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Abstract— Feedback controllers that automatically counter-
act the effects of adversarial interventions on the operation of
asynchronous sequential machines are considered. Bursts - fast
outbursts of characters generated by the controlled machine
during transitions - are employed to broaden the conditions
under which such controllers exist. Included are necessary and
sufficient conditions for the existence of controllers as well as
design considerations.

I. INTRODUCTION

Asynchronous sequential machines, or clockless logic
circuits, play important roles in many branches of engi-
neering and science. They form building blocks of high-
speed computing machines, industrial controllers, and traffic
control systems; they are used in the modeling, analysis, and
design of parallel computing systems; and they appear in
the modeling and analysis of signaling chains in molecular
biology (e.g., [5]). The present note concentrates on the
development of controllers that automatically counteracts
the effects of adversarial interventions and disturbances.
Examples of adversarial interventions include attempts by
rogue computer operators to infiltrate computing networks
or the impact of viruses on biological cells.

To represent adversarial interventions we consider asyn-
chronous machines with two inputs: a legitimate input - the
control input (the input u of Σ in Figure 1); and a subversive
input - the adversarial input (the input w of Σ in the
figure). The objective is to develop a controller C - another
asynchronous machine - that automatically counteracts the
effects of commands received at the adversarial input. The
closed loop machine Σc is shown in Figure 1.

Fig. 1. The basic configuration

An adversarial command at w may cause Σ to undergo
state transitions. The controller C detects the bursts created
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by these transitions and reacts by applying to Σ a control
command sequence that takes Σ back to the state it had before
the adversarial event. Being an asynchronous machine, the
controller’s reaction is very quick (ideally, in zero time), so
users of Σc remain unaffected by adversarial interferences.

An asynchronous machine may be in a stable state - a
state at which it lingers until an input change occurs, or in
a transient state - a state through which it passes quickly
(ideally, in zero time) on its way from one stable state to
another. A burst is a fast string of output characters produced
by the transient states traversed along a transition from one
stable state to another. Controllers that counteract adversarial
interventions without using bursts are discussed in [20, 21].
The present note extends these results by incorporating the
use of bursts, thus broadening the controller’s capabilities.

Fundamental mode operation is an operating policy that
guarantees deterministic behavior; it allows only one variable
change value at a time (e.g., [10]). Asynchronous machines
are almost always operated in fundamental mode.

Fact 1. The composite machine Σc of Figure 1 operates in
fundamental mode if and only if all the following require-
ments are satisfied:

(i) Σ is in a stable state when C undergoes transitions.
(ii) C is in a stable state when Σ undergoes transitions.
(iii) The variables v and w change value only when Σ and

C are both in a stable state, and then only one at a time. �

Other studies on the control of sequential machines can
be found in the literature on discrete-event systems ([15],
[16]); in [5, 6, 7, 8, 9, 2, 1], where issues related to model
matching are considered; in the references listed in these
publications; and in may other sources. These publications
do not consider specialized issues related to the function of
asynchronous machines, such as the presence of stable and
transient states or fundamental mode operation.

The present paper extends the framework developed in
[3, 4, 12, 13, 14, 18, 19, 21, 22] and is organized as
follows. Section 2 reviews notation and background. Sec-
tion 3 introduces notions of detectability, which determine
whether the machine Σ can be operated in a deterministic
and unambiguous way after an adversarial intervention. The
remaining sections derive necessary and sufficient conditions
for the existence of controllers that counteract the effects of
adversarial interventions. An illustrative example is included.

II. ASYNCHRONOUS SEQUENTIAL MACHINES

Given an alphabet D, denote by D∗ the set of all strings of
characters of D and by D+ the set of all non-empty strings
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of characters of D. For a string z := z1z2 ∈ D+ formed by
the concatenation of two strings z1,z2 ∈ D∗, the string z1 is
called a prefix of z. If neither z1 nor z2 are empty strings,
then z1 is a strict prefix of z.

An input/state asynchronous sequential machine Σ with
two inputs is represented by a triple (A× B,X , f ), where
A is the control input alphabet, B is the adversarial input
alphabet, X is a set of n states, and f : X ×A×B→ X is a
partial function serving as the recursion function of Σ. The
machine operates according to the recursion

xk+1 = f (xk,uk,wk),k = 0,1,2, . . . (1)

with an initial condition x0 ∈ X . Here, u0,u1,u2, ... is the
control input sequence; w0,w1,w2, ... is the adversarial input
sequence; and x0,x1,x2, ... is the resulting sequence of states.

An element (x,u,w) ∈ X×A×B is a valid combination if
the function f is defined at it. A pair (x,u) ∈ X×A is valid
if there is a character w ∈ B such that (x,u,w) is a valid
combination. A stable combination is a valid combination
for which x = f (x,u,w), i.e., a "fixed point" of f ; the state x
is then a stable state. By (1), an asynchronous machine rests
at a stable combination until a change occurs at one of its
inputs.

When (x,u,w) is not a stable combination, it initi-
ates a chain of transitions x0 = x,x1 = f (x0,u,w),x2 =
f (x1,u,w), . . . If this chain terminates, then there is an integer
i≥ 0 such that xi = f (xi,u,w), and xi is the next stable state
of x with the input (u,w). The stable recursion function
s : X×A×B→ X of Σ is defined by s(x,u,w) := x′, where x′

is the next stable state of x with the input (u,w). The stable
recursion function gives rise to the stable-state machine
Σ|s := (A× B,X ,s). For a user, the observed behavior of
an asynchronous machine is its stable-state machine, since
transients disappear very quickly (ideally, in zero time). An
input string α = α0α1...αm ∈ (A×B)+ takes Σ to the stable
state

s(x,α) := s(s(s(x,α0),α1), ...αm). (2)

In fundamental mode operation, only one component of α

can change at each step.
Assume now that the machine Σ is at a stable combination

(x,a) ∈ X × (A×B), when a change occurs in one of the
input characters. Let a′ ∈ A×B be the new input pair and
let x′ := s(x,a′) be the next stable state of Σ. This change
may take Σ through i≥ 1 transient steps x1 := f (x0,a′),x2 :=
f (x1,a′), . . . ,xi := f (xi−1,a′) = x′. The string

b(x,a) := x1x2...xi

is then the burst created by (x,a′). In an asynchronous
machine, a burst occurs very quickly (ideally, in zero time).

The set Ω ⊂ B of all adversarial input characters that
may appear at the adversarial input of Σ is called the
adversarial uncertainty; it describes all options of adversarial
input characters. Our discussion centers on controllers that
eliminate the effects of adversarial interventions, as follows.

Problem 2. Control objective: For an asynchronous machine
Σ with adversarial uncertainty Ω, find necessary and suffi-
cient conditions for the existence of a controller C for which
the stable state composite machine of Figure 1 is unaffected
by adversarial interventions and operates in fundamental
mode. If such a controller exists, describe its design. �

III. DETECTABILITY

Recall from Fact 1 that in fundamental mode operation,
the controller C must wait until the machine Σ has reached
its next stable state before reacting to an adversarial interven-
tion. Thus, it must be possible for C to determine whether Σ

has reached its next stable state, despite uncertainty about
the adversarial input. This determination must be based
on information available to the controller; it leads to the
following notion (compare to [20], where bursts were not
used).

Definition 3. Let Σ be an asynchronous machine with
adversarial input resting in a stable combination at a state
x, when the control input character switches to u′. Let b be
the burst induced by the resulting stable transition. The pair
(x,u) is detectable if it is possible to determine from b and
u′ whether Σ has reached its next stable state. �

Fundamental mode operation of the composite machine
of Figure 1 is possible only at detectable pairs of Σ. De-
tectability depends on the information we can deduce about
the adversarial input, as follows. Let s be the stable recursion
function of Σ; assume that Σ is in a stable combination at an
initial state x with the control input character u. The set of
adversarial input characters compatible with this data is

ω(x,u) := {w ∈Ω : s(x,u,w) = x}. (3)

When x is not an initial state, further information about
the adversarial input can be derived from the burst history of
Σ. The residual adversarial uncertainty υ(x,u) is the set of
all adversarial input characters that are compatible with the
available information. Consider a switch of the control input
character to u′, and let x′ be the next stable state of Σ. The
adversarial input character w remains constant during this
transition (fundamental mode operation), which may consist
of q≥ 1 steps: x1 := f (x,u′,w), x2 := f (x1,u′,w), . . . ,xq :=
f (xq−1,u′,w) = x′. The burst of this transition depends on w
and is given by

b(x,u′,w) := x1...xq. (4)

As the set of all possible adversarial input characters is
υ(x,u), the set of all possible bursts is

B(x,u,u′) := {b(x,u′,w) : w ∈ υ(x,u)}. (5)

Example 4. Consider an input/state asynchronous machine
Σ with A = {a,b,c}, B = {α,β ,γ}, X = {x1,x2,x3}, and state
flow diagram shown in Figure 2.
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Fig. 2. State flow diagram of an example

Assume that Σ is in an initial stable combination at x1

with control input b, and let Ω = B. Then, ω(x1,b) = {β ,γ}.
Assume further the control input changes to a, starting state
transitions. Observing Figure 2, we obtain b(x1,a,β ) = x2x3

and b(x1,a,γ) = x3x2. Thus,

B(x1,b,a) = {x2x3,x3x2}. � (6)

We arrive at the following characterization of detectability
(compare to [13], where a related approach is used in the
control of asynchronous machines with races).

Theorem 5. Let Σ = (A × B,X , f ) be an asynchronous
machine in a stable combination at the state x, when the
control input character switches from u to u′. Let υ(x,u) be
the residual adversarial uncertainty and let B(x,u,u′) be the
set of bursts (5). Then, the following are equivalent.

(i) The pair (x,u′) is detectable.
(ii) No member of B(x,u,u′) is a strict prefix of another

member.

Proof: (sketch) If (ii) is not valid, then there are adver-
sarial input characters w,w′ ∈ υ(x,u) for which b(x,u′,w) is
a strict prefix of b(x,u′,w′). Letting x′ (respectively, x′′) be
the stable state at the end of the burst b(x,u′,w) (respectively,
b(x,u′,w′)), we have b(x,u′,w) = · · ·x′ and b(x,u′,w′) =
· · ·x′ · · · x′′. Thus, at the end of b(x,u′,w), it is impossible
to tell whether Σ is in a stable combination without knowing
which of w or w′ the adversarial input character was. As the
latter is unknown, (x,u′) is not detectable, and (i) implies
(ii). Conversely, when (ii) is valid, the end of a burst always
signifies a stable combination, and (ii) implies (i). �

Example 6. Consider the machine Σ of Example 4. Assume
that Σ is in a stable combination at (x1,b) when the control
input switches to a. We can see from (6) that no member
of B(x1,b,a) is a strict prefix of another member. Hence, by
Theorem 5, the pair (x1,b) is detectable. �

Similarly, fundamental mode operation requires that it be
possible to determine whether Σ has reached its next stable
state after a character switch at the adversarial input.

Definition 7. Assume that the asynchronous machine Σ is
in a stable combination at the state x with the control input
character u, when a switch of the adversarial input character
occurs. The pair (x,u) is adversarially detectable if it is
possible to determine from the control input and the burst of

Σ whether Σ has reached its next stable state. The machine
Σ is adversarially detectable if every valid pair (x,u) of Σ

is adversarially detectable. �

Necessary and sufficient conditions for adversarial de-
tectability are analogous to the conditions of Theorem 5.
For a state x and a control input character u, the set of all
bursts that can result from a switch of the adversarial input
character (recalling the adversarial uncertainty Ω) is

Ba(x,u) := {b(x,u,w) : w ∈Ω}. (7)

Example 8. Suppose that Σ of Figure 2 is in a stable
combination at the state x1 with control input a. Then, the
adversarial input character must be α , so it can switch to
either β or γ . Hence,

Ba(x1,a) = {b(x,a,α),b(x,a,β ),b(x,a,γ)}= {x1,x2x3,x3x2}. � (8)

Theorem 9. Assume that the asynchronous machine Σ with
adversarial uncertainty Ω is in a stable combination at
the state x with the control input character u, when the
adversarial input character is switched. Let Ba(x,u) be the
set of bursts (7). Then, the following are equivalent.

(i) The pair (x,u) is adversarially detectable.
(ii) No member of Ba(x,u) is a strict prefix of another

member. �

Example 10. From Example 8, the set Ba(x1,a) has no
member that is a strict prefix of another member. Hence
(x1,a) is adversarially detectable by Theorem 9. �

For an adversarially detectable machine Σ, the controller
C of Figure 1 operates as follows: C records the latest stable
state x of Σ and its current control input value u; when C
detects a burst b of Σ without a change of the control input,
it compares b to members of Ba(x,u). By Theorem 9(ii), Σ

has reached its next stable state when b becomes equal to a
member of Ba(x,u). At that point, C can start to counteract
the adversarial transition in fundamental mode operation.

IV. UNCERTAINTY

A. Uncertainty After an Adversarial Transition

Consider an asynchronous input/state machine Σ = (A×
B,X , f ) with adversarial uncertainty Ω resting in a stable
combination at an adversarially detectable pair (x,u)∈X×A.
A change of the adversarial input character to w′ causes Σ

to move to a stable combination at the state x′. Let b be
the burst generated by Σ during this transition. The set of
adversarial input characters compatible with this data is

υ(x,u,b) := {w ∈Ω : b(x,u,w) = b}. (9)

This set characterizes the uncertainty about the adversarial
input character immediately before controller reaction.

The reaction of the controller C of Figure 1 to an adversar-
ial transition is a string of control input characters it applies
to the machine Σ to reverse the adversarial transition. The
controller applies the string one character at a time; after
each character, C waits until Σ has reached its next stable
state, and then applies the next character of the string. The
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resulting chain of transitions of Σ forms part of a single
stable transition of the closed loop machine Σc, and is com-
pleted quickly (ideally, in zero time). The adversarial input
character remains constant during this process (fundamental
mode operation). After each step of this transition chain,
more information may be gained about the adversarial input
character, as follows.

Let X = {x1,x2, ...,xn} be the state set of Σ, and let s be
its stable recursion function. Assume that Σ is at a stable
combination (xi,u0,w) ∈ X × A× B when a control input
string u = u0u1u2...ut ∈ A+ is applied, with the adversarial
input fixed at w. Denote α := w|u. Suppose that α takes Σ to
a stable combination with the state x j through the chain of
stable transitions x0 = xi, x1 = s(x0,u1,w), x2 = s(x1,u2,w),
..., xt = s(xt−1,ut ,w) = x j. Let bp(α), p ∈ {1,2, ..., t}, be the
burst generated by Σ on its way from xp−1 to xp. Then,
using (9), the set of all adversarial input characters that are
compatible with the data about step p is given by

υ(xp−1,up,bp(α)) = {w∈Ω : b(xp−1,up,w) = bp(α)} (10)

The residual uncertainty υp(α) at the end of step p is the
set of adversarial input characters that are compatible with
all the data collected up to the end of step p of the transition
chain. This includes the bursts of steps 1,2, ..., p as well as
the initial information about the adversarial input character.

Recall that our objective is to counteract adversarial tran-
sitions. Thus, the controlled transition from xi to x j is in
response to an adversarial transition from x j to xi. Denoting
by ba( j, i) the burst of this adversarial transition, it follows
from (9) that, immediately after the adversarial transition, we
can infer that the adversarial input character belongs to the
set

υi j(u0) := υ(x j,u0,ba( j, i)). (11)

Combining this with (10), the residual adversarial uncertainty
υp(α) satisfies

υ0(α) := υi j(u0),
υr(α) = υr−1(α)∩υ(xr−1,ur,br(α)),r = 1, ..., p.

(12)

This characterizes the information about the residual adver-
sarial uncertainty available to the controller before step p+1
of the control input string, and proves the following.

Lemma 11. The set υp(α) of (12) forms the residual
adversarial uncertainty at the end of step p of a chain of
stable transitions induced by an input string α = w|u∈Ω|A+

in response to an adversarial transition. �

B. The extended matrix of stable transitions

Recall that the adversarial input character remains constant
during the controller’s response to an adversarial transition.
We investigate next the operation of an asynchronous ma-
chine Σ under conditions of constant adversarial input. Let
s be the stable recursion function of Σ and let Ω be the
adversarial uncertainty. A state x′ of Σ is stably reachable
from a state x in the presence of the adversarial input
character w if there is a control input string u ∈ A+ such
that x′ = s(x,u,w). We construct a matrix that characterizes

the stable reachability features of the machine Σ (compare
to [20, 21]), starting with some notation.

For a string w|u ∈ Ω|A+, where u = u0u1...ut , define the
projection Πc

i : B|A+→A onto the i-th control input character

Π
c
i w|u :=

{
ui if i≤ t,
ut if i > t,

i = 0,1,2, ... Denote by Πa : B|(A+∪N)→ B : (w|u) 7→w the
projection onto the adversarial input character.

Let X = {x1,x2, ...,xn} be the state set of Σ. The set of
all control input strings u ∈ A+ that take Σ from a stable
combination with xi to a stable combination with x j in the
presence of the adversarial input character w ∈Ω is

σ(w,xi,x j) :=

w|u ∈ w|A+ :
x j = s(xi,u,w) and
(xi,Πc

0w|u,w) is a stable
combination.


Define the quantity

ρi j :=
⋃

w∈Ω

σ(w,xi,x j).

Assume now that a stable adversarial transition from x j to
xi has occurred, ending with the control input character u0.
Consider now an element α ∈ ρi j. For α to represent a con-
trol string that takes Σ back from xi to x j, its adversarial input
character w := Πaα must be a member of the set υi j(u0)
of (11), which consists of all adversarial input characters
compatible with the adversarial transition from x j to xi. As
the initial control input character is u0 = Πc

0α , the set of all
members of ρi j that can take Σ back from xi to x j under the
present conditions is

R∗i j(Σ,Ω) := {α ∈ ρi j : Π
a
α ∈ υi j(Πc

0α)}, (13)

i, j = 1,2, ...,n. We call R∗(Σ,Ω) the extended matrix of
stable transitions of Σ. The features of our construction are
summarized in the following.

Lemma 12. Let Σ be an asynchronous machine with ad-
versarial uncertainty Ω, state set X = {x1,x2, ...,xn}, and
extended matrix of stable transitions R∗(Σ,Ω). Then, the
following are equivalent for all i, j = 1,2, ...,n.

(i) The entry R∗i j(Σ,Ω) includes a string w|u.
(ii) The control input string u takes Σ from a stable

combination at xi to a stable combination at x j in the
presence of the adversarial input character w; here, w is
consistent with an earlier adversarial transition from x j to
xi.

V. DETECTABLE FEEDBACK PATHS

In this section, we examine the existence of automatic
controllers that counteract adversarial transitions. Consider
a machine Σ with state set X = {x1,x2, ...,xn}, adversarial
uncertainty Ω, stable recursion function s, and extended
matrix of stable transitions R∗(Σ,Ω). For a string α = w|u ∈
R∗i j(Σ,Ω), where u = u0u1...ut , let xp := s(xi,u0u1...up,w)
be the stable state of Σ at step p, p ∈ {0,1, ..., t}; here,
x0 := xi and xt := x j. In order for the controller to operate
in fundamental mode, the pair (xp,up+1) must be detectable
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with respect to the residual adversarial uncertainty υp(α) at
all steps p = 0,1, ..., t−1 (see section 3). Let bk(α) be the
burst generated by Σ during its transition from xk−1 to xk, so
that the string of bursts generated by Σ up to step p is

bp
0(α) := {x0,b1(α),b2(α), ...,bp(α)}.

As the only information the controller receives from Σ are
the bursts, the controller cannot distinguish at step p between
adversarial input characters that produce equal bursts bp

0(α)
(given the same control input history of Σ). For all such
adversarial input characters, the controller produces for Σ

the same control input character at step p + 1. This is, of
course, a fundamental restriction on feedback controllers.

Before continuing, we need some notation. Denote by Πc :
B|A+→ A+ : (w|u) 7→ u the projection onto the control input
string, and, for a string α = w|u0u1...ut ∈B|A+ and an integer
p≥ 0, denote the truncation

α|p :=
{

w|u0u1...up for p≤ t,
w|u0u1...ut for p > t.

Now, given a set of strings S ⊂ B|A+, an integer p ≥ 0,
and a string α ∈ S, denote by S(α, p) the set of all strings of
S which, up to step p, have the same control input characters
and produce the same string of bursts as α; namely,

S(α, p) := {a∈ S : Π
ca|p = Π

c
α|p and bp

0(a) = bp
0(α)} (14)

Strings in S(α, p) may have different adversarial input char-
acters as well as different continuations beyond step p. The
following notion is critical to our discussion (compare to [17,
18, 19, 20, and 21]).

Definition 13. Let Σ be an asynchronous machine with
state set X = {x1,x2, ...,xn}, stable recursion function s, and
initial adversarial uncertainty Ω. Assume that Σ is in a stable
combination at the state xi with the control input value u0. A
subset S⊂ R∗i j(Σ,Ω) is a detectable feedback path from xi to
x j if the following conditions are satisfied for every element
α ∈ S and for every integer p≥ 0:

(i) Πc
0S consists of a single element u0;

(ii) The set Πc
p+1S(α, p) consists of a single element; and

(iii) The pair (s(xi,α|p),Πc
p+1α) is detectable with respect

to the residual uncertainty υp(α) of (12).
Here, u0 is the initial control input character of S. �

Example 14. To derive a detectable feedback path from
x2 to x1 for the machine Σ of Figure 2, note that ρ21 =
{γ|ab,β |cab}. Assume that an adversarial transition occurred
from x1 to x2 with the burst ba(1,2) = x3x2, ending at the
stable pair (x2,a); then, u0 = a. By (11), we have υ21(a) =
υ(x1,a,x1x3x2) = {γ} and R∗21(Σ,Ω) = {γ|ab} (see (13)).
Clearly, γ|ab satisfies conditions (i) and (ii) of Definition 13.
As there is only one step in this path, we need to consider
only p = 0; then, in condition (iii) of Definition 13, we
have (s(x2,γ|a),b) = (x2,b), which is detectable with respect
to υ0(α) = {γ} (B(x2,a,b) has only one member). Hence,
S = {γ|ab} is a detectable feedback path from x2 to x1. �

The presence of a feedback path is equivalent to the exis-
tence of a controller that counteracts adversarial transitions,
as follows.

Theorem 15. Let Σ be an asynchronous machine with
adversarial uncertainty Ω, state set X = {x1,x2, ...,xn}, and
extended matrix of stable transitions R∗(Σ,Ω). Assume that
Σ underwent a detectable stable adversarial transition from
x j to xi in the presence of the control input character u0.
Then, the following are equivalent for all i, j ∈ {1,2, ...,n}.

(i) There is a controller C(i, j,v) that takes Σ back from
a stable combination with xi to a stable combination with
x j in fundamental mode operation, where v is the external
input character of Figure 1.

(ii) The entry R∗i j(Σ,Ω) includes a detectable feedback
path with initial control input character u0.

Proof: (sketch) Note that the external input v of
Figure 1 is constant during this process (fundamental mode
operation). First, assume that (i) is valid, and let S ⊂ B|A+

be the set of all input strings that C(i, j,v) can generate to
steer Σ from xi to x j. The initial control input character must
be u0 := Πc

0S, the character in force during the adversarial
transition from x j to xi. Hence, condition (i) of Definition
13 is valid. The fact the C(i, j,v) is a causal feedback
controller means that its response is determined by its past
and present inputs; hence, condition (ii) of Definition 13 is
valid. Finally, fundamental mode operation of the composite
machine ΣC(i, j,v) implies that all steps are detectable (see
section 3); consequently, condition (iii) of Definition 13 is
valid. Thus, S is a detectable feedback path.

Conversely, assume that condition (ii) of the theorem is
valid, and let S ⊂ R∗i j(Σ,Ω) be a detectable feedback path
with initial control input character u0. Define a controller
C(i, j,v) as follows:

(a) The initial output character of C(i, j,v) is u0.
(b) Recursively, assuming that C(i, j,v) was defined up to

step p≥ 0, the p+1 output character of C(i, j,v) is the single
member of Πc

p+1S(α, p) (Definition 13 (ii)).
Then, condition (iii) of Definition 13 assures detectability,

guaranteeing fundamental mode operation of the closed loop
machine ΣC(i, j,v) (section 3). Finally, since S ⊂ R∗i j(Σ,Ω),
all strings generated by C(i, j,v) take Σ from a stable
combination with xi to a stable combination with x j. �

To show that the controller of Theorem 15 can be imple-
mented with a finite state set, denote by #Z the cardinality of
a set Z. The length of a string α = w|u ∈ B|A+ is the length
of the string u, i.e., |α| := |u|.

Definition 16. Let Σ be an asynchronous machine with state
set X , adversarial uncertainty Ω, and extended matrix of sta-
ble transitions R∗(Σ,Ω). Denote κ := (#X)(#Ω). The matrix
of stable transitions R(Σ,Ω) is obtained from R∗(Σ,Ω) by
deleting all strings of length exceeding κ . �

The following indicates that the matrix of stable transitions
can replace the extended matrix of stable transitions.

Lemma 17. Let Σ be an asynchronous machine with adver-
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sarial uncertainty Ω, state set X = {x1,x2, ...,xn}, extended
matrix of stable transitions R∗(Σ,Ω), and matrix of stable
transitions R(Σ,Ω). Then, the following are equivalent for
all i, j ∈ {1,2, ...,n}.

(i) The entry R∗i j(Σ,Ω) includes a detectable feedback path.
(ii) The entry Ri j(Σ,Ω) includes a detectable feedback

path.

Proof: (sketch) Clearly, as Ri j(Σ,Ω) ⊂ R∗i j(Σ,Ω), (ii)
implies (i). Conversely, consider a detectable feedback path
S∗ ⊂ R∗i j(Σ,Ω). For a string α ∈ S∗, let υp(α) be the
residual uncertainty at a step p ≥ 0. Then, υp(α), p =
0,1, ... is a monotone decreasing sequence of subsets, so
#υp(α) ≤ #υ0 ≤ #Ω. As there are only n states, the num-
ber of distinct pairs (s(xi,α|p),υp(α)) cannot exceed κ =
n(#Ω). Thus, removing all the repetitions from the list
{(s(xi,α|k),υk(α))}k=0,1,... yields a list of length not exceed-
ing κ . Applying this process to every member α ∈ S∗, we
obtain a detectable feedback path included in Ri j(Σ,Ω). �

By Lemma 17, we can replace R∗(Σ,Ω) in Theorem 15 by
R(Σ,Ω). As R(Σ,Ω) includes only strings of length bounded
by κ , this assures that the controller can be implemented
with a finite state set.

Corollary 18. Let Σ be an asynchronous machine with
adversarial uncertainty Ω, state set X = {x1,x2, ...,xn}, and
matrix of stable transitions R(Σ,Ω). Assume that Σ under-
went a detectable adversarial transition from the state x j to
the state xi in the presence of the control input character
u0. Then, the following two statements are equivalent for all
i, j ∈ {1,2, ...,n}.

(i) There is a controller C(i, j,v) that takes Σ back from
a stable combination with xi to a stable combination with
x j in fundamental mode operation, where v is the external
input character of Figure 1.

(ii) The entry Ri j(Σ,Ω) includes a detectable feedback
path with initial control input character u0. �

Thus, the existence of detectable feedback paths is the
critical condition for automatic counteraction of adversarial
interventions. An algorithm for the derivation of detectable
feedback paths is described in [22].

Example 19. For machine Σ of Figure 2, we construct
a controller C(2,1,a) that counteracts a detectable adver-
sarial transition from x1 to x2 that occurs in the presence
of the control input character a. Here, C(2,1,a) = (X ×
A,A,Ξ,ξ 0,φ ,η), where Ξ is the controller’s state set, ξ 0 is
its initial state, φ : Ξ×X ×A→ Ξ is its recursion function,
and η : Ξ×X×A→ A is its output function. From the initial
condition ξ 0, the controller C(2,1,a) moves to the state ξ1
when it detects the stable pair (x1,a), in preparation for a
possible adversarial transition. To implement this transition,
set φ(ξ 0,x1,a) := ξ1, and η(ξ1,x1,a) := a. Note that the
controller’s output value at ξ1 is a according to (a) of the
proof of Theorem 15.

When the adversarial transition from x1 to x2 occurs, the
control input remains at a. Based on adversarial detectability,
C(2,1,a) reacts as soon as Σ has reached x2 by moving to the

controller state ξ2. Using the detectable feedback path γ|ab of
Example 14, set C(2,1,a) to apply the control input character
b to Σ, i.e., set φ(ξ1,x2,a) := ξ2, and η(ξ2,x2,a) := b. This
returns Σ to x1. �
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