma
3.13 through an application of the Generalized Weierstrass Theorem (e.g., Zeidler (1985)). Specifically, the General-
ized Weierstrass Theorem states that a weakly lower semi-continuous function attains a minimum in a weakly compact
set. Thus, the weakly lower semi-continuous function t(x0,`,A,�,u) attains its minimum t⇤(x0,`,A,�) in the weakly
compact set of input signals U(K). In other words, there is an input signal u⇤(x0,`,A,�) 2 U(K) that achieves this
minimum, validating the following statement.

Theorem 4.10. Let A0,A,`,� > 0 be real numbers, where A > A0. Assume that the nominal system ⌃0 is (K,A0)-
controllable from the initial state x0, and that the uncertainty parameter � is compatible with Proposition 3.5 for the
current A, A0, and `. Then, referring to the notation of Problem 2.14, the following hold.
(i) There is a finite minimal time t⇤(x0,`,A,�).
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(ii) There is an optimal input signal u⇤(x0,`,A,�) 2 U(K) satisfying t⇤(x0,`,A,�) = t(x0,`,A,�,u⇤(x0,`,A,�)) without
violating the state amplitude bound A. ⇤

5. APPROXIMATING OPTIMAL PERFORMANCE

Optimal input signals u⇤(x0,`,A,�) of Problem 2.14, when they exist, are, in general, vector-valued functions of
time. Needless to say, such functions may be difficult to calculate and implement. In the present section, we show that
the performance of optimal input signals can be approximated as closely as desired by bang-bang input signals. As
bang-bang input signals are relatively easy to calculate and implement, this section brings forward a relatively simple
methodology of designing and implementing controllers that achieve close to optimal performance.

Recall that the task of the controller C of Figure 1.1 is to bring operating errors as quickly as possible down to the
specified error bound `, without violating the specified state amplitude bound A. The next statement indicates that, by
increasing the operating error bound ` ever so slightly to `0, a bang-bang input signal can reduce the operating error to
the bound `0 at least as quickly as the optimal time t⇤(x0,`,A,�) for the error bound `; this is achieved without violating
the specified state amplitude bound A. The accurate statement is as follows.

Theorem 5.1. Let A0,A,`,`0 > 0 be real numbers, where A > A0 and `0 > `. Assume that the nominal system ⌃0 is
(K,A0)�controllable from the initial state x0. Then, there are an uncertainty parameter � > 0 and a bang-bang input
signal u± 2 U(K) such that t(x0,`0,A,�,u±)  t⇤(x0,`,A,�), where u± has a finite number of switchings. ⇤

As can be seen, Theorem 5.1 relies on two conditions: (i) the nominal model ⌃0 must be (K,A0)�controllable, and
(ii) the uncertainty parameter � must not be excessively large. These two conditions are independent of each other,
since the first is a property of the nominal model ⌃0, while the second refers to deviations of the active system ⌃ from
the nominal model ⌃0. Further discussion of these conditions is provided following the proof of Theorem 5.1 (see
Remarks 5.22 and 5.23).

The proof of Theorem 5.1 appears later in this section; it depends on the next statement, which shows that the
response to any input signal can be approximated by the response to a bang-bang input signal (compare to Choi and
Hammer (2018), where a similar result is derived for systems with delay; see also Yu and Hammer (2016a,b), where a
slightly weaker statement is proved; and Chakraborty and Hammer (2009b, 2010), where a related statement is proved
for linear systems).

Theorem 5.2. Let ⌃ be a system of the form (2.2) with the initial state x0, let u 2 U(K) be an input signal of ⌃, and
let t 0 > 0 be a finite time. Then, for every real number " > 0, there is a bang-bang input signal u± 2 U(K) (with
a finite number of switchings) and an uncertainty parameter � > 0 for which the following is true. The difference
between the response x(t) := ⌃(x0,u,t) of ⌃ to u and the response x±(t) := ⌃(x0,u±,t) of ⌃ to u± satisfies the inequality
|x(t)� x±(t)| < " at all times 0  t  t 0 and for all members ⌃ 2 F�(⌃0). ⇤

To prove Theorem 5.2, we need the following statement (see also Choi and Hammer (2017), where a similar
statement is proved for delay-differential systems; and Yu and Hammer (2016a), where a slightly weaker statement
appears).

Lemma 5.3. Let ⌃ be a system of the form (2.2) with functions a(t,x) and b(t,x) that are subject to (2.3). Let x0 be
the initial state of ⌃, let t 0 > 0 be a finite time, and denote x(t) := ⌃(x0,u,t). Then, for every real number ⇣ > 0, there
are real numbers �(x0,⇣,t 0) > 0 and � > 0 such that the following is valid for all input signals u 2 U(K) and for all
systems ⌃ 2 F�(⌃0): |b(t1,x(t1))� b(t2,x(t2))| < ⇣ for all times t1, t2 2 [0, t 0] satisfying |t1 � t2 | < �(x0,⇣,t 0).

Proof. For an input signal u 2U(K), the response x(t)= ⌃(x0,u,t) is a continuous function of t, since it comes from the
integration of bounded Lebesgue measurable functions over a finite time domain. As b is a continuous function as well,
the composite function b(t,x(t)) is a continuous function of t, uniformly continuous on the compact interval [0,t 0]. As
a result, there is, for every real number ⇣ > 0, a real number �(⇣,u) > 0 such that |b(t1,x(t1))� b(t2,x(t2))| < ⇣ for all
t1, t2 2 [0,t 0] satisfying |t1 � t2 | < �(⇣,u). We need to show that �(⇣,u) can be chosen to be the same for all u 2 U(K)
and all ⌃ 2 F�(⌃0).

Choose a real number ⇣ 0 2 (0,⇣) and a member ⌃ 2 F�(⌃0); denote

�0(⇣ 0,u) := sup {|t1 � t2 | : t1,t2 2 [0,t 0] and |b(t1,x(t1))� b(t2,x(t2))| < ⇣ 0} ,
and set

�⇤(⇣ 0) := inf
u2U(K)

�0(⇣ 0,u).



11

Then, if there is a real number �0 > 0 such that �⇤(⇣ 0) > �0 for all ⌃ 2 F�(⌃0), the lemma holds for �(x0,⇣,t 0) = �0,
and the proof concludes. To prove that this is the case, we show first that �0 = 0 is not a valid option.

To that end, assume, by contradiction, that there is a system ⌃ 2 F�(⌃0) for which �⇤(⇣ 0) = 0. Then, there is a
sequence {ui}1i=1 ✓ U(K) for which limi!1 �(⇣ 0,ui) = 0. In view of Lemma 3.13, there is a subsequence

�
uik

 1
k=1 that

converges weakly to a member u 2 U(K). By Lemma 3.15, there is, for every real number � > 0, an integer N� > 0
such that

(5.4) sup
t2[0,t0]

�
|⌃(x0,uik ,t)�⌃(x0,u,t)|

 
< �

for all integers k � N� . In view of Proposition 3.1, the response x(t) is bounded: |x(t)|  M(t 0) for all t 2 [0,t 0]. Thus,
the continuous function b : R+⇥Rn ! Rn⇥m is uniformly continuous over the compact domain [0,t 0]⇥[�M(t 0),M(t 0)]n;
consequently, there is, for every real number �0 > 0, a real number ⇣ 00 > 0 such that |b(t,y)� b(t,y0)| < �0/4 for all
|y |, |y0 |  M(t 0) satisfying |y� y0 | < ⇣ 00. Selecting � = ⇣ 00 in (5.4), we obtain for all integers k � N⇣ 00 that

(5.5) |b(t,⌃(x0,uik ,t))� b(t,⌃(x0,u,t))| < �0/4

for all t 2 [0,t 0].
Next, by the uniform continuity of b(t,x(t)) as a function of t over the compact interval t 2 [0,t 0], there is a real

number � > 0 such that
|b(t1,⌃(x0,u,t1))� b(t2,⌃(x0,u,t2))| < �0/4

for all t1,t2 2 [0,t 0] satisfying |t1 � t2 | < �. Applying (5.5), this yields��b(t1,⌃(x0,uik ,t1))� b(t2,⌃(x0,uik ,t2))
��


��b(t1,⌃(x0,uik ,t1))� b(t1,⌃(x0,u,t1))

��
+ |b(t1,⌃(x0,u,t1))� b(t2,⌃(x0,u,t2))|
+

��b(t2,⌃(x0,u,t2))� b(t2,⌃(x0,uik ,t2))
��

 �0/4+ �0/4+ �0/4 = 3�0/4

for all t1,t2 2 [0,t 0] with |t1 � t2 | < � and for all k � N⇣ 00 . As � > 0, it is not possible that �⇤(⇣ 0) = 0 for all ⇣ 0 > 0.
Further, replacing tA0 by t 0 in the proof of Proposition 3.5, referring to (3.11), and using the notation of that proof,

select a real number � > 0 satisfying

(5.6) � <
�0

8↵+⌘1⌘q�1 .

Then, using (2.3) and (3.10), we obtain for any member ⌃0 2 F�(⌃0) the inequality��b(t1,⌃0(x0,uik ,t1))� b(t2,⌃0(x0,uik ,t2))
��


��b(t1,⌃0(x0,uik ,t1))� b(t1,⌃(x0,uik ,t1))

��
+

��b(t1,⌃(x0,uik ,t1))� b(t2,⌃(x0,uik ,t2))
��

+
��b(t2,⌃0(x0,uik ,t2))� b(t2,⌃(x0,uik ,t2))

��
 2↵+�⌘1⌘

q�1+3�0/4
 �0

for all |t1 � t2 | < �. Finally, selecting sufficiently small �0, this yields��b(t1,⌃0(x0,uik ,t1))� b(t2,⌃0(x0,uik ,t2))
�� < ⇣

for all |t1 � t2 | < �, all k � N⇣ 00 , and all members ⌃ 2 F�(⌃0). As � > 0, our proof concludes. ⇤

We turn now to the proof of Theorem 5.2.

Proof of Theorem 5.2. Let t1,t2 2 [0,t 0], t1 < t2, be two numbers to be selected later; let � > 0 be another number to be
selected later such that p := (t2 � t1)/� is an integer, and consider the partition

(5.7) [t1,t2] = {[t1,t1+�],[t1+�,t1+2�], · · · ,[t1+ (p�1)�,t2]} .
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Let u = (u1,u2, · · · ,um)> 2 U(K) be an input signal of the system ⌃. The fact that each component ui of u satisfies
|ui |  K implies that, for every q = 0,1,2, . . . ,p�1, there are numbers ✓q1 ,✓

q
2 , . . . ,✓

q
m 2 [t1+ q�,t1+ (q+1)�] satisfying

(5.8) K[2(✓qi � (t1+ q�))��] =
π t1+(q+1)�

t1+q�
ui(s)ds

for all i = 1,2, . . . ,m and all q = 0,1,2, . . . ,p � 1. We use {✓qi } as switching times for a bang-bang signal u± =�
u±1 , · · · ,u±m

� > given by

(5.9) u±i (t) :=
(
+K for t 2 [t1+ q�,✓qi ),
�K for t 2 [✓qi ,t1+ (q+1)�), if ✓qi < t1+ (q+1)�),

i = 1,2, . . . ,m, q = 0,1, . . . ,p�1. Then, by (5.8), we have

(5.10)
π t1+(q+1)�

t1+q�

�
ui(s)�u±i (s)

�
ds = 0,

i = 1,2, . . . ,m, q = 0,1,2, . . . ,p�1.
Next, for a member ⌃ 2 F�(⌃0), set x(t) := ⌃(x0,u,t) and x±(t) := ⌃(x0,u±,t), and examine the difference

⇠(t) := x(t)� x±(t),t 2 [0,t 0].
By (2.2), we can write for a time t 2 [t1,t2] that

⇠(t) = ⇠(t1)+
π t

t1

h
a(s,x(s))� a(s,x±(s))

+ b(s,x(s))u(s)� b(s,x±(s))u±(s)
i
ds.

As the initial state of ⌃ is x0 for all inputs, it follows that

(5.11) ⇠(0) = 0.
Invoking (2.3) together with the input signal bound K , we obtain

sup
t2[t1 ,t2]

|⇠(t)|  |⇠(t1)|+↵+
 

sup
s2[t1 ,t2]

|⇠(s)|
!
(t2 � t1)

+ sup
t2[t1 ,t2]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

����
+ (↵+)(t2 � t1) sup

s2[t1 ,t2]
|⇠(s)|K,

or

(5.12)

⇥
1�↵+(1+K)(t2 � t1)

⇤
sup

t2[t1 ,t2]
|⇠(t)|

 |⇠(t1)|+ sup
t2[t1 ,t2]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

���� .
To continue, let ⌘ 2 (0,t 0 � t1] be such that ↵+(1+K)⌘ < 1. Setting

µ(⌘) := 1
1�↵+(1+K)⌘ ,

and

(5.13) t2 := t1+⌘,

we get from (5.12) that

(5.14)

sup
t2[t1 ,t2]

|⇠(t)|  µ(⌘) |⇠(t1)|

+ µ(⌘) sup
t2[t1 ,t1+⌘]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

���� .
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To estimate the integral, recall the partition (5.7), and denote by q(t) 2 {0,1,2, . . . ,p�1} the integer for which
t 2 [q(t)�,(q(t)+1)�]. Then,

sup
t2[t1 ,t1+⌘]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

����
= sup

t2[t1 ,t1+⌘]

�����
q(t)�1’
i=0

π t1+(i+1)�

t1+i�
b(s,x(s))

�
u(s)�u±(s)

�
ds

+

π t

t1+q(t)�
b(s,x(s))

�
u(s)�u±(s)

�
ds

�����
 sup

t2[t1 ,t1+⌘]

�����
q(t)�1’
i=0

b(t1+ i�,x(t1+ i�))
π t1+(i+1)�

t1+i�

�
u(s)�u±(s)

�
ds

�����
+ sup

t2[t1 ,t1+⌘]

�����
q(t)�1’
i=0

π t1+(i+1)�

t1+i�
[b(s,x(s))� b(t1+ i�,x(t1+ i�))]

�
u(s)�u±(s)

�
ds

�����
+ sup

t2[t1 ,t1+⌘]

����
π t

t1+q(t)�
b(s,x(s))

�
u(s)�u±(s)

�
ds

���� .
Using (5.10) yields

(5.15)

sup
t2[t1 ,t2]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

����


q(t)�1’
i=0

π t1+(i+1)�

t1+i�
sup

s2[t1+i�,t1+(i+1)�]
|b(s,x(s))� b(t1+ i�,x(t1+ i�))|

��u(s)�u±(s)
��ds

+ sup
t2[t1 ,t2]

����
π t

t1+q(t)�
b(s,x(s))

�
u(s)�u±(s)

�
ds

���� .
Further, let ⇣ > 0 be a real number and let �(x0,⇣,t 0) > 0 be the corresponding number from Lemma 5.3. Then,

using

(5.16) �  �(x0,⇣,t 0)
in the partition (5.7), applying Corollary 3.2 with the function b as c, and noting that 0  q(t)�  t2 � t1 = ⌘ by (5.13),
we obtain from (5.15) that

sup
t2[t1 ,t2]

����
π t

t1

b(s,x(s))
�
u(s)�u±(s)

�
ds

����
 2K⇣⌘+2K Mb(t 0)�.

Thus, (5.14) reduces to

(5.17)
sup

t2[t1 ,t2]
|⇠(t)|  µ(⌘) |⇠(t1)|

+ µ(⌘) [2K⇣⌘+2K Mb(t 0)�] .
Now, given a real number � > 0, choose ⇣ > 0 to satisfy µ(⌘)K⇣⌘ < �/4 and choose � > 0 to satisfy µ(⌘)K Mb(t 0)� < �/4
in addition to satisfying (5.16). Substituting into (5.17), we get

(5.18) sup
t2[t1 ,t2]

|⇠(t)|  µ(⌘) |⇠(t1)|+ �.

Next, for an integer r satisfying r � t 0/⌘, build the partition

[0,t 0] ✓ {[0,⌘],[⌘,2⌘], . . . ,[(r �1)⌘,r⌘]} .
Then, (5.18) together with (5.11) yield the recursive relation

sup
t2[i⌘,(i+1)⌘]

|⇠(t)|  µ(⌘) |⇠(i⌘)|+ �,

⇠(0) = 0,



14

i = 0, . . . ,r �1. Using properties of linear recursions, this yields

sup
t2[0,t0]

|⇠(t)|  �
r’
i=0

(µ(⌘))i .

Finally, referring to " of the theorem’s statement and choosing � > 0 to satisfy

(5.19) � < "/
 

r’
i=0

(µ(⌘))i
!

validates the theorem. ⇤

The following property of the minimal time t⇤(x0,`,A,�) of (2.13) is helpful.

Proposition 5.20. The minimal time t⇤(x0,`,A,�) of (2.13) is a monotone decreasing function of the state amplitude
bound A.

Proof. Consider two state amplitude bounds A0 > A > 0, and let u⇤(x0,`,A,�) be an optimal input signal that abides
by the state amplitude bound A. Then, by (2.13), we have that |⌃(x0,u⇤(x0,`,A,�),t⇤(x0,`,A,�))|22  ` and that
|⌃(x0,u⇤(x0,`,A,�),t)|  A at all times t satisfying 0  t  t⇤(x0,`,A,�). As A < A0, the input signal u⇤(x0,`,A,�)
is also a member of the class of all input signals that take ⌃ into ⇢(`) and abide by the state amplitude bound A0.
But then, since u⇤(x0,`,A,�) takes ⌃ into ⇢(`) at the time t⇤(x0,`,A,�), the minimal time achieved by an optimal input
signal u⇤(x0,`,A0,�) cannot be longer than t⇤(x0,`,A,�). Thus, A0 > A implies that t⇤(x0,`,A0,�)  t⇤(x0,`,A,�), and
our proof concludes. ⇤

We arrive now at the proof of the main result of this section.

Proof of Theorem 5.1. Considering that A > A0, there is a real number A0 satisfying A > A0 > A0; choose such an A0.
In view of Theorem 4.10 and the assumptions of the current theorem, there is an uncertainty parameter � > 0 and an
optimal input signal u⇤ := u⇤(x0,`,A0,�) 2 U(K) solving Problem 2.14(i) with the state amplitude bound A0, the error
bound `, and the minimal time t⇤ := t⇤(x0,`,A0,�). Then, ⌃(x0,u⇤,t⇤) 2 ⇢(`) and |⌃(x0,u⇤,t)|  A0 for all t 2 [0,t⇤] and
all ⌃ 2 F�(⌃0).

Further, according to Theorem 5.2, there is, for every real number " > 0, a bang-bang input signal u± 2 U(K) with
a finite number of switchings for which |⌃(x0,u⇤,t)�⌃(x0,u±,t)| < " for all t 2 [0,t⇤] and all ⌃ 2 F�(⌃0). Let us choose
0 < "  A� A0. Then, |⌃(x0,u±,t)|  A for all t 2 [0,t⇤] and all ⌃ 2 F�(⌃0), so that the output bound A is not violated.

Next, invoking the relation z>z = y>y�2y>(y� z)+ (y� z)>(y� z)  y>y+2n|y | |y� z |+n|y� z |2, which is valid
for every pair of vectors y,z 2 Rn, we can write

⌃>(x0,u±,t⇤)⌃(x0,u±,t⇤)
 ⌃>(x0,u⇤,t⇤)⌃(x0,u⇤,t⇤)
+2n |⌃(x0,u⇤,t⇤)|

��⌃(x0,u±,t⇤)�⌃(x0,u⇤,t⇤)
��

+n
��⌃(x0,u±,t⇤)�⌃(x0,u⇤,t⇤)

��2
 `+2n

p
`"+n"2

for all ⌃ 2 F�(⌃0). In other words, we get ⌃(x0,u±,t⇤) 2 ⇢(`0) for all `0 satisfying

(5.21) `+2n
p
`"+n"2  `0.

Denote
"0 := �

p
`+

p
`+ (`0 � `)/n ;

then, the quadratic inequality (5.21) and the previous paragraph show that, for every " > 0 satisfying "  min{"0,A�
A0}, we have ⌃(x0,u±,t⇤) 2 ⇢(`0) and |⌃(x0,u±,t |  A for all t 2 [0,t⇤] and all ⌃ 2 F�(⌃0). Thus, t(x0,`0,A,�,u±)  t⇤
and, since t⇤  t⇤(x0,`,A,�) by Proposition 5.20, we obtain that t(x0,`0,A,�,u±)  t⇤(x0,`,A,�). This concludes our
proof. ⇤

Theorem 5.1 points to a relatively easy methodology for achieving close to optimal performance: replace optimal
input signals by bang-bang input signals. Bang-bang signals are relatively easy to calculate and implement, since they
are determined by a finite list of scalars – their switching times. In fact, experience shows that fairly simple bang-bang
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signals, i.e., bang-bang signals with a relatively small number of switching times, often yield performance that is
almost indistinguishable from optimal performance (see Examples 6.1 and 6.2, for instance).

Remark 5.22. Testing (K,A0)�controllability of the nominal system ⌃0: according to Theorem 5.2, the response to
any input signal can be approximated by the response to a bang-bang input signal. As a result, (K,A0)�controllability
of the nominal system ⌃0 can be tested by a numerical search over a class of bang-bang input signals (see Example 6.1
for more details). Such a numerical search is relatively simple to implement, since a bang-bang signal is characterized
by a finite list of scalars — its switching times. ⇤

Remark 5.23. Values of the uncertainty parameter � that are compatible with the requirements of Theorem 5.1 are
described by the inequalities (3.11) and (5.6). Note that these inequalities describe sufficient conditions on values of
�; larger values of � may be possible. ⇤

Remark 5.24. Approximation of optimal performance by bang-bang input signals as described by Theorem 5.1 can be
directly generalized to systems of the form

⌃g :
€x(t) = a(t,x(t))+ b(t,x(t))g(u(t)),

x(0) = x0,

where x : R+ ! Rn is the state; u : R+ ! Rm is the input signal; a : R+ ⇥ Rn ! Rn and b : R+ ⇥ Rn ! Rn⇥m are
functions satisfying (2.3), (2.4), (2.5) and (2.7); and g = (g1,g2, . . . ,gm)> : Rm ! Rm is a continuous function that
satisfies the following conditions: every component gi : R ! R : ui 7! gi(ui) of g is a function of the component ui of
u only, and it includes the values K and �K in its image.

Let K+i and K�
i be real numbers for which gi(K+i ) = K and gi(K�

i ) = �K , i = 1,2, . . . ,n. Let ug±(t) be a piecewise
constant input signal whose i� th component switches between the values K+i and K�

i , i = 1,2, . . . ,n. A slight reflection
shows that this signal achieves for ⌃g an effect similar to the effect that the signal u± of Theorem 5.1 achieves for the
system ⌃. In other words, ug± drives ⌃g so as to achieve close to optimal performance. This feature is utilized in
Example 6.2. ⇤

6. EXAMPLES

In this section, we provide two examples, the second of which demonstrates Remark 5.24.

Example 6.1. Consider the system

⌃ :
€x1(t) = �x1(t)� sin(t)sin x1(t)� x2(t)+u(t),
€x2(t) = �x1(t)+ dx2(t)�u(t),

where the parameter d is an unspecified constant parameter in the range 0.1  d  0.5. The initial state is x0 =
[�1,�2]>. The input signal bound of ⌃ is K = 5, so that only input signals satisfying |u|1  5 are permitted. The state
amplitude bound is A = 2, and the error bound is ` = 1.

To check whether the system ⌃ is (5,2)�controllable, it is sufficient, according to Theorem 5.2, to test whether ⌃
can be taken from the initial state x0 to the origin by a bang-bang input signal, without violating the input amplitude
bound 5 and the state amplitude bound 2. To perform this test, we use a numerical search process similar to the one
described in Choi and Hammer (2019) to search for a bang-bang input signal that satisfies these requirements. A result
of this numerical search is shown in Figure 6.1, which demonstrates one appropriate bang-bang input signal.

The same numerical search process also shows that, under the specified input and state constraints, the shortest time
within which the origin can be reached from x0 is approximately t⇤ = 0.57 seconds. A similar time can be achieved
by the bang-bang input signal of Figure 6.1(A), which, as can be seen from the figure, has only four switching times.
The response to this input signal is shown in Figures 6.1(B) and 6.1(C) for three values of the parameter d:

Set 1: d = 0.1,
Set 2: d = 0.3,
Set 3: d = 0.5.

For comparison, the minimal time with no state amplitude bound (Yu and Hammer (2016a)) is 0.501 (see Figure 6.2,
where the same values of d are used). Clearly, imposing a state amplitude bound may lengthen the minimal time to
target.
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FIGURE 6.1. Control results with state amplitude bound
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FIGURE 6.2. Control without state amplitude bound

Example 6.2. This example demonstrates Remark 5.24. Consider the inverted pendulum of Bian et al. (2014) (with a
slight modification):

⌃ :
€x1(t) = x2(t),
€x2(t) = d1 sin x1(t)+ d2x2(t)+ d3 tanhu(t);

here, the nominal parameter values are d0
1 = 24.527, d0

2 = �0.107, d0
3 = 12.5, and the initial state is x0 = [⇡/8,�2]>.

The state x1(t) is the pendulum’s angle of deviation from the perpendicular axis. The input amplitude bound is K = 5,
so we are looking for input signals u with amplitude |u|1  5; the state amplitude bound is A = 2, and the error bound
is ` = 0.1. To account for modeling uncertainty, the parameters d1, d2, and d3 are unspecified within the ranges
d1 2 [21,27], d2 2 [�0.3,�0.1], and d3 2 [10,14]. In this example, different uncertainty bounds are used for each
parameter.

A numerical search process similar to the one described in Example 6.1 shows that this system is (5,2)�controllable.
It also shows that the minimal time within which the origin can be reached from the initial state x0, without violating
the input and state constraints, is t⇤ = 0.246 seconds. A simple bang-bang input signal that achieves a similar time
without violating the constraints, is depicted in Figure 6.3(A). The response to this input signal is shown in Figures
6.3(B) and (C) for the following three sets of parameter values:

Set 1: d1 = 21, d2 = �0.3, d3 = 10;
Set 2: d1 = 24, d2 = �0.2, d3 = 12;
Set 3: d1 = 27, d2 = �0.1, d3 = 14.

For comparison, Figure 6.4 demonstrates approximate optimal control for the case where no bound is imposed on
the state amplitude. Releasing the state amplitude bound shortens the minimal time to 0.192 seconds (from 0.246
seconds).
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FIGURE 6.3. Control with state amplitude bound
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FIGURE 6.4. Control with no state amplitude bound

7. CONCLUSION

In this paper, we revisited the problem of reducing operating errors in minimal time in the aftermath of an episode
of feedback loss, a problem first examined in (Yu and Hammer (2016a,b)). In the present paper, we imposed a new
constraint: a bound on the maximal overshoot of the controlled system. We showed that optimal controllers that
abide by this new constraint exist under rather general conditions. We also showed that optimal performance can
be approximated as closely as desired by controllers that generate bang-bang input signals. The possibility of using
bang-bang signals instead of optimal signals substantially simplifies design and implementation.

The results of the present paper are relevant to a wide range of applications. One such common application is
the design and implementation of sampled-data control systems. Recall that sampled-data systems operate without
feedback between samples. Controllers developed in this paper can be used to reduce inter-sample errors as quickly
as possible after the arrival of a new sample, while preventing undesirable overshoots of the controlled system.
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