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Abstract: The design and implementation of optimal robust controllers to optimize inter-
sample tracking in nonlinear sampled-data control systems is considered. Optimal robust
controllers that minimize inter-sample tracking errors are shown to exist for a very broad
family of nonlinear systems that includes most systems of practical interest. A relatively simple
technique for the design and implementation of such controllers is presented. Results apply to
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1. INTRODUCTION

Sampled-data control refers to the control of continuous-
time systems by digital controllers through a process of
periodic sampling, as seen Figure 1. Sample-data control
has become popular in the last few decades due to its low
cost and implementation simplicity. In this note, we prove
the existence of optimal robust controllers that minimize
inter-sample tracking errors in sampled-data systems. We
also present a relatively simple design and implementation
methodology for such optimal robust controllers. The
results are valid for a broad class of nonlinear systems.

u(t) . x(t):

Fig. 1. Sampled Data Control

In Figure 1, the controlled system 3 is a continuous-time
nonlinear system with input signal w(t) and state x(t);
here, u(t) is produced by the controller C based on samples
of x(t) it receives periodically every T' > 0 seconds. Note
that the control system operates in open loop between
samples. The system X imposes bounds of K > 0 and
A > 0 on its input and state amplitudes, respectively,
to accommodate common operating constraints of the
system. The controller C must be robust to tolerate
uncertainties about the model of X.

The task of the controller C' is to optimize inter-sample
performance to maintain ¥ as close as possible to the
target state Tiqprger = 0 between samples, when there
is no feedback. The inter-sample tracking error is £ :=

SUP¢cio,T) ! (t)a(t).

1.1 The controlled system

The system 3 of Figure 1 is described by

o(t) = f(t =(t),u(t)),t >0,

z(0) ==z (1)
— 40,

where z(t) € R™ is the state; u(t) € R™ is the input;

and f : R™ x R® x R™ — R" is the recursion function,

which is continuously differentiable. Here, R is the set of

real numbers, and RT represents the non-negative real

numbers. The initial state z¢ is in the ball p(o) :=

{m cxlx < U}, where o > 0 is specified. In functional

notation, we represent x(t) by X(zo,u,t). The L% norm

of a vector x € R" is |z|s := (z"x)'/2.

I

Generally, optimal controllers may be difficult to design
and implement, since they must generate involved vector-
valued multivariable functions of time as input to . One
of our tasks is to find controllers that approximate optimal
performance and are easier to design and implement. We
concentrate on the following topics.

Problem 1. The system X of Figure 1 imposes amplitude
bounds of K > 0 and A > 0 on its input and state,
respectively, and its model is not precisely known. The
state of ¥ is sampled at a specified sampling period of
T > 0.

(i) Obtain conditions for the existence of optimal robust
controllers C' that minimize inter-sample tracking errors.

(#1) Find easy to design and implement controllers that
approximate optimal performance. O

To simplify the mathematical framework, we require in-
put signals of ¥ to be continuous functions of time. As
discussed in Section 2, practically all signals used in appli-
cations are continuous functions of time, when viewed in a
sufficiently refined time scale. The restriction to continu-
ous functions of time allows us to obtain a major general-
ization of the results of Chakraborty and Hammer (2008,
2009); Yu and Hammer (2016); Choi and Hammer (2019),
by generalizing from input-affine systems to a family of
nonlinear systems that includes most systems of practical
interest. Our discussion generalizes classical optimization
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theory (Kelendzheridze (1961); Pontryagin et al. (1962);
Gamkrelidze (1965); Neustadt (1966, 1967); Luenberger
(1969); Young (1969); Warga (1972) by proving existence
of optimal solutions for broad families of nonlinear sys-
tems; by proving robustness of these solutions; and by
outlining simple means of implementing approximants of
optimal solutions.

This note is organized as follows. Sections 2 and 3 intro-
duce background material, while Section 4 reformulates
Problem 1 in formal terms. Existence of optimal robust
inter-sample controllers is proved in Section 6; their exis-
tence depends on a certain notion of controllability, which
is reviewed and refined in Section 5. Section 7 describes
relatively simple controllers that approximate optimal per-
formance. Section 8 is an example and Section 9 provides
a brief summary of this note.

2. CONTINUOUS INPUT SIGNALS

We assume that the controlled system X of Figure 1
receives only continuous input signals. This is not an
over-restrictive assumption, since practically all signals in
continuous-time applications are continuous functions of
time, when viewed in a fine time scale. We introduce our
class of continuous signals through their Fourier transform,
as follows.

Let C denote the complex numbers, and let |¢| be the
absolute value of a complex number c. The L°°-norm of
a matrix V € C"*™ is |V| := max; ; |Vj;|, while the L>-
norm of a function of time V : Rt — C"*™ : ¢t — V(t) is
[Vl i= supys0 IV (1))

We are interested in the class €2 of Lebesgue measurable
complex vector valued functions v : R — C™ : w — v(w),
whose inverse Fourier transforms are real vector valued
functions of time. Denoting by v¢(w) component i of v
and by Zv%(w) its phase, it is known that

__ . m . [v*(w)] is even and Zv*(w) is odd
Q= {U'R_HC " as a function of w,i = 1,2,...,m.}
A member v € Q induces a function of time v = .# " lv
through the inverse Fourier transform. To assure that
u is of finite energy, the square magnitude of v must
be bounded and integrable (Parseval’s theorem). This
leads us to the following family of exponentially bounded
functions

QW k) == {v €Q: uw)| < We ™l for all w e R} :
(2)
where W, k > 0. The corresponding time domain family of
signals is

UW,k)={F v:veQW,k)}. (3)

We refer to k as the smoothing factor, since, as we show
later, it relates to the fastest rise time possible for signals in
U(W, k). As an example of members of U(W, k), consider
Figure 2, which compares a pulse to its counterpart in
U(W, k), using k = 0.001. As the figure shows, members
of U(W, k) can closely imitate jumps.

Lemma 2. (i) All members of U(W, k) are bounded.

(%) All members of U(W, k) are equally uniformly contin-
uous.

(a) Pulse signal (b) Pseudo bang-bang signal

Fig. 2. ‘Smoothed’ pulse

Proof. [Proof outline] We outline the proof of (ii). For
times t; < t and a real number wg > 0 we can write

1
Ju(ta) = u(t)| < 5-

+ %G—K/UJO
Tk
For a fixed w, the mean value theorem yields e/“2 —
et = —wsin(wt')(ty — t1) + jwcos(wt”)(ty — t1), for
some t/,t" € [t1,t5]. Thus, |72 — ed!1| < V2|w|(ta—t1).
Substituting into (4), we get

V2W

|u(t2) — U(t1)| S 7Tl<;2 [1 — e o (IQCUO + 1)] (tg — tl)
+ (2W/mK)e™ " w0,

wo
Werlel |6Jwt2 — elwh | dw

(@)

(5)
Given ¢ > 0, choose wy to satisfy (2W/mk)e™ "0 <
£/2; thereafter, choose § > 0 to satisfy v2W/mk?)[1 —
e " (kwo + 1)]6 < /2. Then, by (5), we have |u(ts) —
u(t)] < e for all |ta — t1] < § and any u € U(W, k). O

As input signals to the controlled system > must be
bounded by K > 0, we concentrate on the signal family

UK, W,k):={uecUW,kK) : |uloo < K}. (6)

A Hilbert space.  Let H be the Hilbert space of Lebesgue
measurable functions f,g : R — C™ with inner product
(fyg) = ffooo T (w)g(w)dw, where f is the complex conju-
gate of f. For members f, g € Q(W, k), a calculation yields
[{f,9)] < mW?/k, so Q(W,k) members have bounded
inner products. We use the following mathematical notions
(e.g., Lusternik and Sobolev (1961)).

Definition 3. A sequence {vn}zozl C H is weakly conver-
gent to v € H if limy, o0 (Un,y) = (v,y) for all y € H.
A subset G C H is weakly compact if every sequence in G
has a subsequence that converges weakly to a member of

G. O

Next, we show that Q(W, k) of (2) is weakly compact.

Lemma 4. The set Q(W,k) is weakly compact in the
topology of the Hilbert space H.

Proof. [Proof outline] The proof is similar to the proof
of an analogous statement of Chakraborty and Hammer
(2009, 2010). See Hammer (2023) for details. O

We use the following terms.

Definition 5. A family G of functions of time is pointwise
compact if every sequence {g;}$2; C G has a subsequence
{9i, }?2; that converges pointwise to a function g € G, i.e.,



limy 00 g4, (t) = g(¢) for all ¢. The family G is uniformly
pointwise compact if, for any times t; < to and any real
number € > 0, there is an integer N > 1 for which
lgi, (t) — g(t)| < e for all k> N and all t € [t1, t2]. O

The next statement highlights a critical property of
U(K, W, k).

Lemma 6. The family U(K, W, k) is uniformly pointwise
compact.

Proof. [Proof outline] For a real number a > 0, define the
function

Pa(w,7)

~(,..., 0T (Tinrow r), w € [~a,al,

|0, w ¢ [—a,al.
Consider a sequence {ux}2, € U(K,W, k). Then, by (3)
and (6), vy, = Fur € QW,k). As Q(W, k) is weakly
compact by Lemma 4, there is a subsequence {vg, }5°, that

converges weakly to a function v € Q(W, k). Then,
oo

tim [ Bl @)l (@) — v(w))e?dw

0,1,0,..

o0
o0

= lim
i—oo [

so that

[pa (w,r)e=7!][(vy, () — v(w))]dw = 0,

oo

a

lim (Vp, (W) = V" (W) dw = 0,7 =1,...,m. (7)
i—oo [_, '

Set u := Fwv; then, by (7), it follows that
lim Jug, — ] = & fimie [~ (0], (@) = V" (w))e? dw
71— 00 — oo i

limiseo [© (V5 (W) — 0" (W) dw| < Were
—al ki T

As a > 0 can be selected arbitrarily large, it follows that
the sequence {ug, }52, is pointwise convergent to u. A proof
that this convergence is uniform is in Hammer (2023). O

3. NONLINEAR SYSTEMS

To incorporate modeling uncertainties and disturbances,
we decompose the recursion function f of (1) into a sum

f(t’mvu):fo(w7u)+f’v(t’x’u) (8>
of continuously differentiable functions; here, fy is a spec-
ified nominal recursion function, and f, is an unknown
uncertainty function representing uncertainties and distur-
bances. The nominal system

Yo 2(t) = folz(t),u(t)),t > 0;2(0) = xo, (9)

is time invariant.

The input and state amplitude bounds of ¥ restrict fy and
f+ to the domain R x[—A, A]" x [-K, K|™. As fo and f,
are continuously differentiable and the domain [—A, A]™ x
[- K, K]™ is compact, there are bounds B, (¢),y > 0 such
that

10£0(c)/0 (0] < Bs [0f4(t, ¢ (£))/0 (2)] < (1), 7(2) §(176>
for all (t,c,c/(t)) € Rt x [-A, A]" x [-K, K]™, where we
assumed that there is a constant v > 0 such that () <~
for all ¢, reflecting boundedness of uncertainty effects. To
simplify notation, we use the same bounds for values at
the origin:

|f0(0,0)| < B and |f,(t,0,0)| <~,t > 0. (11)

Notation 7. For real numbers K, A, o > 0, let Sy (X0, K, A)
be the set of all systems consistent with (1), (8), (10), and
(11), with input and state amplitudes bounded by K and
A, respectively, and initial states in p(c); here, g is the
nominal system. Furthermore,

(i) All input signals belong to U(K, W, k).
(ii) All systems have the same initial state z¢ € p(o).
(i4i) All systems have the same controller C'. O

Ttem (%) is valid since the sampler of Figure 1 transmits
the actual state z(0) = xo at t = 0. Item (%) represents
robustness of the controller C: as it is not known which
member of Sy (X, K, A) the controlled system actually is,
C must be suitable for all members.

4. TRACKING IN SAMPLED-DATA
CONFIGURATIONS

We develop a periodic framework for operating the con-
troller C'. In this framework, C is designed for the first
sampling interval [0,7]. The operation of C' during other
sampling intervals [kT, (k+1)T], k € {1,2,...}, is obtained
by shifting in time its operation during [0, T]. For this to be
possible, the states z(kT') at the start of sampling interval
[kT, (k 4+ 1)T] must be among the initial states 2(0). This
gives rise to the following (Choi and Hammer (2020)).

Definition 8. A sampling radius for a family S, (o, K, A)
with sampling period T' > 0 is a real number ¢ > 0 such
that the following holds for all systems ¥ € S, (3, K, A)
and for all integers k > 0: for every state z(kT) € p(o),
there is an input signal u,ry € U(K, W, k) that steers
Y to achieve z((k + 1)T) € p(o) and |z(f)] < A for all
t € [kT, (k+ 1)T). O

We investigate the existence of sampling radii in the next
section.

4.1 Upholding the state amplitude bound

For a member ¥ € S,(X, K, A) with initial state xg, the
family of input signals that preserve the sampling radius
o of Definition 8 is

sup |X(zo,u,t)] < A
te[0,T) }
and X(zg,u,T) € p(o)
Input signals must preserve the sampling radius for all
members of S, (X, K, A). The family of appropriate input
signals is

U(Aa’%x()) = ﬂ
2eS,(30,K,A)

U(A, X, x0) :{u ceU(K,W,k):

UA, S, z0).  (12)

4.2 Continuity and compactness

Systems ¥ € S,(Xo, K, A) have the following continuity
feature (see Hammer (2023) for proof).

Lemma 9. Let ¥ € §,(%¢,K,A) have an initial state
zo € p(o), and let {u;}2,; C U(A,~,z0) be a sequence
uniformly pointwise convergent to u € U(K, W, k). Then,
the sequence {¥(xg,u;,t)}$2; is uniformly pointwise con-
vergent to X(xo,u,t) at all times ¢ > 0.

The input signals set U(A,,zo) of (12) is compact, as
follows.



Lemma 10. The set U(A,~,zo) is uniformly pointwise
compact.

Proof. [Proof outline] Let {u;}2; C U(A,X,x0) be a
sequence, where ¥ € &,(2o,K,A) and zo € p(o).
Since U(A,X,29) C U(K,W,k), there is, by Lemma
6, a subsequence {u;, }?2, that converges pointwise uni-
formly to a signal w € U(K,W,k). By Lemma 9,
{Z(xo, uiy, t)}72, converges uniformly to X(zg,u,t). As
{u;}2, C U(A, 3, x0), we have X(zo,u;,,T) € p(o) and
|Z(zo, usy,t)] < Aforallt e [0,T], k=1,2,..., so that
[2(xo,u,t)| < A for all t € [0,T] and X(zo,u,T) € p(o).
Thus, u € U(A, X, z¢) and U(A, X, x¢) is uniformly point-
wise compact. Since U(A,~,xg) is then an intersection of
compact sets by (12), it is compact. O

4.8 Inter-sample tracking errors

For initial state xq, signal u € U(A4, v, zg), and target state
x = 0, the inter-sample tracking error over the family
S4(Xo, K, A) and the sampling interval [0, T is

f(o’, K,A,’}/,T,l'o,u) = sup |E($07u’t)|g
2eS, (20,K,A), te[0,T]
(13)
The infimal inter-sample tracking error over all inputs is
then
(o, K, Ay, T, ) := inf
ueU(A,v,z0)
We explore the question of whether there is an input
signal u*(zg) € U(A4,~,xo) that achieves this infimum by
satisfying
(o0, K, A, v, Tyxg) = L(0, K, A, v, T, xo,u*(20)). (14)
A signal u*(x¢), if it exists, is an optimal robust solution
to Problem 1 (%), robustly minimizing inter-sample tracking
errors. We restate now Problem 1 in formal terms.

Lo, K, A, v, T, xo,u).

Problem 11.

(i) Are there optimal robust solutions u*(x¢) for every
xo € p(o)?

(ii) Find simple controllers that approximate optimal
performance. O

The resolution of Problem 11 depends on the following
notion.

5. CONSTRAINED CONTROLLABILITY

Constrained controllability makes it possible to steer the
controlled system X to the vicinity of the origin, without
violating input and state amplitude constraints (compare
to Choi and Hammer (2019)).

Definition 12. For a real number ¢ > 0, a system X €
Sy(Z0, K, A) is (K, A,0,T)-controllable if there is o’ €
(0,0) such that, for every zy € p(o), there is an input
signal u,, € U(K,W, k) for which X(xo,us,,T) € p(o’)
and | X (29, uz,, t)| < A for all ¢ € [0, 7). O

(K, A, 0,T)-controllability resembles the notion of a sam-
pling radius, except for the contractive requirement o’ < o
of Definition 12, which helps overcome model uncertainty.
Thus, (K, A, o,T)-controllability is close to necessary for
periodic sampling.

Next, a few mathematical facts (Zeidler (1985); Willard
(2004)).

Theorem 13.

(i) A continuous functional is lower semi-continuous.

(ii) Let S and A be topological spaces. Assume that, for
every member a € A, there is a lower semi-continuous
functional f, : S — R. If sup,c4 fa(s) exists at every
point s € S, then the functional f(s) := sup,c4 fa(s) is
lower semi-continuous on S.

(77i) The Generalized Weierstrass Theorem: A lower semi-

continuous functional attains a minimum in a compact set.
O

Theorem 13(%i) and Lemma 9 imply the following

Corollary 1. The functional ¢(o, K, A, v, u, T, xo) of (13)
is a lower semi-continuous functional of the input signal u
over the domain U(A4,y,xg).

The next statement shows that (K, A, o, T)-controllability
needs to be verified just for one system — the nominal
system .

Proposition 15. Assume that the nominal system X is
(K, Ag, o, T)-controllable. Then, for every A > Ay, there
is an uncertainty parameter v > 0 for which all members
of the family S, (X, K,A) are (K, A, o, T)-controllable.
Furthermore, the family of input signals U (A, ~, z¢) of (12)
is not empty for initial states z¢ € p(o).

Proof. [Proof outline] By (K, Ag, o, T)-controllability of
Yo, there is, for every zy € p(o), an input u €
U(Ao, X0, x0) satisfying Xo(zg,u,T) € p(c’), where 0 <
o' < o; and [Zo(zo,u,t)| < Ao for all ¢ € [0,T]. Let
Y e 5,/(%, K, A). Denote z'(t) := X(xo,u,t), z(t) =
Yo(zo, u,t), and £(t) = 2/(t) — z(t); and let t1,t5 € [0,T]
t1 < ty. Then,

£(t) = £(ta) + / Fo(@!(s), u(s)) + f (5,2 (s), u(s))] ds

—/t Fola(s), u(s))ds.

Using the mean value theorem and (8), (10), and (11), we
obtain

[1=nB(ta—t1)] sup [§(s)] < [E(t1)|+y(nA+1)(t2—t0).

SE[t1,t2]

Let n > 0 satisfy nBn < 1/2 with p := T/n an integer.
Then, setting t; =in, i € {0,1,...,p — 1}, we get

sup  [§(s)| < 2(E(in)| + 2yn(nA +1),£(0) = 0,
in<s<(i+1)n
1=0,1,...,p— 1. This yields

p

sup [£(s)] < yn(nA+1)> 2" = yn(nA +1)2(2° - 1).

0<s<T i—1

Let ¢ := A — Ag and ¢’ := (0 — ¢’)/2. Then, any v > 0
satisfying v < min{e,&’'}/[n(nA 4+ 1)2(2P — 1)] fulfills the
proposition. O

Proposition 15 substantially simplifies the process of ver-
ifying the existence of optimal robust solutions, as we
discuss next.



6. EXISTENCE OF OPTIMAL ROBUST
CONTROLLERS

Existence of optimal robust controllers that minimize
inter-sample tracking errors is a consequence of the gen-
eralized Weierstrass theorem (Theorem 13(%4)) and the
following facts: (a) the family of inputs U(A,~,xo) is
compact and not empty by Lemma 10 and Proposition
15; and (b) the tracking error ¢(o, K, A,~v,u,T,xo) is a
lower semi-continuous functional of u by Corollary 14. This
proves

Theorem 16. Under the conditions of Proposition 15,
there is, for every initial state zo € p(o), an optimal robust
input signal u*(x0) € U(A, 7, x0) satisfying (14). O

The signal u*(xo) minimizes inter-sample tracking errors;
when produced by the controller C, it creates an optimal
robust controller for the system Y during the sampling
interval [0, T]. It is a robust controller, since optimization
was over the family of systems S, (X, K, A), which repre-
sents uncertainty about the system Y. The next statement
shows that the same signal is optimal for any sampling
interval [kT, (k+ 1)T], after being appropriately shifted in
time.

Theorem 17. Refer to the conditions and notation of The-
orem 16. The shifted-in-time input signal w*(z(kT),t —
kT), t € [kT,(k + 1)T], is an optimal robust input signal
that minimizes inter-sample tracking errors during the
sampling interval [kT, (k+1)T], k € {0,1,...}; it achieves
the minimal tracking error ¢*(o, K, A,~, T, z(kT)).

Proof. [Proof outline] (i) The nominal system ¥ is time-
invariant. (%) The uncertainty parameter v of (10) is
constant. As a result, the arguments used in the proof
of Theorem 16 are valid during any sampling interval (see
Hammer (2023) for details). O

By Theorem 17, (K, Ao, o, T)-controllability of the nom-
inal system Y is sufficient for the existence of optimal
robust controllers, as long as the uncertainty parameter
~ is not too large. By the discussion following Definition
12, this implies that (K, Ag, o, T)-controllability is close
to being a necessary and sufficient condition for the exis-
tence of optimal robust controllers for the general class of
nonlinear systems (1). The controllers operate as follows.

Controller Operation (outline). Under conditions of
Theorem 17:

e The controller C' receives the state x(kT) of the con-
trolled system X at the time kT

e The controller C generates the signal v*(z(kT),t — kT)
as input to ¥ during the sampling interval [kT, (k + 1)T].
U

As optimal input signals may be hard to calculate and
implement, we introduce next a family of input signals
that approximate optimal performance and are relatively
easy to calculate and implement.

7. PSEUDO BANG-BANG SIGNALS

Recall that a bang-bang signal is a signal whose compo-
nents switch between the values of K and — K, where K is
the input amplitude bound of the system Y. Pseudo bang-
bang signals are continuous function of time that resemble

bang-bang signals. Like bang-bang signals, pseudo bang-
bang signals are characterized by a string of scalars —
their ‘switching times’ and, as a result, are relatively easy
to design and implement. In formal terms:

Definition 18. A pseudo bang-bang signal ups is induced
by a bang-bang signal us, € U(K) by taking the Fourier
transform v, := .Fu,; multiplying it by e *“l, where
k > 0 is a desired smoothing factor; and inverting the
Fourier transform w,s(t) = .F 1 (vs(w)e "“l). A pseudo
bang-bang controller generates pseudo bang-bang signals
as input to the system it controls.

By Lemma 2, pseudo bang-bang signals are uniformly
continuous functions of time. Figure 2 shows that pseudo
bang-bang signals resemble their bang-bang counterparts
(in the figure, x = 0.001). The next statement shows
that pseudo bang-bang controllers can approximate the
performance of optimal controllers (see Hammer (2023)
for proof).

Theorem 19. Assume the conditions and notation of
Proposition 15 and Theorem 17, where u* denotes the
optimal input. Let ¥ € S,(3o, K, A) be a system with
initial state xg, state x(t), input signal u(t), and sampling
period T' > 0. Denote by x* the response of ¥ to u*. Then,
for every € > 0, there are x, W’ > 0 and a pseudo bang-
bang signal u*(z(kT)) € U(K + ¢, W', k) for which the
following is true for all K = 0,1,...: the response z*(t) of
¥ to the time-shifted input signal u® (x(kT),t — kT') does
not differ by more than € from the optimal response x*(¢),
t € [kT, (k + 1)T); furthermore, 2% ((k + 1)T) € p(o). O

In Theorem 19, increasing accuracy by reducing £ may
require more ‘switchings’ of the pseudo bang-bang signal
u* that is generated by a pseudo bang-bang controller
approximating optimal performance.

Implementation of pseudo bang-bang controllers is simpler
than implementation of other controllers, since pseudo
bang-bang signals are characterized just by lists of switch-
ing times.

Operation of a pseudo bang-bang controller C.

(refer to Figure 1)

e The feedback sampler supplies the state z(kT) € p(o)
of 3 to the controller C' at the time ¢t = kT

e The controller C' creates the pseudo bang-bang signal
ut (x(kT),t—kT) as input to ¥ during the time intervals
(KT, (k+1)T).

e This input respects the sampling radius o, so & ((k +
1)T) € p(o), and the process continues cyclically over
sampling intervals £ = 0,1, ... O

8. EXAMPLE

We demonstrate the techniques of this note on a variant
of the Michaelis-Menten equation, an equation often used
in biological science (Michaelis and Menten (1913); Cao
(2011); and others):

(@ w20 (ot ud)r ()

(b+a%(t) ' (c+a2(t))

Here, z(t) = (x'(t),2%(t))" is the state; u(t) is the input
signal, and a,b, and ¢ are unspecified constants with

¥ oal(t) =



nominal values ag = 2, by = 2, and ¢y = 5, and uncertainty
domains 1.9 <a <2.1,19<b<21,and 49 < ¢ <5.1.
The sampling period is T' = 10; the input and state
amplitude bounds are K = 3 and A = 1, respectively; the
sampling radius is ¢ = 0.2; and the target state is = 0.
The task is to minimize inter-sample tracking errors.

We use pseudo bang-bang signals to simplify calculation
and implementation (Section 7) and allow an approxima-
tion error of ¢ = 0.01 (Theorem 19). The design of a pseudo
bang-bang controller is briefly described as follows (see
Hammer (2023) for details).

Procedure 20. Pseudo bang-bang Controller Derivation
(outline).

(i) Use the search process of Choi and Hammer (2019) to
calculate a bang-bang input signal v*(z¢) that minimizes
tracking error.

(ii) Calculate the Fourier transform V*(zq) = FvE(z).
(iii) The pseudo bang-bang input signal is then u™(zo) =
F =1 (VE(z0,w)e ™!}, where £ > 0 is a sufficiently small
smoothing factor (see Hammer (2023)).

(iv) Repeat (i) to (iii) for a grid of initial states xg € p(o)
to complete controller design. O

Figure 3 depicts the outcome of Procedure 20 for x =
0.001, a = 2, b = 2, and ¢ = 5, and initial state
zo = (0.4,0.2) . A single case is depicted to avoid clutter.
The maximal tracking error is £ = sup,¢jo 1 |z(t)|3 =0.2.
As any tracking error must satisfy ¢ > |x9|3 = 0.2,
this outcome is the best possible, so no additional error
was introduced by the use of pseudo bang-bang signals.
Also, the figure shows that |z(10)]3 € p(0.2), so the
sampling radius is preserved, and the process can proceed
periodically with T" = 10.

(a) A pseudo bang-bang input (b) The inter-sample deviation

Fig. 3. An input signal and its response
9. CONCLUSION

This note presents the essentials of a design and implemen-
tation method for optimal robust inter-sample tracking of
nonlinear sampled-data systems. The method applies to a
wide class of nonlinear systems. It is shown that optimal
robust inter-sample controllers exist as long as a certain
controllability condition is valid. Furthermore, it is shown
that pseudo bang-bang controllers, which are relatively
easy to design and implement, can approximate optimal
performance.

REFERENCES

Cao, J. (2011). Michaelis - menten equation and detailed
balance in enzymatic networks. The Journal of Physical
Chemistry B, 5493-5498.

Chakraborty, D. and Hammer, J. (2008). Bang-bang
functions: Universal approximants for the solution of
min-max optimal control problems. In Proceedings of
the International Symposium On Dynamic Games and
Applications. Wroclaw, Poland.

Chakraborty, D. and Hammer, J. (2009). Optimal con-
trol during feedback failure. International Journal of
Control, 82(8), 1448-1468.

Chakraborty, D. and Hammer, J. (2010). Robust optimal
control: low-error operation for the longest time. Inter-
national Journal of Control, 83(4), 731-740.

Choi, H.L. and Hammer, J. (2019). Fastest recovery from
feedback loss: Bounded overshoot. International Journal
of Control, 92(9), 2077-2090.

Choi, H.L. and Hammer, J. (2020). Periodic sampling:
Maximizing the sampling period. International Journal
of Control, 93(6), 1303-1316.

Gamkrelidze, R. (1965). On some extremal problems in
the theory of differential equations with applications to
the theory of optimal control. STAM Journal on Control,
3(1), 106-128.

Hammer, J. (2023). Optimal robust control of non-
linear systems: Inter-sample optimization in sampled-
data control. International Journal of Control, DOI:
10.1080/00207179.2023.2260901.

Kelendzheridze, D. (1961). On the theory of optimal
pursuit. Soviet Mathematics Doklady, 2, 654-656.

Luenberger, D.G. (1969). Optimization by Vector Space
Methods. Wiley, New York.

Lusternik, L. and Sobolev, V. (1961). Elements of Func-
tional Analysis. Frederick Ungar, New York.

Michaelis, L. and Menten, M.L. (1913). Die kinetik der
invertinwirkung. Biochemische Zeitschrift, 49, 333-369.

Neustadt, L. (1966). An abstract variational theory with
applications to a broad class of optimization problems i,
general theory. SIAM Journal on Control, 4, 505-527.

Neustadt, L. (1967). An abstract variational theory with
applications to a broad class of optimization problems
ii, applications. SIAM Journal on Control, 5, 90-137.

Pontryagin, L., Boltyansky, V., Gamkrelidze, R., and
Mishchenko, E. (1962). The Mathematical Theory of
Optimal Processes. Wiley, New York, London.

Warga, J. (1972). Optimal Control of Differential and
Functional Equations. Academic Press, New York.

Willard, S. (2004). General Topology. Dover Publications,
Mineola. NY.

Young, L. (1969). Lectures on the Calculus of Variations
and Optimal Control Theory. W. B. Saunders, Philadel-
phia.

Yu, Z. and Hammer, J. (2016). Fastest recovery after
feedback disruption. International Journal of Control,
89(10), 2121-2138.

Zeidler, E. (1985). Nonlinear Functional Analysis and its
Applications III. Springer-Verlag, New York.



