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Abstract—Bang-bang feedback controllers can perform a wide
range of global control tasks for nonlinear systems, and they
are relatively easy to design and implement. This note presents
a design framework that yields such controllers with minimal
switchings. A low number of switchings reduces controller
processing load, reduces mechanical wear, improves performance,
and simplifies implementation.

This note is a didactic and intuitive exposition of some topics
from a recent publication by the author.

Index Terms—Bang-bang control, Global state feedback, Ro-
bust Control, Global stabilization.

I. INTRODUCTION

Bang-bang controllers are among the simplest global con-
trollers. They generate signals that switch between two con-
stant values: the positive and the negative input bounds of
the controlled system. It was shown recently that, for a
large family of nonlinear systems, bang-bang controllers can
approximate performance of any controllers ([1], [2], [3],
[4], [5]). Bang-bang controllers are simpler to design and
implement than other types of controllers.

The objective of this note is to provide a didactic and
intuitive exposition of topics from a recent publication by the
author ([6]). The note presents a framework for the design
of robust global bang-bang controllers that utilize a minimal
number of switchings. Reducing the number of switchings
reduces controller processing load, reduces mechanical wear,
evens performance, and simplifies implementation. The frame-
work is utilized in the note to design global state-feedback
controllers that asymptotically globally stabilize nonlinear
systems.

Consider the feedback configuration of Figure 1. Here, the
controlled system Σ has its state x(t) as output. The input
u(t) of Σ is generated by the state-feedback controller φ. The
closed-loop system is denoted by Σφ.

The system Σ is subject to modeling uncertainty, and it has
an input amplitude bound of K > 0. A bang-bang controller φ
must be robust to properly control all variants of Σ; the signal
u(t) it generates is piecewise constant with components that
switch between K and −K. The system Σ is also subject to
a constraint of A > 0 on its state amplitude.

In general, a bang-bang controller can bring the controlled
system to the vicinity of the zero state, but it cannot maintain
the system at the zero state. To achieve asymptotic stabiliza-
tion, the control process consists of two stages that depend on

Σ

φ

x (t) = Σφ(x0, t)

Σφ

z (t)

u(t) = φ(x (t))

Fig. 1. State feedback diagram

the following assumption: (denote by ρ(χ) := {(x⊤x)1/2 ≤
χ} the ball of radius χ around the origin of state space.)

Assumption 1. There is a real number χ > 0 such that the
controlled system Σ can be approximated by a stabilizable
linear system Λ for all initial states in ρ(χ). □

Design Principles 1.
Stage 1: A robust bang-bang state-feedback controller φbb

drives Σ to ρ(χ), using a minimal number of switchings.
Stage 2: A linear state-feedback controller ϕ asymptotically
drives Λ from ρ(χ) to the origin. □

This note centers on Stage 1 of Design Principle 1. The
construction of linear controllers for Stage 2 is well known
(e.g., [7]).

The present note is motivated by the fact that bang-bang
controllers are easy to implement and that they – or closely
related pseudo bang-bang controllers – can approximate the
performance of every controller for large families of nonlinear
systems ([1], [4], [5]).

Originally, bang-bang signals were used in minimum-time
optimal control of linear systems ([8]). More recent related
work can be found in [9], which shows that robustly asymptot-
ically stable closed loops can be achieved by an interpolation
technique; and [10], which considers vertex control of linear
discrete-time systems. More related papers are referenced
in [11], which reviews theoretical aspects of pseudospectral
optimal control related to flight control systems. A general
background on nonlinear systems can be found in [12], in
the references cited there, and in many other publications. An
expanded and more technical discussion of the topics covered
in this note is found in [6]. As far as we know, there are no
other publications that describe general design of bang-bang
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controllers with minimal switchings.
The note is organized as follows. Notation and basics

are in Section II, while Section III examines features of
bang-bang controllers. Section IV discusses some facts used
in Sections V and VI to derive bang-bang controllers with
minimal switchings. Section VII is an example, and Section
VIII provides a short summary.

II. BASIC NOTIONS

Denote by Rq all column vectors with q real components
and by R+ the non-negative real numbers; |r| is the absolute
value of a real number r, and |V | := maxi,j |Vij | is the L∞-
norm of a matrix V = (Vij) ∈ Rn×m. The L∞-norm, also
called the amplitude, of a function W (·) : R+ → Rn×m

is |W |∞ := supt≥0 |W (t)|. For a real number B > 0, let
[−B,B]q be the set of all x ∈ Rq with |x| ≤ B.

A. The class of systems

The controlled systems are time-invariant nonlinear systems
of the form

Σ :
ẋ(t) = f(x(t), u(t)), t ≥ 0,

x(0) = x0;
(1)

here, the time is t, the state is x(t) ∈ Rn, the input is u(t) ∈
Rm, and f is the recursion function. Initial states x0 are in
the ball ρ(σ), where σ > 0 is specified.

To incorporate uncertainty about the model of Σ, we repre-
sent the recursion function f as a sum of two functions

f(x, u) = f0(x, u) + fγ(x, u),

f0(0, 0) = 0; fγ(0, 0) = 0.
(2)

Here, f0 is the specified nominal recursion function, and fγ
is an unknown uncertainty function. Both f0 and fγ are twice
continuously differentiable. The nominal system is

Σ0 :
ẋ(t) = f0(x(t), u(t)), t ≥ 0,

x(0) = x0.
(3)

As Σ has an input amplitude bound of K, permissible input
signals are members of the class

U(K) := {u : R+ → Rm : |u|∞ ≤ Kand u is measurable}

In practice, systems must achieve their control objectives
without exceeding safe state amplitudes, as follows.

Assumption 2. The system Σ can achieve its control objec-
tives without exceeding a state amplitude of A > 0. □

As f0 and fγ are twice continuously differentiable, the mean
value theorem and continuity of the first derivatives imply the
existence of bounds B and γ such that

|f0(x, u)− f0(x
′, u′)| ≤ B(|x− x′|+ |u− u′|),

|fγ(x, u)− fγ(x
′, u′)| ≤ γ(|x− x′|+ |u− u′|),

(4)

for all x, x′ ∈ [−A,A]n and u, u′ ∈ [−K,K]m. We call γ the
uncertainty parameter; it is usually a small number.

The controllers we build are robust – they appropriately
control the entire following family of systems.

Notation 1. Let K,A, σ, γ > 0 be real numbers. Denote by
Fγ(Σ0) the family of all systems of the form (1) for which
Assumption 2 holds, the recursion function f satisfies (2) and
(4), and the following apply.
(i) Input signals are bounded by K and state amplitudes are
bounded by A.
(ii) Initial states are in ρ(σ).
(iii) All members of Fγ(Σ0) have the same initial state.
(iv) All members of Fγ(Σ0) share the same state feedback
controller φ. □

Item (iii) is because the state feedback of Figure 1 com-
municates the initial state. Item (iv) indicates robustness: the
same controller is appropriate for all of Fγ(Σ0).

By Design Principle 1, no bang-bang controller is needed
for initial states in ρ(χ); there, the system can be asymptot-
ically guided to the origin by a linear feedback controller.
As our discussion revolves exclusively around bang-bang
controllers, we assume that initial states are in ρ(σ) for σ > χ.

III. BANG-BANG CONTROLLERS

At each time, a signal produced by a bang-bang controller
as input to a system Σ with m inputs is a vector with m entries
of K or −K, i.e., it is a member of the family

C(m) :=
{
υ = (υ1, υ2, . . . , υm)⊤ : |υi| = K, i = 1, . . . ,m

}
Thus, at each time, there are 2m possible signal values. For
instance, for m = 1, C(1) = {K,−K}; and for m = 2, C(2)
= {(K,K)⊤, (K,−K)⊤, (−K,K)⊤, (−K,−K)⊤}.

Bang-bang controllers generate piecewise constant signals
and re-evaluate their value from time to time. The time span
between two such re-evaluations is called a bang-bang step.
The length of bang-bang steps may vary from step to step.
Signals may retain the same value for consecutive steps, so
the number of switchings may be lower than the number of
bang-bang steps. The following comes to limit the time of the
control process.

Guideline 1. The length of a bang-bang step is bounded by
T > 0. □

By Design Principle 1, we need to guide the controlled
system Σ from an initial state x0 ∈ ρ(σ) to a state in ρ(χ).
Any state in ρ(χ) is appropriate; by contrast, x0 is specific. It
is therefore easier to use reverse-time: start from the entire set
ρ(χ), and find a simplest bang-bang signal leading backwards
to x0. Upon reversing time back to original, this yields a
simplest bang-bang signal that takes Σ from x0 to ρ(χ). This
signal is then implemented by feedback.

We start by considering the nominal system Σ0 of (3). Later,
we show that controllers designed for the nominal system
can be chosen to be robust to accommodate the entire family
Fγ(Σ0).

To reverse the time for Σ0, substitute θ := −t; this yields
the reversed-time system

Γ0 :
ξ̇(θ) = −f0(ξ(θ), υ(θ)), θ ≥ 0,

ξ(0) = ξ0,
(5)



with state ξ(θ) ∈ Rn and input υ(θ) ∈ Rm. In order to build
flexibility to accommodate all members of Fγ(Σ0), we set the
target for Σ0 as ρ(χ/2) rather than ρ(χ). Thus, the reversed-
time system Γ0 starts from ρ(χ/2).

The derivation of bang-bang controllers depends on certain
features of differential equations discussed next.

IV. BOUNDARIES AND SETS

During each bang-bang step, the system Γ0 receives con-
stant input υ, so it is described by a differential equation
ξ̇(t) = −f0(ξ(t), υ), which is, in fact, an autonomous dif-
ferential equation with no input. As f0 is twice continuously
differentiable, we can use the following fact (e.g., [13]).

Theorem 1. For any constant input υ and initial state ξ0,
there is a time Θ > 0 for which the differential equation (5)
has a unique solution ξ(t), t ∈ [0,Θ]. □

In practice, Θ is usually very large or infinite.
The reachable set R0(θ, υ, S) is the set of states reached

by Γ0 at time θ from a set S ⊆ Rn of initial conditions, using
a constant input υ ∈ C(m). The flow function F0(θ, υ) : S →
R0(θ, υ, S) is defined by

R0(θ, υ, S) = F0(θ, υ)S. (6)

Time invariance of Γ0 implies the following.

Proposition 1. F0(θ2, υ)S = F0(θ2 − θ1, υ)F0(θ1, υ)S for
any times θ1 ≤ θ2 ≤ Θ. □

The flow function has the following important feature (e.g.,
[13]):

Theorem 2. The function F0(θ, υ) : S → R0(θ, υ, S) is
injective and continuous on S. It is also a continuous function
of the time θ. □

As F0(θ, υ) is onto by definition, Theorem 2 yields

Corollary 1. F0(θ, υ) : S ∼= R0(θ, υ, S) is a homeomor-
phism. □

A. Fully connected sets

The following describes sets with no ‘holes’.

Definition 1. A fully connected set S ⊆ Rn is a set that is
homeomorphic to a ball in Rn. □

For instance, ellipsoids are fully connected sets. A fully
connected set has no holes; it is completely specified by its
outer boundary. Calculating the outer boundary is less compu-
tationally taxing than calculating the entire set. For example,
if each axis is partitioned into 100 intervals, then calculating
the outer boundary requires 100 times fewer computations
than calculating all points of the set. The following is a
result of the fact that composition of homeomorphisms is a
homeomorphism.

Lemma 1. If D,D′ ⊆ Rn are homeomorphic sets and D is
fully connected, then so is D′. □

Next, Corollary 1 and Lemma 1 imply that reachable sets
preserve fully connectedness, as follows.

Proposition 2. If S ⊆ Rn is fully connected, so is R0(θ, υ, S)
at all times θ ∈ [0,Θ] and for all inputs υ ∈ C(m). □

In addition, since a homeomorphism maps boundary points
to boundary points, we have the following.

Proposition 3. For any set S ⊆ Rn, the boundary of
R0(θ, υ, S) is the image of the boundary of S by F0(θ, υ).
□

Propositions 3 and 1 imply that boundaries progress recur-
sively in time:

Proposition 4. The boundary of R0(θ2, υ, S) is the image of
the boundary of R0(θ1, υ, S) through F0(θ2 − θ1, υ), where
θ1 ≤ θ2 ≤ Θ and υ ∈ C(m). □

In Sections V and VI, we show that reachable sets are the
basis for constructing bang-bang state-feedback controllers. As
the initial conditions set for the reversed-time system Γ0 is
ρ(χ/2) – a fully connected set, all reachable sets are fully
connected by Proposition 2; therefore, they are determined
by their outer boundaries. By Proposition 4, these boundaries
can be computed in a progressive-recursive manner: after
computing the boundary at time θ, it can be used to compute
the boundary at θ+ dθ, dθ > 0, without calculating the entire
time interval from 0 to θ + dθ.

Recall that a bang-bang step duration is bounded by T . The
set R∗

0(υ, S) of all states accessible by Γ0 during [0, T ] from
a set S of initial states, using a constant input υ ∈ C(m), is

R∗
0(υ, S) =

⋃
θ∈[0,T ]

R0(θ, υ, S). (7)

V. MINIMAL SWITCHINGS

Let us examine bang-bang state-feedback controllers for
the nominal controlled system Σ0. We show in Section VI
that, if appropriately chosen, such controllers can be robust
to properly control the entire family Fγ(Σ0). For the nominal
system, we use ρ(χ/2) as the target set, rather than ρ(χ),
to leave a margin for uncertainties. The next procedure uses
the reversed-time system Γ0 of (5) to build a foundation for
controller design.

Procedure 1. Let x0 ∈ ρ(σ) be the initial state of Σ0, and
refer to (7)
Step 0: Set S0 := ρ(χ/2).
Step i: For i = 1, 2, ..., construct recursively the sets

Si :=
⋃

υ∈C(m)

R∗
0(υ, Si−1), i = 1, 2, . . . (8)

End: Terminate if there is an integer k ≥ 0 satisfying

x0 ∈ Sk.

If k exists, let p be the first such k. □

The computation of the sets {Si}pi=0 of Procedure 1 is not
as complex as it might seem. By (8), the set Si consists of the



sets R∗
0(υ, Si−1), which, by (7), consist of the sets ρ(χ/2),

R0(θ, υ, ρ(χ/2)), R0(θ, υ,R0(θ, υ, ρ(χ/2 ))), . . . As ρ(χ/2)
is fully connected, Proposition 2 shows that these sets are
all fully connected, and hence they are determined by their
outer boundaries. For the computation of these boundaries, a
relatively coarse grid can be used, as discussed in Section VI
and demonstrated in the example of Section VII. This results in
an acceptable computational effort for most practical systems.

The next construction derives a bang-bang input signal that
takes Γ0 from ρ(χ/2) to x0.

Construction 1. Use the notation of Procedure 1, and assume
that p ≥ 1 (if p = 0, then x0 is in the target set).
Step 0: By (8), there is an input υp ∈ C(m) satisfying
x0 ∈ R∗

0(υp, Sp−1). Denote ξp := x0.
Step i: For i = 1, 2, . . . , p − 1, it follows by (8) that there
are a state ξp−i ∈ Sp−i and an input υp−i ∈ C(m) satisfying
ξp−i ∈ R∗

0(υp−i, Sp−i−1).
Therefore, there are a state ξp−i−1 ∈ Sp−i−1 and a time
t′p−i ∈ [0, T ] for which ξp−i = Γ0(ξp−i−1, υp−i, t

′
p−i).

When i = p, then ξ0 ∈ ρ(χ/2). □

In the notation of Construction 1, set

ti := t′p + t′p−1 + · · ·+ t′p−i, i = 1, 2, . . . , p− 1,

and define the bang-bang signal

ubb(t) = switch to υp−i at t = ti, i = 1, 2, . . . , p− 1. (9)

Let Σ0(x0, u, t) be the state of Σ0 at time t, after being driven
by input u from initial state x0. Reversing time to t = −θ,
Construction 1 yields

ξp−i = Σ0(x0, ubb, ti−1), i = 1, 2, . . . , p, t ≥ 0. (10)

This proves that ubb takes Σ0 from x0 to ρ(χ/2), as follows.

Theorem 3. Assume that p ≥ 1 in Procedure 1. The bang-
bang input signal ubb of (9) guides Σ0 from x0 to a state ξ0 ∈
ρ(χ/2), invoking a minimal number p of bang-bang steps. □

The states ξ0, ξ1, . . . , ξp of Construction 1 determine a bang-
bang state-feedback controller, as follows.

Construction 2. Adopt the notation of Procedure 1 and
Construction 1, and assume that p exists.
If p = 0, then x0 ∈ ρ(χ/2) and no bang-bang controller is
needed.
If p > 0, set xi := ξp−i, i = 0, 1, . . . , p, so that (10) yields
xi = Σ0(xi−1, υi, ti − ti−1), i = 1, 2, . . . , p. This leads to the
bang-bang state-feedback controller

φbb(x) := switch to υi at state xi, i = 1, . . . , p− 1.□

Our discussion so far proves the following.

Theorem 4. Assume the notation of Procedure 1 and Con-
struction 2. If there is an integer p∗ ≥ 0 for which ρ(σ) ⊆ Sp∗ ,
then Σ0 can be taken to ρ(χ/2) from every initial state
x0 ∈ ρ(σ), using a bang-bang state-feedback controller with
no more that p∗ − 1 switchings. □

VI. ROBUST CONTROLLERS

The controlled system Σ of Figure 1 is an unspecified mem-
ber of the family Fγ(Σ0). This brings about an uncertainty in
the response of the controlled system. This uncertainty must
be accommodated by the controller φ. The next statement
quantifies the uncertainty. In the statement, [a]+ is the smallest
integer bigger than the real number a.

Lemma 2. Refer to (4). Let ubb be a bang-bang signal with
p ≥ 1 bang-bang steps applied to Σ ∈ Fγ(Σ0) with initial
state x0. Let x′

k and xk be the state of Σ and Σ0, respectively,
at the end of step k of ubb. Then, there is an integer r ≥ 1
such that |x′

k − xk| ≤ 2krγA/B, k ∈ {1, 2, . . . , p}.
Specifically, r = [2TB]+.

Proof sketch. Let εk := |x′
k − xk|, so that ε0 = |x′

0 − x0| =
|x0 − x0| = 0. Let t1 < t2 be times during step k + 1 of
ubb. Then, using Guideline 1 and time invariance, we have
t1, t2 ∈ [0, T ], and, by (4),

|x′(t2)− x(t2)| ≤ |x′(t1)− x(t1)|+

+

∫ t2

t1

|f0(x′(τ), υ)− f0(x(τ), υ)|dτ

+

∫ t2

t1

|fγ(x′(τ), υ)|dτ

≤ |x′(t1)− x(t1)|
+B sup

t∈[t1,t2]

|x′(t)− x(t)|(t2 − t1) + γA(t2 − t1).

Select the difference η := t2 − t1 so that r := T/η is an
integer and ηB ≤ 1/2. Then, rearranging terms,

sup
t∈[t1,t2]

|x′(t)− x(t)| ≤ 2|x′(t1)− x(t1)|+ 2γAη.

Set t1 := (i − 1)η and denote ζi := supt∈[(i−1)η,iη] |x′(t) −
x(t)| to obtain the recursion

ζi+1 ≤ 2ζi + γA/B, i = 0, 1, . . . , r − 1,

ζ0 = εk.

This yields

ζi ≤ 2r(εk + γA/B), i ∈ {0, 1, . . . , r}.

As ζr = εk+1, we obtain

εk+1 ≤ 2r(εk + γA/B), k = 0, 1, . . . , p− 1, ε0 = 0,

so that

εk ≤ 2krγA/B ≤ 2prγA/B, k ∈ {1, 2, . . . , p}

From Lemma 2, we get the following.

Corollary 2. Let δ1, δ2, . . . , δp > 0 be real numbers and use
the notation of Lemma 2. If γ ≤ mink=1,2,...,p {δkB/(2krA)},
then |x′

k − xk| ≤ δk for all k = 1, . . . , p. □

As Σ0 is guided into ρ(χ/2), to get every member Σ ∈
Fγ(Σ0) into ρ(χ) we need δp ≤ χ/2 in Corollary 2, so that



Corollary 3. if γ ≤ χB/(2rp+1A), then ubb guides every
member Σ ∈ Fγ(Σ0) into ρ(χ). □

Denote by ρ(x, δ) a ball of radius δ > 0 centered at x.
Then, (6), Corollary 1, (7), and (8) yield

Lemma 3. Assume that x1 is chosen to be an interior point
of Sp−1. Then, there are real numbers δ1, δ2, . . . , δp > 0 for
which ρ(xi, δi) ⊆ Sp−i, i = 1, 2, . . . , p. □

The next statement is a consequence of Corollaries 2 and
3 and Lemma 3. It lists uncertainty parameters γ that allow
proper control of the entire family Fγ(Σ0).

Proposition 5. Let δ1, δ2, . . . , δp be as in Lemma 3 and
let ubb be a bang-bang input signal that guides Σ0 from
initial state x0 to ρ(χ/2). If γ ≤ mink=1,2,...,p {δkB/(2krA),
χB/(2rp+1A)}, then ubb guides every system Σ ∈ Fγ(Σ0) to
ρ(χ), passing S1, S2, . . . , Sp−1 along the way. □

Proposition 5 allows us to modify Construction 2 to make
the state-feedback controller φbb robust, as follows.

Construction 3. Robust bang-bang state-feedback.
In the notation of Construction 2, Corollaries 2 and 3,

Lemma 3, and Proposition 5, the following bang-bang state-
feedback controller φbb takes every member Σ ∈ Fγ(Σ0)
from the initial state x0 ∈ ρ(σ) to ρ(χ), passing through
S1, S2, . . . , Sp−1.

φbb(x) =
(11){

υ1 if x = x0

switch to υk when x enters ρ(xk−1, γ(2
(k−1)rA)/B),

k = 2, 3, . . . , p. □

The validity of Construction 3 is a consequence of Lemma 2
and Proposition 5. We record this fact as the following central
statement of this section.

Theorem 5. The bang-bang state-feedback controller φbb of
(11) takes every member Σ ∈ Fγ(Σ0) from a state x0 ∈ ρ(σ)
to ρ(χ) with a minimal number of bang-bang steps. □

The controller φbb of Construction 3 satisfies the require-
ments of Design Principle 1 Stage 1. It exists whenever
Construction 2 terminates in a finite number of steps.

The computational complexity required by Construction 3
is not as overwhelming as might seem at first. It requires
calculating the sets Si, i = 1, 2, . . . , p, which are determined
by reachable sets R0(θ, υ, ·). As we need to find only interior
points of the sets Si, we do not need a highly accurate
description of their boundaries. Consequently, it is enough to
find R0(θ, υ, Si−1) at a few points θ ∈ [0, T ] in each step.
As the latter are unions of fully connected sets, only the outer
boundaries of the corresponding fully connected sets need to
be calculated. We demonstrate this process in the example of
the next section.

VII. EXAMPLE

Our example is based on the Michaelis-Menten equation,
which has important applications in environmental sciences,
molecular biology, and pharmacokinetics (e.g., ([14], [15],
[16]). The following modified version of the equation de-
scribes our controlled system.

Σ :

ẋ1(t) =
a(x2(t) + 2)x1(t)

b+ x2(t)
− u(t),

ẋ2(t) = −cx2(t)(x1(t) + 2)

5 + x2(t)
;

here, the state is x(t) = (x1(t), x2(t))⊤, and the input is u(t).
The constants a, b, and c have nominal values a0 = 3, b0 =
5, and c0 = 5 with uncertainty intervals a ∈ [2.9, 3.1], b ∈
[4.9, 5.1], and c ∈ [4.9, 5.1]. The input amplitude bound is
K = 1; the limit on the duration of each bang-bang step is
T = 3; initial conditions are in the disk ρ(0.5); the target set
is ρ(0.2); and C(m) = C(1) = {−1, 1}. The reversed-time
nominal system is

Γ0 :

ξ̇1(θ) =
−3(ξ2(θ) + 2)ξ1(θ)

5 + ξ2(θ)
+ u(θ),

ξ̇2(θ) =
5ξ2(θ)(ξ1(θ) + 2)

5 + ξ2(θ)
,

with the state ξ = (ξ1, ξ2)⊤; the input signal u(θ) ∈ {−1, 1};
and the target set ρ(χ/2) = ρ(0.1). Proceeding with Procedure
1, calculate the outer boundaries of the reachable sets, starting
from the boundary c(0.1) of ρ(0.1). To calculate the set S1

we need R∗
0(−1, c(0.1)) and R∗

0(1, c(0.1)).
A brief numerical study shows that a good estimate of

R∗
0(−1, c(0.1)) can be obtained from the outer boundaries of

R0(θ,−1, c(0.1)) for θ = 0, 0.833, 1.666, 2.5. The resulting
R∗

0(−1, c(0.1)) is given by domain A of Figure 2(i). An
approximation of R∗

0(1, c(0.1)) is obtained from the outer
boundaries of R0(θ, 1, c(0.1)) for θ = 0, 0.5, 1.0, 1.5, as
depicted by domain A of Figure 2(ii). These are outcomes of
the first reverse bang-bang step.

The second reverse bang-bang step starts from domain A.
Exploiting the fact that the reachable sets building domain A
are monotone increasing, it is enough to calculate the sets
R∗

0(1,R0(2.5,−1, c(0.1))) and R∗
0(−1,R0(1.5, 1, c(0.1))).

An approximation of the former can be obtained from
the outer boundaries of R0(θ, 1,R0(2.5,−1, c(0.1))) for
θ = 0, 0.366, 0.733, 1.1; while an approximation of the
latter is obtained from R0(θ,−1,R0(1.5, 1, c(0.1))) for θ
= 0, 0.25, 0.5, 0.75. Then, R∗

0(1,R0(2.5,−1, c(0.1))) is
approximately domain B of Figure 2(i), while the domain
R∗

0(−1,R0(1.5, 1, c(0.1)) is approximately domain B of Fig-
ure 2(ii).

It can be seen from Figure 2 that the union of domains A and
B includes the entire disk ρ(0.5) of initial states. Therefore,
reversing the time to its original direction, we conclude that
the target ρ(0.1) is reachable from all initial states in ρ(0.5)



with at most one switching (at most two bang-bang steps). In
Figure 2(i), initial states in domain A can reach ρ(0.1) with
the input υ = −1 (no switching). States in domain B require
two bang-bang steps: start with υ = 1 and switch to υ = −1
at an interior point of domain A.

In Figure 2(ii), initial states in domain A can reach ρ(0.1)
with the input υ = 1. For initial states in domain B, start with
υ = −1 and switch to υ = 1 at an interior point of domain
A.

The following is an example of a bang-bang state-feedback
controller that starts from the initial state x0 = (−0.2, 0.4)⊤

in domain B of Figure 2(i) (the uncertainty domain of the
switching point is given here as a rectangle):

φbb(x
1, x2) = (12)

+1 if (x1, x2) = (−0.2, 0.4) (initial state)
switch to − 1 when (x1, x2) enters

[−0.669,−0.665]× [0.320, 0.322].

The path of Σ0 with this feedback appears as a thin line in
Figure 2(i) (a single case is drawn to prevent clutter).
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Fig. 2. Bang-bang step domains

The time response with the feedback controller (12) is
shown in Figure 3, together with the signal generated by the
feedback controller.

VIII. CONCLUSION

This note describes the design of robust bang-bang state-
feedback controllers that achieve their task with a minimal
number of switchings. These controllers help achieve asymp-
totic stabilization of a large family of nonlinear systems. The
design procedure applies to any switching controllers, namely,
to any controllers that produce signals with components that
switch between two fixed levels.
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Fig. 3. The time response
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