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ABSTRACT
The existence and implementation of optimal robust state-feedback controllers that achieve optimal track-
ing over the infinite horizon is considered. The objective is to minimise over all times the deviation of a
nonlinear system from a specified target state. It is shown that optimal robust state-feedback controllers
that achieve this objective exist for a broad class of nonlinear input-affine systems. It is also shown that
optimal performance can be approximated by state-feedback controllers that are relatively easy to design
and implement.
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1. Introduction

Tracking over the in!nite horizon, namely, keeping a system’s
response close to a speci!ed target at all times, is a common
objective in many applications of modern control engineering.
Examples of applications where tracking is a central require-
ment include airplane autopilot systems, missile guidance sys-
tems, control systems for self-driving cars, controllers for per-
sonal transport systems, and many others. Tracking systems are
also critical in biomedical applications, such as the automatic
control of blood glucose concentration for diabetes patients, or
the automatic control of heart pacers for heart disease patients.

The present paper develops optimal robust state-feedback
controllers that guide a controlled system to track a target
state as closely as possible, while facing modelling uncertain-
ties, disturbances, and constraints on the controlled system’s
input and state amplitudes. The discussion applies to nonlinear
input-a"ne systems. Special attention is devoted to implemen-
tation; the paper provides a relatively simple methodology for
the design and the implementation of state-feedback controllers
that approximate optimal performance.

The controllers considered in this paper are optimal robust
state-feedback controllers represented by a state-feedback func-
tion ϕ, as depicted in Figure 1. The controller’s task is to main-
tain the state of the controlled system " as close as possible to a
speci!ed target state xtarget at all times t ≥ 0, while" facesmod-
elling uncertainties, disturbances, and constraints on maximal
control e#ort. By appropriately shifting the state coordinates of
", we can assume that xtarget is the zero state x = 0, namely, the
origin of state space.

In Figure 1, the state of the controlled system " at a time
t is x(t). The input signal u(t) of " is generated by the state-
feedback function ϕ, so that u(t) = ϕ(t, x(t)). The closed-loop
system is denoted by"ϕ . The con!guration of Figure 1 is a pure
state-feedback con!guration – no external input signal is neces-
sary. The response x(t) of the closed-loop system is determined
by the initial state x0 of " and by the state-feedback function ϕ.
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We denote this response by "ϕ(x0, t). Our objective is to !nd
state-feedback functions ϕ that keep the response "ϕ(x0, t) as
close as possible to the target state x = 0 at all times t ≥ 0,
while" is subject to modelling uncertainties, disturbances, and
constraints on its input and state amplitudes.

The controlled system " is a nonlinear input-a"ne system,
whose model is not precisely speci!ed. To represent control
e#ort constraints commonly faced by engineers in the !eld, we
impose a boundK > 0 on the amplitude of the input signal of"
and a boundA> 0 on the amplitude of the state signal of". Vio-
lating these constraints endangers the integrity of the controlled
system ".

The state-feedback functions ϕ derived in this paper respect
all constraints imposed by the controlled system". In addition,
these feedback functions are robust, namely, they achieve the
control objective as best as possible, in the face of errors and
disturbances that may a#ect the controlled system ".

Uncertainties inherent in the structure, the operation, and
the environment of practical control systemsmake it impossible
to maintain the target state x = 0 with absolute precision; some
deviation from the target state is unavoidable. Our objective is to
design optimal robust state-feedback functions that achieve the
smallest possible deviation from the target state, despite mod-
elling uncertainties, disturbances, and constraints that a#ect the
controlled system ". Speci!cally, for a state-feedback function
ϕ, let #(ϕ) be the maximal deviation of the closed-loop system’s
state from the target state x = 0 over all times t ≥ 0. Our goal is
to !nd optimal robust state-feedback functions ϕ∗ that achieve
the smallest possible deviation #∗ = infϕ #(ϕ). In other words,
we look for optimal state-feedback functions ϕ∗ that satisfy the
relation

#(ϕ∗) = #∗. (1.1)

An important aspect of our discussion is the consideration of
the in!nite time horizon: we require the closed-loop system
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Figure 1. State-feedback configuration.

to achieve the smallest deviation from its target state over all
times t ≥ 0. As a consequence, the state-feedback functions we
derive also achieve, in a sense, robust asymptotic stabilisation of
the controlled system ", as they achieve the minimal deviation
from the origin over all times.

One cannot ignore potential di"culties in the design and
implementation of optimal state-feedback functions. Generally,
optimal state-feedback functions are measurable multi-variable
vector-valued functions of time; they can be di"cult to calcu-
late and implement. In Section 7, we discuss amethodology that
facilitates relatively simple design and implementation of state-
feedback functions that produce close-to-optimal performance.
We can summarise our objectives as follows.

Problem 1.1: (i) Under what conditions are there optimal
robust state-feedback functions ϕ∗ that keep the closed-
loop system of Figure 1 as close as possible to its target
state, while facing modelling uncertainties, disturbances,
and constraints on the input and state amplitudes.

(ii) When such optimal robust state-feedback functions exist,
!nd state-feedback functions that approximate optimal
performance and are relatively easy to design and imple-
ment.

The existence of optimal robust state-feedback functions
that satisfy the requirements of Problem 1.2(i) is discussed in
Section 6, where we show that such state-feedback functions
exist under rather general conditions. Speci!cally, we show
that such state-feedback functions exist for nonlinear input-
a"ne systems that satisfy a certain controllability condition
– the condition of constrained controllability (Choi & Ham-
mer, 2018b, 2019b), which is reviewed and re!ned in Section 4.
In qualitative terms, constrained controllability requires that
there be an input signal that drives the controlled system "

to the vicinity of the target state x = 0, without violating input
amplitude and state amplitude bounds.

In addition, we point out in Section 4 that constrained con-
trollability is, in fact, also close to being a necessary condition for
the existence of solutions of Problem 1.2(i). Thus, constrained
controllability is a tight su"cient condition for the existence of
optimal state-feedback controllers that ful!ll the requirements
of Problem 1.2(i).

Part (ii) of Problem 1.2 is addressed in Section 7, where
we show that optimal performance can be approximated as
closely as desired by bang-bang state-feedback functions; these
are piecewise constant state-feedback functions, whose compo-
nents switch between the two values of −K and K, where K

is the input amplitude bound of the controlled system. Bang-
bang state-feedback functions are easier to calculate and imple-
ment than state-feedback functions in general. Indeed, when
the controlled system " has m input components, bang-bang
functions take values in a !nite set with only 2m points – the
set of all combinations of −K and K in m components. This
compares favourably to general state-feedback functions, whose
components take arbitrary values in the continuum [−K,K].
Bang-bang state-feedback functions can approximate optimal
performance of other optimisation problems as well, such as
minimal time control (Hammer, 2019). Note also that, thanks
to the fact that the state amplitude may not exceed the spec-
i!ed error bound A, the domain over which the bang-bang
state-feedback function must be constructed is limited.

The present paper expands the framework of Chakraborty
and Hammer (2008, 2009, 2010), Chakraborty and Shaik-
shavali (2009), Yu and Hammer (2016), Choi and Ham-
mer (2018a, 2019a, 2019b) and Hammer (2019) to applications
involving state-feedback over an in!nite time horizon. In addi-
tion to optimal tracking, the methodology derived in this paper
also achieves robust asymptotic stabilisation of nonlinear input-
a"ne systems by state feedback.

The considerations in this paper draw on classical studies in
the theory of optimal control, including Kelendzheridze (1961),
Pontryagin et al. (1962), Gamkrelidze (1965), Neustadt (1966,
1967), Luenberger (1969), Young (1969), andWarga (1972), the
references cited in these studies, and many others. Yet, it seems
that the topics of this paper – the existence, the design, and
the implementation of optimal robust state-feedback controllers
for optimal tracking over an in!nite time horizon in the pres-
ence of modelling uncertainties, disturbances, and operational
constraints – have not been previously resolved in the literature.

The paper is organised as follows. Section 2 introduces the
class of systems under consideration. A formal statement of
Problem 1.2 is provided in Section 3. The notion of constrained
controllability, which forms the main requirement for the exis-
tence of optimal controllers, is reviewed and re!ned in Section 4.
Section 5 deals with some general properties of state-feedback
controllers. The existence of optimal solutions of Problem 1.2(i)
is considered in Section 6. The approximation of optimal per-
formance by bang-bang state-feedback functions is discussed
in Section 7. Section 8 provides an example, and the paper
concludes in Section 9 with a brief summary.

2. Systems and state-feedback functions

2.1 The controlled system’smodel

Let R be the compacti!ed set of real numbers (i.e. the real num-
bers augmented by ±∞); let R+ be the set of all non-negative
real numbers; and letRn be the set of n-dimensional real vectors.
The absolute value of a real number r is |r|. The L∞-norm of
an n × m matrix V = (Vij) ∈ Rn×m is |V| := maxij |Vij|. For a
matrix-valued function W : R+ → Rn×m : t (→ W(t), the L∞-
norm (also called the amplitude) is |W|∞ := supt≥0 |W(t)|. The
L2-norm of a vector x ∈ Rn is |x|2 = (x)x)1/2. For a real
number σ > 0, we use the ball

ρ(σ ) :=
{
x ∈ Rn : |x|22 ≤ σ

}
.
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Given a real number K > 0, the set [−K,K]n consists of all n-
dimensional vectors with components in the interval [−K,K].

The controlled system " of Figure 1 is a nonlinear input-
a"ne system described by the di#erential equation

" :
ẋ(t) = a(t, x(t)) + b(t, x(t))u(t), t ≥ 0,

x(0) = x0,
(2.1)

where t is the time; u(t) ∈ Rm is the input signal; x(t) ∈ Rn is
the state; and a : R+ × Rn → Rn and b : R+ × Rn → Rn×m are
continuously di#erentiable functions. The initial state x0 can be
any member of the ball ρ(σ ), i.e.

x0 ∈ ρ(σ ), (2.2)

where σ > 0 is speci!ed. We use the notation "(x0, u, t) for
x(t).

Remark 2.1: As the range of initial states is ρ(σ ) and the min-
imal deviation #∗ of (1.1) is taken over the entire time axis, it
follows that #∗ ≥ σ .

To represent uncertainty about the model of the controlled
system", we decompose the functions a and bof (2.1) into sums
of two functions

a(t, x) = a0(x) + aγ (t, x),

b(t, x) = b0(x) + bγ (t, x),
(2.4)

where a0 : Rn → Rn and b0 : Rn → Rn×m are speci!ed nominal
functions; and aγ : R+ × Rn → Rn and bγ : R+ × Rn → Rn×m

are unspeci!ed functions that representmodelling uncertainties
and disturbances. We assume that all the functions a0, b0, aγ ,
and bγ are continuously di#erentiable. Note that the nominal
system

"0 :
ẋ(t) = a0(x(t)) + b0(x(t))u(t), t ≥ 0,

x(0) = x0,
(2.5)

is time-invariant. Yet the system " may be time-variant, since
the functions aγ and bγ may depend on the time t. To simplify
some formulas in our discussion, we assume that a0(0) = 0.

Practical systems often have restrictions on themaximal con-
trol e#ort they can a#ord. These restrictions usually appear in
the form of bounds on the maximal input and state amplitudes
the system can tolerate. Exceeding these amplitude bounds may
overload a system’s components and cause irreversible harm to
the system and its environment. To express such limitations,
we impose a constraint of K > 0 on the input amplitude of the
controlled system ", and a constraint of A> 0 on the state
amplitude of ". Thus, we have the constraints

|u|∞ ≤ K, (2.6)

|x|∞ ≤ A. (2.7)

To ascertain consistency with the initial state x0 speci!ca-
tion (2.2), we assume that

√
σ < A.

Remark 2.2: As the functions a0, b0, aγ , and bγ are all continu-
ously di#erentiable, we can utilise the mean value theorem (e.g.
Hubbard & Hubbard, 2006), which states that, for two points
x, x′ ∈ [−2A, 2A]n, we have

a0(x) − a0(x′) = ∂a0(z)
∂x

(x − x′), (2.9)

where z ∈ [−2A, 2A]n is an appropriate point. Note that we
utilise here the larger domain [−2A, 2A]n instead of the domain
[−A,A]n, as thiswill bemore convenient for our discussion later
on.

Now, since ∂a0(z)/∂x is a continuous function and [−2A,
2A]n is a compact domain, it follows that there is a real num-
ber c ≥ 0 such that |∂a0(z)/∂x| ≤ c for all z ∈ [−2A, 2A]n.
Recalling that x is of dimension n, it follows by (2.9) that
|a0(x) − a0(x′)| ≤ nc|x − x′|. Denoting α := nc, we conclude
that |a0(x) − a0(x′)| ≤ α|x − x′| for all x, x′ ∈ [−2A, 2A]n.
Similar relations apply to the functions b0, aγ , and bγ ; recall-
ing that a0(0) = 0, we obtain for all x, x′ ∈ [−2A, 2A]n the
inequalities

|a0(x) − a0(x′)| ≤ α|x − x′|, a0(0) = 0,

|b0(x) − b0(x′)| ≤ α|x − x′|, |b0(0)| ≤ α,

|aγ (t, x) − aγ (t, x′)| ≤ γ |x − x′|, |aγ (t, 0)| ≤ γ ,

|bγ (t, x) − bγ (t, x′)| ≤ γ |x − x′|, |bγ (t, 0)| ≤ γ ;

(2.10)

Here, α, γ > 0 are speci!ed real numbers and we assume that
γ is a constant (does not depend on time). Thus, our functions
satisfy Lipchitz conditions over the domain of interest.

Finally, since γ relates to uncertainties about the model of
the controlled system ", it is usually a small number. We refer
to γ as the uncertainty parameter.

Notation 2.3: Let K,A, σ , γ > 0 be speci!ed real numbers.
Denote by Fγ ("0) the family of all systems " descried
by (2.1), (2.4), and (2.10), subject to the following.

(i) Input signal amplitude bounded by K.
(ii) State amplitude bounded by A.
(iii) The initial state x0 ∈ ρ(σ ) is shared by all members of

Fγ ("0).
(iv) The state-feedback function ϕ is shared by all members of

Fγ ("0).

Item (iv) is a result of fact that the familyFγ ("0) represents
uncertainty about the controlled system, and it is not known
which member of Fγ ("0) the controlled system " is. There-
fore, it is not possible to adjust the state-feedback function ϕ to
". Regarding item (iii), the initial state is available by feedback;
it can be any member of ρ(σ ).

2.2 Basic facts

We adopt the mathematical framework of Chakraborty and
Hammer (2009, 2010). LetLϑ ,m

2 be theHilbert space of Lebesgue
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measurable functions v,w : R+ → Rm with the inner product

〈v,w〉 :=
∫ ∞

0
e−ϑsv)(s)w(s) ds,

where ϑ > 0 is a real number. Note that this inner product is
bounded when v and w are bounded.

In accord with the constraint (2.6), the class of input signals
of the controlled system " is

U(K) :=
{
u ∈ Lϑ ,m

2 : |u|∞ ≤ K
}
. (2.12)

We use the following notions (e.g. Willard, 2004; Zeidler, 1985).

De!nition 2.4: Let H be a Hilbert space with inner product
〈·, ·〉.

(i) A sequence {vi}∞i=1 ⊆ H converges weakly to a member v ∈
H if limi→∞〈vi, y〉 = 〈v, y〉 for every y ∈ H.

(ii) A subset W of H is weakly compact if every sequence of
members ofW has a subsequence that converges weakly to
a member ofW.

The next statement is reproduced from Chakraborty and
Hammer (2009, 2010).

Lemma 2.5: The set U(K) of (2.12) is weakly compact in the
topology of the Hilbert space Lϑ ,m

2 .

In view of constraint (2.7), the class of permissible responses
of the controlled system " is

X(A) :=
{
x ∈ Lϑ ,n

2 : |x|∞ ≤ A
}
.

Let x0 ∈ ρ(σ ) be an initial state and let τ > 0 be a time.
Denote byU(x0,K,A, γ , τ ) the class of all input signals inU(K)

that generate during the time interval [0, τ ] a response that is
bounded by A for all members " ∈ Fγ ("0); namely,

U(x0,K,A, γ , τ ) := {u ∈ U(K) : |"(x0, u, t)| ≤ A

for all " ∈ Fγ ("0) and all t ∈ [0, τ ]}.
(2.15)

The following statement shows that this class of input signals is
not always empty.

Lemma 2.6: Let K,A, σ , γ > 0 be real numbers, where
√

σ <

A, and let x0 ∈ ρ(σ ) be an initial state. Then, there is a time
τ > 0 for which U(K) = U(x0,K,A, γ , τ ).

Proof: Let " ∈ Fγ ("0) and let τ > 0 be a time. For an input
signal u ∈ U(K), denote x(t) := "(x0, u, t). As x0 ∈ ρ(σ ), we
have |x0| ≤

√
σ . By (2.1), we get

x(t) = x0 +
∫ t

0
[a(s, x(s)) + b(s, x(s))u(s)] ds.

Using the fact that |u(s)| ≤ K together with (2.10), we get

|x(t)| ≤ |x0| + [(α + γ )A + γ + ((α + γ )(A + 1))K] t.

Consequently, any time τ ∈ (0, (A −
√

σ )/[(α + γ )A + γ +
((α + γ )(A + 1))K]) satis!es the lemma. This concludes our
proof. !

2.3 State-feedback functions

Let " be a system described by (2.1). A state-feedback function
ϕ for", as depicted in Figure 1, is a Lebesgue measurable func-
tion ϕ : R+ × Rn → Rm. Following Hammer (2019), denote by
Lϑ ,n,m
2 the Hilbert space formed by measurable functions v,w :

R+ × Rn → Rm with the inner product

〈〈v,w〉〉 :=
∫

R+×Rn
e−ϑ(s+|z|2)v)(s, z)w(s, z)d(s, z),

where ϑ > 0 is a real number and d(s, z) is the Lebesgue mea-
sure element on R+ × Rn. This inner product is bounded when
v and w are bounded.

In the con!guration of Figure 1, the input signal of " is pro-
duced by the state-feedback function ϕ. As input signals of "

must be bounded byK, permissible state-feedback functions are
restricted to the family

+(K) :=
{
ϕ ∈ Lϑ ,n,m

2 : |ϕ(t, x)| ≤ Kforall(t, x) ∈ R+ × Rn
}
.

The family +(K) has the following property, which is repro-
duced here from Hammer (2019).

Lemma 2.7: The set of state-feedback functions +(K) is weakly
compact in the topology of the Hilbert space Lϑ ,n,m

2 .

Applying a state-feedback function ϕ to the system" of (2.1)
yields the closed-loop system "ϕ of Figure 1 given by

"ϕ :
ẋϕ(t) = a(t, xϕ(t)) + b(t, xϕ(t))ϕ(t, xϕ(t)),

xϕ(0) = x0.

We use the notation "ϕ(x0, t) for the response xϕ(t).

2.4 Bounded response

For a system " ∈ Fγ ("0) with initial state x0 ∈ ρ(σ ), let
+(x0,K,A,", τ ) ⊆ +(K) be the class of all state-feedback
functions for which the response "ϕ(x0, t) stays bounded by A
at all times t ∈ [0, τ ]; explicitly,

+(x0,K,A,", τ ) = {ϕ ∈ +(K) : |"ϕ(x0, t)| ≤ A

for all t ∈ [0, τ ]}. (2.8)

The set of all state feedback functions +(x0,K,A,") ⊆ +(K)

that keep the response"ϕ(x0, t) bounded byA at all times t ≥ 0
is then given by

+(x0,K,A,") =
⋂

τ≥0
+(x0,K,A,", τ ),

or, equivalently,

+(x0,K,A,") =
{

ϕ ∈ +(K) : sup
t≥0

|"ϕ(x0, t)| ≤ A

}

.

As it is not known which member of Fγ ("0) the con-
trolled system" is, state-feedback functions cannot be adjusted
individually for each member " ∈ Fγ ("0). Therefore, we
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must concentrate on the class of all state-feedback functions
+(x0,K,A, γ ) ⊆ +(K) that consists of state-feedback functions
which, at all times t ≥ 0, keep the response of almost every
member " ∈ Fγ ("0) bounded by A. Formally,

+(x0,K,A, γ ) =
{

ϕ ∈ +(K) : ess sup
"∈Fγ ("0), t≥0

|"ϕ(x0, t)| ≤ A

}

.

As the initial condition x0 can be any member of ρ(σ ), we must
restrict our attention to state-feedback functions that keep the
response bounded by A for all x0 ∈ ρ(σ ). This class of state-
feedback functions is given by

+(σ ,K,A, γ )

=
{

ϕ ∈ +(K) : ess sup
"∈Fγ ("0),x0∈ρ(σ ),t≥0

|"ϕ(x0, t)| ≤ A

}

.

(2.18)

We show in Section 4 that this class of state-feedback func-
tions is not empty, as long as the nominal controlled system "0
satis!es a certain controllability condition.

It is sometimes convenient to con!ne ourselves to a !nite
interval of time [0, τ ], τ > 0. For this purpose, we de!ne the
set of state-feedback functions+(σ ,K,A, γ , τ ) that includes all
feedback functions that induce a response bounded by A over
the interval [0, τ ], namely,

+(σ ,K,A, γ , τ )

=
{

ϕ ∈ +(K) : ess sup
"∈Fγ ("0),x0∈ρ(σ ),t∈[0,τ ]

|"ϕ(x0, t)| ≤ A

}

.

Now, every state-feedback function in +(K) creates an input
signal inU(K); and, vice-versa, every input signal u ∈ U(K) can
be produced by an ‘open-loop’ feedback functionϕ(t, x) := u(t)
belonging to +(K). Consequently, Lemma 2.16 implies that the
class of state-feedback functions +(σ ,K,A, γ , τ ) is not always
empty:

Lemma 2.9: Let K,A, σ , γ > 0 be real numbers, where√
σ < A. Then, there is a time τ > 0 for which +(K) =

+(σ ,K,A, γ , τ ).

3. Formal statement of the problem

We proceed now to re-state Problem 1.2 in formal terms. Recall
from Notation 2.11 that the system " of Figure 1 is an unspec-
i!ed member of the family Fγ ("0) with an initial state that
can be any vector x0 ∈ ρ(σ ). Our objective is to !nd robust
state-feedback functions ϕ which, at all times, keep the closed-
loop system "ϕ of Figure 1 as close as possible to the target
state x = 0, irrespective of which member " ∈ Fγ ("0) the
controlled system is, or which initial state x0 ∈ ρ(σ ) is used.
This must be accomplished without violating the input signal
amplitude bound K and the state amplitude bound A of ".

We use the square of the L2-norm to characterise the devia-
tion of the response from the target state x = 0. As it is required
to keep the response of " bounded by A at all times t ≥ 0, we

must restrict our attention to the family of feedback functions
+(σ ,K,A, γ ) of (2.18). For a particular state-feedback function
ϕ ∈ +(σ ,K,A, γ ), the supremal deviation of the closed-loop
system from the origin over all times t ≥ 0 is given by

#(σ ,K,A, γ ,ϕ) = ess sup
"∈Fγ ("0),x0∈ρ(σ ),t≥0

∣∣"ϕ(x0, t)
∣∣2
2 . (3.1)

The in!mal such deviation over all state-feedback functions is
then

#∗(σ ,K,A, γ ) = inf
ϕ∈+(σ ,K,A,γ )

#(σ ,K,A, γ ,ϕ), (3.2)

where #∗(σ ,K,A, γ ) := ∞ if +(σ ,K,A, γ ) = ∅ (the empty
set).

In the forthcoming sections, we answer two critical ques-
tion in this context: (i) under what conditions is the in!mum
#∗(σ ,K,A, γ ) !nite; and (ii) if #∗(σ ,K,A, γ ) is !nite, can it be
achieved; namely, is there an optimal state-feedback function
ϕ∗ ∈ +(σ ,K,A, γ ) satisfying

#∗(σ ,K,A, γ ) = #(σ ,K,A, γ ,ϕ∗). (3.3)

If such a state-feedback function exists, then #∗(σ ,K,A, γ ) is a
minimum, not just an in!mum. Note that if ϕ∗ exists, it forms a
robust state-feedback con!guration, since uncertainties and dis-
turbances are taken into consideration by the family Fγ ("0).
Thus, an optimal state-feedback function ϕ∗, when it exists,
achieves in a robust manner the lowest possible deviation from
the target state over the in!nite time horizon t ≥ 0.We can sum-
marise our discussion by restating Problem 1.2 in the following
terms.

Problem 3.1: In the notation of (3.2) and (3.3),

(i) Find conditions under which there is an optimal robust
state-feedback function ϕ∗.

(ii) If ϕ∗ exists, !nd state-feedback functions that approximate
optimal performance, while being relatively easy to design
and implement. "

Regarding Problem 3.4(i), we show in Section 6 that an opti-
mal state-feedback function ϕ∗ exists, if the nominal controlled
system "0 satis!es a certain controllability condition. Our dis-
cussion there also indicates that this controllability condition
is close to being a necessary condition for the existence of an
optimal state-feedback function ϕ∗.

Problem 3.4(ii) is considered in Section 7, where we show
that optimal performance can be approximated as closely as
desired by bang-bang state-feedback functions – functions that
are relatively easy to design and implement. This provides an
additional important application of bang-bang state-feedback
functions introduced in Hammer (2019).

4. Constrained controllability

The notion of constrained controllability of Choi and Ham-
mer (2020) (see alsoChoi&Hammer, 2019b) is a controllability-
type feature of the controlled system " of Figure 1. It assures
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that " can be driven to the vicinity of the origin without violat-
ing speci!ed constraints on the input and state amplitudes of".
The following variant of this notion guarantees that every state
in the ball ρ(σ ) can be driven into a ball of a somewhat smaller
radius.

De!nition 4.1: LetK,A, σ > 0 be real numbers. A system" is
(K,A, σ )-controllable if there are times τ2 > τ1 > 0 and a real
number σ ′ < σ such that, for every state x ∈ ρ(σ ), there is a
time tx ∈ [τ1, τ2] and an input signal ux ∈ U(K) satisfying (i)
"(x, ux, tx) ∈ ρ(σ ′), and (ii) |"(x, ux, t)| ≤ A for all t ∈ [0, tx].

We show in Section 6 that (K,A, σ )-controllability is a suf-
!cient condition for the existence of optimal state-feedback
functions that satisfy the requirements of Problem 3.4(i). Addi-
tionally, this condition is also close to being a necessary con-
dition for the existence of a solution of Problem 3.4(i). Indeed,
Problem 3.4(i) requires that there be an input signal in U(K)

that keeps the state bounded by A at all times for all initial
states. Thus, if we had σ ′ = A in De!nition 4.1, the result-
ing notion would clearly form a necessary condition for the
existence of a solution of Problem 3.4(i). In other words, in
the de!nition of (K,A, σ )-controllability, the only additional
requirement beyond a necessary condition is the contractive
requirement σ ′ < σ . This contractive requirement helps us
accommodate uncertainty and disturbances that a$ict the con-
trolled system ", while also helping us handle an in!nite time
horizon.

4.1 Uncertainty, continuity, and convergence

The next statement shows that the entire family Fγ ("0) is
(K,A, σ )-controllable, if the nominal system "0 is (K,A, σ )-
controllable and the uncertainty parameter γ is not too large.
This statement is reproduced here (with some minor modi!ca-
tions) from Choi and Hammer (2020).

Proposition 4.2: Let K,A0, σ > 0 be real numbers, where√
σ < A0, and assume that the nominal system "0 is (K,A0, σ )-

controllable. Then, for every real number A > A0, there is an
uncertainty parameter γ > 0 such that the entire family of sys-
tems Fγ ("0) is (K,A, σ )-controllable.

Recall the class of feedback functions+(σ ,K,A, γ ) of (2.18),
which consists of feedback functions bounded by K that keep
the state of the closed-loop system from exceeding the ampli-
tude bound A. The next statement shows that +(σ ,K,A, γ )

is not empty, when the nominal system "0 is (K,A, σ )-
controllable.

Proposition 4.3: Let K,A, σ > 0 be real numbers, where
√

σ <

A, and assume that the nominal system "0 is (K,A, σ )-
controllable. Then, there are an uncertainty parameter γ ′ > 0
and an amplitude bound A′ > A such that the set of state-
feedback functions +(σ ,K,A′, γ ) is not empty for any uncer-
tainty parameter γ ∈ (0, γ ′].

Proof: Let x0 ∈ ρ(σ ) be an initial state. According to (2.5),
the nominal system "0 is time-invariant. By De!nition 4.1 of

(K,A, σ )-controllability, there are an input signal ux0 ∈ U(K),
a time t1 ∈ [τ1, τ2], where τ2 > τ1 > 0, and a real number σ ′ ∈
(0, σ ) such that (i) x(t1) ∈ ρ(σ ′), and (ii) |"0(x0, ux0 , t)| ≤ A
for all t ∈ [0, t1]. As ρ(σ ′) ⊂ ρ(σ ), it follows again by (K,A, σ )-
controllability of "0 that there are an input signal ux(t1) ∈
U(K) and a time t2 ∈ [t1 + τ1, t1 + τ2], t2 ≥ t1 + τ1 ≥ 2τ1,
such that (i) x(t2) ∈ ρ(σ ′), and (ii) |"0(x(t1), ux(t1), t)| ≤ A
for all t ∈ [t1, t2]. Continuing in this manner, we conclude
that, for every integer k ≥ 2, there is a time tk ≥ kτ1 and an
input signal ux(tk−1) ∈ U(K) such that (i) x(tk) ∈ ρ(σ ′), and
(ii) |"0(x(tk−1), ux(tk−1), t)| ≤ A for all t ∈ [tk−1, tk]. Denoting
t0 := 0, de!ne the state-feedback function

ϕ(t, x(t)) := ux(tk−1)(t), t ∈ [tk−1, tk), k = 1, 2, . . . (4.4)

As tk ≥ kτ1 and τ1 > 0, this de!nes a state-feedback function
ϕ that is bounded by K at all times and keeps the nominal sys-
tem’s response bounded by A at all times. This state-feedback
function can be extended over the entire space R+ × Rn to yield
a measurable function ϕ ∈ +(K). When applied to the nomi-
nal system "0 as a state feedback, ϕ keeps the amplitude of the
nominal system’s state bounded by A at all times. We turn next
other members of the family of systems Fγ ("0).

For a member " ∈ Fγ ("0), denote x′(t) := "ϕ(x0, t).
Now, for an integer k ≥ 1, consider a time t ∈ (tk−1, tk].
Using (2.1), (2.4), and (4.4), we can write

x′(t) = x′(tk−1) +
∫ t

tk−1

[a(s, x′(s)) + b(s, x′(s))ux′(tk−1)(s)] ds.

Now, assume for a moment that x′(tk−1) ∈ ρ(σ ) and
|x′(t)| ≤ 2A for all t ∈ [tk−1, tk]. Consider the response x′′(t) =
"0(x′(tk−1), ux′(tk−1)) of the nominal system "0, starting from
the state x′(tk−1) at the time tk−1, namely,

x′′(t) = x′(tk−1) +
∫ t

tk−1

[a0(x′′(s)) + b0(x′′(s))ux′(tk−1)(s)] ds.

Then, since we assumed that x′(tk−1) ∈ ρ(σ ), it follows by the
de!nition of the input signal ux′(tk−1) that x

′′(tk) ∈ ρ(σ ′) and
|x′′(t)| ≤ A for all t ∈ [tk−1, tk].

To continue, denote ξ(t) := x′(t) − x′′(t); then,

ξ(tk−1) := x′(tk−1) − x′′(tk−1) = x′(tk−1) − x′(tk−1) = 0.
(4.5)

Next, let t, t′ ∈ [tk−1, tk], t′ > t, be two times. Then,

ξ(t′) = ξ(t) +
∫ t′

t
[a0(x′(s)) + aγ (s, x′(s)) + (b0(x′(s))

+ bγ (s, x′(s)))ux′(tk−1)(s)] ds

−
∫ t′

t
[a0(x′′(s)) + (b0(x′′(s)))ux′(tk−1)(s)] ds.

Recalling that a0(0) = 0, we can write

|ξ(t)| ≤ |ξ(t)| +
∫ t′

t
|a0(x′(s)) − a0(x′′(s))| ds
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+
∫ t′

t
|b0(x′(s)) − (b0(x′′(s))||ux′(tk−1)(s)| ds

+
∫ t′

t
|aγ (s, x′(s)) − aγ (s, 0)| ds +

∫ t′

t
|aγ (s, 0)| ds

+
∫ t′

t
|bγ (s, x′(s)) − bγ (s, 0)||ux′(tk−1)(s)| ds

+
∫ t′

t
|bγ (s, 0)||ux′(tk−1)(s)| ds.

Now, refer to Remark 2.8 and the Lipschitz conditions (2.10)
that are valid over the domain [−2A, 2A]n. Applying these
Lipschitz conditions, we get

sup
s∈[t,t′]

|ξ(s)| ≤ |ξ(t)| + α(t′ − t) sup
s∈[t,t′]

|ξ(s)|

+ α(t′ − t)K sup
s∈[t,t′]

|ξ(s)|

+ γ (t′ − t) sup
s∈[t,t′]

|ξ(s)| + γ (t′ − t)

+ γ (t′ − t)K sup
s∈[t,t′]

|ξ(s)| + γK(t′ − t).

Rearranging terms, we get

[1 − (α + γ )(1 + K)(t′ − t)] sup
s∈[t,t′]

|ξ(s)|

≤ |ξ(t)| + γ (1 + K)(t′ − t).

Now, let µ > 0 be a real number such that (α + γ )(1 + K)µ ≤
1/2 and the ratio r := (tk − tk−1)/µ is an integer. Then, using
t′ = t + µ, we get

sup
s∈[t,t+µ]

|ξ(s)| ≤ 2|ξ(t)| + 2γ (1 + K)µ. (4.6)

Next, build the partition of the interval [tk−1, tk] given by

{[tk−1, tk−1 + µ], [tk−1 + µ, tk−1 + 2µ], . . . ,

[tk−1 + (r − 1)µ, tk]},

and de!ne the quantity

ζj := sup
s∈[tk−1+(j−1)µ,tk−1+jµ]

|ξ(s)|, j = 1, 2, . . . , r. (4.7)

Using the fact that ξ(tk−1) = 0 by (4.5) and setting ζ0 :=
ξ(tk−1), we obtain from (4.6) the relations

ζj ≤ 2ζj−1 + 2γ (1 + K)µ, j = 1, 2, . . . , r,

ζ0 = 0.

Invoking properties of linear relations, this yields ζj ≤
(2j − 1)2γ (1 + K)µ, j = 1, 2, . . . , r. In view of (4.7), this leads
to

sup
s∈[tk−1,tk]

|ξ(s)| ≤ (2r+1 − 2)γ (1 + K)µ, k = 1, 2, . . .

(4.8)

Now, referring to the statement of the proposition, let ε > 0 be a
real number satisfying ε ≤ min{A, (σ − σ ′)/2}. Then, by (4.8),
an uncertainty parameter γ ′ = ε/[(2r+1 − 2)(1 + K)µ] satis-
!es the statement of the proposition with A′ = A + ε. This
concludes our proof. !

Since the set of feedback functions +(σ ,K,A′, γ ) is not
empty by Proposition 4.3, the in!mal deviation from the target
state x = 0 must be bounded, as follows.

Theorem 4.4: Under the notation and conditions of Proposi-
tion 4.3, the in!mal deviation #∗(σ ,K,A′, γ ) of (3.2) is !nite.

The next statement refers to the class of input signals
U(x0,K,A, γ , τ ) of (2.15). The !rst part of the statement shows
that the response of the controlled system " depends continu-
ously on its input signal, while the second part of the statement
shows that the class U(x0,K,A, γ , τ ) of input signals is weakly
compact.

Theorem 4.5: Let " ∈ Fγ ("0) be a system with initial
state x0 ∈ ρ(σ ), let τ > 0 be a time, and let {ui}∞i=1 ⊆
U(x0,K,A, γ , τ ) be a sequence of input signals that converges
weakly to the input signal u. Then,

(i) The sequence of output values {"(x0, ui, t)}∞i=1 converges to
"(x0, u, t) uniformly over the time interval [0, τ ]; and

(ii) The set U(x0,K,A, γ , τ ) is weakly compact.

Proof: Part (i). In view of Remark 2.8 and the Lipschitz condi-
tion of (2.10), the proof of a similar statement in Yu and Ham-
mer (2016) applies here as well, proving Part (i).

Part (ii). Let {vi}∞i=1 ⊆ U(x0,K,A, γ , τ ) be a sequence of
input signals. Then, since U(x0,K,A, γ , τ ) ⊆ U(K), we have
that {vi}∞i=1 ⊆ U(K), and it follows by Lemma 2.14 that there
is a subsequence {vij}∞j=1 that converges to a signal v ∈ U(K).
Now, let t ∈ [0, τ ] be a time. In view of Part (i), we have that

lim
j→∞

"(x0, vij , t) = "(x0, v, t) (4.11)

for all t ∈ [0, τ ]. But then, since vij ∈ U(x0,K,A, γ , τ ) for all
j = 1, 2, . . ., it follows that "(x0, vij , t) ∈ [−A,A]n for all j =
1, 2, . . . Considering that [−A,A]n is a compact set in Rn,
we have that limj→∞ "(x0, vij , t) ∈ [−A,A]n. Combining this
with (4.11), we obtain that"(x0, v, t) ∈ [−A,A]n. As this is true
for all t ∈ [0, τ ], it follows that v ∈ U(x0,K,A, γ , τ ), and our
proof concludes. !

5. State-feedback and precompensation

It is widely recognised that there is an intimate connection
between feedback and precompensation (e.g. Hammer, 1986).
Of course, feedback has many advantages over precompen-
sators: feedback tends to better accommodate modelling uncer-
tainties and disturbances, and feedback is the only means of
robustly stabilising unstable systems. Yet, there are mathemat-
ical arguments that become simpler when feedback is repre-
sented by precompensation. In the present section, we explore
the formal connection between feedback and precompensation
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to prepare tools that help us address Problem 3.4. Speci!cally,
the tools developed in this section help to show that the response
of the closed-loop system "ϕ of Figure 1 depends in a contin-
uous manner on the state-feedback function ϕ. A similar result
was derived in Hammer (2019) by a di#erent approach.

5.1 Equivalent precompensation

Consider a sequence {ϕi}∞i=1 ⊆ +(K) of state-feedback func-
tions, whose members are inserted (individually) into the state-
feedback loop of Figure 2 around the controlled system " ∈
Fγ ("0). The !gure depicts an additive state-feedback con!gu-
ration with an external input signal w(t). We denote the closed-
loop system by "(+)ϕi to distinguish it from the con!guration
"ϕ of Figure 1, which has no external input signal.

With the exception of the external input signal w, all sig-
nals in the con!guration of Figure 2 depend on the feedback
function ϕi. The output signal is xi; the signal generated by the
state-feedback function ϕi is zi; and the input signal of the con-
trolled system" is ui. As can be seen in the !gure, the signal zi is
generated from the signal ui by a composition of the controlled
system " and the state-feedback function ϕi. Using the symbol
° to denote such a composition, we obtain the relations

zi = ϕi ◦ "ui,

xi = "ui,

ui = w + zi,

(5.1)

i = 1, 2, . . . Using I to denote the identity system, we obtain
from (5.1) the relation

(I − ϕi ◦ ")ui = w, i = 1, 2, . . . (5.2)

The following statement shows that (I − ϕi ◦ ") is a set isomor-
phism.

Proposition 5.1: In the con!guration of Figure 2, let " ∈
Fγ ("0) be the controlled system and let ϕi be the state-feedback
function. Let τ > 0 be a time, let B> 0 be a real number, and
let S be a class of input signals for which all signals in the con-
!guration of Figure 2 are bounded in amplitude by B during the
time interval [0, τ ]. Then, over S, the system (I − ϕi ◦ ") is an
isomorphism (in measure) during the time interval [0, τ ].

Figure 2. Feedback with external input

Proof: We use the notation of the proposition and assume
that B ≤ 2A. To simplify notation, denote f (t) := a(t, x(t)) +
b(t, x(t))u(t), so that (2.1) takes the form

ẋ(t) = f (t). (5.4)

We discretise the controlled system " of (2.1). Let δ > 0 be
a real number. Using the mean value theorem (e.g. Hubbard
& Hubbard, 2006), we can write

x((k + 1)δ) = x(kδ) + f (ξ)δ, (5.5)

where ξ is an intermediate point in the interval [kδ, (k + 1)δ].
Setting ε := f (ξ) − f (kδ), we have

f (ξ) = f (kδ) + (f (ξ) − f (kδ)) = f (kδ) + ε. (5.6)

Using the Lipchitz conditions (2.10), we can write

|ε| ≤ |a(ξ , x(ξ))− a(kδ, x(kδ))| +K|b(ξ , x(ξ))− b(kδ, x(kδ))|
≤ (1 + K)(α + γ )|x(ξ) − x(kδ)|. (5.7)

Similarly, we have the bound

sup |f (t)| = sup |a(t, x(t)) + b(t, x(t))u(t)|
≤ (α + γ )(A + AK + K) =: M.

Combining this with (5.4) and the fact that ξ ∈ [kδ, (k + 1)δ]
yields

|x(ξ) − x(kδ)| ≤ sup
ξ∈[kδ,(k+1)δ]

|x(ξ) − x(kδ)| ≤ Mδ. (5.8)

Substituting into (5.7), we get

|ε| ≤ (1 + K)(α + γ )Mδ. (5.9)

In view of (5.5), (5.6), and (5.9), we can write

x((k + 1)δ) = x(kδ) + f (kδ)δ + εδ. (5.10)

Now, select δ > 0 so that the ratio N := τ/δ is an integer; set
k = t/δ; and introduce the discretised system

"D :
zk+1 = zk + f (kδ)δ,

z0 = x0.
(5.11)

Comparing (5.10) to (5.11), applying properties of linear
recursions, and using (5.9) together with the fact that Nδ = τ ,
gives rise to the inequality

max
k=0,1,...,N

|x(kδ) − zk| ≤ N|ε|δ ≤ τ (1 + K)(α + γ )Mδ.

Consequently,

lim
δ→0

{
max

k=0,1,...,N
|x(kδ) − zk|

}
= 0.

Next, denote

ε′ := τ (1 + K)(α + γ )Mδ, (5.12)
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so that

max
k=0,1,...,N

|x(kδ) − zk| ≤ ε′.

Then,

(I − ϕ ◦ ")u = u(t) − ϕ(t, x(t)) = u(t) − ϕ(kδ + ζ , zk + ε′),
(5.13)

where

|ζ | ≤ δ. (5.14)

In (5.13), the pair (ζ , ε′) induces a shift on the domain of the
feedback function ϕ. When integrating the expression ϕ(kδ +
ζ , zk + ε′) using the Lebesgue integral, this shift will induce a
di#erence not exceeding 2K(ζ + nε′(2A)n−1) in the value of the
integral, sinceϕ is bounded byK and the state is bounded by 2A.
Consequently,

∣∣(I − ϕ ◦ ") − (I − ϕ"D)
∣∣ ≤ 2K(ζ + nε′(2A)n−1) (5.15)

in measure. Combining this with (5.12) and (5.14) implies that
the discretised system u(kδ) − ϕ(kδ, zk) converges in measure
to the continuous-time system u(t) − ϕ(t, x(t)) as δ → 0. This
means that I − ϕ ◦ "D converges in measure to I − ϕ ◦ " as
δ → 0.

Now, it is well established that the discrete-time system I −
ϕ ◦ "D forms a set isomorphism (e.g. Hammer, 1986). Assume
then that two input signals u, v yield the same response in
continuous-time, namely, that (I − ϕ ◦ ")u = (I − ϕ ◦ ")v for
all times t ∈ [0, τ ]. Applying (5.15), we obtain

∣∣(I − ϕ ◦ "D)u − (I − ϕ ◦ "D)v
∣∣

≤
∣∣(I − ϕ ◦ ")u − (I − ϕ"D)u

∣∣

+
∣∣(I − ϕ ◦ ")v − (I − ϕ"D)v

∣∣

≤ 4K(ζ + nε′(2A)n−1)

for all t ∈ [0, τ ]. Therefore, letting δ → 0, it follows by (5.12)
and (5.14) that (I − ϕ ◦ "D)u converges in measure to (I − ϕ ◦
"D)v over the time interval [0, τ ]. The latter implies that, as
δ → 0, the value u(kδ) convenes in measure to v(kδ) for all
k = 0, 1, . . . ,N. This, in turn, implies that u and v converge
to each other in measure over the time interval [0, τ ]. Thus,
(I − ϕ ◦ ") is injective (inmeasure). Surjectivity of (I − ϕ ◦ ")

is shown similarly, based on the surjectivity of the associated
discretised system (I − ϕ ◦ "D). This concludes our proof. !

Continuing with our discussion of the composite system
(I − ϕ ◦ "), let {ϕi}∞i=1 ⊆ +(K) be a sequence of state-feedback
functions that converges weakly to a state-feedback function ϕ.
Assume that all members of this sequence, as well as ϕ, satisfy
the requirements of Proposition 5.3 over a time interval [0, τ ],
τ > 0. Then, the composite system (I − ϕi ◦ ") is invertible
for all integers i ≥ 1 at all times t ∈ [0, τ ]; namely, the inverse
(I − ϕi ◦ ")−1 exists for all t ∈ [0, τ ]. Note that, according to
the proof of Proposition 5.3, the time interval [0, τ ] can be any
time interval during which all signals in the con!guration of
Figure 2 are bounded. As systems in practice must operate with

bounded signals, this time interval includes all times of practical
interest.

Now, substituting the inverse system into (5.2), we can write

ui = (I − ϕi ◦ ")−1w, i = 1, 2, . . . , (5.16)

during the time interval [0, τ ]. Inserting this relation into (5.1)
yields

xi = "ui = " ◦ (I − ϕi ◦ ")−1w, i = 1, 2, . . .

Seeing that xi = "(+)ϕiw in Figure 2, we obtain

"(+)ϕi = " ◦ (I − ϕi ◦ ")−1, i = 1, 2, . . . , (5.17)

during the time interval [0, τ ]. Thus, a state-feedback function
ϕi has the same input/output e#ect as the precompensator (I −
ϕi ◦ ")−1.

Certainly, the use of feedback has substantial advantages
over the use of precompensators, as feedback is the only means
to stabilise an unstable system. Feedback also has the poten-
tial to attenuate e#ects of uncertainties and disturbances that
may a$ict the controlled system ". These advantages of feed-
backmotivate our present discussion. Notwithstanding, for cer-
tain formal mathematical calculations, the relationship (5.17) is
helpful, and it has been utilised in this manner throughout the
history of control theory.

5.2 Continuity

We examine now the dependence of the closed loop system
"ϕ of Figure 1 on the state-feedback function ϕ. The objec-
tive is to show that "ϕ is a continuous function of ϕ. We start
with a review of some notions from mathematical analysis (e.g.
Willard, 2004; Zeidler, 1985).

De!nition 5.2: Let S be a subset of a Hilbert space H, and
let z be a point of S. A functional F : S → R is weakly lower
semi-continuous at z if the following is true for every sequence
{zi}∞i=1 ⊆ S that converges weakly to z: whenever F(z) is
bounded, there is, for every real number ε > 0, an integerN > 0
such that F(z) − F(zi) < ε for all i ≥ N.

A function G : S → Rn is weakly continuous at z if, for every
real number ε > 0, there is an integer N > 0 such that |G(z) −
G(zi)| < ε for all i ≥ N. "

The next statement shows that the composite system [I −
ϕ ◦ "] depends continuously on the state-feedback function ϕ.
Needless to say, we are interested only in cases where all signals
are bounded, as these are the only cases of practical value.

Lemma 5.3: Let {ϕi}∞i=1 ⊆ +(K) be a sequence of state-feedback
functions that converges weakly to a state-feedback function ϕ. Let
B> 0 be a real number, and let S ⊆ U(B) be a set of external input
signals for which all signals in the con!guration of Figure 2 are
bounded by B at all times for all state-feedback functions ϕi, i =
1, 2, . . . Then, the sequence {[I − ϕi ◦ "]}∞i=1 converges weakly to
[I − ϕ ◦ "] for almost every system " ∈ Fγ ("0).

Proof: Consider a function g ∈ Lϑ ,n,m
2 , and let " ∈ Fγ ("0) be

a system. Note that, by the de!nition of composition, (ϕi − ϕ) ◦
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"u = ϕi ◦ "u − ϕ ◦ "u for an input signal u. Then, the three
inner products 〈g ◦ "u,ϕi ◦ "u〉, 〈g ◦ "u,ϕ ◦ "u〉, and 〈g ◦
"u, (ϕi − ϕ) ◦ "u〉 are, respectively, restrictions of the inner
products 〈〈g,ϕi〉〉, 〈〈g,ϕ〉〉, and 〈〈g, (ϕi − ϕ)〉〉 to the output sig-
nal "u. Also, since the sequence {ϕi}∞i=1 converges weakly to ϕ,
the sequence 〈〈g, (ϕi − ϕ)〉〉 converges to 0 as i → ∞.

Now, regard the inner product 〈g ◦ "u, (ϕi − ϕ) ◦ "u〉 as
a function of ". Then, since the sequence 〈〈g, (ϕi − ϕ)〉〉 con-
verges to 0 as i → ∞, the sequence 〈g ◦ "u, (ϕi − ϕ) ◦ "u〉
converges to 0 as i → ∞ for almost every system " ∈ Fγ ("0).
As this is true for every g ∈ Lϑ ,n,m

2 , it follows that the sequence
{ϕi ◦ "u}∞i=1 converges weakly to ϕ ◦ "u for almost every " ∈
Fγ ("0). Finally, as addition of the identity system I does
not a#ect convergence, the previous sentence implies that the
sequence {[I − ϕi ◦ "]}∞i=1 converges weakly to [I − ϕ ◦ "] for
almost every " ∈ Fγ ("0). This concludes our proof. !

The next statement shows that the signal u of Figure 1
depends continuously on the state-feedback function ϕ. A sim-
ilar statement was derived in Hammer (2019) via a di#erent
approach.

Lemma 5.4: Assume that all signals in the con!guration of
Figure 1 are bounded. Then, the signal u is a weakly continuous
function of the state-feedback functionϕ ∈ +(K) for almost every
controlled system " ∈ Fγ ("0).

Proof: Note !rst that, by setting w = 0 in the con!guration
of Figure 2, we obtain the the con!guration of Figure 1; we
consider w = 0 below. Now, let {ϕi}∞i=1 ⊆ +(K) be a sequence
of state-feedback functions that converges weakly to a state-
feedback function ϕ, and assume that all signals of the con!g-
uration of Figure 2 are bounded by a bound B> 0 for all state-
feedback functions ϕi, i ≥ 1. By (5.16), we have ui = [I − ϕi ◦
"]−1w, where, by our assumption, ui ∈ U(B). By Lemma 2.14,
the sequence {ui}∞i=1 has a subsequence {uik}∞k=1 that converges
weakly to a signal u ∈ U(B). Now, for each integer j ∈ {1, 2, . . .},
de!ne the set

Sj :=
⋃

k≥j
uik =

⋃

k≥j
[I − ϕik ◦ "]−1w.

Denote by S̄j the weak closure of the set Sj. As u is the weak limit
of the sequence {uik}∞k=1, it follows that

⋂

j≥p
S̄j = {u}, p = 1, 2, . . . (5.21)

Further, for an integer q ≥ j, consider the set Vq,j := [I − ϕiq ◦
"]S̄j. By Lemma 5.19, as q → ∞, the set Vq,j is weakly con-
vergent to the set [I − ϕ ◦ "]S̄j for almost every system " ∈
Fγ ("0). Also, since w = [I − ϕik ◦ "]uik for all k = 1, 2, . . .,
we have that w ∈ [I − ϕiq ◦ "]S̄j for all q ≥ j. The last two
sentences imply that

w ∈ [I − ϕ ◦ "]S̄j. (5.22)

Next, using the fact that [I − ϕ ◦ "] is an isomorphism by
Proposition 5.3, we obtain from (5.22) and (5.21) the relation

w ∈
⋂

j≥1
[I − ϕ ◦ "] S̄j = [I − ϕ ◦ "]




⋂

j≥1
S̄j





= [I − ϕ ◦ "] {u}.

Therefore, w = [I − ϕ ◦ "]u for almost every " ∈ Fγ ("0). By
Proposition 5.3, we can write u = [I − ϕ ◦ "]−1w for almost
every " ∈ Fγ ("0). This shows that u is the weak limit of the
sequence [I − ϕik ◦ "]−1w. Thus, the signal u is a weakly con-
tinuous function of the state-feedback function ϕ for almost
every system " ∈ Fγ ("0). As the con!guration of Figure 1 is
obtained by taking w = 0 in Figure 2, our proof concludes. !

The next statement shows that the response of the closed-
loop system"ϕ of Figure 1 depends in a continuous manner on
the feedback function ϕ. This is one of the main results of this
section.

Theorem 5.5: Let K,A, σ > 0 be real numbers, where
√

σ <

A, and assume that the nominal system "0 is (K,A, σ )-
controllable. Then, there are an uncertainty parameter γ > 0
and an amplitude bound A′ > A such that the closed-loop system
"ϕ of Figure 1 is a weakly continuous function of the state-
feedback function ϕ ∈ +(σ ,K,A′, γ ) for almost every system
" ∈ Fγ ("0).

Proof: Referring to the con!guration of Figure 2, we take
w = 0; this makes this con!guration identical to the con!gu-
ration of Figure 1. Recall Proposition 4.3, according to which
the class of feedback functions +(σ ,K,A′, γ ) is not empty; we
restrict our attention to feedback functions ϕ ∈ +(σ ,K,A′, γ ).
By Lemma 5.20, the response of the system (I − ϕ ◦ ")−1 is
a weakly continuous function of the feedback function ϕ. In
addition, Theorem 4.10(i) states that " is a weakly continuous
function of its own input signal. As"(+)ϕ = " ◦ (I − ϕ ◦ ")−1

by (5.17), these facts imply that the response of"(+)ϕ is a weakly
continuous function of the state-feedback function ϕ. Finally,
since "ϕ is "(+)ϕ when w = 0, our proof concludes. !

We show next that the class of state-feedback functions
+(σ ,K,A, γ ) of (2.18) is weakly compact.

Lemma 5.6: The class of state-feedback functions +(σ ,K,A, γ )

is weakly compact in the topology of the Hilbert space Lϑ ,n,m
2 .

Proof: Let {ϕk}∞k=1 ⊆ +(σ ,K,A, γ ) be a sequence of state-
feedback functions. As +(σ ,K,A, γ ) ⊆ +(K) and +(K) is
weakly compact by Lemma 2.17, there is a subsequence
{ϕki}∞i=1 that converges weakly to a member ϕ ∈ +(K). By
Theorem 5.23, this implies that, for every t ≥ 0 and for every
initial state x0 ∈ ρ(σ ), the sequence of vectors {"ϕki

(x0, t)}∞i=1
converges, and

lim
i→∞

"ϕki
(x0, t) = "ϕ(x0, t) (5.25)

for all t ≥ 0. But then, since {ϕk}∞k=1 ⊆ +(σ ,K,A, γ ), we have
that "ϕki

(x0, t) ∈ [−A,A]n for all i = 1, 2, . . . and all t ≥ 0.
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As [−A,A]n is a compact set in Rn, the latter implies that
limi→∞ "ϕki

(x0, t) ∈ [−A,A]n for all x0 ∈ ρ(σ ) and all t ≥ 0.
In view of (5.25), we get that "ϕ(x0, t) ∈ [−A,A]n for all t ≥ 0,
so that ϕ ∈ +(σ ,K,A, γ ). This concludes our proof. !

In the next sections, we employ the tools developed in the
present section to prove the existence of optimal robust state-
feedback functions.

6. Existence of optimal robust state-feedback
functions

We turn now to an examination of the existence of solutions
of Problem 3.4(i). We show in this section that optimal robust
state-feedback functions exist whenever the nominal controlled
system "0 is (K,A, σ )-controllable and the uncertainty param-
eter γ is not too large. Our discussion depends on a few facts
from mathematical analysis quoted in the next statement (e.g.
Willard, 2004; Zeidler, 1985); part (iii) of the next statement is
the Generalised Weierstrass Theorem.

Theorem 6.1: (i) A weakly continuous functional is weakly
lower semi-continuous.

(ii) Let S and A be topological spaces. Assume that, for every
member a ∈ A, there is a weakly lower semi-continuous
functional fa : S → R. If supa∈A fa(s) exists at every point
s ∈ S, then the functional f (s) := supa∈A fa(s) is weakly
lower semi-continuous on S.

(iii) A weakly lower semi-continuous functional attains a mini-
mum in a weakly compact set.

Consider now a !nite interval of time [0, τ ], τ > 0. Let
#(σ ,K,A, γ ,ϕ, τ ) be the supremal deviation of the closed-loop
system "ϕ from the target state x = 0 over the time interval
[0, τ ], where the supremum is taken over all members " ∈
Fγ ("0) and over all initial conditions x0 ∈ ρ(σ ); namely,

#(σ ,K,A, γ ,ϕ, τ ) := ess sup
"∈Fγ ("0),x0∈ρ(σ ),t∈[0,τ ]

∣∣"ϕ(x0, t)
∣∣2
2 .

(6.2)

As our ultimate aim is to take τ to in!nity, we must restrict
our attention to state-feedback functions that keep the response
of the closed-loop system bounded by A at all times, namely,
to state-feedback functions that are members of the family
+(σ ,K,A, γ ) of (2.18). The in!mal deviation over the time
interval [0, τ ] that can be achieved by such a state-feedback
function is

#∗(σ ,K,A, γ , τ ) = inf
ϕ∈+(σ ,K,A,γ )

#(σ ,K,A, γ ,ϕ, τ ). (6.3)

Then, an optimal robust state-feedback functions ϕ∗
τ , if it exists,

is one that satis!es the equality

#(σ ,K,A, γ ,ϕ∗
τ , τ ) = #∗(σ ,K,A, γ , τ ).

Such feedback functions optimise performance over the time
interval [0, τ ]. Later, we prove the existence of optimal robust
state-feedback functions ϕ∗ that optimise performance over

all times t ≥ 0, as characterised by (3.3). By (3.1) and (3.2),
we can write #∗(σ ,K,A, γ ) = supτ→∞ #∗(σ ,K,A, γ , τ ); this
supremum is bounded since feedback functions are in the set
+(σ ,K,A, γ ).

Recall that, by Theorem 5.23, the closed-loop system "ϕ is
a weakly continuous function of the state-feedback function ϕ.
Therefore, so is the functional |"ϕ(x0, t)|22. Combining this fact
with Equations (3.1) and (6.2), it follows by Theorem 6.1(ii) that
the following is true.

Corollary 6.2: The functionals #(σ ,K,A, γ ,ϕ) and #(σ ,K,A,
γ ,ϕ, τ ) of (3.1) and (6.2), respectively, are weakly lower semi-
continuous functionals of the state-feedback function ϕ.

Now, according to Lemma 5.24, the set of state-feedback
functions +(σ ,K,A, γ ) is weakly compact, and, accord-
ing to Corollary 6.4, the functionals #(σ ,K,A, γ ,ϕ) and
#(σ ,K,A, γ ,ϕ, τ ) are weakly lower semi-continuous function-
als of the state-feedback function ϕ. Therefore, the Gener-
alised Weierstrass Theorem (quoted above as Theorem 6.1(iii))
implies the existence of state-feedback functions ϕ∗ and
ϕ∗

τ , which achieve minima of #(σ ,K,A, γ ,ϕ) and #(σ ,K,A,
γ ,ϕ, τ ), respectively. This proves the following statement,
which forms the main result of the current section. It shows
that there are optimal robust state-feedback functions that solve
Problem 3.4(i).

Theorem 6.3: Let K,A0, σ > 0 be real numbers, where
√

σ <

A0; let τ > 0 be a time, and refer to (6.3) and (3.2). Assume
that the nominal system "0 is (K,A0, σ )-controllable, and let
γ > 0 be an uncertainty parameter that satis!es the require-
ments of Proposition 4.2 with the state amplitude bound A >

A0. Then, there are optimal robust state-feedback functions
ϕ∗

τ ,ϕ∗ ∈ +(σ ,K,A, γ ) that achieve the (!nite) minimal values
#(σ ,K,A, γ ,ϕ∗

τ , τ ) = #∗(σ ,K,A, γ , τ ) and #(σ ,K,A, γ ,ϕ∗) =
#∗(σ ,K,A, γ ), respectively.

In summary, we have seen in this section that, under a
broad controllability condition, there are optimal robust state-
feedback functions that keep almost everymember of the family
Fγ ("0) as close as possible to the target state at all times.
The existence of such state-feedback functions is guaranteed by
(K,A, σ )-controllability of the nominal controlled system "0,
as long as the uncertainty parameter γ is not too large.

In the paragraphs following De!nition 4.1, we have seen that
(K,A, σ )-controllability of the nominal controlled system is also
close to being a necessary condition for the existence of optimal
state-feedback functions. Thus, (K,A, σ )-controllability of the
nominal controlled system is a tight su"cient condition for the
existence of solutions of Problem 1.2(i). In the next section, we
turn to Problem 1.2(ii) and show that optimal performance can
be approximated by state-feedback functions that are relatively
easy to design and implement.

7. Approximating optimal performance

We address now the issue raised in Problem 1.2(ii), namely,
the development of state-feedback functions that approximate
optimal performance, while being relatively easy to design
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and implement. Generally, state-feedback functions are multi-
variable vector-valued Lebesgue measurable functions of time:
they have n+ 1 variables – the n state components of the con-
trolled system " plus the time; and they havem components as
their values, corresponding to the m components of the input
vector of ". Designing and implementing such general func-
tions may raise substantial challenges. In the present section,
we apply the methodology of Hammer (2019), where it was
shown that performance achieved by any state-feedback func-
tion can be approximated as closely as desired by the perfor-
mance achieved by bang-bang state-feedback functions. Recall
that bang-bang state-feedback functions are piecewise-constant
functions, whose components switch between the two values of
−K and K, where K is the input amplitude bound of the con-
trolled system ". Thus, bang-bang functions take their values
in a !nite set of only 2m vectors – the set of all m-dimensional
vectors with components of −K or K. This makes bang-bang
state-feedback functions easier to design and implement. In
addition, as the state amplitude may not exceed the speci!ed
bound A, the state-space domain over which the bang-bang
feedback function must be constructed is limited.

7.1 An additive disturbance

Needless to say, replacing an optimal state-feedback function by
a bang-bang state-feedback function introduces errors into the
feedback loop of Figure 1. These errors must be considered in
conjunctionwith other errors, disturbances, andnoises thatmay
a#ect the closed-loop system. In line with this observation and
following Hammer (2019), we take into account the e#ect of an
external noise or disturbance signal ν(t) ∈ Rn, t ≥ 0, shown in
Figure 3. As can be seen in the !gure, the signal ν corrupts the
input signal of the state-feedback function ϕ. We assume that ν
is bounded by a speci!ed amplitude bound 1 > 0, and that it
is a random signal with a uniform probability distribution. The
class of such signals is

V(1) :=
{
ν ∈ Lϑ ,m

2 : |ν|∞ ≤ 1
}
.

Let 1(x) denote the hyper-square of edge 21 centred at a
point x in the state set of the controlled system". Then, with the
disturbance ν active, the average signal produced by the state-
feedback function ϕ at a time t ≥ 0 is given by

ϕ̄(t, x) := 1
(21)n

∫

1(x)
ϕ(t, z) dz.

Figure 3. A common disturbance signal ν(t).

7.2 Approximating optimal performance

Denote by Km the set of m-dimensional vectors with compo-
nents of −K or K, where K > 0 is the input amplitude bound of
the controlled system ". The set Km has 2m members. At each
point in time, a bang-bang state-feedback function take its val-
ues in the setKm. The following formal de!nition of bang-bang
state-feedback functions is reproduced from Hammer (2019).

De!nition 7.1: Let " be a system with m inputs, n states, an
input amplitude bound K, and a state amplitude bound A. Let
τ > 0 be a time. A bang-bang state-feedback function for" over
the time interval [0, τ ] is a function ϕ± : [0, τ ] × [−A,A]n →
Km characterised as follows. There is a partition of the domain
[0, τ ] × [−A,A]n into a!nite number p ≥ 1 of hyper-rectangles
σ1, σ2, . . . , σp, where each component of ϕ± takes a constant
value of −K or K in the interior of each hyper-rectangle σj,
j ∈ {1, 2, . . . , p}.

The next statement shows that the performance achieved by
bang-bang state-feedback functions can be as close as desired
to optimal performance. This is the main result of the current
section.

Theorem 7.2: Let K,A0,A, σ > 0 be real numbers, where√
σ < A0 < A, and let τ > 0 be a time. Assume that the nom-

inal system "0 is (K,A0, σ )-controllable, and refer to (6.2)
and (6.3). Then, for every real number ε > 0, there are a
bang-bang state-feedback function ϕ± ∈ +(σ ,K,A, γ ) and an
uncertainty parameter γ > 0 such that |#(σ ,K,A, γ ,ϕ±, τ ) −
#∗(σ ,K,A0, γ , τ )| < ε, when the feedback signal is averaged over
the disturbance signal ν(t) of Figure 3.

Remark 7.3: In Theorem 7.2, the response of the closed-loop
system"ϕ± may exceed the amplitude boundA0 by ε. Note that
ε > 0 can be selected as small as desired.

The proof of Theorem 7.2 depends on the next statement,
which is reproduced here from Hammer (2019).

Theorem 7.4: Let " ∈ Fγ ("0) be a system with initial state
x0 ∈ ρ(σ ). Let τ > 0 be a !nite time, and let ϕ ∈ +(σ ,K,A, γ )

be a state-feedback function. Then, for every real number ε > 0,
there are a bang-bang state-feedback function ϕ± ∈ +(K) and
an uncertainty parameter γ > 0 such that the di"erence between
the responses satis!es |"ϕ(x0, t) − "ϕ±(x0, t)| < ε at all times
t ∈ [0, τ ] and for almost all systems " ∈ Fγ ("0); here, feedback
is averaged over the disturbance signal ν(t) of Figure 3.

We can prove now Theorem 7.2.

Proof: ByTheorem6.5, there is an optimal state-feedback func-
tion ϕ∗

τ ∈ +(K). Let δ > 0 be a real number. By Theorem 7.4,
there is a bang-bang state-feedback function ϕ± ∈ +(K) such
that |"ϕ∗

τ
(x0, t) − "ϕ±(x0, t)| < δ for all t ∈ [0, τ ]. Now, for

any vectors x, y ∈ Rn, we can write (x + y)(x − y)) = xx) −
yy) + yx) − xy). As yx) is a scalar, we have yx) = (yx))) =
xy); substituting into the previous equality yields the relation
(x + y)(x − y)) = xx) − yy). Thus, |xx) − yy)| ≤ |(x + y)||
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(x − y)|. Applying this relation to our quantities and recalling
that the response of " is bounded by A, we obtain
∣∣#(σ ,K,A, γ ,ϕ±, τ ) − #∗(σ ,K,A0, γ , τ )

∣∣

≤ sup
t∈[0,τ ]

∣∣"ϕ∗
τ
(x0, t) + "ϕ±(x0, t)

∣∣ ∣∣"ϕ∗
τ
(x0, t) − "ϕ±(x0, t)

∣∣

≤ 2Aδ.

Consequently, choosing δ ≤ ε/(2A) satis!es the requirements
of the theorem. This concludes our proof. !

As we can see from Theorem 7.2, implementation can be
simpli!ed by using bang-bang state-feedback functions instead
of optimal feedback functions, without causing signi!cant per-
formance degradation. As it turns out, inmany cases of practical
interest, relatively simple bang-bang state-feedback functions –
namely, bang-bang state-feedback functions with sparse switch-
ing points – provide performance that is almost indistinguish-
able from optimal performance. One such case is demonstrated
by the example of Section 8.

In some cases, bang-bang state-feedback functions that
approximate optimal performance can be obtained by quali-
tative considerations based on the dynamical features of the
controlled system. This is the case in the example of Section 8
below. In cases where qualitative considerations are not e#ec-
tive, bang-bang state-feedback functions that approximate opti-
mal performance can be derived through a numerical search
process (see Section 8 below and Hammer, 2019).

7.3 Implementation considerations

When implementing bang-bang state-feedback functions that
must operate over extended periods of time, one must give con-
sideration to the potential appearance of jitter – the needless
to-and-fro switching around a switching surface. To prevent jit-
ter, one may replace abrupt switching surfaces of bang-bang
state-feedback functions by gradual transitions. For instance,
suppose that a switch fromK to−K of the j-the coordinate ϕj of
a bang-bang state-feedback function ϕ is indicated at the point
xis of the ith state coordinate. One may replace this abrupt tran-
sition by a gradual transition as follows. Select a real number
δ > 0 and perform the transition from K to −K gradually over
the interval [xis − δ, xis + δ], by setting

ϕj :=






K xi < xis − δ,

K
xis − xi

δ
xi ∈ [xis − δ, xis + δ],

−K xi > xis + δ.

(7.5)

This would prevent potential jitter around the switching surface.
A construction along these lines is demonstrated in the example
of Section 8.

Alternatively, one may introduce hysteresis into a bang-bang
state-feedback function to prevent jitter. This is accomplished
by including values of the state-feedback function among the
variables that determine switching points. Referring to the state-
feedback function ϕ of the previous paragraph, hysteresis in the

component ϕj near the switching point xis can be accomplished
by setting

ϕj :=
{

−K if ϕj = K and xi > xis + δ,

K if ϕj = −K and xi < xis − δ.
(7.6)

Notwithstanding, abrupt switching surfaces can be used dur-
ing the process of deriving bang-bang state-feedback functions.
Once the derivation is complete, the resulting bang-bang state-
feedback function can be ‘softened’ prior to implementation by
a process such as the one described in (7.5) or in (7.6).

8. Illustration and discussion

8.1 Example

The model of an inverted pendulum is encountered in many
control engineering applications, including missile control sys-
tems, dynamic stabilisation systems of civil engineering struc-
tures, walking robots, personal transport vehicles, and others.
We consider the control of the following inverted pendulum
(Bian et al., 2014):

" :
ẋ1(t) = x2(t),

ẋ2(t) = d1 sin x1(t) + d2x2(t) + d3 tanh u(t).
(8.1)

Here, d1, d2, and d3 are constant parameters; their nominal
values are d01 = 12, d02 = −0.1, d03 = 7, and they are subject
to uncertainty ranges of about 5%, so that d1 ∈ [11.5, 12.5],
d2 ∈ [−0.105,−0.095], and d3 ∈ [6.7, 7.3]. The input amplitude
bound of " is K = 1, and the state amplitude bound of " is
A = 0.5. The initial state can be any member of ρ(0.2), i.e.
σ = 0.2.

A numerical search process, such as the one described in
Choi and Hammer (2019a), veri!es that the nominal system
is (K,A, σ )-controllable for the current K, A, and σ . In the
following paragraphs, we describe a bang-bang state-feedback
functions ϕ±, which, when connected to ", achieves (almost)
minimal deviation from the target state x = 0 over the entire
time axis t ≥ 0. The state-feedback functionϕ± is given by (8.2);
it is a softened version of a bang-bang function, as discussed in
Subsection 7.3. With this state-feedback function, the response
of the closed-loop system is plotted in Figure 4. The plot uses
a ’close to worst case’ initial condition x0 = (−0.3,−0.3)) ∈
ρ(0.2) (Note that 0.32 + 0.32 = 0.18 < 0.2). To avoid clutter,
the!gure is drawnonly for the nominal system; similar response
is obtained for other values of the parameters d1, d2, and d3.

The plot of Figure 4 shows the response of the closed-loop
system with the state-feedback function ϕ± during the time
interval [0, 0.5]. As we can see, the state amplitude does not
exceed the bound A = 0.5 during this time interval, and, at the
end of this time interval, the system’s state is within the domain
ρ(0.2). Based on time invariance of ", the feedback function
ϕ± can be shifted in time and applied again at the time t = 0.5,
to guide " during the time interval [0.5, 1]. During this new
time interval, the resulting closed-loop system’s state amplitude
does not exceed the boundA = 0.5, and its state is withinρ(0.2)
at the end. Continuing in this manner, shift the state-feedback
function ϕ± of (8.2) in time repeatedly to time intervals that
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Figure 4. The response.

start at multiples of 0.5 and last 0.5 seconds; namely, the time
intervals [0.5, 1], [1, 1.5], [1.5, 2], . . . This results in a feedback
function that keeps the state of" within its speci!ed amplitude
bound at all times t ≥ 0; it also achieves the minimal deviation
from the target state x = 0 over the entire time axis t ≥ 0, as we
discuss next.

Figure 4 shows that the maximal state amplitude of the
closed-loop system’s response is maxt∈[0,0.5]{|x1(t)|, |x2(t)|} =
0.327; this complies with the amplitude boundA = 0.5 imposed
by the controlled system’s characteristics. The plot also shows
that the maximal deviation from the target state is # =
maxt∈[0,0.5]{x21(t) + x22(t)} = 0.18 for this state-feedback func-
tion with the current initial condition x(0) = (−0.3,−0.3)).
An examination of Figure 4 together with features of the state-
feedback functionϕ± of (8.2) shows that this feedback functions
yields a deviation of #∗ = 0.2 over the entire time axis t ≥ 0.
Recalling that theminimal deviation always satis!es #∗ ≥ σ and
that σ = 0.2 in this case, it follows that ϕ± actually achieves the
minimal deviation.

ϕ± =






1 ifx1 ≤ 0 and x2 < 0.19,
−1 if x1 ≤ 0 and x2 > 0.21,
1 − 100(x2 − 0.19) if x1 ≤ 0 and x2 ∈ [0.19, 0.21],
1 if x1 > 0 and x2 < −0.21,
−1 if x1 > 0 and x2 > −0.19,
−1 − 100(x2 + 0.19) if x1 > 0 and

x2 ∈ [−0.21,−0.19].
(8.2)

The function ϕ± is depicted in the plot of Figure 5. Methods
for deriving bang-bang state-feedback functions are discussed
in the next subsection.

8.2 Deriving bang-bang state-feedback functions

For certain controlled systems, such as the inverted pendu-
lum (8.1), it is possible to derive bang-bang state-feedback func-
tions that approximates optimal performance simply through
insight into the dynamics of the controlled system. For systems
where such insight is unavailable, a generic search process like
the one described below can be used to derive bang-bang state
feedback functions that approximate optimal performance.

As a preliminary step, it is necessary to verify that the con-
trolled system " is (K,A, σ )-controllable. This can be accom-
plished by a numerical search process like the one described by
Choi and Hammer (2019a). Such a search process also yields a
time τ > 0 by which every state in ρ(σ ) can be driven into the
interior of ρ(σ ) by an appropriate input signal.

The time τ can be used in conjunction with Theorem 7.4 and
the search process of Subsection 8.2.1 below to derive an appro-
priate bang-bang state feedback function over the time interval
[0, τ ]. Then, following a process similar to the one described
earlier in Subsection 8.1, this state-feedback function can be
extended to the entire time axis through a time shifting process
based on time-invariance of the nominal controlled system "0
(see also Proof of Proposition 4.3). Larger values of τ may also
be tested.

8.2.1 Deriving bang-bang state-feedback functions through
a search process
Let τ be the time mentioned in the previous paragraph, and let
A be the bound of the controlled system’s state amplitude; then
state coordinates are restricted to the interval [−A,A]. Select
two integers N,N ′ ≥ 1 such that the ratios τ/N and 2A/N ′ are
su"ciently small for required implementation accuracy. The
values of N and N′ depend on the functions that appear in the
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Figure 5. State-feedback function.

di#erential equation of the controlled system ". After selecting
N and N′, proceed as follows.

Preliminary Step 1: Partition the interval [0, τ ] into N sub-
intervals of length τ/N: [0, τ/N], [τ/N, 2τ/N], [2τ/N,
3τ/N], . . . , (N − 1)τ/N, τ ].

Preliminary Step 2: Partition each state coordinate interval
[−A,A] intoN′ sub-intervals of length 2A/N′: [−A,−A +
2A/N′], [−A + 2A/N′,−A + 4A/N′], [−A + 4A/N′,
−A + 6A/N′], . . . , [−A + 2(N′ − 1)A/N′,A].

The result is a set C of N(N′)n points in the domain [0, τ ] ×
[−A,A]n. Using points of the set C as potential switching
points, test the performance of bang-bang state-feedback func-
tions with an increasing number of switchings, as described
qualitatively by the following.

Algorithm 8.3 (qualitative): Let ρ(σ ) be the domain of initial
states of the controlled system and refer to the notation of Subsec-
tion 8.2.1. The interest is in bang-bang state-feedback functions
ϕ : [0, τ ] × [−A,A]n → Km that satisfy the condition

sup
t∈[0,τ ],x0∈ρ(σ )

∣∣"ϕ(x0, t)
∣∣ ≤ A and

sup
x0∈ρ(σ )

∣∣"ϕ(x0, τ )
∣∣2
2 ≤ σ ′ for some σ ′ < σ . (8.4)

The search is over bang-bang state-feedback functions with an
increasing number of switching points from the set C, as fol-
lows. For an integers k = 0, 1, 2, . . ., search over bang-bang state-
feedback functions with k switchings in C; move the k switching
points through all points of C, testing each resulting bang-bang
state-feedback function and its negative. Among all bang-bang

state-feedback functions with k switchings in C that satisfy con-
dition (8.4), denote by #k the lowest deviation of the closed-loop
system’s state from the target state x = 0 over the time interval
[0, τ ]. Denote by ϕk a bang-bang state-feedback function with k
switchings that achieves the deviation #k. Terminate the search
when further increase of k beyond a value of k′ does not yield a
signi!cant reduction of #k below the value of #k′ . Then, use ϕk′

as a bang-bang state-feedback function approximating optimal
performance.

Inmany cases, as in the case of the example of Subsection 8.1,
the resulting bang-bang state-feedback functions have relatively
sparse switching points and are easy to implement.

9. Conclusion

The paper concentrates on the existence and the design of
optimal robust state-feedback controllers that provide optimal
tracking for nonlinear input-a"ne systems over the in!nite time
horizon. The e#ects of uncertainty about the controlled system’s
model were taken into account, as were the e#ects of constraints
on the input amplitude and the state amplitude of the con-
trolled system. It was shown that optimal robust state-feedback
controllers exist, as long as the controlled system satis!es the
condition of constraint controllability. It was also shown that
this condition is close to being a necessary condition for the
existence of optimal robust state-feedback controllers.

Once the existence of optimal robust state-feedback con-
trollers was established, the paper describes a relatively simple
methodology for the design and implementation of state-
feedback controllers that approximate optimal performance.
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This implementation is based on the use of bang-bang state-
feedback functions – piecewise constant functions whose
components switch between two speci!ed values. Bang-bang
state-feedback functions are simpler to design and implement
than general state-feedback functions. An example of a non-
linearised inverted pendulum was used to demonstrate the
results.

Future research e#orts will concentrate on the development
of fast numerical algorithms for the design of bang-bang state-
feedback functions that approximate optimal performance.
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