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Optimal robust state-feedback control of nonlinear systems: minimal time to target
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ABSTRACT
The design of optimal robust state-feedback controllers that guide a system to a target in minimal time
is considered under constraints on the maximal input amplitude and the maximal overshoot of the con-
trolled system. It is shown that such robust feedback controllers exist for a rather broad family of nonlinear
systems. It is also shown that optimal performance can be approximated by state-feedback controllers that
are relatively easy to design and implement.
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1. Introduction

The design of optimal feedback controllers for nonlinear
systems has been an important topic of research for more
than half a century. Many studies on this topic concentrate
on the solution of a nonlinear partial di!erential equation
– the Hamilton-Jacobi-Bellman equation (Bellman, 1954;
Kruzkov, 1960;Miranda, 1955; Pontryagin, Boltyansky,Gamkre-
lidze, & Mishchenko, 1962; Sobolev, 1950). As one might
imagine, analytical solutions of the Hamilton-Jacobi-Bellman
equation for nonlinear systems are hard to come by; and the
calculation of approximate numerical solutions is burdened
by high computational complexity. In fact, attempts to use
numerical techniques to calculate approximate solutions of
the Hamilton-Jacobi-Bellman equation for higher dimensional
systems encounter, in R. Bellman’s words, the ‘dimensionality
curse’ and are impractical even with today’s digital comput-
ing technology. The implementation of such solutions imposes
further di"culties. What’s more, the incorporation of practi-
cal inequality constraints, such as input amplitude bounds and
overshoot bounds, further complicate the process of deriving
solutions of the Hamilton-Jacobi-Bellman equation.

The present paper investigates the existence and implemen-
tation of robust state-feedback controllers that drive a time-
varying input-a"ne nonlinear system to a target state in min-
imal time, while abiding by input amplitude bounds and over-
shoot bounds imposed by the controlled system. In qualitative
terms, our motivation is to develop a methodology for the
design of ’best’ feedback controllers under conditions of uncer-
tainty about the controlled system’s model, and while abiding by
operational constraints imposed by the controlled system.

The discussion employs tools borrowed from the mathemat-
ical disciplines of functional analysis, topology, and measure
theory. The current approach facilitates a thorough examina-
tion of robustness features of feedback controllers in the face
of uncertainties about the controlled system’s model. It allows
us to take into consideration two common practical constraints
on the operation of a control system: (i) a speci#ed bound K on
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the maximal input amplitude the controlled system can toler-
ate; and (ii) a speci#ed bound A on the maximal overshoot the
controlled system may experience during the control process.

The current paper builds upon the work of Yu and Ham-
mer (2016a, 2016b), which concentrates on the existence and
the design of robust open-loop controllers that drive a system to
a target in minimal time. As one might expect (see Section 6),
optimal feedback controllers achieve better performance than
open-loop controllers: they can guide an inaccurately described
system to its target in a shorter time andmay reduce other e!ects
of inaccuracy. The bene#ts of feedback controllers becomemore
prominent when theminimal time to target is longer. Of course,
the cost of these bene#ts is an increase in the complexity of
design and implementation. Still, in many applications, the
bene#ts of better performance justify the additional e!ort.

The control con#guration we consider is the classical state-
feedback control con#guration of Figure 1. Here, the controlled
system ! is a time-varying input-a"ne nonlinear system with
input signal u(t); its output signal is the state x(t). The feedback
controller is implemented by a state-feedback function ϕ that
assigns to! an input signal u(t) = ϕ(t, x(t)) based on the time
t and state x(t) of !. As can be seen from the #gure, the closed
loop system is controlled solely by the feedback controller ϕ; it
receives no external input signal.

As depicted in Figure 1, the feedback controllers discussed in
this paper are static state-feedback controllers; they are formed
by feedback functions ϕ(t, x(t)). Static controllers are simpler
to implement than dynamic controllers that are described by
di!erential equations. Generally speaking, many control objec-
tives can be achieved by static state-feedback controllers; see,
for example, Hammer (2013, 2014, 2015). Notwithstanding, if
dynamic state-feedback controllers are desired, these can be
derived from our present discussion by augmenting the con-
trolled system ! with ‘dummy states’ and considering static
state-feedback controllers for the augmented system.

The control objective is to drive the controlled system ! in
minimal time from an initial state x(0) = x0 to a speci#ed target
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Figure 1. State-feedback control

state xtarget , while abiding by constraints on the maximal input
and output amplitudes of !. After appropriately shifting the
state coordinates of !, we can assume that the target state of
! is the zero state x= 0.

Due to uncertainties and errors prevalent in engineering sys-
tems, it is not possible to guide ! exactly to the origin x= 0.
Instead, we allow a small deviation from the target state x= 0,
not to exceed a speci#ed error bound of # > 0. We denote by

ρ(#) := {x : x!x ≤ #}

the corresponding vicinity of the origin. In these terms, our
objective is to design a state-feedback function ϕ that guides !
to the domain ρ(#) in minimal time, subject to two constraints:
(i) a bound of K > 0 on the maximal input signal amplitude of
!; and (ii) a bound of A> 0 on the maximal state amplitude!.
These constraints assure that the controlled system ! will not
be overloaded or overstressed during the control process; they
re$ect common constraints encountered by control engineers in
practice.

The existence of optimal robust feedback controllers that
guide a controlled system ! in minimal time from an initial
state x0 to the vicinity ρ(#) of its target state is discussed in
Section 4, where the main result is Theorem 4.1. The theorem
shows that optimal robust feedback controllers exist under
rather broad conditions. The requirement for the existence of
such optimal controllers is a certain controllability condition.
In fact, this controllability condition is also close to being a
necessary condition for the existence of controllers that guide
the controlled system ! to the vicinity of its target state (see
discussion in Section 4).

The design and implementation of optimal feedback con-
trollers is an involved process – it may require the derivation
and implementation of intricate functions of the time and state:
multivariable vector-valued functions of time. To address and
resolve this di"culty, we introduce in Section 5 the class of
bang-bang feedback functions. A bang-bang feedback func-
tion ϕ± is a piecewise-constant function of the time and state,
whose components switch between two values: the values K or
−K, where K is the input amplitude bound of the controlled
system! (see De#nition 5.3). When compared to general state-
feedback functions, bang-bang state-feedback functions are rel-
atively easy to calculate and implement. For a system! with an
m-dimensional input space, bang-bang feedback function take
at most 2m discrete values of K and −K, while general feed-
back functions map into the continuum Rm. In Theorem 5.4
of Section 5 – the main result of the section – we show that
optimal robust performance can be approximated as closely
as desired by bang-bang state-feedback functions. This fact

substantially simpli#es the design and implementation of opti-
mal robust feedback controllers.

For future reference, we summarise our objectives as follows.

Problem 1.1: Let ! be an input/state system with a speci#ed
maximal input signal amplitude of K > 0 and a speci#ed max-
imal response amplitude of A> 0. Let # > 0 be the maximal
permissible deviation from the target state x= 0.

(i) Find conditions under which there is an optimal robust
state-feedback function ϕ that takes ! in minimal time
from an initial state x0 to ρ(#), without violating the
input amplitude bound K and without causing overshoots
exceeding the response amplitude bound A.

(ii) Find a state-feedback function ϕ± that approximates opti-
mal performance and is relatively easy to design and imple-
ment.

The current paper, which concentrates on optimal feed-
back control, builds upon the studies of Yu and Ham-
mer (2016a, 2016b) and Choi and Hammer (2018a, 2018c),
where open-loop minimal-time control is considered. The per-
formance of optimal feedback controllers is never inferior to
that of open-loop controllers. This observation is a consequence
of the fact that the feedback function ϕ of Figure 1 is a function
of the time and the state; open-loop control is the special case
where ϕ is a function of the time only. Thus, optimisation over
the class of feedback functions includes optimisation over open-
loop controllers and, therefore, feedback performance is never
inferior to open loop performance.

An example provided in Section 6 demonstrates the supe-
riority of optimal feedback controllers. In this example, an
optimal closed-loop controller achieves a signi#cantly shorter
time-to-target than an optimal open-loop controller. In addi-
tion, the outcome of optimal closed-loop control is less sensitive
to uncertainties and errors present in the controlled system’s
model, thus providing more robust performance than the per-
formance achieved by an optimal open-loop controller.

Notwithstanding, there are applications where feedback can-
not be used, such as cases where feedback channels have been
disrupted. Clearly, in such cases, open-loop control is the only
option. In addition, there are applications where the perfor-
mance of optimal open-loop controllers is adequate and a more
complex closed-loop implementation may not be necessary.

Our discussion in this paper extends to optimal closed-
loop control some of the techniques developed in the stud-
ies on optimal open-loop control reported by Chakraborty
and Hammer (2007, 2008a, 2008b, 2008c, 2009a, 2009b, 2010),
Chakraborty and Shaikshavali (2009), Yu and Hammer (2016a,
2016b), and Choi and Hammer (2017a, 2017b, 2017c, 2018a,
2018b, 2018c). In addition, the present paper draws on classi-
cal studies on optimal control, includingKelendzheridze (1961),
Pontryagin et al. (1962), Gamkrelidze (1965), Neustadt (1966),
Neustadt (1967), Luenberger (1969), Young (1969), and Warga
(1972), the references cited in these publications, and many
others. Yet, it seems that the problem considered in this paper
– the existence, the design, and the bang-bang approximation
of robust state-feedback controllers under input and output
constraints – has not been resolved in the literature before.
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Traditional approaches to the design of optimal feedback
controllers are mostly based on the use of numerical techniques
to derive approximate numerical solutions of the Hamilton-
Jacobi-Bellman equation. A detailed exposition of existing tech-
niques can be found in Bardi and Capuzzo-Dolcetta (1997).
Generally speaking, these techniques do not address directly
the issue of robustness: they do not lead to the derivation of
feedback controllers that are optimal for a given level of uncer-
tainty of the controlled system’smodel. The current paper devel-
ops new and e"cient techniques that focus on the design and
implementation of robust feedback controllers that comply with
operational constraints imposed by the controlled system. The
controllers derived in this paper – bang-bang feedback con-
trollers – are also simpler to design and implement than classical
controllers, as discussed in Sections 5 and 6.

The paper is organised as follows. Section 2 includes a for-
mal formulation of our objectives, while Section 3 reviews the
notion of conditional controllability, which forms the basic
requirement for the existence of optimal state-feedback con-
trollers. The existence of optimal state-feedback controllers is
considered in Section 4, and the approximation of optimal feed-
back controllers by bang-bang feedback controllers is discussed
in Section 5. A computational example that demonstrates the
material presented in this paper is provided in Section 6. The
paper concludes in Section 7 with a brief summary.

2. Background and statement of the problem

2.1 The controlled system

This paper concentrates on the control of time-varying input-
a"ne nonlinear systems. In addition to time-varying linear
systems, this class of systems includes models of certain com-
mon nonlinear engineering systems such as $exible robotic
joints and advanced electrical motors (e.g. Spong, Hutchinson,
& Vidyasagar, 2006).

Denote by R the compacti#ed set of real numbers (i.e. the
real numbers augmented by ±∞) and by Rn the compacti#ed
set of n−dimensional real vectors. By R+ we denote the set of
non-negative real numbers. The absolute value of a real number
r is |r|; the L∞−norm of an n × mmatrix V = (Vij) ∈ Rn×m is
|V| := maxij |Vij|; and the L∞−norm of a matrix valued func-
tion W : R+ → Rn×m : t (→ W(t) is |W|∞ := supt≥0 |W(t)|,
where |W|∞ := ∞ if the supremum does not exist. The
L2−norm of a vector x ∈ Rn is |x|2 := (x!x)1/2.

The controlled system ! of Figure 1 is a nonlinear time-
varying input-a"ne system given by

! :
ẋ(t) = a(t, x(t)) + b(t, x(t))u(t),

x(0) = x0;
(2.1)

here, x(t) ∈ Rn is the state and u(t) ∈ Rm is the input sig-
nal. The functions a : R+ × Rn → Rn : (t, x) (→ a(t, x) and b :
R+ × Rn → Rn×m : (t, x) (→ b(t, x) are continuous functions
satisfying the Lipchitz conditions

|a(t, y) − a(t, x)| ≤ α+|y − x|,

|b(t, y) − b(t, x)| ≤ α+|y − x|
(2.2)

for all (t, x) ∈ R+ × Rn, where α+ > 0 is a speci#ed real
number.

To take modelling uncertainties into account, we split the
functions a and b of (2.1) into a sum of nominal and uncertain
parts:

a(t, x) = a0(t, x) + aγ (t, x),

b(t, x) = b0(t, x) + bγ (t, x),
(2.3)

where a0 : R+ × Rn → Rn and b0 : R+ × Rn → Rn×m are spec-
i#ed continuous functions describing the nominal model !0
of!, while aγ : R+ × Rn → Rn and bγ : R+ × Rn → Rn×m are
unknown continuous functions that describe uncertainty about
the model of!. All functions satisfy the Lipschitz conditions

|a0(t, x′) − a0(t, x)| ≤ α|x′ − x|,
|b0(t, x′) − b0(t, x)| ≤ α|x′ − x|,
a0(t, 0) = 0, |b0(t, 0)| ≤ α,

(2.4)

and

|aγ (t, x′) − aγ (t, x)| ≤ γ |x′ − x|,
|bγ (t, x′) − bγ (t, x)| ≤ γ |x′ − x|,
aγ (t, 0) = 0, |bγ (t, 0)| ≤ γ

(2.5)

for all (t, x) ∈ R+ × Rn. Here, α > 0 and γ > 0 are speci#ed
real numbers, and α+ = α + γ . The number γ is the uncer-
tainty parameter; it quanti#es the uncertainty about the model
of! and is usually a small number. The nominal system!0 is

!0 :
ẋ(t) = a0(t, x(t)) + b0(t, x(t))u(t), t ≥ 0,

x(0) = x0.
(2.6)

The system ! accepts only input signals of amplitude not
exceeding a speci#ed bound K > 0, and the response x(t) of !
is not permitted to overshoot a speci#ed boundA> 0. In formal
terms, these constrains are

|u|∞ ≤ K and |x|∞ ≤ A.

2.2 Spaces and notation

Denote by Lω,m2 the Hilbert space of all Lebesgue measurable
functions f , g : R+ → Rm with the inner product

〈
f , g
〉
:=
∫ ∞

0
e−ωsf!(s)g(s) ds, (2.7)

where ω > 0 is a real number (Chakraborty & Hammer, 2009b,
2010). The use of this inner product carries a number of ben-
e#ts, the most obvious of which is the fact that it is bounded
whenever the functions f and g are bounded. Later, we discuss
other advantages of this inner product, including the fact that it
turns certain sets of bounded functions into compact sets. We
extend the de#nition of the inner product to cases where one of
the factors is an n × mmatrix G(t). Let G1(t), G2(t), . . . , Gn(t)
be the rows ofG(t), whereG!

1 (t),G!
2 (t), . . . ,G!

n (t) ∈ Lω,m2 , and



436 J. HAMMER

let g ∈ Lω,m2 ; we use the notation

〈
G, g

〉
:=

n∑

j=1

〈
G!
j , g

〉
.

Input signals of the controlled system! of Figure 1 aremembers
of the Hilbert space Lω,m2 . As mentioned earlier, ! is subject to
two structural constraints: (i) its input signals may not exceed-
ing the speci#ed amplitude bound ofK > 0; and (ii) its state x(t)
may not exceed a speci#ed amplitude bound of A> 0. In view
of (i), the set of input signals of! is constrained to the set

U(K) :=
{
u ∈ Lω,m2 : |u|∞ ≤ K

}
.

Furthermore, by (ii),! must be controlled so that the state x(t)
of! remains constrained to the set |x|∞ ≤ A. As! is operated
by input signals belonging toU(K), its response x(t) is a contin-
uous function of time. Consequently, the set of responses that!
may access is included in the set

X(A) :=
{
x ∈ Lω,n2 : |x|∞ ≤ A

}
.

Denote by [−A,A]n the set of all vectors x ∈ Rn satisfying
|x| ≤ A. Then, the requirement |x|∞ ≤ A takes the form x(t) ∈
[−A,A]n for all t ≥ 0.

As indicated in Problem 1.1, our objective is to guide the sys-
tem ! in minimal time from an initial state x0 to the domain
ρ(#) = {x ∈ Rn : (|x|2)2 ≤ #}, where # > 0 is a speci#ed error
bound. For consistency, we require ρ(#) ⊆ [−A,A]n.

Recall that the exact description of the controlled system !

of Figure 1 is not known; any one of the models represented
by (2.1), (2.3), (2.4) and (2.5) can be !. This fact has the two
following implications. (i) All members of the family of systems
represented by these equations share the same feedback func-
tion ϕ; this is so because it is not known which of the possible
models of ! represents the actual sample of ! present in the
loop. (ii) All members of the family of systems represented by
these equations share the same initial state x0, since the actual
value of the state is provided by the feedback. The following
notation incorporates these observations.

Notation 2.8: Let α, γ ,K,A > 0 be speci#ed real numbers, and
let !0 be the nominal system of (2.6). Denote by Fγ (!0) the
family of systems described by (2.1), (2.3), (2.4), and (2.5).

(i) All members of Fγ (!0) share the same initial state
x(0) = x0.

(ii) The initial state x0 satis#es the constraint |x0| ≤ A.
(iii) All members ofFγ (!0) use the same feedback functionϕ.
(iv) The input signal of ! generated by the feedback function

ϕ is in U(K).
(v) The feedback function ϕ controls all members of Fγ (!0)

so that their response is in X(A).

Remark 2.9: All equalities and inequalities in this paper are
to be understood as valid almost everywhere in the Lebesgue
sense.

2.3 State-feedback functions

As indicated in Problem 1.1, our focus is on the existence
and the design of state-feedback functions ϕ that automatically
guide the controlled system ! in minimal time from an ini-
tial state x0 to the domain ρ(#). A state-feedback function for
the system ! of (2.1) is a Lebesgue measurable function ϕ :
R+ × Rn → Rm : (t, x) (→ ϕ(t, x). With such a state-feedback
function, the closed loop system !ϕ of Figure 1 is described by
the equation

!ϕ :
ẋ(t) = a(t, x(t)) + b(t, x(t))ϕ(t, x(t)), t ≥ 0,

x(0) = x0,
(2.10)

where the functions a and b are subject to the require-
ments (2.3), (2.4), and (2.5). For a particular feedback function
ϕ, the response x(t) of !ϕ is determined by the initial state
x0, so we use the notation x(t) = !ϕ(x0, t). In view of the
requirements listed inNotation 2.8, a feedback functionϕ is per-
missible only if |!ϕ(x0, t)| ≤ A at all times t during the control
process.

As state-feedback functions are multivariable functions, we
need to extend the inner product (2.7) to multivariable func-
tions. To this end, let L (n,m) be the class of all Lebesgue
measurable functions : R+ × Rn → Rm, and let ω > 0 a real
number. For two members f , g ∈ L (n,m), de#ne the inner
product

〈〈
f , g
〉〉
:=
∫

R+×Rn
e−ω(s+|z|2)f!(s, z)g(s, z) d(s, z), (2.11)

where d(s, z) represents an element of the Lebesgue measure on
R+ × Rn. Note that the inner product (2.11) is bounded when-
ever the functions f and g are bounded. We denote by Lω,n,m2
the Hilbert space of all members of L (n,m) with the inner
product (2.11).

Now, recall that only input signals bounded by K > 0 may be
used as input to the controlled system !. As the input signal
of ! in the feedback con#guration of Figure 1 is produced by
the feedback functionϕ, only feedback functionswhose compo-
nents are bounded byK are allowed. Denote by((K) the family
of all such members of Lω,n,m2 , namely,

((K) :=
{
ϕ ∈ Lω,n,m2 : |ϕ(t, x)| ≤ K for all (t, x) ∈ R+ × Rn

}
.

(2.12)
The family((K) includes all permissible feedback functions.

2.4 Convergence and compactness

We employ the following notions of convergence (e.g. Willard,
2004; Zeidler, 1985).

De!nition 2.13: Let H be a Hilbert space with inner product
〈·, ·〉.

(i) A sequence {vi}∞i=1 ⊆ H converges weakly to amember v ∈
H if limi→∞〈vi, y〉 = 〈v, y〉 for every y ∈ H.

(ii) A subset W of H is weakly compact if every sequence of
members of W has a subsequence that converges weakly
to a member ofW.
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(iii) A sequence {vi}∞i=1 ⊆ H is strongly convergent if there is a
member v ∈ H such that limi→∞〈(vi − v), (vi − v)〉 = 0.

(iv) A set S ⊆ H is strongly closed if every strongly convergent
sequence of members of S has its limit in S.

The following fact is reproduced here from Chakraborty
and Hammer (2009b, 2010).

Lemma 2.14: The set of input signals U(K) is weakly compact
in Lω,m2 .

We also need the following.

Lemma 2.15: The set of feedback functions ((K) is weakly
compact in Lω,n,m2 .

Proof: Given a sequence of feedback functions {ϕi}∞i=1 ⊆
((K), we have to show that there is a subsequence {ϕik}∞k=1 that
converges weakly to a feedback function ϕ ∈ ((K). By (2.12)
and (2.11), the set ((K) is a bounded set in Lα,n,m2 . In view of
Alaoglu’s theorem (e.g. Halmos, 1982), every bounded sequence
in a Hilbert space contains a weakly convergent subsequence.
Thus, the sequence {ϕi}∞i=1 ⊆ ((K) contains a subsequence
{ϕik}∞k=1 that converges weakly to a function ϕ ∈ Lω,n,m2 . We
have to show that ϕ ∈ ((K). To this end, we show that((K) is
a weakly closed set, i.e. that every weakly convergent sequence
in ((K) has its weak limit in ((K). We use Mazur’s theorem
(e.g. Halmos, 1982), according to which a bounded and strongly
closed convex set in Hilbert space is also weakly closed.

First, we show that ((K) is a convex set. Indeed, con-
sider two feedback functions ϕ′,ϕ′′ ∈ ((K). Let d ∈ [0, 1] be a
real number and de#ne the function ϕ(t, x) := dϕ′(t, x) + (1 −
d)ϕ′′(t, x). Then, ϕ is Lebesgue measurable and, since |ϕ(t, x)|
≤d|ϕ′(t, x)|+ (1 − d)|ϕ′′(t, x)| ≤dK + (1 − d)K = K for all
(t, x) ∈ R+ × Rn, it follows that ϕ ∈ ((K). Thus, ((K) is a
convex set.

To show that ((K) is strongly closed, consider a strongly
convergent sequence of functions {ψp}∞p=1 ⊆ ((K) with the
strong limit ψ , i.e. limp→∞ 〈〈(ψp − ψ), (ψp − ψ)〉〉 = 0. We
show that ψ ∈ ((K). Indeed, by contradiction, assume that
ψ /∈ ((K). Then, by (2.12), there is a real number ε > 0 and a
Lebesgue measurable subset δ ⊆ R+ × Rn of non-zero measure
for which |ψ(t, x)| ≥ K + ε for all (t, x) ∈ δ. This implies that
there is an integer j ∈ {1, 2, . . . ,m} and a measurable subset of
non-zero measure δj ⊆ δ such that the jth componentψ j of the
vector ψ satis#es |ψ j(t, x)| ≥ K + ε for all (t, x) ∈ δj, namely,

|ψ j(t, x)| − K ≥ ε for all (t, x) ∈ δj.

Calculating the inner product and recalling that |ψ j
p| ≤ K for all

integers p ≥ 1, we get
〈〈
(ψp − ψ), (ψp − ψ)

〉〉

=
∫

R+×Rn
e−ω(s+|z|2)[ψp(s, z) − ψ(s, z)]T

× [ψp(s, z) − ψ(s, z)] d(s, z)

≥
∫

δj
e−ω(s+|z|2)[ψp(s, z) − ψ(s, z)]T

× [ψp(s, z) − ψ(s, z)] d(s, z)

≥
∫

δj
e−ω(s+|z|2)(ψ

j
p(s, z) − ψ j(s, z))2 d(s, z)

≥
∫

δj

e−ω(s+|z|2)ε2 d(s, z) > 0

for all integers p ≥ 1, contradicting the fact that limp→∞
〈〈(ψp − ψ), (ψp − ψ)〉〉 = 0. Thus, we must have ψ ∈ ((K),
so that((K) is strongly closed. As((K) is convex and strongly
closed, the lemma follows by Mazur’s theorem. This concludes
our proof. !

2.5 Compositions and graphs

Being a feedback function, the function ϕ always appears in
composition with the state function x(t) of the controlled sys-
tem! in the form ϕ(t, x(t)), as in (2.10). For this composition,
we use the notation

ϕ ◦ x := ϕ(·, x(·)) : R+ → Rm : t (→ ϕ(t, x(t)). (2.16)

Note that the composite functionϕ ◦ x is a function of time only.
A slight re$ection shows that, when ϕ ∈ Lω,n,m2 and x ∈ Lω,n2 ,
then ϕ ◦ x ∈ Lω,m2 . In the feedback con#guration of Figure 1,
the function ϕ ◦ x serves as the input signal of the controlled
system!.

Due to the uncertainty about the model of the controlled
system! expressed by (2.3), (2.4), and (2.5), the response func-
tion x(t) is not speci#cally known: x(t) may be the state of any
member ! ∈ Fγ (!0). Therefore, we must examine properties
of compositions of the form (2.16) in which x(t) is not specif-
ically known. We introduce now tools to investigate properties
of such compositions.

The graph ,(f ) of a function f ∈ Lω,n2 is the set of all pairs
(t, f (t)), namely,

,(f ) :=
⋃

t≥0
(t, f (t)) ⊆ R+ × Rn.

For a family of functions F ⊆ Lω,n2 , the graph ,(F) is the union
of all the graphs of members of F:

,(F) :=
⋃

f∈F
,(f ).

At a time τ ≥ 0, the section ,τ (F) of the graph ,(F) consists of
all values of members of F at the time τ , i.e.

,τ (F) :=
{
x ∈ Rn : (τ , x) ∈ ,(F)

}
.

The set of all values ofmembers ofF is denoted by.,(F), where

.,(F) :=
⋃

τ≥0
,τ (f );

it is the union of images of all members of the family F.

De!nition 2.17: A family of functions F ⊆ Lω,n2 is of non-zero
measure if there is a time τ ≥ 0 at which the section ,τ (F)

includes a set of non-zero measure; otherwise, the family F is
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of measure zero. A statement is valid for almost every func-
tion f ∈ Lω,n2 if the family of functions F ⊆ Lω,n2 for which the
statement is invalid is of measure zero.

We will need the following convergence feature.

Proposition 2.18: Let {ϕi}∞i=1 ⊆ ((K) be a sequence of feedback
functions that is weakly convergent to a feedback function ϕ. Let
F ⊆ Lω,n2 be a family of non-zero measure, and let ε > 0 be a real
number. Then, the following is true for every g ∈ U(K). There is
an integer N ≥ 1 such that |〈(ϕi − ϕ) ◦ f , g〉| < ε for all i ≥ N
and for almost all f ∈ F.

Proof: Let {ϕi}∞i=1 ⊆ ((K) be a sequence that convergesweakly
to ϕ. Assume, by contradiction, that the proposition is invalid.
Then, there are a real number ε > 0, a family F′ ⊆ F of non-
zero measure, a subsequence {ϕik}∞k=1, and a function g ∈ U(K)

such that |〈(ϕik − ϕ) ◦ f , g〉| ≥ ε for all k ≥ 1 and all f ∈ F′.
This means that

lim
k→∞

〈
(ϕik − ϕ) ◦ f , g

〉
/= 0 for all f ∈ F′.

We partition the family F′ into two subfamilies:

(a) the family F+ that consists of all members f ∈ F′ for which
limk→∞〈(ϕik − ϕ) ◦ f , g〉 > 0; and

(b) the family F− that consists of all members f ∈ F′ for which
limk→∞〈(ϕik − ϕ) ◦ f , g〉 < 0.

Now, as the family F′ is of non-zero measure, there is a time
τ ≥ 0 at which the section ,τ (F′) includes a set of non-zero
measure. But then, since ,τ (F′) = ,τ (F+) ∪ ,τ (F−), at least
one of the sets ,τ (F+) or ,τ (F−) must include a measurable
subset of non-zeromeasure. Let us assume that,τ (F+) includes
a measurable subset σ of non-zero measure (the proof in the
case where only ,τ (F−) includes a measurable subset of non-
zeromeasure is similar). Denote by F′′ the family of all members
f ∈ F+ for which ,τ (f ) ∈ σ . Then, by construction,

lim
k→∞

〈
(ϕik − ϕ) ◦ f , g

〉
> 0 for all f ∈ F′′. (2.19)

Next, for a point x ∈ σ , denote by f x a member of the family F′′

for which f x(τ ) = x. De#ne the set

, :=
⋃

x∈σ
,(f x).

Presently, build a function φ(t, x) : R+ × Rn → Rm : (t, x) (→
φ(t, x) by setting

φ(t, x) :=
{
g(t) (t, x) ∈ ,,
0 otherwise.

As g ∈ Lω,m2 , it follows that φ ∈ Lω,n,m2 .
Further, let h ∈ Lω,n,m2 be any function. Now, by the

de#nition of the graph of a function f ∈ Lω,m2 , a point (t, x) ∈
,(f ) means that x = f (t). Therefore, on a point (t, x) ∈ ,(f )

we have h!(t, x)φ(t, x) = h!(t, f x(t))g(t) = (h ◦ f x)!(t)g(t).
Invoking the inner product (2.11), we can write

〈〈h,φ〉〉 :=
∫

R+×Rn
e−ω(t+|x|2)h!(t, x)φ(t, x) d(t, x)

=
∫

.,
e−ω|x|2 〈h ◦ f x, g

〉
dx. (2.20)

Inserting h := (ϕik − ϕ) in (2.20) yields

lim
k→∞

〈〈
(ϕik − ϕ),φ

〉〉

=
∫

.,
e−ω|x|2

(
lim
k→∞

〈
(ϕik − ϕ) ◦ f x, g

〉)
dx > 0, (2.21)

where the last inequality follows from the facts that the inte-
grand is strictly positive by (2.19) and the integration domain,
which includes σ , is of non-zero measure. However, as the
sequence {ϕi}∞i=1 is weakly convergent in Lω,n,m2 , so is its subse-
quence {ϕik}∞k=1; this implies that limk→∞〈〈(ϕik − ϕ),φ〉〉 = 0,
contradicting (2.21). This contradiction implies that σ must be
of measure zero, and our proof concludes. !

Weproceed now to restate Problem1.1 inmore formal terms.

2.6 Formal statement of objectives

According to Problem 1.1, our objective is to #nd a feedback
function ϕ that guides the closed-loop system !ϕ in mini-
mal time from the initial state x0 to ρ(#), without violating
the input amplitude bound K and the state amplitude bound
A along the way. We concentrate #rst on the class of feedback
functions that abide by the bounds K and A. Let ! ∈ Fγ (!0)
be a system with initial state x0 ∈ [−A,A]n. For a time t ≥ 0,
denote by ((x0,K,A,!, t) the class of all state-feedback func-
tions ϕ ∈ ((K) for which the state of the closed loop system!ϕ
stays within the domain [−A,A]n during the time interval [0, t],
namely,

((x0,K,A,!, t)

=
{
ϕ ∈ ((K) : !ϕ(x0, θ) ∈ [−A,A]n for all θ ∈ [0, t]

}
.

Then, the set of all state-feedback functionsϕ ∈ ((K) forwhich
the states of all members of Fγ (!0) stay within the domain
[−A,A]n during the time interval [0, t] is given by

((x0,K,A, γ , t) =
⋂

!∈Fγ (!0)

((x0,K,A,!, t). (2.22)

Considering that x0 ∈ [−A,A]n, it follows that((x0,K,A, γ , 0)
= ((K). Note that (2.22) can be recast in the form

((x0,K,A, γ , t) =





ϕ ∈ ((K) : sup

!∈Fγ (!0)
0≤θ≤t

|!ϕ(x0, θ)| ≤ A





.

(2.23)
It follows from (2.23) that any feedback function ϕ that is a
member of ((x0,K,A, γ , t2) for a time t2, is also a member of
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((K,A, γ , t1) for any time t1 ≤ t2. Thus,

((x0,K,A, γ , t2) ⊆ ((x0,K,A, γ , t1) whenever t1 ≤ t2,
(2.24)

and ((x0,K,A, γ , t) is monotone decreasing as a function of
time.

Turning now to the time to target, let ! ∈ Fγ (!0) be a sys-
tem, and let ϕ ∈ ((K) be a feedback function. The in#mal time
to reach ρ(#) under our constraints is

t(x0, #,A,!,ϕ)

= inf
t≥0

{
!ϕ(x0, t) ∈ ρ(#),ϕ ∈ ((x0,K,A,!, t)

}
,

where t(x0, #,A,!,ϕ) := ∞ if the in#mum does not exist.
Further, the in#mal time t(x0, #,A, γ ,ϕ) at which the state-

feedback function ϕ ∈ ((K) can bring almost every member
! ∈ Fγ (!0) from the initial state x0 to ρ(#), without violating
our constraints, is

t(x0, #,A, γ ,ϕ) := inf
t≥0

{(

ess sup
!∈Fγ (!0)

(|!ϕ(x0, t)|2)2
)

≤ #,ϕ ∈ ((x0,K,A, γ , t)

}

, (2.25)

where t(x0, #,A, γ ,ϕ) := ∞ if the in#mum does not exist or if
there is no ϕ ∈ ((x0,K,A, γ , t) that guides! from x0 to ρ(#).

The in#mal time at which any state-feedback function
belonging to((K) can take every member of Fγ (!0) from the
initial state x0 to ρ(#), without violating our constraints, is then

t∗(x0, #,A, γ ) = inf
ϕ∈((K)

t(x0, #,A, γ ,ϕ), (2.26)

where, again, t∗(x0, #,A, γ ) := ∞ if there is no in#mum.
In Section 4, we show that t∗(x0, #,A, γ ) < ∞ under rather

broad conditions, and that, under those conditions, there is
an optimal state-feedback function ϕ∗(x0, #,A, γ ) ∈ ((K) that
achieves the minimal time t∗(x0, #,A, γ ), so that

t∗(x0, #,A, γ ) = t(x0, #,A, γ ,ϕ∗(x0, #,A, γ )). (2.27)

In the meanwhile, we restate Problem 1.1 in present terms.

Problem2.28: LetK,A, #, γ > 0 be speci#ed real numbers and
refer to Notation 2.8 and equations (2.25) and (2.26).

(i) Find conditions under which there is an optimal state-
feedback function ϕ∗(x0, #,A, γ ) ∈ ((K) satisfying (2.27).

(ii) Whenoptimal state-feedback functions exist,#nd feedback
functions that approximate optimal performance and are
relatively easy to calculate and implement.

2.7 Bene!ts of a feedback solution

Classical control theory teaches us that, generally, closed-loop
systems are superior to open-loop systems in their performance
and sensitivity to uncertainties. Yet, much of the considerations
leading to this conclusion in classical control theory rely on the
use of high-gain feedback controllers. This may be irrelevant in

the current context, since optimal feedback controllers do not
necessarily operate in high-gain environments.

One fact is quite obvious: a feedback function ϕ is a function
of both the time t and the state x(t) of the controlled system,
whereas an open-loop controller is a function of the time t only.
Thus, open-loop control represents a case where the function
ϕ is restricted to time-dependence alone. As the result achieved
through optimisation over the entire class of feedback functions
cannot be worse than the result achieved through optimisation
over a subclass of functions, optimal feedback control cannot be
inferior to open-loop control. In our case, this means that the
minimal time achieved by an optimal feedback function can-
not be longer than the minimal time achieved by an open-loop
controller.

Still, this argument does not show that an optimal feedback
solution provides a signi#cant improvement over an optimal
open-loop solution. And, indeed, the improvement achieved
by feedback control over open-loop control varies from case to
case.Onemay imagine that feedback solutions have a signi#cant
advantage in cases where there is a large uncertainty about the
parameters of the controlled system, especially when the min-
imal time to target is relatively long. In the next paragraph, we
demonstrate the superiority of feedback on a simple example.

Consider the case where the controlled system is the linear
single-state single-input system

! : ẋ(t) = (a0 + aγ )x(t) + 2u(t), x(0) = x0;

here, a0 is a speci#ed constant, aγ is an unspeci#ed constant
that represents uncertainty about the model of !, and x0 is
the initial state of !. As this is a linear time-invariant sys-
tem, the response is x(t) = e(a0+aγ )tx0. Consequently, the feed-
back function ϕ(t, x) := [(log x − log x0)/t] − a0, t> 0, yields
the value of the uncertainty parameter aγ . Once aγ is known,
the system is completely speci#ed – no more uncertainty; the
system can then be controlled to any desired accuracy, irrespec-
tive of the uncertainty size. This simple example demonstrates
that feedback control may allow us to reduce the impact of
uncertainty and achieve better control outcomes. The example
of Section 6 – a realistic example of an inverted pendulum –
further demonstrates this point.

3. Feedback and continuity

3.1 Conditional controllability

In the present section, we setup the framework used later to
prove the existence of solutions of Problem 2.28.We start with a
statement reproduced from Choi and Hammer (2017a, 2018a);
it shows that systems of the family Fγ (!0) have continuous
responses. Here, !(x0, u, t) is the response at the time t of the
system! to the input signal u, starting from the initial state x0.

Proposition 3.1: Let K, γ ,T > 0 be real numbers, and let ! be
a member of the family Fγ (!0). Then, the following are true.

(i) There is a bound M(T) ≥ 0 such that |!(x0, u, t)| ≤ M(T)

at all times t ∈ [0,T], for all input signals u ∈ U(K), and for
all members! ∈ Fγ (!0).
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(ii) The response !(x0, u, ·) : R+ → Rn : t (→ !(x0, u, t) is a
continuous function of time for every input signal u ∈ U(K)

and for every member! ∈ Fγ (!0).

Now, in the feedback con#guration of Figure 1, the feedback
function ϕ is a member of the family of functions ((K). As
a result, the feedback signal u(t) = ϕ(t, x(t)) generated by ϕ
belongs to the family of input signals U(K). This directly yields
the following consequence of Proposition 3.1.

Corollary 3.2: Let K, γ ,T > 0 be real numbers, let! be amem-
ber of the family Fγ (!0), and let ϕ ∈ ((K) be a state-feedback
function.

(i) There is a bound M(T) ≥ 0 such that |!ϕ(x0, t)| ≤ M(T)

at all times t ∈ [0,T], for all state-feedback functions ϕ ∈
((K), and for all members! ∈ Fγ (!0).

(ii) The response!ϕ(x0, ·) : R+ → Rn : t (→ !ϕ(x0, t) is a con-
tinuous function of time for every feedback function ϕ ∈
((K) and for every member! ∈ Fγ (!0).

Considering that continuous functions are bounded over
compact domains, we obtain the following consequence of
Corollary 3.2.

Corollary 3.3: Let n and p be two positive integers, let c :
R+ × Rn → Rp : (t, x) (→ c(t, x) be a continuous function, let
K, γ ,T > 0 be real numbers, let ! be a member of Fγ (!0),
and let ϕ ∈ ((K) be a state-feedback function. Then, there is a
real numberMc(T) ≥ 0 such that |c(t,!ϕ(x0, t))| ≤ Mc(T) at all
times t ∈ [0,T], for all state-feedback functions ϕ ∈ ((K), and
for all! ∈ Fγ (!0).

Recall that we are looking for a state-feedback function ϕ ∈
((K) that takes every system! ∈ Fγ (!0) from an initial state
x0 to ρ(#) in minimal time, without violating the state ampli-
tude bound A along the way. Now, as mentioned earlier, the
input signal of! generated by our feedback function ϕ ∈ ((K)

is a member of U(K). Therefore, in order for such a feedback
function to exist, there must be an input signal u ∈ U(K) that
takes ! from x0 to the vicinity ρ(#) of x= 0, without violat-
ing the state amplitude bound A along the way. Whether or
not such an input signal exists depends on controllability fea-
tures of the controlled system!, on the input amplitude bound
K, on the state amplitude bound A, and on the initial state
x0. These considerations motivate the following notion (Choi
& Hammer, 2018a, 2018c).

De!nition 3.4: Let K, A> 0 be real numbers. A system !

is (K,A)-controllable from the initial state x0 if there is an
input signal u ∈ U(K) and a #nite time tA ≥ 0 such that
!(x0, u, tA) = 0 and |!(x0, u, t)| ≤ A for all t ∈ [0, tA].

A relatively simple numerical technique for determin-
ing (K,A)-controllability is outlined in Choi and Ham-
mer (2018a, 2018c).

The next statement shows that, if the nominal system !0
is (K,A)-controllable, then the minimal time t∗(x0, #,A, γ )

of (2.26) is #nite, as long as the uncertainty parameter γ is not

too large. This is an important observation; it shows that by
checking a single system – the nominal system!0, one can ver-
ify proper performance of the entire family Fγ (!0). Note that
any open-loop input signal u(t) can be generated by a feedback
function by setting ϕ(t, x) := u(t) (with no dependence on x).
Thus, the following statement is a consequence of a statement
derived in Choi and Hammer (2018a, 2018c).

Proposition 3.5: Let K,A0, # > 0 be real numbers, and assume
that the nominal system!0 is (K,A0)-controllable from the initial
state x0. Then, for every bound A > A0, there is an uncertainty
parameter γ > 0 for which the in!mal time t∗(x0, #,A, γ ) of
(2.26) is !nite.

Remark 3.6: An estimate of the uncertainty parameter γ that
satis#es Proposition 3.5 can be found in Choi and Ham-
mer (2018a, 2018c).

We show in Section 4 that Proposition 3.5 leads to the fol-
lowing important fact: (K,A)-controllability of a single mem-
ber of the family Fγ (!0) – that of the nominal system !0 –
guarantees the existence of an optimal feedback function of
Problem 2.28(i).

3.2 Continuity and convergence

We review now a few mathematical notions that underlie our
discussion (e.g. Willard, 2004; Zeidler, 1985).

De!nition 3.7: Let S be a subset of a Hilbert space H, and
let z be a member of S. A functional F : S → R is weakly
lower semi-continuous at z if the following is true for every
sequence {zi}∞i=1 ⊆ S that converges weakly to z: whenever F(z)
is bounded, there is, for every real number ε > 0, an integer
N > 0 such that F(z) − F(zi) < ε for all i ≥ N.

A function G : S × R → Rn : (s, t) (→ G(s, t) is weakly con-
tinuous at z at a time t if the following is true for every sequence
{zi}∞i=1 ⊆ S that converges weakly to z: for every real number
ε > 0, there is an integerN > 0 such that |G(z, t) − G(zi, t)| < ε

for all i ≥ N.
The functionG is uniformly weakly continuous over an inter-

val [t1, t2], t1 < t2, if the following is true for every sequence
{zi}∞i=1 ⊆ S that converges weakly to z: for every real number
ε > 0, there is an integerN > 0 such that |G(z, t) − G(zi, t)| < ε

for all integers i ≥ N and for all times t ∈ [t1, t2].

The next statement is reproduced from Yu and Ham-
mer (2016a).

Proposition 3.8: Let ! be a system belonging to the family
Fγ (!0). Then, the response function!(x0, ·, ·) : U(K) × R+ →
Rn : (u, t) (→ !(x0, u, t) is uniformly weakly continuous over
every !nite interval of time.

In analogy to this, we show in the forthcoming discussion
that the closed-loop system!ϕ of Figure 1 is a weakly continu-
ous function of the feedback function ϕ. To this end, we need a
few auxiliary statements.
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Figure 2. Feedback system with external input.

3.3 Feedbackwith input signal

Although the present paper concentrates on pure state-feedback
con#gurations described by Figure 1, it is often useful to add
an external input signal v(t) to a feedback con#guration, as
depicted in Figure 2. The response x(t) of the closed-loop sys-
tem shown in the #gure is denoted by!ϕ(x0, v, t); it is described
by the di!erential equation

ẋ(t) = a(t, x(t)) + b(t, x(t))[ϕ(t, x(t)) + v(t)],

x(0) = x0.
(3.9)

Two extreme cases of (3.9) are: (i) the case where v = 0, which
yields the pure feedback con#guration !ϕ(x0, 0, t) = !ϕ(x0, t)
of Figure 1; and (ii) the casewhereϕ = 0, which yields the open-
loop system!ϕ=0(x0, v, t) = !(x0, v, t).

Our main objective is to show that the closed-loop sys-
tem depends continuously on the feedback function ϕ, as the
following statement, which is the main result of this section,
indicates.

Theorem 3.10: Let {ϕi}∞i=1 ⊆ ((K) be a sequence of feedback
functions that is weakly convergent to a feedback function ϕ ∈
((K). Then, for almost every system ! ∈ Fγ (!0), the sequence
of feedback systems!ϕi(x0, v, t) is uniformlyweakly convergent to
the feedback system !ϕ(x0, v, t) for every input signal v ∈ U(K)

and over every !nite interval of time.

Before stating the proof of Theorem 3.10, we need a num-
ber of auxiliary results. First, we show that, for a sequence of
feedback functions {ϕi} that converges ϕ, the negative feedback
function −ϕ nearly cancels the e!ect of feedback functions ϕi
for large values of the integer i.

Lemma 3.11: Let {ϕi}∞i=1 ⊆ ((K) be a sequence of feedback
functions that is weakly convergent to a feedback function ϕ ∈
((K). Then, for almost every system ! ∈ Fγ (!0), the sequence
of feedback systems {!ϕi−ϕ(x0, v, t)}∞i=1 converges weakly to the
open-loop system !(x0, v, t) at every time t ≥ 0 and for every
input signal v ∈ U(K). Moreover, this convergence is uniform
over every !nite interval of time.

Proof: Let! be amember of the family of systemsFγ (!0)with
initial state x0, and let {ϕi}∞i=1 ⊆ ((K) be a sequence of feed-
back functions that convergesweakly to a feedback functionϕ ∈
((K). Apply to ! a feedback function given by the di!erence
ϕi − ϕ, i ∈ {1, 2, . . .}. For an input signal v ∈ U(K) and a time
t ≥ 0, denote x(t, i) := !(ϕi−ϕ)(x0, v, t), x(t) := !(x0, v, t), and

z(t, i) := x(t, i) − x(t). Note that z(0, i) = x(0, i) − x(0) =
x0 − x0 = 0. The di!erential equation of x(t, i) is

ẋ(t, i) = a(t, x(t, i)) + b(t, x(t, i))[ϕi(t, x(t, i))

− ϕ(t, x(t, i)) + v(t)], x(0, i) = x0. (3.12)

Now, let T> 0 and t1, t2 ∈ [0,T], t1 < t2, be times, and let t ∈
[t1, t2]. Then, using (2.1) and (3.12) yields

z(t, i) = z(t1, i) +
∫ t

t1
[a(s, x(s, i) − a(s, x(s))] ds

+
∫ t

t1
b(s, x(s, i))[ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

+
∫ t

t1
[b(s, x(s, i)) − b(s, x(s))]v(s) ds

= z(t1, i) +
∫ t

t1
[a(s, x(s, i) − a(s, x(s))] ds

+
∫ t

t1
[b(s, x(s, i)) − b(s, x(s))]

× [ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

+
∫ t

t1
b(s, x(s))[ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

+
∫ t

t1
[b(s, x(s, i)) − b(s, x(s))]v(s) ds.

Invoking the inequalities (2.2) and using the fact that all feed-
back functions and all input signals are bounded by K, we
get

sup
s∈[t1,t2]

|z(s, i)|

≤ |z(t1, i)| + α+(1 + 3K) sup
s∈[t1,t2]

|z(s, i)|(t2 − t1)

+
∣∣∣∣

∫ t2

t1
b(s, x(s))[ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

∣∣∣∣ ,

or

(1 − α+(1 + 3K)(t2 − t1)) sup
s∈[t1,t2]

|z(s, i)|

≤ |z(t1, i)| +
∣∣∣∣

∫ t2

t1
b(s, x(s))[ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

∣∣∣∣ .

Selecting a number η > 0 to satisfy α+(1 + 3K)η < 1/2 and
setting t2 := t1 + η, yields

sup
s∈[t1,t+η]

|z(s, i)| ≤ 2|z(t1, i)|

+ 2
∣∣∣∣

∫ t1+η

t1
b(s, x(s))[ϕi(s, x(s, i)) − ϕ(s, x(s, i))] ds

∣∣∣∣ .

(3.13)
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Now, de#ne the function

g(t) :=
{
eωtb!(t, x(t)) t ∈ [t1, t1 + η],
0 else.

Then, with the inner product (2.7), we can rewrite (3.13) in the
form

sup
s∈[t1,t1+η]

|z(s, i)| ≤ 2|z(t1, i)|

+ 2
∣∣〈g, [ϕi ◦ x(· , i) − ϕ ◦ x(· , i)]

〉∣∣ . (3.14)

To continue, select a real number ε > 0. Using Proposition 2.18
and considering that the function x(· , i) depends on the system
!, we conclude that, for almost every ! ∈ Fγ (!0), there is an
integer N ≥ 1 such that 〈g, [ϕi ◦ x(· , i) − ϕ ◦ x(· , i)]〉 < ε for
all i ≥ N. Then, inequality (3.14) can be rewritten in the form

sup
s∈[t1,t1+η]

|z(s, i)| ≤ 2|z(t1, i)| + 2ε for i ≥ N. (3.15)

Next, de#ne the scalar

ζj,i := sup
s∈[(j−1)η,jη]

|z(s, i)|. (3.16)

Let q ≥ 1 be an integer satisfying q ≥ t/η, and consider the
partition

[0,T] ⊆ {[0, η], [η, 2η], . . . , [(q − 1)η, qη]}.

On this partition, (3.15) gives rise to the linear recursion

ζj+1,i ≤ 2ζj,i + 2ε, ζ0,i = 0, j = 0, 1, . . .

By properties of linear recursions, we obtain

ζj,i ≤




j∑

r=1
2r


 ε, for all i ≥ N.

Using (3.16), this yields

sup
s∈[0,T]

|z(s, i)| ≤
( q∑

r=1
2r
)

ε

for all i ≥ N. Finally, given a real number δ > 0, select the
integer N so that ε ≤ δ/(

∑q
r=1 2r). Then, we obtain

sup
s∈[0,t]

|z(s, i)| ≤ δ

for all integers i ≥ N and for almost every ! ∈ Fγ (!0). Thus,
limi→∞ z(s, i) = 0 for almost every! ∈ Fγ (!0), and our proof
concludes. !

3.4 Equivalent con!gurations and convergence

The next step in our preparations to prove Theorem 3.10 is
an examination of the equivalence of certain feedback con#g-
urations. Speci#cally, we apply the feedback function ϕ to the
closed-loop system!(ϕi−ϕ)(x0, v, t), as depicted in Figure 3(A).
A slight re$ection shows that this con#guration is equivalent
to the con#guration !ϕi(x0, v, t) of Figure 3(B). To continue,
de#ne the signal

εi(t) := !ϕi−ϕ(x0, v, t) −!(x0, v, t), (3.17)

which, according to Lemma 3.11, is uniformly weakly conver-
gent to the zero signal as i → ∞. Now, the con#guration of
Figure 3(A) is the same as the con#guration of Figure 4(A); the
latter is equivalent to the con#guration of Figure 4(B), where

xi(t) = zi(t) + εi(t), i = 1, 2, . . . (3.18)

Proof of Theorem 3.10: In view of (3.18), we have xi(t) −
zi(t) = εi(t) for all integers i ≥ 1. Combining this with
Lemma 3.11 and (3.17), it follows that xi(t) is weakly uniformly
convergent to zi(t) as i → ∞, over #nite intervals of time. This
concludes our proof. !

Considering that the pure feedback systems !ϕi(x0, t) and
!ϕ(x0, t) are, respectively, !ϕi(x0, v, t) and !ϕ(x0, v, t) for
v = 0, Theorem 3.10 yields the following.

Corollary 3.19: Let {ϕi}∞i=1 ⊆ ((K) be a sequence of feedback
functions that is weakly convergent to a feedback function ϕ ∈
((K). Then, the sequence of feedback systems {!ϕi(x0, t)}∞i=1 is
uniformly weakly convergent to the feedback system !ϕ(x0, t)
over any !nite interval of time and for almost every system ! ∈
Fγ (!0).

Corollary 3.19 can be restated in the following form.

Corollary 3.20: For almost every member ! ∈ Fγ (!0), the
function !(·)(x0, ·) : ((K) × R+ → Rn : (ϕ, t) (→ !ϕ(x0, t) is
uniformly weakly continuous over every !nite interval of time.

We turn now to the existence of optimal feedback functions.

Figure 3. Equivalent configurations: (a) Double feedback and (b) Single feedback.



INTERNATIONAL JOURNAL OF CONTROL 443

Figure 4. Equivalent configurations.

4. Existence of optimal feedback functions

In this section, we consider the existence of optimal robust feed-
back functions ϕ∗(x0, #,A, γ ) ∈ ((K) that achieve theminimal
time t∗(x0, #,A, γ ) of (2.26). The main result of this section
is the following statement, which shows that optimal robust
feedback functions exist under rather broad conditions. The pri-
mary requirement for the existence of such feedback functions
is (K,A)-controllability of the nominal system, as follows.

Theorem 4.1: Let A0,A, #, γ > 0 be real numbers, where A >

A0. Assume that the nominal system !0 is (K,A0)-controllable
from the initial state x0, and that the uncertainty parameter γ
ful!lls the requirements of Proposition 3.5 for A, A0, and #. Then,
referring to (2.25), (2.26), and (2.27), the following are true for
almost every system ! ∈ Fγ (!0).

(i) There is a !nite minimal time t∗(x0, #,A, γ ).
(ii) There is an optimal feedback function ϕ∗(x0, #,A, γ ) ∈

((K) that achieves the minimal time t∗(x0, #,A, γ ), i.e.
t∗(x0, #,A, γ ) = t(x0, #,A, γ ,ϕ∗(x0, #,A, γ )).

The proof of Theorem 4.1 appears near the end of this
section, after preparing the tools needed for the proof. It is fair to
say that computation and implementation of optimal feedback
functions are often demanding tasks, since optimal feedback
functions generally are intricate multi-variable vector-valued
functions of time. To simplify computation and implementation
of optimal feedback functions, we show in Section 5 that opti-
mal performance can be approximated by bang-bang feedback
functions that are relatively easy to design and implement.

As we can see from Theorem 4.1, the main condition
for the existence of an optimal feedback function is (K,A0)-
controllability of the nominal system !0. Thus, verifying the
existence of an optimal solution requires testing of only one sys-
tem – the nominal system !0, assuming that the uncertainty
parameter γ is not excessively large.

Note also that (K,A0)-controllability is very close to being
a necessary condition for the existence of an optimal feed-
back function. Indeed, the input signal created by an optimal
feedback function ϕ∗ must take the nominal system !0 to the
vicinity ρ(#) of the origin, without violating the state amplitude
bound A along the way. This is close to (K,A0)-controllability,
which requires the existence of an input signal that takes !0
to the origin itself, without violating the state amplitude bound
A0 along the way. A relatively simple numerical technique for
testing (K,A0)-controllability of a system is described in Choi
and Hammer (2017a).

Our discussion of the existence of optimal feedback func-
tions depends on a few mathematical facts quoted next (e.g.
Willard, 2004; Zeidler, 1985).

Theorem 4.2: (i) A weakly continuous functional is weakly
lower semi-continuous.

(ii) Let S and A be topological spaces and assume that, for every
member a ∈ A, there is a weakly lower semi-continuous
functional fa : S → R. If supa∈A fa(s) exists at each point s ∈
S, then the functional f (s) := supa∈A fa(s) is weakly lower
semi-continuous on S.

To discuss the existence of optimal feedback functions,
we introduce a functional ψ(t, ·) : ((K) → R : ϕ (→ ψ(t,ϕ)

given, for t ≥ 0, by

ψ(t,ϕ) :=






ess sup
!∈Fγ (!0)

|!ϕ(x0, t)|22 if ϕ ∈ ((K,A, γ , t),

∞ if ϕ /∈ ((K,A, γ , t)
(4.3)

(compare to Choi & Hammer, 2017a; Yu & Hammer, 2016a,
2016b). This functional has the following feature.

Lemma 4.4: At every time t ≥ 0, the functional ψ(t, ·) :
((K) → R of (4.3) is weakly lower semi-continuous over((K).

Proof: By Proposition 3.20, the closed-loop system !ϕ(x0, t)
is a weakly continuous function of the feedback function ϕ ∈
((K) at every time t ≥ 0 for almost every system! ∈ Fγ (!0).
Using the fact that a continuous function of aweakly continuous
function is weakly continuous, we conclude that |!(·)(x0, t)|22 :
((K) → R : ϕ (→ |!ϕ(x0, t)|22 is a weakly continuous func-
tional of ϕ ∈ ((K) at every time t ≥ 0 for almost every
! ∈ Fγ (!0). Consequently, by Theorem 4.2(i), the functional
|!ϕ(x0, t)|22 is also weakly lower semi-continuous over ((K)

at every #nite time t ≥ 0 for almost every ! ∈ Fγ (!0). The
lemma is then a consequence of (4.3) and Theorem 4.2(ii). !

The next statement brings us very close to proving the exis-
tence of optimal feedback functions (compare to Choi & Ham-
mer, 2017a; Yu & Hammer, 2016a, 2016b).

Proposition 4.5: Let A0,A, #, γ > 0 be real numbers, where
A > A0. Assume that the nominal system !0 is (K,A0)-
controllable from the initial state x0, and that the uncertainty
parameter γ ful!lls the requirements of Proposition 3.5 with A,
A0, and #. Then, the functional t(x0, #,A, γ , ·) : ((K) → R :
ϕ (→ t(x0, #,A, γ ,ϕ) of (2.25) is weakly lower semi-continuous.

Proof: In view of (4.3), we have

t(x0, #,A, γ ,ϕ) = inf
t

{t ≥ 0 : ψ(t,ϕ) ≤ #} .

To simplify notation, de#ne the functional

θ(ϕ) := inf
t

{t ≥ 0 : ψ(t,ϕ) ≤ #} . (4.6)

According to the proposition’s assumptions and Proposition 3.5,
there is a feedback function ϕ ∈ ((K) satisfying 0 < θ(ϕ) <

∞. Also, by (4.6), we have that θ(ϕ) ≥ 0. Note that all feedback
functions ϕ that satisfy θ(ϕ) < ∞ are members of((K,A, γ , t)
for some time t ≥ θ(ϕ). Thus, by (2.24), all such feedback
functions ϕ are members of ((K,A, γ , θ(ϕ)). Now, the case
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θ(ϕ) = 0 means that the initial state x0 already satis#es the
requirement x!

0 x0 ≤ #; in such case, the proposition is valid
for every feedback function ϕ ∈ ((K). Next, consider the case
θ(ϕ) > 0.

Let ϕ ∈ ((K) be a feedback function satisfying θ(ϕ) < ∞,
and let {ϕi}∞i=1 ⊆ ((K) be a sequence of feedback functions that
converges weakly to ϕ. Set ψi(t) := ψ(t,ϕi), i = 1, 2, . . ., and
ψ0(t) := ψ(t,ϕ). By (4.6), we have θ(ϕi) = inf t{t ≥ 0 : ψi(t) ≤
#} and θ(ϕ) = inf t{t ≥ 0 : ψ0(t) ≤ #}. We show next that θ(·)
is a weakly lower semi-continuous functional of ϕ over ((K).
To this end, #x a real number ε > 0; we claim that there is an
integer N > 0 such that

θ(ϕi) > θ(ϕ) − ε for all i ≥ N. (4.7)

Indeed, as θ(ϕi) ≥ 0 for all i = 1, 2, . . ., the case ε > θ(ϕ)

clearly satis#es (4.7). Consider then the case ε ∈ (0, θ(ϕ)); here,
we have the following two options:

Case 1. There is an integer N > 0 such that θ(ϕi) ≥ θ(ϕ) for
all i ≥ N.

Case 2. Case 1 is not valid.
In Case 1, the inequality (4.7) clearly holds for all i ≥ N, so

that θ(·) is weakly lower semi-continuous in this case. Note that,
since θ(ϕ) < ∞, Case 1 includes all sequences {ϕi} for which
there is an integer N ≥ 1 such that θ(ϕi) = ∞ for all integers
i ≥ N.

Regarding Case 2, there is a sequence of integers j1 < j2 <

j3 < · · · for which

θ(ϕjk) < θ(ϕ) for all integers k ≥ 1. (4.8)

As θ(ϕ) < ∞, inequality (4.8) implies that θ(ϕjk) < ∞ for all
k ≥ 1. Further, as (4.6) describes an in#mum, we have that
ψ0(t) > # for all t ∈ [0, θ(ϕ)). Thus, at every time

t̄ ∈ [θ(ϕ) − ε, θ(ϕ)), (4.9)

we have ψ0(t̄) > #, namely,

ψ0(t̄) − # > 0. (4.10)

Now, by Lemma 4.4, the functional ψ(t,ϕ) is weakly lower
semi-continuous in ϕ over ((K). Thus, for every real number
η > 0, there is an integer N > 0 satisfying

ψ0(t̄) − ψjk(t̄) < η for all k ≥ N. (4.11)

In particular, by (4.10), we can take η := (ψ0(t̄) − #)/2. Insert-
ing this η into (4.11) yields the inequality

ψ0(t̄) − ψjk(t̄) < (ψ0(t̄) − #)/2 for all k ≥ N.

Simplifying, we get

ψjk(t̄) > (ψ0(t̄) + #)/2 for all k ≥ N.

But then, since ψ0(t̄) > # by (4.10), we obtain that ψjk(t̄) > #

for all k ≥ N, or, referring to (4.6), we have θ(ϕjk) > t̄. Recall-
ing (4.9), we get θ(ϕjk) > θ(ϕ) − ε for all k ≥ N. This shows
that θ(·) is weakly lower semi-continuous in Case 2 as well. The
proposition follows from the fact that t(x0, #,A, γ ,ϕ) = θ(ϕ),
and our proof concludes. !

We can prove now the main result of the present section.

Proof of Theorem 4.1: By the Generalized Weierstrass
Theorem (e.g. Zeidler, 1985), a weakly lower semi-continuous
functional achieves a minimum in a weakly compact set.
Now, the functional t(x0, #,A, γ ,ϕ) is weakly lower semi-
continuous by Proposition 4.5, and ((K) is weakly compact
by Lemma 2.15. Therefore, t(x0, #,A, γ ,ϕ) achieves aminimum
t∗(x0, #,A, γ ) in((K). In other words, there is a feedback func-
tion ϕ∗(x0, #,A, γ ) ∈ ((K) at which theminimumoccurs. This
completes our proof. !

In summary, we have shown in this section that there are
robust feedback functions that ful#ll the requirements of Prob-
lem 2.28(i). From a theoretical perspective, this is a criti-
cal fact. However, from a practical perspective, the derivation
and the implementation of optimal feedback functions are often
tedious tasks, requiring the computation and construction of
intricate multivariable vector-valued functions of time. In the
next section, we show that optimal performance can be approx-
imated by using bang-bang feedback functions. These are func-
tions of the time and state whose components switch between
the values of −K and K. For a system having an input signal
with m components, such feedback functions take at most 2m
di!erent values: one of the two values −K or K for each input
component; this compares very favourably to general feedback
functions, which can take any value in them-dimensional con-
tinuum [−K,K]m. As a result, bang-bang feedback functions
are much easier to calculate and implement than general feed-
back functions. The approximation of optimal performance by
bang-bang feedback functions is the topic of the next section.

5. Approximating optimal performance

To make our results amenable to practical implementation, we
show in this section that optimal performance can be approxi-
mated as closely as desired by bang-bang feedback functions –
functions whose coordinates switch between the input bounds
±K. Such feedback functions are relatively easy to calculate and
implement. For example, for a single input controlled system!,
a bang-bang state-feedback function switches only between the
two values of −K and K as a function of time and state. When
discussing approximations, wemust also take into account other
sources of inaccuracies, such as noise and disturbances that
a!ect the con#guration, as discussed next.

5.1 Noise and disturbances

Replacing a feedback function by an approximate feedback
function clearly introduces errors into the feedback loop. The
impact of such errors must be considered in the broader con-
text of the e!ects of noise and disturbances. We examine in this
subsection the e!ects of a common noise or disturbance signal
υ(t) that may appear as an additive signal at the input port of
the feedback function ϕ, as depicted in Figure 5.

Assume that the disturbance signal υ(t) is a random signal
with and amplitude bounded by a speci#ed bound 5 > 0 and
with uniform probability distribution. Then, |υ(t)| ≤ 5 at all
times t ≥ 0 and the values of υ(t) are distributed uniformly in
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Figure 5. A disturbance signal υ(t), |υ(t)| ≤ 5.

the hyper-square5(0) := [−5,5]n of edge 25. Let dz denote
the Lebesgue element of hyper-volume in Rn. Then, the prob-
ability of obtaining a disturbance signal within dz is dz/(25)n.
Denote by5(x) the hyper-square of edge 25 centred at the state
x in the state space of!. Then, the average value of the feedback
function at a time t is

ϕ̄(t, x) := 1
(25)n

∫

5(x)
ϕ(t, z) dz. (5.1)

When approximating system performance, we take this average
into consideration.

5.2 Approximating optimal performance

In this subsection, we address part (ii) of Problem 2.28: we
derive robust feedback functions that provide close to optimal
performance and are relatively easy to implement.We start with
some notation. For a real number K > 0, denote by Km the set
consisting of the 2m m-dimensional vectors with components of
−K or K.

Example 5.2: For m= 2, we have K2 = {(−K,−K)!, (K,
−K)!, (−K,K)!, (K,K)!}.

We start with a formal de#nition of the term ’bang-bang
feedback function’.

De!nition 5.3: Let ! ∈ Fγ (!0) be a system with input sig-
nal u(t) ∈ Rm and state x(t) ∈ Rn, and let T> 0 be a #nite
time. Assume that ! permits only input signals of ampli-
tude bounded by K > 0, and that its state amplitude may not
exceed A> 0. Then, a bang-bang feedback function for ! over
the time interval [0,T] is a function ϕ± : [0,T] × [−A,A]n →
Km with the following property: there is a partition of the
domain [0,T] × [−A,A]n into a #nite number p ≥ 1 of hyper-
rectangles σ1, σ2, . . . , σp so that each component of ϕ± takes a
constant value of −K or K in the interior of σj, j = 1, 2, . . . , p.

Each component of a bang-bang feedback function ϕ± takes
one of the values −K or K, depending on the time and the state
of the controlled system!.

The next statement is the main result of this section. In qual-
itative terms, the statement shows that, if the operating error
bound # is increased slightly to an error bound #′, then bang-
bang feedback functions can drive the controlled system ! to
the ball ρ(#′) at least as fast as an optimal feedback function
can drive! to the ball ρ(#). The statement re$ects average per-
formance over the disturbance υ(t) of Figure 5, as described
by (5.1).

Theorem 5.4: Let A0,A, #, #′ > 0 be real numbers, where A >

A0 and #′ > #, and assume that the nominal system !0 is
(K,A0)-controllable from the initial state x0. Then, referring to
the notation of (2.25) and (2.26), there are a bang-bang feed-
back function ϕ± ∈ ((K) and an uncertainty parameter γ > 0
such that t(x0, #′,A, γ ,ϕ±) ≤ t∗(x0, #,A, γ ), when feedback is
averaged over the disturbance signal υ(t) of Figure 5.

Theorem 5.4 lists two su"cient conditions for the existence
of a bang-bang feedback function that approximates optimal
performance. The #rst condition requires the nominal system
!0 to be (K,A0)-controllable; this condition also appeared ear-
lier in Theorem4.1 andwas discussed in detail in the paragraphs
following that theorem. The second condition requires that the
uncertainty parameter γ not be excessively large. Even so, as one
might expect, and as the example of Section 6 demonstrates, the
uncertainty permitted by optimal feedback controllers is never
smaller (and often quite larger) than the uncertainty permitted
by optimal open-loop controllers (see Choi & Hammer, 2017a;
Yu & Hammer, 2016a for a discussion of optimal open-loop
controllers).

Theorem 5.4 is a consequence of the next statement, which
shows that the response of a system with any feedback func-
tion can be approximated by the response of the same system
with a bang-bang feedback function; here, feedback functions
are averaged over the disturbance υ(t) of Figure 5. (Compare
to Chakraborty & Hammer, 2009b, 2010; Choi & Hammer,
2018b; Yu & Hammer, 2016a, 2016b, where the approximation
of open-loop performance is investigated.)

Theorem 5.5: Let ! ∈ Fγ (!0) be a system with initial state
x0, let ϕ ∈ ((K) be a feedback function for !, and let t′ > 0
be a !nite time. Then, for every real number ε > 0, there are
a bang-bang feedback function ϕ± ∈ ((K) and an uncertainty
parameter γ > 0 such that the following holds. The di"erence
between the response x(t) := !ϕ(x0, t) of ! with the feedback
function ϕ and the response x±(t) := !ϕ±(x0, t) of ! with the
feedback function ϕ± satis!es |x(t) − x±(t)| < ε at all times 0 ≤
t ≤ t′ and for almost all members ! ∈ Fγ (!0), when feedback
values are averaged over the disturbance signal υ(t) of Figure 5.

The proof of Theorem 5.5 employs the following auxiliary
statement reproduced here from Choi and Hammer (2018a).

Lemma 5.6: Let ! be a system of the form (2.1) with functions
a(t, x) and b(t, x) that are subject to (2.2). Let x0 be the initial state
of!, let t′ > 0 be a !nite time, and denote by x(t) := !(x0, u, t)
the response of! to an input signal u. Then, for every real number
ζ > 0, there are real numbers β(x0, ζ , t′) > 0 and γ > 0 such
that the following is valid for all input signals u ∈ U(K) and for
all systems ! ∈ Fγ (!0) : |b(t1, x(t1)) − b(t2, x(t2))| < ζ for all
times t1, t2 ∈ [0, t′] satisfying |t1 − t2| < β(x0, ζ , t′).

Considering that feedback functions ϕ ∈ ((K) create input
signals belonging to U(K) for the controlled system !, the
following statement is a direct consequence of Lemma 5.6.

Corollary 5.7: Let ! be a system of the form (2.1) with func-
tions a(t, x) and b(t, x) that are subject to (2.2). Let x0 be the
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initial state of !, let t′ > 0 be a !nite time, and, for a feedback
function ϕ ∈ ((K), denote by x(t) := !ϕ(x0, t) the response of
the closed loop system. Then, for every real number ζ > 0, there
are real numbers β(x0, ζ , t′) > 0 and γ > 0 such that the follow-
ing is valid for all feedback functions ϕ ∈ ((K) and for all sys-
tems ! ∈ Fγ (!0) : |b(t1, x(t1)) − b(t2, x(t2))| < ζ for all times
t1, t2 ∈ [0, t′] satisfying |t1 − t2| < β(x0, ζ , t′).

We turn now to the proof of Theorem 5.5.

Proof of Theorem 5.5: Recall the noise amplitude bound 5 >

0 of Subsection 5.1. Let t1, t2 ∈ [0, t′], t1 < t2, be two times for
which (t2 − t1)/5 is a rational number. Let λ > 0 be a real
number for which the ratios p := (t2 − t1)/λ and5/λ are both
integers. Recalling the state amplitude bound A> 0, letM ≥ A
be a real number for which the ratio r := M/λ is an integer.

It is convenient at this point to introduce the following
notation: for n+1 integers q0, q1, . . . , qn, denote by q the vector

q := (q0, q1, . . . , qn).

For each vector q, de#ne the hyper-square χ(q) of edge λ
given by

χ(q) := [t1 + q0λ, t1 + (q0 + 1)λ]

× [−M + q1λ,−M + (q1 + 1)λ] × · · ·
× [−M + qnλ,−M + (qn + 1)λ];

this creates a partition of the domain [t1, t2] × [−M,M]n ⊆
R+ × Rn into p(2r)n hyper-squares of edge λ given by

P :=
{
χ(q)

}
q∈{0,1,...,p−1}×{0,1,...,2r−1}n . (5.8)

Now, consider a feedback function ϕ = (ϕ1,ϕ2, . . . ,ϕm)! ∈
((K). As each component ϕj of ϕ is bounded by K, integrating
over the hyper-square χ(q) yields the relation

− Kλn+1 ≤
∫

χ(q)
ϕj(s, x) d(s, x) ≤ Kλn+1 (5.9)

for all q ∈ {0, 1, . . . , p − 1} × {0, 1, . . . , 2r − 1}n and all j =
1, 2, . . . ,m; here, d(s, x) is the Lebesgue volume element in
R+ × Rn.

Next, for a real number µ(q) ∈ [0, λ], let D(µ(q)) ⊆ R+ ×
Rn be the hyper-square of edge µ(q) given by

D(µ(q)) := [t1 + q0λ, t1 + q0λ+ µ(q)]

× [−M + q1λ,−M + q1λ+ µ(q)] × · · ·
× [−M + qnλ,−M + qnλ+ µ(q)]

and depicted for the case n= 1 as the shaded domain of Figure 6.
Denote by V(µ(q)) the hyper-volume of D(µ(q)). Then, the
inequality (5.9) implies that, for every j = 1, 2, . . . ,m, there is
a real number 0 ≤ µj(q) ≤ λ satisfying

K
[
2V(µj(q)) − λn+1] =

∫

χ(q)
ϕj(s, x) d(s, x). (5.10)

Figure 6. The domain D(µ(q)) for n= 1.

Denoting set di!erence by \, de#ne the jth component of a
bang-bang feedback function ϕ± by setting

ϕ
j
±(t, x) :=

{
K for (t, x) ∈ D(µj(q)),
−K for t ∈ χ(q) \ D(µj(q)),

q ∈ {0, 1, . . . , p − 1} × {0, 1, . . . , 2r − 1}n, j = 1, 2, . . . ,
m. Then, by (5.10), we get

∫

χ(q)

(
ϕj(s, x) − ϕ

j
±(s, x)

)
d(s, x) = 0 (5.11)

for all q ∈ {0, 1, . . . , p − 1} × {0, 1, . . . , 2r − 1}n and all j =
1, 2, . . . ,m.

Further, for amember! ∈ Fγ (!0), denote x(t) := !ϕ(x0, t)
and x±(t) := !ϕ±(x0, t), and consider the di!erence

ξ(t) : = x(t) − x±(t), t ∈ [0, t′],

ξ(0) = x0 − x0 = 0.

Let5(x) be the hyper-square of side 25 centred at the point x.
Then, averaging over the inaccuracy υ(t) of Figure 5, we obtain
the relation

dξ̄(t) = dx(t) − dx±(t)

= 1
(25)n

∫

5(x(t))
(dx(t) − dx±(t)) dx.

Combining this with (2.1) yields

ξ̄(t) = ξ̄(t1) + 1
(25)n

∫ t

t1

∫

5(x(s))

[
a(s, x(s)) − a(s, x±(s))

+ b(s, x(s))ϕ(s, x(s)) − b(s, x±(s))ϕ±(s, x(s))
]
d(s, x)

= ξ̄(t1) + 1
(25)n

∫ t

t1

∫

5(x(s))

[
[a(s, x(s)) − a(s, x±(s))]
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+ [b(s, x(s))ϕ(s, x(s)) − b(s, x(s))ϕ±(s, x(s))]

+ [b(s, x(s))ϕ±(s, x(s))− b(s, x±(s))ϕ±(s, x(s))]
]
d(s, x).

Using (2.2) and the fact that all feedback functions are bounded
by K, we get

sup
t∈[t1,t2]

∣∣ξ̄(t)
∣∣

≤
∣∣ξ̄(t1)

∣∣+ α+

(25)n

(

sup
s∈[t1,t2]

∣∣ξ̄(s)
∣∣
)

(t2 − t1)

+ 1
(25)n

sup
t∈[t1,t2]

∣∣∣∣

∫ t

t1

∫

5(x(s))
b(s, x(s)) (ϕ(s, x(s))

− ϕ±(s, x(s))) d(s, x)
∣∣∣∣

+ α+

(25)n
(t2 − t1) sup

s∈[t1,t2]

∣∣ξ̄(s)
∣∣K.

This can be rewritten in the form
[
1 − α+

(25)n
(1 + K)(t2 − t1)

]
sup

t∈[t1,t2]

∣∣ξ̄(t)
∣∣

≤
∣∣ξ̄(t1)

∣∣+ 1
(25)n

sup
t∈[t1,t2]

∣∣∣∣

∫ t

t1

∫

5(x(s))
b(s, x(s)) (ϕ(s, x(s))

− ϕ±(s, x(s))) d(s, x)
∣∣∣∣ . (5.12)

Next, select a real number η ∈ (0, t′ − t1] that is an integer mul-
tiple of λ and satis#es α+(1 + K)η/(25)n ≤ 1/2 (note that λ >

0 can be selected as small as needed); then, set

t2 := t1 + η.

Inequality (5.12) then becomes

sup
t∈[t1,t2]

∣∣ξ̄(t)
∣∣ ≤ 2

∣∣ξ̄(t1)
∣∣

+ 2
(25)n

sup
t∈[t1,t1+η]

∣∣∣∣

∫ t

t1

∫

5(x(s))
b(s, x(s)) (ϕ(s, x(s))

− ϕ±(s, x(s))) d(s, x)
∣∣∣∣ . (5.13)

Our next objective is to estimate the integral in the last expres-
sion. To simplify notation, denote by G ⊆ R+ × Rn the domain
of integration of this integral, and consider the expression

z(t) :=
∫

G
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x). (5.14)

Split the domain G into two parts: the domain G′ ⊆ R+ × Rn
that forms the largest sub-domain of G consisting of a union
of whole hyper-squares of the partition P of (5.8); and the
remainder G′′ := G \ G′ that includes no whole hyper-squares
of the partition P. The domainG′′ consists of incomplete hyper-
squares of edge λ that may pad inside the boundary of G, as G
may not synchronise with the partition P.

To calculate the hyper-volume V(G′′) of G′′, let SG′ be the
hyper-area of the surface ofG′; note that SG′ is bounded, sinceG′

is a union of a #nite number of hyper-squares of edge λ. Now, by
construction,G′′ consists of less than one layer of hyper-squares
of edge λ around the periphery of G′. Thus,

V(G′′) ≤ λSG′ . (5.15)

Using this, the integral (5.14) can be rewritten in the form

z(t) =
∫

G
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

=
∫

G′
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

+
∫

G′′
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

=
∑

q:χ(q)∈G′

∫

χ(q)
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

+
∫

G′′
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

=
∑

q:χ(q)∈G′
b(t1 + q0λ, x(t1 + q0λ))

×
∫

χ(q)
(ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

+
∑

q:χ(q)∈G′

∫

χ(q)

[
b(s, x(s)) − b(t1 + q0λ, x(t1 + q0λ))

]

× (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x)

+
∫

G′′
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) d(s, x).

(5.16)

Note that the #rst integral after the last equal sign in (5.16) is
zero by (5.11). As a result, we obtain

sup
t∈[t1,t1+η]

|z(t)|

≤
∑

q:χ(q)∈G′

∫

χ(q)

× sup
(s,x(s))∈χ(q)

|b(s, x(s)) − b(t1 + q0λ,

× x(t1 + q0λ))| |ϕ(s, x(s)) − ϕ±(s, x(s))|d(s, x)

+ sup
t∈[t1,t2]

∣∣∣∣

∫

G′′
b(s, x(s))(ϕ(s, x(s))

− ϕ±(s, x(s)))d(s, x)
∣∣∣∣. (5.17)

To continue, let ζ > 0 be a real number and recall the number
β(x0, ζ , t′) > 0 of Corollary 5.7. Select

λ ≤ β(x0, ζ , t′)

for the partition (5.8). Note that the hyper-volume of the
domain G′ is bounded by the hyper-volume of the domain G,
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and that the latter is bounded by η(25)n. Then, recalling that
feedback functions are bounded by K, we obtain the inequality

∑

q:χ(q)∈G′

∫

χ(q)
sup

(s,x(s))∈χ(q)

∣∣b(s, x(s))

− b(t1 + q0λ, x(t1 + q0λ))
∣∣ |ϕ(s, x(s)) − ϕ±(s, x(s))| d(s, x)

≤ 2Kζη(25)n.

Further, using (5.15) and the bound of Corollary 3.3 with b
substituted for c, we get

sup
t∈[t1,t1+η]

∣∣∣∣

∫

G′′
b(s, x(s)) (ϕ(s, x(s)) − ϕ±(s, x(s))) ds

∣∣∣∣

≤ λSG′2KMb(t′).

Inserting the last two inequalities into (5.17) yields

sup
t∈[t1,t1+η]

|z(t)| ≤ 2K
[
ζη(25)n + λSG′Mb(t′)

]

Substituting this into (5.13), we get

sup
t∈[t1,t1+η]

∣∣ξ̄(t)
∣∣ ≤ 2

∣∣ξ̄(t1)
∣∣+ 4K

[
ζη + λSG′Mb(t′)/(25)n

]
.

(5.18)
Next, select a real number δ > 0. Then, select ζ > 0 to sat-
isfy the inequality ζη4K < δ/2 and select a real number λ′ >

0 satisfying the inequality λ′SG′Mb(t′)4K/(25)n < δ/2. Sub-
sequently, select λ > 0 so that λ ≤ min{λ′,β(x0, ζ , t′)}. With
these selections, inequality (5.18) becomes

sup
t∈[t1,t1+η]

∣∣ξ̄(t)
∣∣ ≤ 2

∣∣ξ̄(t1)
∣∣+ δ. (5.19)

To explore the consequences of this inequality, let κ be an integer
satisfying κ ≥ t′/η and construct the partition

[0, t′] ⊆ {[0, η], [η, 2η], . . . , [(κ − 1)η, κη]} .

Then, (5.19) yields the linear recursion

sup
t∈[iη,(i+1)η]

∣∣ξ̄(t)
∣∣ ≤ 2

∣∣ξ̄(iη)
∣∣+ δ,

ξ̄(0) = 0,

i = 0, . . . , κ − 1. Using features of linear recursions, we con-
clude that

sup
t∈[0,t′]

∣∣ξ̄(t)
∣∣ ≤ δ

κ−1∑

i=0
2i = δ(2κ − 1).

Thus, the theorem is valid for any δ > 0 satisfying

δ < ε/(2κ − 1).

This concludes our proof. !

Before continuing with our investigation of bang-bang feed-
back functions, we need the following statement, which shows
that the minimal time t∗(x0, #,A, γ ) of (2.26) is a monotone
decreasing function of the state amplitude bound A.

Proposition 5.20: The minimal time t∗(x0, #,A, γ ) of (2.26) is
a monotone decreasing function of the state amplitude bound A.

Proof: LetA′ > A > 0 be two state amplitude bounds, and con-
sider an optimal feedback function ϕ∗(x0, #,A, γ ) ∈ ((K) that
controls ! so as to respect the state amplitude bound A. As
A < A′, the feedback function ϕ∗(x0, #,A, γ ) also controls! to
comply with the state amplitude bound A′. Therefore, the time
t∗(x0, #,A, γ ) achieved by ϕ∗(x0, #,A, γ ) cannot be shorter than
the minimal time t∗(x0, #,A′, γ ) for the state amplitude bound
A′. This concludes our proof. !

We can prove now Theorem 5.4.

Proof of Theorem 5.4: As A > A0, we can select a real num-
ber A′ such that A > A′ > A0. Then, by Theorem 4.1 and the
current assumptions, there exist an uncertainty parameter γ >

0 and an optimal feedback function ϕ∗ := ϕ∗(x0, #,A′, γ ) ∈
((K) satisfying part (i) of Problem 2.28with the state amplitude
bound A′ and the error bound #. The minimal time achieved
by ϕ∗ is then t∗ := t∗(x0, #,A′, γ ), so that !ϕ∗(x0, t∗) ∈ ρ(#)

and |!ϕ∗(x0, t)| ≤ A′ for all t ∈ [0, t∗] and for almost all ! ∈
Fγ (!0).

Next, select a real number ε > 0. By Theorem 5.5, there
is a bang-bang feedback function ϕ± ∈ ((K) such that
|!ϕ∗(x0, t) −!ϕ±(x0, t)| < ε for all t ∈ [0, t∗] and almost all
! ∈ Fγ (!0), when averaged over the e!ects of the disturbance
signal υ(t) of Figure 5. Now, select ε to satisfy 0 < ε ≤ A − A′.
Then, |!ϕ±(x0, t)| ≤ A for all t ∈ [0, t∗] and for almost all ! ∈
Fγ (!0). Thus, ϕ± complies with the state bound A.

Finally, for every pair of vectors y, z ∈ Rn, we canwrite z!z =
y!y − 2y!(y − z) + (y − z)!(y − z) ≤ y!y + 2n|y||y − z| +
n|y − z|2. Applying this relation to the vectors !ϕ±(x0, t) and
!ϕ∗(x0, t), we obtain

!!
ϕ±(x0, t∗)!ϕ±(x0, t∗)

≤ !!
ϕ∗(x0, t∗)!ϕ∗(x0, t∗)

+ 2n
∣∣!ϕ∗(x0, t∗)

∣∣ ∣∣!ϕ±(x0, t∗) −!ϕ∗(x0, t∗)
∣∣

+ n
∣∣!ϕ±(x0, t∗) −!ϕ∗(x0, t∗)

∣∣2

≤ #+ 2n
√
#ε + nε2 (5.21)

for almost all! ∈ Fγ (!0). Now, let #′ > 0 be any real number
for which

#+ 2n
√
#ε + nε2 ≤ #′. (5.22)

Then, we have!ϕ±(x0, t∗) ∈ ρ(#′). Denoting

ε′ := −
√
#+

√
#+ (#′ − #)/n,

we obtain from (5.22) and (5.21) that every ε ∈ (0,min{ε′,A −
A′}] guarantees that !ϕ±(x0, t∗) ∈ ρ(#′) and |!ϕ±(x0, t| ≤ A
for all t ∈ [0, t∗] and for almost all ! ∈ Fγ (!0), when aver-
aged over the e!ects of the disturbance signal υ(t) of Figure 5.
Consequently, t(x0, #′,A, γ ,ϕ±) ≤ t∗. Also, by Proposition 5.20
we have that t∗ ≤ t∗(x0, #,A, γ ). Thus, t(x0, #′,A, γ ,ϕ±) ≤
t∗(x0, #,A, γ ), and our proof concludes. !
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Theorem 5.4 describes a relatively simple methodology for
designing feedback functions that achieve close to optimal per-
formance: use bang-bang feedback functions, instead of optimal
feedback functions. In general, optimal feedback functions are
measurablemulti-variable vector-valued functions of time; they
are harder to calculate and implement than bang-bang feedback
functions. Indeed, at every time and state, a general measurable
feedback function takes its values in the continuum [−K,K]m,
while a bang-bang function is restricted to taking only one of
the values −K or K in each component.

Bang-bang functions that approximate optimal performance
can be derived through relatively simple numerical search algo-
rithms (see the example of Section 6). Often, bang-bang feed-
back functions with a relatively small number of switchings can
provide performance that is almost indistinguishable from opti-
mal performance, as is the case in the example of Section 6. For
comparison, classical methods for calculating optimal feedback
functions involve numerical solutions of the Hamilton-Jacobi-
Bellman partial di!erential equation; these are considerably
harder to derive than simple bang-bang feedback functions.
Note also that the approach presented in the current paper yields
robust controllers that are optimised for a speci#ed level of
uncertainty about the model of the controlled system!.

6. Example

We use an example of an inverted pendulum taken from Choi
and Hammer (2017a). Inverted pendulums appear in many
applications, including missile control and walking robots (e.g.
Boubaker & Iriarte, 2017). Using this example allows us to
compare the performance achieved by optimal state-feedback
controllers developed in the current paper to the performance
optimal open-loop controllers developed in Choi and Ham-
mer (2017a). The controlled system is described by the di!er-
ential equation

! :
ẋ1(t) = x2(t),

ẋ2(t) = d1 sin x1(t) + d2x2(t) + d3 tanh u(t),

where d1, d2, and d3 are constant parameters that represent
uncertainties. The nominal values of these parameters are d01 =
24.527, d02 = −0.107, d03 = 12.5; their uncertainty ranges are
d1 ∈ [21, 27], d2 ∈ [−0.3,−0.1], and d3 ∈ [10, 14]. The initial
state of ! is x0 = [π/8,−2]!. The input signal amplitude
bound is K = 5; the state amplitude bound is A= 2; and the
operating error bound is # = 0.1.

In Choi and Hammer (2017a), a numerical search process
showed that the nominal system is (5, 2)-controllable and that
the minimal time t∗ required for reaching the ball ρ(0.1) satis-
#es t∗ ≤ 0.3.

Our objective here is to use a search process to derive a
bang-bang feedback function ϕ± that approximates optimal
performance, driving ! from the initial state x0 to the domain
ρ(0.1) in close to minimal time. As the state amplitude bound
is A= 2 and an upper bound on the minimal time is 0.3, our
search domain is [0, 0.3] × [−2, 2]2 ⊆ R+ × R2. We partition
this domain into hyper-squares (cubes in this case) of edge λ =
0.01, and conduct a numerical search for bang-bang feedback
functions that take the system to the target domain as quickly as

possible. These functions are constant over each of these cubes,
maintaining one of the values −5 or 5 on each cube.

The goal of the search is to #nd a feedback function ϕ±
that guides ! to ρ(0.1) in the shortest time. The search is
conducted by searching for the best feedback function with a
speci#ed number of switchings. It starts by searching for the best
feedback function with no switchings; it proceeds by search-
ing for the best feedback function with one switching, mov-
ing the switching point around all coordinates; next, it searches
for the best feedback function with two switchings, again mov-
ing the switching points around all coordinates; and so on,
until no signi#cant further improvement in the minimal time
is obtained by increasing the number of switchings.

Our search result shows that optimal performance can be
approximated by the following simple bang-bang feedback
function, which has a total of 6 switchings:

ϕ±(t, x1, x2)

:=






5 if t ∈ [0, 0.05);
−5 if t ∈ [0.05, 0.14);
5 if t ∈ [0.14, 0.16) and |x2| ≥ 1.12;
−5 if t ∈ [0.14, 0.15) and 0.98 ≤ |x2| ≤ 1.01;
−5 if t ∈ [0.14, 0.16) and |x2| ≤ 0.86;
5 else.

(6.1)

The function ϕ± is inserted for the feedback function ϕ in the
control con#guration of Figure 1. As can be seen from (6.1),
this feedback function turns out to be independent of the
#rst state variable x1. Being a function of the two remaining
variables (t and x2), the function ϕ± can be depicted in the
three-dimensional graph shown in Figure 7; here, the vertical
coordinate represents the values of ϕ±, while the two hori-
zontal coordinates represent the variables t and x2. As can be
seen from the #gure, the number of switchings – namely, the
number of jumps of the function’s value – is quite small. A
low number of switchings makes the feedback function easy to
implement.

Figure 8 demonstrates the performance of this feedback
function on the following three representatives of our family of
systems:

Set 1: d1 = 21, d2 = −0.3, d3 = 10;

Set 2: d1 = 24, d2 = −0.2, d3 = 12;

Set 3: d1 = 27, d2 = −0.1, d3 = 14.

In the plot of Figure 8, the vertical axis represents the sum
x21(t) + x22(t), while the horizontal axis represents the time t.We
can read from the plot the following times, which show how
long it takes the system to reach the domain ρ(0.1) for each
parameter set (the initial state is x0 = [π/8,−2]!):

Set 1: 0.226 s;

Set 2: 0.225 s;

Set 3: 0.229 s.

Compare these times to the minimal time of 0.264 s achieved
by an open-loop controller in Choi and Hammer (2017a).
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Figure 7. The bang-bang feedback function ϕ± .

Figure 8. The closed-loop trajectories.

As expected, a closed loop system provides better performance;
in this example, we obtained an improvement of about 20% over
the performance of an open-loop controller.

In addition, the di!erent models of the controlled system !

reach the target very closely together; the discrepancy between
the longest time and the shortest time is only 0.004 seconds;
in other words, modelling uncertainty causes a dispersion of
about 0.7% with the feedback controller. This compares to a
discrepancy of 0.016 seconds in the open-loop case of Choi
and Hammer (2017a)), which represents a dispersion of about
3%. Thus, as one would expect, feedback control can reduce
the impact of uncertainties on performance; in this example,
feedback achieves an improvement by a factor of about 4 in
performance uniformity.

7. Conclusion

In this paper, we considered the existence and the implemen-
tation of optimal robust state-feedback controllers that take a
system to a target state in minimal time. We showed that such
controllers exist for a broad family of time-varying input-a"ne
nonlinear systems. Themain condition for the existence of such
optimal robust feedback controllers is a certain controllabil-
ity condition the nominal controlled system must satisfy. We
also showed that optimal performance can be approximated by
bang-bang feedback functions. Bang-bang feedback functions
are piecewise-constant functions of time and state, whose com-
ponents switch between the values −K and K; here, K is the
input signal amplitude bound of the controlled system. Bang-
bang feedback functions are simpler to calculate and implement
than general optimal feedback functions.

Many future research directions can be pursued in this area.
One important e!ort would be to generalise the results of the
current paper to classes of nonlinear systems that are more
general than the class of time-varying nonlinear input-a"ne
systems investigated here. Another important topic of future
research is the development of dedicated high-speed numeri-
cal algorithms for the derivation of nearly optimal bang-bang
feedback functions.

Disclosure statement
No potential con$ict of interest was reported by the authors.

References
Bardi, M., & Capuzzo-Dolcetta, I. (1997). Optimal control and viscos-

ity solutions of Hamilton-Jacobi-Bellman equations. Boston-Basel-Berlin:
Birkhauser.



INTERNATIONAL JOURNAL OF CONTROL 451

Bellman, R. E. (1954). Dynamic programming and a new formalism in the
calculus of variations. Proceedings of the National Academy of Sciences,
40(4), 231–235.

Boubaker, O., & Iriarte, R. (2017). Inverted pendulum in control theory
and robotics – from theory to new innovations. London: Institution of
Engineering and Technology.

Chakraborty, D., & Hammer, J. (2007). Optimizing system performance in
the event of feedback failure. Proceedings of the 6th international congress
on industrial and applied mathematics (pp. 2060009–2060010). Zurich,
Switzerland.

Chakraborty, D., & Hammer, J. (2008a). Bang-bang functions: Univer-
sal approximants for the solution of min-max optimal control prob-
lems. Proceedings of the international symposium on dynamic games and
applications, Wroclaw, Poland.

Chakraborty, D., & Hammer, J. (2008b). Preserving system performance
during feedback failure. Proceedings of the IFAC World congress, Seoul,
Korea.

Chakraborty, D., & Hammer, J. (2008c). Robust optimal control: Maxi-
mum time of low-error operation. Proceedings of the !fth international
conference of applied mathematics and computing, Plovdiv, Bulgaria.

Chakraborty, D., & Hammer, J. (2009a). Control during feedback fail-
ure: Characteristics of the optimal solution. Proceedings of the 17th
mediterranean conference on control and automation, Thessaloniki,
Greece.

Chakraborty, D., & Hammer, J. (2009b). Optimal control during feedback
failure. International Journal of Control, 82(8), 1448–1468.

Chakraborty, D., & Hammer, J. (2010). Robust optimal control: Low-error
operation for the longest time. International Journal of Control, 83(4),
731–740.

Chakraborty, D., & Shaikshavali, C. (2009). An approximate solution to
the norm optimal control problem. Proceedings of the IEEE interna-
tional conference on systems, man, and cybernetics (pp. 4490–4495). San
Antonio, TX, USA.

Choi, H.-L., & Hammer, J. (2017a). Fastest recovery after feedback dis-
ruption: Nonlinear delay-di!erential systems. International Journal of
Control, to appear.

Choi, H.-L., &Hammer, J. (2017b). Low error operation in open loop: Non-
linear systems with time delay. Proceedings of the IFAC World congress,
Toulouse, France.

Choi, H.-L., & Hammer, J. (2017c). Quick recovery after feedback loss:
Delay-di!erential systems. Proceedings of the international conference on
control, automation, and systems, Jeju, Korea.

Choi, H.-L., & Hammer, J. (2018a). Fastest recovery from feedback
loss: Bounded overshoot. International Journal of Control, to
apear.

Choi, H.-L., & Hammer, J. (2018b). Optimal robust control of non-
linear time-delay systems: Maintaining low operating errors during
feedback outages. International Journal of Control, 91(2),
297–319.

Choi, H.-L., & Hammer, J. (2018c). Recovering in minimal time from feed-
back loss: Bounded overshoots. In Proceeding of the american control
conference (pp. 4670–4675). Milwaukee, Wisconsin, USA.

Gamkrelidze, R. (1965). On some extremal problems in the theory of dif-
ferential equations with applications to the theory of optimal control.
SIAM Journal on Control, 3, 106–128.

Halmos, P. (1982).AHilbert space problembook. NewYork: SpringerVerlag.
Hammer, J. (2013). A simple approach to nonlinear state feedback design.

Proceedings of the asian control conference.
Hammer, J. (2014). State feedback control of nonlinear systems: A simple

approach. International Journal of Control, 87(1), 143–160.
Hammer, J. (2015). On simple design of nonlinear observers for robust sta-

bilization of nonlinear systems. Transactions of the ASME, Journal of
Dynamic Systems,Measurement, andControl, 137, 07101107101071011–1
–071011–10.

Kelendzheridze, D. (1961). On the theory of optimal pursuit. Soviet Math-
ematics Doklady, 2, 654–656.

Kruzkov, S. (1960). The cauchy problem in the large for certain nonlin-
ear #rst order di!erential equations.Doklady Akademii Nauk SSSR, 132,
36–39.

Luenberger, D. G. (1969).Optimization by vector space methods. New York:
Wiley.

Miranda, C. (1955). Equazioni alle derivate parziali di tipo ellittico. Berlin:
Springer-Verlag. English transl.: 1970 ed. Berlin: Springer-Verlag.

Neustadt, L. (1966). An abstract variational theory with applications to a
broad class of optimization problems I, general theory. SIAM Journal on
Control, 4, 505–527.

Neustadt, L. (1967). An abstract variational theory with applications to a
broad class of optimization problems II, applications. SIAM Journal on
Control, 5, 90–137.

Pontryagin, L., Boltyansky, V., Gamkrelidze, R., & Mishchenko, E. (1962).
The mathematical theory of optimal processes. New York, London:Wiley.

Sobolev, S. L. (1950). Applications of functional analysis in mathematical
physics. Leningrad: Izdat. Leningrad. Gos. Univ. (English transl.: 1963.
Providence, RI: Amer. Math. Soc.).

Spong,M.W., Hutchinson, S., &Vidyasagar,M. (2006).Robotmodeling and
control. New York: Wiley.

Warga, J. (1972). Optimal control of di"erential and functional equations.
New York: Academic Press.

Willard, S. (2004). General topology. Mineola, NY: Dover Publications.
Young, L. (1969). Lectures on the calculus of variations and optimal control

theory. Philadelphia: W. B. Saunders.
Yu, Z., & Hammer, J. (2016a). Fastest recovery after feedback disruption.

International Journal of Control, 89(10), 2121–2138.
Yu, Z., & Hammer, J. (2016b). Recovering from feedback failure in mini-

mal time. Proceedings of the 10th IFAC symposium on nonlinear control
systems, Monterey, California, USA.

Zeidler, E. (1985).Nonlinear functional analysis and its applications III. New
York: Springer-Verlag.


	1. Introduction
	2. Background and statement of the problem
	2.1. The controlled system
	2.2. Spaces and notation
	2.3. State-feedback functions
	2.4. Convergence and compactness
	2.5. Compositions and graphs
	2.6. Formal statement of objectives
	2.7. Benefits of a feedback solution

	3. Feedback and continuity
	3.1. Conditional controllability
	3.2. Continuity and convergence
	3.3. Feedback with input signal
	3.4. Equivalent configurations and convergence

	4. Existence of optimal feedback functions
	5. Approximating optimal performance
	5.1. Noise and disturbances
	5.2. Approximating optimal performance

	6. Example
	7. Conclusion
	Disclosure statement
	References

