
Tracking and approximate model matching for non-linear systems

JACOB HAMMERy

The design of non-linear tracking systems is investigated in a general setting that guarantees internal stability. It is shown
that, by adopting an appropriate design methodology, tracking accuracy can be improved to any desirable level.
The proposed methodology is computationally, as well as conceptually, undemanding, and it also leads to a simple
solution of a class of non-linear approximate model matching problems.

1. Introduction

A substantial portion of the theory and practice of
control engineering is devoted to the study of tracking
systems, namely, of systems whose output is required
to follow their input closely. Tracking systems are
often characterized in terms of their tracking error—
the deviation of the output signal from the correspond-
ing input signal. Reduction of the tracking error is a
critical design objective in many applications of control
systems, including the design of guidance and navigation
systems. The present paper addresses the problem of
reducing tracking errors in a rather general context
that encompasses linear as well as non-linear systems.
Needless to say, low tracking errors can be achieved
only for signals that are feasible output signals of the
system being controlled.

Tracking can be viewed as a special case of approx-
imate model matching. Indeed, consider two systems X
and F sharing their normed input and output spaces,
and let |�| denote a norm over these spaces. Given a
real number ">0, we say that F is a "-approximant of
X over the input domain S if

jFu� Xuj � " for all u 2 S

Clearly, the number " indicates the accuracy by which
F approximates X.

Consider the following closed loop control config-
uration.

(1)

Here, S is the system being controlled, C is a controller,
and Sc is the system represented by the closed loop. For
notational convenience, we assume that the controller C
is constructed so that Sc has the same input space as S.
Noting that the output of Sc is the output of S, we
conclude that the images satisfy

ImSc � ImS ð2Þ

Stability of the configuration (1) is, of course, an issue of
critical importance. To investigate stability, we limit our
attention to bounded input signals u. Thus, we will be
mostly interested in the bounded-input image ImbSc

formed by the set of output sequences of Sc that are
generated by bounded input sequences. Similarly, the
bounded-input image of S, denoted ImbS, is formed
by all responses of S to bounded input sequences.
Then, the argument leading to (2) also yields the inclusion

Imb Sc � Imb S

A central topic of our discussion is the existence and
the design of a controller C that turns the closed loop
system SC into a "-approximant of a specified system, as
follows.

The approximate model matching problem: Given a
system F, a bounded domain S, and a real number
">0, determine whether there is a controller C such
that configuration (1) satisfies

jFu � Scuj � " for all u 2 S ð3Þ

If such a controller exists, describe a procedure for
its design.

The system F of the matching problem is called the
model. Note that a tracking system is obtained in the
special case when the model is the identity system F¼ I.

We introduce some notation. For a real number
">0 and an element v of a normed space, let N"(v)
designate the neighbourhood of v given by

N"ðvÞ ¼ fw : jw� vj � "g

For a set A, denote by

N"ðAÞ ¼ [v2A N"ðvÞ

the corresponding neighborhood of the set A.
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Assume now that Sc is a "-approximant of the
system F. In view of (3), we have Fu2N"(Scu) for
all u2S, which implies that F[S]�N"(Sc[S]).
Recalling that S is a bounded domain, we clearly
have N"(Sc[S])�N"(Imb Sc), so that

F½S� � N"ðImbSÞ

When F is an invertible system, this leads to the relation

S � F�1
½N"ðImbSÞ�

For tracking systems, simply substitute F¼ I, which
yields

S � N"ðImb SÞ ð4Þ

Recalling that S forms the set of signals the system must
track, the inclusion (4) implies, as one would expect, that
only signals that are within " of the image of S can be
tracked with an error not exceeding ". This simple and
rather obvious fact forms a fundamental restriction on
the operation of tracking systems. It plays an important
role in our ensuing discussion. In order to track signals
of the class S without error, set "¼ 0 in (4), to obtain the
following necessary condition for accurate tracking

S � Imb S ð5Þ

The methodology developed in this paper builds on the
classical control principle according to which high for-
ward gain yields high accuracy in closed loop systems
(Black 1934, Newton et al. 1957). This principle is based
on the use of the following configuration, commonly
called the Black diagram.

(6)

Here, S is the system being controlled, and A is a high

gain linear amplifier.

By refining and somewhat expanding this classical

principle, we derive a general framework for the design

of controllers that achieve tracking and approximate

model matching. The resulting framework applies to

linear as well as to non-linear systems, and it guarantees

internal stability. It can accommodate errors and

uncertainties encountered in the modelling and in the

operation of engineering systems.

In its simplistic form, the classical principle of using

high forward gain applies only to a rather restricted

class of systems; for more general systems, it gives rise

to instability. The process of extending this principle to
achieve internally stable control of linear and non-linear
systems leads to controllers with an interesting feature:
the high-gain amplifier is combined with a controller
that has hysteresis-type properties (} 5). The resulting
closed loop system is then internally stable, and its
performance accuracy improves as the amplifier’s gain
grows. In a broad sense, this reaffirms the advantages of
high forward gain, and it results in a rather simple
design methodology for a common category of control
systems.

The performance limitation (4) brings into focus the
need to properly specify tracking signals, and it high-
lights a distinction between the present approach and
the traditional method of designing tracking systems.
Traditionally, tracking signals are specified without
regard to the restriction (4), and, consequently, cannot
always be tracked in their entirety. Instead, one lets the
tracking system choose a path that converges asympto-
tically to the tracking signal. This leaves the designer
with incomplete control over the tracking process. In
the approach taken in this paper, the tracking signal is
selected so that it satisfies the inclusion (4). In this way,
the system does not deviate from the tracking signal by
more than the permissible error throughout the entire
tracking process.

As an example, consider the case of a ground-to-air
missile tracking an airplane. In traditional tracking, the
missile is given the airplane’s flight data, and is left to
choose its own approach path to the airplane. This
leaves the operator without control over part of the
tracking process. In the approach developed in this
paper, the entire path of the missile, including takeoff,
is specified, subject to the constraint (4). This allows the
operator more complete control over the tracking pro-
cess and the missile performance, and facilitates the
selection of a stealthy ascent path.

In many applications, the selection a tracking signal
near the image of the controlled system is not an overly
taxing process. Often, appropriate signals can be
selected based on general characteristics of the system,
such as bandwidth restrictions, signal magnitude
bounds, bounds on rates-of-change, or other key fea-
tures.

In addition to the tracking problem, the paper also
addresses the problem of approximate model matching
for non-linear systems. A simple methodology for
approximate model matching is developed in } 4 and 5,
based on a special control configuration that employs a
high-gain amplifier in its forward path. It is shown that,
in this configuration, the accuracy of matching the
model improves as the gain grows larger.

In summary, when appropriately extended, the
classical principle of using high forward gain becomes
an effective methodology for addressing a number of
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general issues related to the control of non-linear
systems. Alternative approaches to the control of non-
linear systems can be found in Lasalle and Lefschetz
(1961), Lefschetz (1965), Hammer (1984, 1985, 1989,
1994), Desoer and Kabuli (1988), Verma (1988),
Sontag (1989), Chen and de Figueiredo (1990), Paice
and Moore (1990), Verma and Hunt (1993), Sandberg
(1993), Paice and van der Schaft (1994), Baramov and
Kimura (1995), Georgiou and Smith (1997), Logemann
et al. (1999), the references cited in these publications,
and others.

The paper is organized as follows. In } 2 we intro-
duce some terminology and provide a qualitative over-
view of the approach taken in the paper. Section 3
describes a technical concept which underlies much of
the discussion of the subsequent sections. The control
methodology of the paper is first introduced in } 4,
where it is applied to the special case of (linear or
non-linear) minimum-phase systems. The results are
then generalized in } 5 to linear or non-linear systems
that do not have the minimum-phase property.

2. Basic Considerations

2.1. Preliminaries

The presentation in the paper is for discrete-time
systems, but the same principles can be extended to con-
tinuous-time systems as well. Let R be the set of real
numbers, let Rm be the set of all m-dimensional real
vectors, and let S(Rm) be the set of all sequences
u¼ {u0, u1, u2, . . .} of m-dimensional real vectors, where
ui 2R

m, i¼ 0, 1, 2, . . . A system S with specified initial
conditions induces a map S :S(Rm)!S(Rp) that
transforms input sequences of m-dimensional real
vectors into output sequences of p-dimensional real
vectors. We write y¼Su to represent the output
sequence y generated by S from the input sequence u.
It will be convenient to assume that the system S has
an equilibrium point at the zero input sequence, so that
S0¼ 0.

As usual, a system S is causal if its response does not
depend on future input values. The system is strictly
causal if there is a delay of at least one step before
input changes are reflected in its response. Finally, the
system S is bicausal if it is invertible, and if S and its
inverse S�1 are both causal systems (e.g. Hammer 1984).

The systems we consider are given in terms of
a state space representation

xkþ1 ¼ f ðxk,ukÞ

yk ¼ hðxkÞ, k ¼ 0, 1, 2, . . .

)
ð7Þ

Here, xk2Rn is the state of the system at the step k, while
uk and yk represent the input value and the output value,
respectively, at that step. The function f :Rn

�Rm
!Rn

is the recursion function and h :Rn
!Rp is the output

function. For convenience, we use the initial condition
x0¼ 0 for the system, but the discussion can be adapted
to more general initial conditions. Note that a system
described by (7) is strictly causal, since the output func-
tion h does not depend on the input value uk (e.g.
Hammer 1984). We say that the realization (7) is
uniformly continuous if f and h are uniformly continuous
functions. The input/state part Ss of S is the system
described by the recursion xk+1¼ f(xk, uk), k¼ 0, 1, . . .

As our discussion in this paper involves stability
issues, we need to introduce some norms over our
spaces. First, for a real number a, let |a| be the absolute
value of a. For a vector r¼ (r1, r2,. . .,rq)2Rq, denote

jrj :¼ max fjrij, i ¼ 1, . . . ,qg

it will be convenient to refer to |r| as the ‘1-norm of the
vector r. Finally, for an element s2S(Rq), the ‘1-norm
is given by

jsj:¼ sup
i�0

jsij

where jsj:¼1 when the supremum does not exist.
A subset S � SðRq

Þ is bounded if there is a real number
M� 0 such that |s|�M for all elements s 2 S; when the
latter holds, we write |S|�M. To improve clarity, we
sometimes refer to such a set as ‘‘1-bounded’. Also,
given a real number �� 0, we denote by S(�q) the set
of all sequences s 2 SðRq

Þ satisfying |s|� �, i.e. the set
of all sequences of q-dimensional vectors bounded by �.

Another norm that is important to our discussion is
the ‘1-norm given, for a vector v ¼ ðv1,v2, . . . ,vpÞ 2 Rp,
by

jvj1:¼ jv1j þ jv2j þ � � � þ jvpj

The weighted ‘1-norm |�|1w is defined, for a sequence
y2S(Rp), by

jyj1w :¼
X1
i¼0

2�i
jyij

1
ð8Þ

It is easy to see that the weighted ‘1-norm exists for
every bounded sequence y2S(Rp).

A norm h�i over S(Rp) is compatible with the
weighted ‘1-norm if there is a constant a>0 such that
hui � a|u|1w for all u 2 SðRp

Þ: In our ensuing discussion,
we will denote by jj � jj a norm that has the following
properties: (i) it is compatible with the weighted ‘1-
norm, and (ii) under it, every closed and ‘1-bounded
subset of S(Rp) is compact.

A system S :S(Rm)!S(Rp) is BIBO-stable
(bounded-input bounded-output stable) if, for every
real number M� 0, there is a real number N� 0
such that |Su|�N whenever |u|�M. The notion of
BIBO-stability is an underlying requirement of every
other stability concept. We say that S is stable if it
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is BIBO-stable and if it is continuous with respect to
the norm jj � jj.

When a system S :S(Rp)!S(Rp) is invertible as a set
mapping, we denote its inverse by S�1, so that
S�1S¼SS�1

¼ I, the identity system. If S�1 is BIBO-
stable, then S is called a BIBO-minimum phase system.
When S is both BIBO-stable and BIBO-minimum
phase, then it is called a BIBO-unimodular system.
Finally, if S�1 is stable, the we say that S is a minimum
phase system (omitting ‘BIBO’), and if S is both stable
and minimum phase, then it is called a unimodular
system.

For composite systems, a stronger notion of stability
is used. Consider a composite system C that consists
of q subsystems. Add an external signal to the output
of each one of the subsystems of which the composite
system consists. This results in a system with qþ 1 exter-
nal input signals — the original input signal and the q
newly added signals. The composite system C is intern-
ally BIBO-stable if the following holds for each one of
the (qþ 1) external input signals: the map from the
external signal to any signal within the configuration
forms a BIBO-stable system. We say that C is internally
stable if each such map forms a stable system.
Internal stability guaranties that a composite system
is implementable and well behaved.

2.2. Ideas from classical control theory

The classical control solution of the tracking
problem is based on the use of high forward gain within
the Black diagram (6) (Black 1934). In the diagram, S is
the system being controlled and A represents an ideal
amplifier with gain A. Of course, the use of unity feed-
back in the diagram requires that the number of outputs
of S be equal to the number of inputs, say
S :S(Rm)!S(Rm) (m¼ 1 is used in classical control).
Let SA denote the input/output relation of the closed
loop (6).

In order to concentrate on the tracking problem and
ignore other issues, we assume that S is a stable system.
In case S is not stable, the block ‘S’ in (6) must be
replaced by a closed loop system that stabilizes S. If
done appropriately, this process separates the problems
of stabilization and tracking without impairing the
ability to control the system effectively (Hammer 1994).

Assume now that S is a strictly causal and invertible
system (it is not necessary to assume that S is linear).
An examination of (6) yields

y ¼ SAe, e ¼ u� y ð9Þ

so that e¼ u�SAe, or [IþSA]e¼ u, where I is the
identity system. The fact that S is strictly causal implies
that the system [IþSA] is invertible (e.g. Hammer
1984), so we can write e¼ [IþSA]�1u. Using (9)

again, we have y¼SA[IþSA]�1u, which is the classical
feedback equation

SA ¼ SA½I þ SA��1

Taking into account the fact that A represents a con-
stant ‘scalar’ gain, we can write y¼SA{[(1/A)Iþ
S]A}�1u¼SAA�1[(1/A)IþS]�1u, or

y ¼ S½ð1=AÞI þ S��1u ð10Þ

Note that (10) is valid even when S is a non-linear
system. Ignoring for a moment mathematical rigor
(} } 3 and 4 present a rigorous discussion), one may
presume that

lim
A!1

½ð1=AÞI þ S� ¼ S ð11Þ

If (11) is accepted as correct and substituted into (10),
and if S is continuous, one arrives at the conclusion

lim
A!1

S½ð1=AÞI þ S��1
¼ SS�1

¼ I ð12Þ

In other words, when the gain A is sufficiently large,
one has

y � u ð13Þ

Conclusion (13) seems to indicate that, for large gain A,
configuration (6) becomes an accurate tracking system
irrespective of the nature of S, as long as S preserves its
invertibility and strict causality.

Great caution has to be exercised when drawing such
far reaching conclusions. Indeed, a brief examination of
(12) reveals a major difficulty in the case when S is not a
BIBO-minimum phase system. Indeed, the expression
SS�1 implies that, for large gain A, the input signal of
S in (6) is (almost) equal to the output signal of S�1.
When S is not a BIBO-minimum phase system, this
means that the input of S in (6) is unbounded for
at least some input signals u, invalidating the internal
stability of the configuration. In fact, this qualitative
argument indicates that configuration (6) cannot be
used with large gain A when S is not a BIBO-minimum
phase system. Thus, it seems that the favorable tracking
properties of the Black diagram are restricted to systems
that are BIBO-unimodular (recall that S was assumed
to be BIBO-stable).

Section 4 provides an accurate analysis of the track-
ing properties of the Black diagram for non-linear
BIBO-stable and minimum phase systems. Generally
speaking, the analysis confirms the prowess of the
Black diagram to achieve good tracking for such
systems, if one allows for a small modification of
the diagram. Subsequently, a general investigation of
tracking for stable non-linear systems is provided. In
the meanwhile, the next section introduces a technical
concept that is instrumental to the discussion.
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3. Subbounded systems

Let Rþ be the set of all non-negative real numbers.
A bound function is a strictly increasing continuous func-
tion � :Rþ

!R, whose image includes Rþ. Note that,
for a bound function �, the image satisfies Rþ

� Im �,
and the restriction � :Rþ

! Im � is an isomorphism
with an inverse ��1 : Im �!Rþ. The notation ��1 will
always refer to this inverse. Examples of bound
functions include the functions �(�)¼ a�, where a is a
positive constant; �(�)¼ a�2; or �(�)¼ a�1/2; or, more
generally, all forms of

�ð�Þ ¼ a�b ð14Þ

where a, b>0 are constants. Of course, bound func-
tions may take other forms as well. The following is
the basic concept discussed in this section.

Definition 1: A system S :S(Rm)!S(Rm) is a sub-
bounded system if there is a bound function � satisfying
|Sw|��(|w|) for all w2S(Rm). The function � is then
called a lower bound function of S.

The next statement indicates that (invertible) sub-
bounded systems are always BIBO-minimum phase
systems. Later on, we show that the converse is also
true, so that the existence of a lower bound function
characterizes a BIBO-minimum phase system.

Proposition 1: A sub-bounded invertible system
S :S(Rm)!S(Rm) is a BIBO-minimum phase system.

Proof: Let S :S(Rm)!S(Rm) be a sub-bounded inver-
tible system. There is then a bound function � :Rþ

!R
such that |Su|� �(|u|) for all u2S(Rm). Now, consider a
sequence w2S(Rm), and let u :¼S�1w. Substituting into
the last inequality, we obtain |SS�1w|��(|S�1w|),
so that

jwj � �ðjS�1wjÞ ð15Þ

Now, the fact that � is strictly increasing implies that ��1

is also strictly increasing. Consequently, applying ��1 to
both sides of (15) yields ��1(|w|)� ��1�(|S�1w|), so that
��1(|w|)� |S�1w|. This shows that |S�1w| is bounded
whenever |w| is bounded, namely, that S is a BIBO-
minimum phase system. &

It is easy to show that every linear BIBO-minimum
phase system S :S(Rm)!S(Rm) has a lower gain func-
tion. Indeed, let S be such a system. Then, by definition,
the inverse S�1 is an invertible and stable system, so it
has a well defined norm |S�1|>0 satisfying
|S�1y|� |S�1|| y| for all y2S(Rm). Denoting w :¼S�1y
and substituting into the previous inequality, we get |w|
� |S�1|| y|¼ |S�1||Sw|, where we have used the obvious
fact y¼Sw. This yields

jSwj �
1

jS�1j
jwj ð16Þ

so that a linear BIBO-minimum phase system S is
always sub-bounded, with a lower bound function
given by

�ð�Þ :¼
1

jS�1j
� ð17Þ

In fact, any function of the form �(�)¼ a� with 0<a� 1/
|S�1| can serve as a lower bound function for S.

To generalize the discussion of the last paragraph to
non-linear systems, we need the following concept. A
preliminary note on notation: let �� 0 be a real number;
the set of all sequences u2S(Rm) satisfying |u|� �
includes all sequences with unbounded norm.

Definition 2: Let S :S(Rm)!S(Rp) be a BIBO-stable
system. The function ’ :Rþ

!Rþ given for a real num-
ber �� 0 by

’ð�Þ :¼ inf
juj��

jSuj ð18Þ

is called the floor function of S.

The fact that S is BIBO-stable means that, for every
real number �� 0, there is a real number B� 0 such that
S[S(�p)]�S(Bp). This implies that the function ’ of (18)
satisfies ’(�)�B. Consequently, ’ is a bounded function
when S is BIBO-stable. Another direct consequence of
(18) is that ’ is a monotone increasing function.
By using the function ’, the BIBO-minimum phase pro-
perty can be characterized as follows.

Proposition 2: Let S :S(Rm)!S(Rm) be an invertible
BIBO-stable system, and let ’ be its floor function.
Then, the following are equivalent:

(i) S is a BIBO-minimum phase system.

(ii) For every unbounded sequence of real numbers
{�n}

1
n¼1, the sequence {’(�n)}

1
n¼1 is unbounded.

Proof: By definition, the system S is a BIBO-minimum
phase system if and only if S�1 is BIBO-stable, i.e. if
and only if, for every real number N� 0, there is a real
number B� 0 such that S�1[S(Nm)]�S(Bm). In these
terms, our proof will be complete upon showing that
the following two statements are equivalent.

(iii) There is a sequence of real numbers �n ! 1

over which ’ is bounded.

(iv) There is a real number N� 0 for which the
inverse image S�1[S(Np)] is not bounded.

First, assume that (iii) is valid. Then, there is a
sequence of real numbers �n ! 1 and a real number
M>0 such that ’(�n)�M for all n� 1. Choose a
real number ">0. It follows by (18) that the following
is true. For every integer j� 1, there is an element
u( j)2S(Rm) such that |u( j)|� �j while |Su( j)|�Mþ ".
Then, u( j)2S�1[S((Mþ ")m)] for all j� 1.
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Since |u(j)|� �j!1, it follows that S�1[S((Mþ ")m)]
is not a bounded set. Thus, (iii) implies (iv) with
N :¼Mþ ".

Conversely, assume that (iv) is valid, i.e. that
S�1[S(Np)] is not a bounded set. Then, two cases are
possible: (a) there is a sequence of elements u(j)2
S�1[S(Np)], j¼ 1, 2,. . ., and an unbounded sequence of
real numbers �j!1 such that |u(j)|� �j for all j� 1; and
(b) there is an unbounded sequence u2S�1[S(Np)]. In
case (a), since Su(j)2S(Np) for all j¼ 1, 2,. . ., we have

’ð�jÞ ¼ inf
juj � �j j

jSuj � jSuðjÞj � N

for all j¼ 1, 2, . . ., so that ’ is bounded by N over all real
numbers. This shows that (iv) implies (iii) in case (a).
When case (b) is valid, it follows directly by (18) that
’(�) � N for all real numbers � � 0, so that (iv) implies
(iii) in case (b) as well. This concludes the proof. &

Consider now a sub-bounded system S :S(Rm)!
S(Rm). Let ’ be the floor function of S and let � be
its lower bound function. It follows directly from the
definitions that

�ð�Þ � ’ð�Þ for all � � 0

In fact, a slight reflection shows that the converse direc-
tion expressed by the following statement is also true.

Lemma 1: Let S :S(Rm)!S(Rm) be a BIBO-stable and
BIBO-minimum phase system, and let ’ be its floor func-
tion. Then, S is a sub-bounded system if and only if there
is a bound function � :Rþ

!R satisfying �(�)� ’(�) for
all �� 0.

We are now ready to show that the property of being
sub-bounded characterizes BIBO-minimum phase
systems.

Theorem 1: Let S :S(Rm)!S(Rm) be a BIBO-stable
invertible system satisfying S0¼ 0. Then, S is a BIBO-
minimum phase system if and only if it is sub-bounded.

Proof: By Proposition 1, every BIBO-stable, invertible,
and sub-bounded system is a minimum phase system,
so we only need to prove the converse direction. Let
S :S(Rm)!S(Rm) be a BIBO-stable and BIBO-
minimum phase system, and let ’ be its floor function.
The fact that S is BIBO-stable implies that ’ is a
bounded and monotone increasing function. A lower
bound function � :Rþ

!R for S can be constructed
as follows.

Choose a real number �>0, and define the
sequence of numbers

’n :¼ ’ðn�Þ, n ¼ 0, 1, 2, . . . :

Note that ’0¼ 0, since S0¼ 0. Also, the fact that S is a
BIBO-minimum phase system implies, by Proposition 2,

that ’n!1 as n!1. Now, set n(0) :¼ 0, and
define recursively a strictly increasing sequence of
integers n(1), n(2), n(3), . . ., where n(1) is the first
integer for which ’n(1)> ’0. Continuing by recursion,
assume that n(i) was defined for an integer i� 1. Then,
n(iþ 1) is the first integer for which ’n(iþ1)> ’n(i). The
sequence {’n(i)}

1
i¼0 is then a strictly increasing sequence

of non-negative real numbers.
Now, the function � is defined as follows. Set

�(0) :¼�1, and

�ð�Þ :¼ �ðnðiÞ�Þ þ
’nðiÞ � �ðnðiÞ�Þ

½nði þ 1Þ � nðiÞ��
�,

nðiÞ� � � < nði þ 1Þ�, i ¼ 0, 1, 2, . . . :

Note that the graph of �(�) consists of straight line seg-
ments with positive slopes, all lying under the graph of
’. Thus, � is a bound function and �(�)� ’(�) for all
�� 0. Invoking Lemma 1, it follows that � is a lower
bound function of S, and the proof concludes. œ

4. Control of minimum phase systems

4.1. Tracking

In this subsection, we utilize the notion of lower
bound functions to develop a solution of the tracking
problem for BIBO-minimum phase systems. The discus-
sion includes both linear as well as non-linear systems.
Let S :S(Rm) ! S(Rm) be a BIBO-bounded system
with a lower bound function �. We define a new func-
tion � :Rþ

!Rþ, called the lower gain function of S, as
follows. Select a real number �0>0 for which �(�0)>0,
and set

�ð�Þ :¼
�ð�Þ=� for � � �0

�ð�0Þ=�0 for 0 � � < �0

(
ð19Þ

Note that the lower gain function is not unique, as it
depends on the lower bound function � and on the
number �0.

For example, in the case of a linear BIBO-minimum
phase system, it follows by (17) that a lower gain func-
tion is given by the constant function

�ð�Þ ¼ 1=jS�1
j ð20Þ

In fact, all constant functions �(�) :¼ c with
0<c� (1/|S�1|) are valid lower gain functions of S
in this case. More generally, when the lower bound
function is of the form (14), a lower gain function is
given by

�ð�Þ :¼
a �b�1 for � � �0

a �b�1
0 for 0 � �<�0

(

Consider now a strictly causal and sub-bounded system
S :S(Rm)!S(Rm) having the lower bound function
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� and a lower gain function �. Build the control config-

uration

(21)
where A>0 represents a constant gain

zk ¼ Aek, k ¼ 0, 1, 2, . . .

and � represents a static controller given by

wk ¼ �ðzkÞ :¼
1

�ð��1ðjzkjÞ

� �
zk, k ¼ 0, 1, 2, . . . : ð22Þ

In the special case when S is a linear system, it
follows by (20) that � is simply a constant gain con-
troller. When � is a constant gain controller, it can be
combined with the constant gain controller A and
eliminated from the diagram. However, when S is a
non-linear system, the compensator � may not repre-
sent constant gain. We start our investigation of the
controller � by examining its stability properties,
showing that it is, in fact, BIBO-unimodular. This
will require the following auxiliary technical result.
(Note that, by definition, a bound function
� :Rþ

!R satisfies Rþ
� Im �.)

Lemma 2: Let � :Rþ
!R be a bound function and let

�(�) be a lower gain function of the form (19). Then,
the following are true.

(i) For every vector s2Rm, there is a unique vector
t2Rm satisfying the relation s¼ t� (|t|).

(ii) s¼ t�(|t|) if and only if t¼ s/�(��1(|s|)).

(iii) For a sequence w¼ {w0, w1, w2, . . . }2S(Rm),
set zk :¼wk � (|wk|), k¼ 0, 1, 2, . . . Then, the ‘1-
norms satisfy |z|¼ |w|�(|w|).

Proof: (i) Let t1, t22Rm be two vectors satisfying
t1� (|t1|)¼ t2� (|t2|). Calculating norms on both sides,
we get |t1| � (|t1|)¼ |t2| � (|t2|). We consider now several
cases. (a) |t1|, |t2|<�0, where �0 is from (19); then,
�(|t1|)¼ �(|t2|)¼ �(�0)/�0, so the equality t1| � (|t1|)¼
t2 � (|t2|) clearly implies that t1¼ t2. (b) |t1|<�0 while
t2� �0; then, |t1| � (|t1|)¼ |t1|�(�0)/�0 while |t2| � (|t2|)¼
�(|t2|). Now, since |t1|<�0, it follows that |t1| � (|t1|)¼
|t1|�(�0)/�0<�(�0)��(|t2|), where the last inequality

follows from the relation �0� |t2|. Thus, jt1j�ðjt1jÞ 6¼
jt2j�ðjt2jÞ, so that t1 � (|t1|) 6¼ t2 � (|t2|), and case (b) is

not possible under our assumption. (c) |t1|,|t2|� �0;
then, by (19), the equality |t1| � (|t1|)¼ |t2| � (|t2|) implies

that �(|t1|)¼ �(|t2|). From the invertibility of �, we con-
clude that |t1|¼ |t2|, so that � (|t1|)¼ �(|t2|). The equality
t1 � (|t1|)¼ t2 � (|t2|) implies then that t1¼ t2. This com-

pletes the proof of part (i).

Turning to part (ii), assume that s¼ t � (|t|) and

|t|<�0. Then, s¼ t� (�0)/�0, so that |s|¼ |t|�(�0)/
�0<�(�0). Using the fact that � is strictly increas-

ing, the last inequality implies that ��1(|s|)<�0. Thus,
s/�(��1(|s|))¼ s(�0/�(�0))¼ t, so that (ii) is valid when

|t|<�0.
Next, assume that s¼ t � (|t|) and |t|� �0.

Then, calculating norms on both sides, we obtain

|s|¼ |t � (|t|)|¼|t| � (|t|)¼ �(|t|), according to (19).

Consequently, |t|¼ ��1(|s|); substituting into the equa-

tion s¼ t � (|t|), and using the fact that �(�)>0 for

all �> �0, we can write t¼ s/ � (|t|)¼ s/�(��1(|s|)). This

proves one direction of part (ii).

For the converse direction of part (ii), assume that

t ¼ s=�ð��1
ðjsjÞÞ ð23Þ

Consider first the case ��1 (|s|)<�0. Then, since ��1 is

strictly increasing, it follows that |s|<�(�0).
Consequently, in this case, |t|¼ (�0/�(�0))|s|<�0, so

that �(|t|)¼ (�(�0)/�0). The equation s¼ (�(�0)/�0)t,
which follows directly from (23), implies then that

s¼ t � (|t|). This proves (ii) when ��1(|s|)<�0.
In continuation, assume that ��1(|s|)� �0. Then,

|t|¼ |s|/� (��1(|s|))¼ |s|��1(|s|)/[�(��1(|s|))]¼ ��1(|s|), so

that |t|¼ ��1(|s|), or |s|¼ �(|t|). Substituting into (23),

we obtain t¼ s/�(��1(�(|t|)))¼ s/�(|t|), or s¼ t�(|t|),
which completes the proof of (ii).

Finally, regarding part (iii), we again distinguish

between two possibilities. First, if |wk|<�0 for all k,

then |w|� �0, and we obtain zk¼ (�(�0)/�0)wk for all k,

which implies that |z|¼ (�(�0)/�0)|w|¼ |w| � (|w|). Next,

let K be the set of all integers k for which |wk| � �0,
and assume that K 6¼ �. Then, |w|� �0, and, for k2K,

it follows by (19) that

jzkj ¼ jwkj�ðjwkjÞ ¼ �ðjwkjÞ, k 2 K

Now, fix an integer k 2 K , and consider the positive

real numbers �(|w0|), �(|w1|), . . .,�(|wk|). Let �(|wj|) be

the largest of these numbers, that is, �(|wj|)��(|wi|)

for all i¼ 0,. . ., k. The fact that � is a monotone

strictly increasing function implies that |wj|� |wi| for

all i¼ 0, . . ., k, so that |wj|� �0. These facts lead to the

we+

S¢ = Ss

A
u yz

s S

C

_

Model matching for non-linear systems 1275



following chain of equalities

jzk0j ¼ max
i¼0, ...k

jzij

¼ max
i¼0, ..., k

�ðjwijÞ

¼ �ðjwjjÞ ¼ �ð max
i¼0, :::, k

jwijÞ

¼ �jwk
0jÞ for all k 2 K

Thus, |z|¼ �(|w|), and our proof concludes. œ

Lemma 3: The controller � of (22) is BIBO-unimodular.

Proof: The proof depends on Lemma 2. Combining
(22) with part (ii) of Lemma 2 yields zk¼wk�(|wk|),
k¼ 0, 1, 2, . . . Computing norms of both sides, and
using part (iii) of Lemma 2, we obtain |zk|¼ �(|wk|),
and, using the invertibility of the function �, we con-
clude that |wk|¼ ��1(|zk|) for all k� 0. The last two
equalities imply that the sequence w is bounded if and
only if the sequence z is bounded, and the proof is
complete. œ

Clearly, configuration 21 is equivalent to configura-
tion (1) with the controller C given by

C ¼ �A ð24Þ

Defining the system

S0 :¼ S�

we have SC¼S�A¼S0A. In other words, instead of
controlling the system S with the controller C¼ �A,
we can control the system S0 with the constant
gain controller A. The interest in this interpretation
arises from the fact that the combination S0

¼S�
has the following feature, which is critical for accurate
tracking.

Definition 3: A BIBO-minimum phase system
S :S(Rm)!S(Rm) is linearly sub-bounded if there are
constants c>0 and d� 0 such that |Sz|� c|z| for all
bounded input sequences satisfying |z|� d.

In view of (16), every linear minimum phase system
is also linearly sub-bounded. However, in general, a
non-linear system can be BIBO-minimum phase without
being linearly sub-bounded.

We show below that the Black diagram (6) achieves
accurate tracking for all linearly sub-bounded systems,
as long as the gain A is sufficiently large. In other
words, the Black diagram is effective for tracking
with linearly sub-bounded systems. For systems that
are sub-bounded, but not linearly sub-bounded, accu-
rate tracking can be achieved by a slight modification
of the Black diagram. In this regard, we show that any
sub-bounded system can be transformed into a linearly
sub-bounded system simply by combining it
with the static precompensator � of (22). The resulting

combination S0 :¼S� can then be enclosed in a Black
diagram, as in (21), and accurate tracking is achieved
when the gain A is sufficiently large.

Proposition 3: Let S :S(Rm)!S(Rm) be a BIBO-stable
and sub-bounded system with a lower gain function �,
and let � :S(Rm)!S(Rm) be given by (22). Then, the
composition S0 :¼S� is internally BIBO-stable and line-
arly sub-bounded.

Proof: By Lemma 3 and Proposition 1, the systems
� and S are both BIBO-unimodular. Consequently,
the combination S0

¼S� is BIBO-unimodular as well.
Also, the fact that S and � are both stable implies that
S� is internally stable. Thus, it only remains to show
that S0 is a linearly sub-bounded system. Referring to
(21), note that z is the input signal and w is the output
signal of �, i.e.,

w ¼ �z

In addition, w is also the input signal of S. Using the
definition (22) of � and Lemma 2, we can write

zk ¼ wk�ðjwkjÞ, k ¼ 0, 1, 2, . . . ; and jzj ¼ jwj�ðjwjÞ

Letting � be the lower bound function of S correspond-
ing to �, and recalling definition (19) of the gain
function, this yields

jzj ¼ �ðjwjÞ for all jwj � �0

Consequently, |S0z|¼ |S�z|¼ |Sw|��(|w|)¼ |z| for all
|w|� �0. We can then write

jS0zj � jzj for all jzj � �ð�0Þ ð25Þ

Whence, S0 is linearly sub-bounded, and the proof
concludes. œ

Much of our ensuing discussion involves internal
stability properties of closed loop configurations under
conditions of high gain. Formally, we will investigate
stability and internal stability properties at the limit,
when the forward path gain approaches infinity. This
requires the following stronger notions, which refer to
systems whose stability properties are not destroyed
when a design parameter grows to infinity.

Definition 4: Let C(A) :S(Rm)!S(Rp) : u 7!C(A)u be a
system that depends on a real parameter A. The system
C(A) is uniformly BIBO-stable if there is a real number
A0 such that the following is true for all A�A0: for
every real number M� 0, there is a real number N� 0
such that |C(A)u|�N for all input sequences of
norm |u|�M.

The system �(A) is uniformly BIBO-minimum
phase if there is a real number B0 such that C(A)
is invertible and C�1(A) is uniformly BIBO-stable for
all A�B0.
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Finally, the system C(A) is uniformly BIBO uni-
modular if it is both uniformly BIBO-stable and
uniformly BIBO-minimum phase.

We will also need to examine internal stability pro-
perties of composite systems with adjustable parameters.
The next definition singles out a class of composite
systems whose stability properties are preserved as a
design parameter approaches infinity.

Definition 5: Let F(A) be a composite system com-
posed of subunits F1(A), . . . , Fq(A) that depend on a
parameter A. Insert an adder at the output of each
subunit, and add an external signal ui to the output
sequence of Fi(A), i¼ 1, . . . , q. Denote by u0 the input
sequence of the composite system. For a given
value of the parameter A, let v0(A) be the output
sequence of the composite system, and let vi(A) be
the output sequence of the subunit Fi(A), i¼ 1, . . ., q.
The composite system F(A) is uniformly internally
BIBO-stable if there is a real number A0 such that
the following is true for all A�A0: for every real
number M>0, there is a real number N>0 such
that |vi(A)|�N for all i¼ 0, . . ., q whenever |ui|�M for
all i¼ 0, . . ., q.

The notion of uniform internal stability allows us to
examine properties of composite systems at the limit, as
the value of a design parameter grows to infinity.
Applying this notion to the closed loop configuration
(21), we will subsequently show that perfect tracking
is achieved at the limit A ! 1, without disturbing
internal stability.

Proposition 4: Let S :S(Rm)!S(Rm) be a strictly
causal, BIBO-stable, and BIBO-minimum phase system
with lower bound function � and lower gain function �,
and let � be given by (22). Then, configuration (21) is
uniformly internally BIBO-stable.

Proof: Denote S0 :¼S�, where � is given by (22),
and note that, since S is strictly causal and � is static,
the combination S0 is strictly causal. Configuration (21)
depicts then a closed loop around S0 with the
constant gain controller A>0. Using the notation of
(21), we obtain

e ¼ u� y z ¼ Ae y ¼ S0z

Substitution yields

z ¼ Au� Ay ¼ Au� AS0z

or

½I þ AS0
�z ¼ Au

Multiplying both sides on the left by 1/A results in

u ¼ ½ð1=AÞI þ S0
�z ð26Þ

Now, define the system X :¼ [(1/A)IþS0] :S(Rm)!
S(Rm), so that

Xz ¼ ½ð1=AÞI þ S0
�z ¼ u ð27Þ

The strict causality of the system S 0 guaranties that X is
invertible (e.g. Hammer 1984), so we can write

z ¼ X�1u ¼ ½1=AÞI þ S0
�
�1u ð28Þ

The input/output relation induced by configuration (21)
can then be expressed in the form

y ¼ S0z ¼ S0
½1=AÞI þ S0

�
�1u

From (26) we get

juj ¼ jXzj ¼ jð1=AÞzþ S0zj � jzj=Aþ jS0zj ð29Þ

Now, fix a real number �>0, and consider a
sequence z2S(�m). Since S0 is BIBO-stable by
Proposition 3, there is a real number D� 0 such that
|S0z|�D. Then, by (29),

juj � �=AþD � � þD

for all A� 1. This shows that the system X is uniformly
BIBO-stable.

Next, we show that the system X is uniformly BIBO-
minimum phase. Rewriting (27) in the form

u ¼ Xz ¼ z=Aþ S0z

we have

juj ¼ jXzj ¼ jz=Aþ S0zj � jS0zj � jzj=A
�� �� ð30Þ

Now, by (25), we have |S0z|� |z| for all |z|� �(�0);
consequently, when A>1 and |z|��(�0), we can write
jS0zj � jzj=A
�� ��� |z|� |z|/A¼ (1� 1/A)|z|, or, recalling
(30)

juj � ð1� 1=AÞjzj for all A > 1 and jzj � �ð�0Þ

Thus,

jzj � 2juj for all A � 2 and jzj � �ð�0Þ

Specifically, when |u|� �, we get |z|¼ |X�1u|� 2� for
all A� 2 and |z|� �(�0). Thus

Either jzj < �ð�0Þ or jzj ¼ jX�1uj � 2�

for all A � 2 ð31Þ

This proves that X�1 is uniformly BIBO-stable, namely,
that X is a uniformly BIBO-minimum phase system.
Combining with our earlier observation that X is also
uniformly BIBO-stable, we conclude that X is uniformly
BIBO-unimodular.

We can now prove that configuration (21) is
uniformly internally BIBO-stable. To this end, note
that additive signals added at the points u, e and y
in (21) all have similar effects on the output of the
configuration’s adder. Also, a signal z0 added to z is
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equivalent to a signal z0/A added to u. Furthermore,
since � is BIBO-unimodular (Lemma 3) and indepen-
dent of A, it follows that w is uniformly bounded if
and only if z is uniformly bounded. The last sentence
implies that it suffices to investigate the impact of the
signal z and of signals added to z; the effects of the signal
w and of signals added to w do not need to be considered
separately (see Hammer 1989 for more details on such
observations).

Additionally, since e¼ z/A, it is clear that e will be
uniformly bounded as A ! 1 if the signal z is uni-
formly bounded as A ! 1. Finally, since y¼S�z
and � and S are both BIBO-stable and independent
of A, it follows that the transmission from u to y is
uniformly BIBO-stable if the transmission from u to z
is such. Thus, in order to prove that (21) is uniformly
internally BIBO-stable, we only need to show that
the transmission from u to z is uniformly BIBO-stable.
However, the latter is a direct consequence of (28) and
of our earlier conclusion that X�1 is uniformly BIBO-
stable. This concludes our proof. œ

Proposition 4 allows us to examine the tracking
capabilities of (21) under conditions of high gain.
In the notation of (21), the tracking error for a gain A
is given by

tðAÞ :¼ ju� yj ¼ jej

The next statement shows that (21) offers a general
scheme for achieving accurate tracking with sub-
bounded systems, be they linear or non-linear systems.

Theorem 2: Let S :S(Rm)!S(Rm) be a strictly causal,
BIBO-stable, and BIBO-minimum phase system with the
lower bound function � and the lower gain function �.
Enclose S in configuration (21) with the controller
C¼ �A, where � is given by (22). Then, for every
bounded input sequence u, the tracking error satisfies
limA!1�(A)¼ 0.

Proof: Let u2S(Rm) be a bounded input sequence for
configuration (21) with norm |u|¼ �. A glance at (21)
shows that e¼ y� u¼ z/A, so that �(A)¼ |e|¼ |z|/A for
all A>0. Using (31), this implies that

�ðAÞ �
1

A
max f�ð�0Þ, 2�g

for all A� 2, so that limA!1 �(A)¼ 0, and the proof
concludes. œ

An examination of the proofs of Proposition 4
and Theorem 2 shows that, when the system S is
linearly sub-bounded, the precompensator � can be
eliminated from configuration (21) without affecting
the results of the two statements. In other words,
the classical Black diagram 6 allows accurate tracking
with any linearly sub-bounded system S. Configuration
(21) extends the tracking prowess of the Black diagram

to all BIBO-minimum phase systems, be they linear
or non-linear.

Example 1: Consider the first order system
S :S(R)!S(R) given by

xkþ1 ¼ xk=2þ uk,x0 ¼ 0

yk ¼ exp ðjxkjÞ

A simple calculation shows that, in this case, we can use
the lower bound function

�ð�Þ ¼ expð2�=3Þ � 1

The corresponding lower gain function can then be
taken as

�ð�Þ ¼ ½expð2�=3Þ � 1�=�, � � 0,

using the continuous extension at �¼ 0. The compen-
sator �, in this case, is given by

�ðzkÞ ¼
3=2ðlogðjzkj þ 1ÞÞ

jzkj
zk

4.2. Approximate model matching

The methodology of the previous subsection can
be utilized in a number of other applications. An
example of such an application is the approximate
model matching problem discussed next. Let S and ’
be two BIBO-stable and BIBO-minimum phase systems,
and consider the configuration

(32)

Here, S is the system being controlled and ’ is used
as a feedback compensator; the controller A represents
a constant gain amplifier and �c is a static compensator
to be discussed shortly. Denote by SA the input/output
relation of the system represented by the closed loop.
To calculate SA, note that

y ¼ S�cAe, e ¼ u� ’y ð33Þ

Substituting, we obtain e¼ u� ’S�cAe, or
(Iþ ’S�cA)e¼ u. Assuming that S is strictly causal
and that all other systems are causal, it follows that
the system (Iþ ’S�cA) is invertible (e.g. Hammer
1984), and we get

e ¼ ðI þ ’S�cAÞ
�1u

y ¼ S�cAðI þ ’S�cAÞ
�1u

we+
A
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Consequently

SA ¼ S�cAðI þ ’S�cAÞ
�1

The fact that ’ and S are both BIBO-minimum
phase systems implies that the combination ’S is
BIBO-minimum phase as well. It follows then by
Theorem 1 that the combination ’S has a lower
bound function �c. Let �c be a lower gain function cor-
responding to �c. In analogy with (22), define the com-
pensator �c by the relation

wk ¼ �cðzkÞ :¼
1

�cð�
�1
c ðjzkjÞ

zk, k ¼ 0, 1, 2, ::: : ð34Þ

The next statement shows that, with this compensator,
the closed loop system (32) matches the model ’�1 as
the gain A ! 1.

Theorem 3: Let S :S(Rm)!S(Rm) and ’ :S(Rm)!
S(Rm) be two BIBO-stable and BIBO-minimum phase
systems, where S is strictly causal and ’ is bicausal.
Assume that the inverse system ’�1 is continuous with
respect to the ‘1-norm. Then, with the compensator �c
of (34), configuration 32 has the following properties:

(i) It is uniformly BIBO-internally stable, and

(ii) limA!1 |Su� ’�1u|¼ 0 for every bounded input
sequence u; moreover, the limit converges uni-
formly over all input sequences of norm |u|� �,
where � is any positive real number.

Proof: (i) The proof of this part is similar to the proof
of Proposition 4, so we only provide an outline of
the proof. Referring to configuration (32) and to (33),
we can write z¼Au�A’y¼Au�A’S�cz, or
Au¼ [IþA’S�c]z, which yields u¼ [(1/A)Iþ ’S�c]z.
Defining the system

Xc :¼ ½ð1=AÞI þ ’S�c� : SðR
m
Þ ! SðRm

Þ ð35Þ

we have

u ¼ Xcz ð36Þ

Then, Xc is uniformly BIBO-unimodular by an
argument similar to the one used to show that X of
(27) is uniformly BIBO-unimodular (proof of
Proposition 4). We can then rewrite (36) in the form

z ¼ X�1
c u ð37Þ

Next, since the feedback compensator ’ is BIBO-
unimodular by assumption, it follows that the signal y
is bounded if and only if the signal v is bounded.
Combining this fact with the discussion provided
in the proof of Proposition 4, we conclude that configu-
ration (32) is uniformly internally BIBO-stable whenever
the transmission from u to z is uniformly BIBO-stable.
The latter, however, is a direct consequence of (37),
since Xc is uniformly BIBO-unimodular. This concludes

the proof of part (i) of our Theorem, and we turn to the
proof of part (ii).

First note that an argument similar to the one
used to derive (25) (proof of Proposition 3) leads to
the following conclusion: there is a real number �0 � 0
such that

j’S�czj � jzj for all jzj � � 0
ð38Þ

Using (36) and (35), we obtain |u|� j’S�czj � jzj=A
�� ��;

combining with (38), yields

juj ¼ jzj � jzj=A ¼ ð1� 1=AÞjzj � jzj=2

for all |z|� � 0 and all A� 2. In other words, |z|� 2|u|
for all A� 2, whenever |z|� � 0, i.e.

jzj � max f� 0, 2jujg ð39Þ

An examination of configuration (32) shows that
|e|¼ |u� ’y|¼ |z|/A�max {� 0/A, 2|u|/A} for all A� 2,
where (39) was used. Substituting the relation y¼SAu,
we obtain

ju� ’SAuj � max f� 0=A, 2juj=Ag for all A � 2:

Now, define the quantity

s :¼ ’SAu� u

Then, for all A� 2, we have

jsj � max f� 0=A, 2juj=Ag ð40Þ

and ’SAu¼ uþ s. Using the fact that ’ is invertible,
this yields SA u¼ ’�1(uþ s). Subtracting ’�1(u) from
both sides, we obtain

jSAu� ’�1
ðuÞj ¼ j’�1

ðuþ sÞ � ’�1
ðuÞj ð41Þ

The continuity of ’�1 with respect to the ‘1-norm
implies that, for every real number �>0, there is a
real number ">0 such that |’�1(uþs)� ’�1(u)|<� for
all |s|<".

Now, let �>0 be a real number, and consider all
input sequences of norm |u|� �. Choose a sequence of
real numbers �1, �2, . . . that converges to zero, and let
"1, "2, . . . be a corresponding sequence of real numbers
satisfying the following: |’�1(uþ s)� ’�1(u)|<�i for
all |s|<"i, i¼ 1, 2, . . . Let A1, A2, . . . be a sequence of
positive numbers such that

max f� 0=Ai, 2juj=Aig � "i, i ¼ 1, 2, . . . :

Applying (41) and (40), we conclude that
|SA u� ’�1(u)|� �i for all gains A�Ai, which shows
that limA!1 |SA u – ’�1(u)|� �i for all i¼ 1, 2, . . .
Finally, since �i! 0, it follows that
limA!1 j�Au� ’�1(u)|¼ 0, and our proof concludes.œ

To summarize, we have seen that the Black diagram,
with the modification described by configuration 32,
facilitates tracking and approximate model match-
ing for non-linear BIBO-minimum phase systems.
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The design procedure is rather simple: all that is
required to achieve desirable accuracy of tracking or
of model matching is to select the constant gain A suffi-
ciently large. Our next objective is to generalize this
approach to systems that are not BIBO-minimum
phase systems.

5. Non-minimum phase systems

5.1. General considerations

The process of adapting high gain compensators for
use with non-minimum-phase systems leads us to a
departure from one of the basic tenets of traditional
control theory: the requirement that a control system
have a unique response. Generally speaking, there is
no harm in allowing a system to have a non-unique
response, as long as all possible responses do not differ
from each other by more than a permissible error
bound. In such case, the non-uniqueness has no adverse
practical implications. However, from a mathematical
standpoint, it leads to a broadening of the class of
permissible controllers beyond the family of controllers
employed in traditional control or optimization. As we
shall see, such broadening of the class of controllers
yields improvements in performance.

We use a control configuration with a hysteresis-
type response. As shown later, this configuration
helps achieve good tracking and approximate model
matching for systems that are not necessarily BIBO-
minimum phase systems. To be more specific,
let S :S(Rm)!S(Rm) be the system that needs to be
controlled, let A be a constant gain compensator,
let ">0 be a real number, and consider the following
configuration.

(42)

Here, the symbol 	" indicates the following operation:
given two real numbers a and b

a	" b :¼
0 if jaþ bj � ",

aþ b� " signðaþ bÞ if jaþ bj > ":

(

In other words, the outcome of the operation is zero if
the sum is " or less; otherwise, the operation reduces the
magnitude of the regular sum by ". A slight reflection
shows that this can be restated in the following form.

Lemma 4: Let a and b be two real numbers. Then,
a	" b is the number v of minimal magnitude for which
|aþ b� v|� ".

For two vectors x¼ (x1, x2, . . . , xp), z¼ (z1,
z2, . . ., zp)2Rp, we define the operation componentwise:

x	" z :¼ ðx1 	" z
1, x2 	" z

2, . . . , xp 	" z
p
Þ ð43Þ

The next statement is a consequence of Lemma 4.

Lemma 5: Let x, z2Rp be two vectors, set w :¼ x 	" z,
and let A(x, z) be the set of all vectors v2Rp for which
|xþ z� v|� ". Then, w is the vector of minimal ‘1-norm
in A(x, z); it also has the minimal ‘1-norm in A(x, z).

Finally, let v, w2S(Rp) be two sequences of vectors.
The sequence y :¼ v 	" w is defined elementwise by

yk :¼ vk 	" wk, k ¼ 0, 1, 2, . . . :

To examine the sequence v 	" w, it is convenient to use
the weighted ‘1-norm defined in (8). A brief examination
shows that Lemma 5 leads to the following.

Lemma 6: For two bounded sequences v, w2S(Rp),
set s :¼ v	"w, and let S(v, w) be the set of all sequences
t2S(Rp) satisfying |vþw� t |� ". Then, s is the sequence
of minimal weighted ‘1-norm in S(v, w); it also has the
minimal ‘1-norm in S(v, w).

Returning to configuration (42), note that the minus
sign indicates that

e ¼ u	" ð�yÞ ð44Þ

We denote the input/output map of the closed
loop system (42) by S"

A to indicate the dependence of
the response on the gain A and on the parameter ">0.

For a preliminary examination of the control loop
(42), assume that all signals are scalar, and that the
system S represents a scalar constant gain amplifier.
Then, the combination SA is again a constant gain
amplifier, say SA¼ a, and the entire closed loop system
represents a static system. To examine the response,
consider first the case when the input signal u> ">0.
Then, we show that there are two output values possible:
y0> u and y00<u. Indeed, in the first case, the loop
induces the equation (u� y 0

þ ")a¼ y0, which yields

y0 ¼ aðuþ "Þ=ð1þ aÞ ð45Þ

In the second case, we have (u� y 00
� ")a¼ y 00, or

y00 ¼ aðu� "Þ=ð1þ aÞ

When 0<u<", the value of y00 is zero, while y0 is still
given by (45). As we can see, the output value of (42)
is not uniquely determined by its input value.

In the above example, the actual output value of the
closed loop system depends on the ‘initial value’ of the
output y. In other words, the system exhibits a hysteresis
property. As a result, we sometimes refer to " as the
hysteresis magnitude. Note that the discrepancy among

⊕e
yu  e+

A Sz_
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the different possible output values converges to zero
as "! 0. Thus, from a practical standpoint, this non-
uniqueness of the response causes no adverse effects,
as long as " is selected to comply with the accuracy
requirements of the system. Mathematically, however,
the non-uniqueness broadens the class of permissi-
ble controllers, leading to a potential improvement in
performance.

We turn now to a more general examination of
configuration (42). First, in view of (43), we can write

ju� ðyþ eÞj � "

In view of Lemma 6, the signal e can be characterized
as the signal 	 2S(Rm) of minimal weighted ‘1-norm
for which (yþ	) is within an "-neighborhood of the
input signal u. Also, since e¼ z/A with A being a scalar
constant gain, we can also say that z is the signal
$ 2S(Rm) of minimal weighted ‘1-norm for which
ðy þ $=AÞ is within an "-neighborhood of the input
signal u.

Further, since y¼SAe and A represents a scalar
constant gain, we have

eþ y ¼ ½I þ SA�e ¼ ½ð1=AÞI þ S�Ae ¼ ½ð1=AÞI þ S�z

Thus, we have

Lemma 7: For a system S :S(Rm)!S(Rm) and a
sequence u2S(Rm), let S(u) be the set of all sequences
	2S(Rm) for which |[(1/A)IþS]	� u|� ". Assume that
S(u) is not empty. Then, the signal z of configuration (42)
is the sequence of minimal weighted ‘1-norm in S(u). Also,
z has minimal ‘1-norm in S(u).

In the next subsection we show that, under appro-
priate conditions, the signal z remains bounded as
A ! 1. This implies that e¼ z/A ! 0 as A ! 1,
namely, that the discrepancy between the tracking signal
u and the output signal y approaches " as A ! 1.
Accordingly, desirable tracking accuracy can be
achieved by using a small " and a high gain A. As
discussed later, the error " can also account for errors
in the tracking signal u, in case u is near Imb S instead of
inside Imb S.

5.2. Tracking

In the present subsection we assume that the con-
trolled system S :S(Rm)!S(Rm) is stable. In addition
to being BIBO-stable, this requires S to be continuous
with respect to a topology under which every bounded
and closed subset of S(Rm) is compact. A common
example of such a topology is the one induced by the
weighted ‘1-norm (8). For a real number ">0 and
a sequence u2S(Rm), set

N"ðuÞ :¼ fv 2 SðRm
Þ : jv� uj � "g ð46Þ

Given a subset S�S(Rm), write

N"ðSÞ :¼ fv 2 SðRm
Þ : u 2 S and jv� uj � "g:

We are now ready to state the main result of the
current subsection. It shows that tracking can be
achieved with configuration (42) simply by using a
high gain controller.

Theorem 4: Let S :S(Rm) ! S(Rm) be a strictly causal
and stable system, let ">0 be a real number, and let
u2N"/2(ImbS) be a tracking signal. Then, configuration
(42) is uniformly BIBO-internally stable, and its response
satisfies limA!1|u�S"

Au|� ".

Proof: First, recall that the stability of S implies that
it is BIBO-stable and continuous with respect to the
norm k � k. By the assumptions of } 2.1, this norm is
compatible with the weighted ‘1-norm, and any closed
and bounded subset of S(Rm) is compact under it.
Turning to the proof, note that (44) implies that

N"ðuÞ 
 eþ y ¼ eþ SAe ¼ ½I þ SA�e

¼ ½ð1=AÞI þ S�ðAeÞ ¼ ½ð1=AÞI þ S�z
ð47Þ

Also, since S is strictly causal, the system [I/AþS]
has an inverse [(1/A)IþS]�1 (e.g. Hammer 1984). We
can then consider the set

� :¼ ½ð1=AÞI þ S��1
½N"ðuÞ�

Now, the system [(1/A)IþS] is stable since S is stable;
consequently, [(1/A)IþS] represents a continuous
map. Combining the latter with the fact that N"(u) is
a closed set by its definition (46), we conclude that O
is a closed subset of S(Rm).

Next, by assumption, u2N"/2 (ImbS), so there is
a bounded sequence v2 (Rm) for which

ju� Svj � "=2; set 
 :¼ jvj < 1:

Denoting w :¼Sv, we have w2N"/2 (u). Now, consider
a gain

A � 2
="

so that |v|/A � "/2. Then, |[(1/A)IþS]v� u|¼ |(1/A)vþ
(Sv� u)|� |v|/Aþ |Sv� u|� ", so that [(1/A)IþS]v2
N"(u). This shows that v2 [(1/A)IþS]�1[N"(u)]¼O,
showing that O includes the bounded sequence v.
Consequently, the bounded intersection O\ (S(
m) is
not empty; since O is closed, so is this intersection.
Recalling that, in our topology, every closed and
bounded set is compact, we conclude that O\S(
m) is
a compact set. Together with the fact that the norm k � k

is compatible with the weighted ‘1-norm, this implies
that every sequence of elements of O\S(
m) with
decreasing weighted ‘1-norms must have a convergent
subsequence with a limit in O\S(
m). This implies
that O\ (S(
m) contains an element of minimal weighted
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‘1-norm, which we denote by !þ; since !þ
2O\S(
m),

it follows that |!þ|�
.
We return now to configuration (42). By Lemma 7,

the sequence z is of minimal ‘1-norm in O, so we have,
for example, z¼!þ

2O\S(
m). This directly implies
that

jzj � 
 ð48Þ

Noting that 
 is independent of the gain A, it
follows from (48) that z is bounded, and that its
bound is independent of A for all A� 2
/". This
shows that the signal z is uniformly bounded as a
function of the gain A.

We claim now that the fact that z is uniformly
bounded as a function of A entails that configuration
(42) is uniformly internally BIBO-stable. Indeed, an
examination of the configuration leads to the following
conclusions:

(i) The stability of the system S gives rise to a real
number M>0 such that S[S(
m)]�S(Mm),
which, by (48), implies that |y|�M for all
gains A� 2
/", so that y is uniformly bounded
for large A.

(ii) The equality "¼ z/A implies that

jej ¼ jzj=A � 
=A ð49Þ

so that |e|�
 for all A� 1. Consequently, the
signal e is uniformly bounded for all
A�max {2
/", 1}.

Thus, we conclude that configuration (42) is uniformly
internally BIBO-stable. Now, equation (49) directly
implies that

lim
A!1

jej ¼ 0 ð50Þ

since limA!1|e|¼ limA!1 |z|/A� limA!1
/A¼ 0.
Using (47), we have |u� (eþ y)|� ", so that |u� y)|�
|e|� |u� (eþ y)|� ", or |u� y|� "þ |e|. In view of (50),
we obtain

lim
A!1

ju� yj � "þ lim
A!1

jej ¼ "þ lim
A!1


=A ¼ " ð51Þ

and our proof concludes. œ

Theorem 4 demonstrates the ability of configuration
(42) to track a prescribed signal u with an error near ",
as long as the forward gain A is sufficiently large.
However, an examination of the proof of Theorem 4
reveals that the necessary gain A may vary from one
tracking signal to another. In other words, the tracking
accuracy may not be uniform. In the next subsection, we
show that uniform tracking accuracy can be achieved
for systems possessing a certain reachability property.

5.3. Uniform tracking error

We examine now to the problem of controlling the
system S to track all signals of amplitude not exceeding
a specified bound �>0. The objective is to achieve a
uniform tracking error, so that the tracking errors of
all signals of this class are bounded by the same upper
bound. In view of the fundamental tracking restriction
(5), we restrict our attention to tracking signals of
the class

Sð�, SÞ :¼ Sð�mÞ \ ImbS ð52Þ

since the system S cannot accurately track other signals
of amplitude � or less. The following notion is important
when tracking classes of signals.

Definition 6: Let X(A) :S(Rm)!S(Rm) be a system that
depends on a real parameter A, and assume that A can
take arbitrarily large values. Let S�S(Rm) be a class of
signals and let ">0 be a real number. The system X(A)
uniformly tracks the class of signals S with an error
bounded by " if the following is valid: for every real
number �>0, there is a real number A0� 0 such that
|X(A)u� u|� "þ � for all A�A0 and for all signals u2S.

It can be seen that configuration (42) achieves uni-
form tracking of the class of signals S(�,S) when the
system S has the following property: all signals of the
set S(�,S) can be approximately generated by S from
input signals of amplitude not exceeding a bound 
(�).
Specifically, assume that

Sð�,SÞ � N"=2ðS½Sð

m
ð�ÞÞ�Þ ð53Þ

Then, by replacing the number 
 in (51) by the bound

(�), the proof of Theorem 4 yields the next result.
It shows that, in this case, the entire class of signals
S(�,S) can be uniformly tracked by configuration (42).

Corollary 1: Let S :S(Rm)!S(Rm) be a strictly causal
and stable system, and let �, ">0 be real numbers.
Assume that there is a real number 
(�)>0 satisfying
(53), where S(�,S) is given by (52). Then, for the class
of signals S(�,S), the system S"

A is uniformly BIBO-
internally stable and achieves uniform tracking with an
error bounded by ".

When the conditions of Corollary 1 are satisfied,
configuration (42) provides an effective, intuitive and
simple solution of the tracking problem. Our next objec-
tive is to examine the class of systems for which these
conditions are valid. Specifically, we show that (53) is
valid for a rather broad class of systems that includes all
systems possessing an appropriate reachability property.

We start with some notation. Let S :S(Rm)!S(Rp)
be a strictly causal system, let j� 0 be an integer,
and consider an output sequence y¼Su2S(Rp).
Denote Su]j :¼ yj and Su]j0 :¼ {y0, y1, . . ., yj}. The strict
causality of S implies that the string Su]jþ1

0 is determined
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by the input values uj0 :¼ {u0, . . . , uj}. To emphasize this
fact, we will sometimes write Suj0]

jþ1
0 instead of Su]jþ1

0 .
Similarly, when considering the image S[S(�m)]jþ1

0 , we
will sometimes write S[�m� �m� � � � � �m]jþ1

0 , where the
cross product contains jþ 1 terms, corresponding to
input steps 0 to j. Finally, ImbS]jþ 1 notes all vectors
of Rp that can appear as the jþ 1 step of ImbS, i.e.

ImbS�jþ1 :¼ fSu�jþ1 : juj < 1g

The strict causality of the system S implies that
the initial output value Su]0 is determined by the initial
condition of the system, and is independent of the input
sequence u.

Let 	>0 be a real number, and consider an element
y2 Imb S. Although bounded, the input sequence that
generates y may have a large amplitude. Yet, there
might be a sequence y0 2 ImbS very close to y, say
|y0 � y|�	, which is generated by an input sequence
of much lower amplitude. In fact, it is interesting to
find the input sequence u of lowest amplitude for
which |Su� y|�	. Such a ‘lowest amplitude’ sequence
helps reduce the magnitude of signals within our control
configuration, at the cost of a performance error
not exceeding 	. The use of such lowest magnitude
signals helps guaranty internal stability of control
configurations involving the system S.

Formally, to examine such lowest magnitude signals,
we define the following notion.

Definition 7: Let S :S(Rm) ! S(Rm) be a causal system
satisfying S0¼ 0, and let m� 0 and �>0 be two real
numbers, where 	<�. The inverse bound function of S
is given by


ð�,	Þ :¼ inff� : N	½S½Sð�
m
Þ�� 
 ½Imb S \ Sð�mÞ�g

when the infimum exists.
The intuitive significance of the inverse bound

function 
(�,	) is simple: with an error not exceeding
	, any output signal of S of amplitude not exceeding �
can be approximated by the response of S to an
input signal of amplitude not exceeding 
(�,	). When
S is a minimum phase system, a brief examination
shows that 
(�, 0)���1(�), where � is a lower bound
function of S. The inverse bound function is an
important tool for guarantying internal stability of
composite systems, and it underlies our subsequent
discussion of the tracking problem.

Our next objective is to show that the inverse bound
function exists under rather general conditions. We start
with the following auxiliary result, which shows that,
often, the image of a function can be approximated by
its image over a bounded set.

Lemma 8: Let g :Rn
�Rm

!Rn be a uniformly contin-
uous function, and let B>0 be a real number. Assume
that there is a non-empty set S�Bn

�Rm such that

g[S]�Bn. Then, for every real number �>0, there is a
real number D� 0 for which the following is true: for
every point (x, u)2S, there is an element u02Dm such
that |g(x, u)� g(x, u0)|<�.

Proof: By contradiction, assume that the number D
described in the lemma does not exist. Then, there is
a sequence of points (xi, ui)2S, i¼ 1, 2, . . . , with the
following property:

Property 1: For every real number E� 0, there is an
integer N(E)� 1 such that |g(xi, ui)� g(xi, u

0)|� � for
every vector u02Em and for all i�N(E).

Now, since g(xi, ui)2Bn for all i� 1 and since Bn is
a compact set, it follows that the sequence {g(xi, ui)}

1
i¼ 0

must have a convergent subsequence {g(xi(k), ui(k)}
1
k¼ 1.

Furthermore, since S�Bn
�Rm and (xi(k), ui(k))2S for

all k� 1, we also have that {xi(k)}
1
k¼ 1�Bn. Using again

the fact that Bn is a compact set, we conclude that the
sequence {xi(k)}k¼ 1 has a convergent subsequence
{xi(k(j))}j¼ 1 in Bn. We examine next the sequence
{(xi(k(j)), ui(k(j)))}

1
j¼ 1.

The fact that the function g is uniformly continuous
implies that there is a real number �>0 such that

jgðx0, uÞ � gðx, uÞj < �=2 ð54Þ

for all u2Rm whenever |x0 � x|<�. By the convergence
property of the sequence {(xi(k(j)), ui(k(j))}

1
j¼ 1, there is

an integer N0
� 1 such that |xi(k(j 0)) – xi(k(j))|<� for all

integers j0, j�N0. Also, since the sequence
{g(xi(k(j)), ui(k(j)))}

1
j¼ 1 is convergent, there is an integer

N00
� 1 such that

jgðxiðkðq0ÞÞ, uiðkðqÞÞÞ � gðxiðkðq0ÞÞ, uiðkðqÞÞÞj < �=2 ð55Þ

for all integers q 0, q�N 00. Set N :¼max {N 0, N 00} and
define

D : ¼ max
r¼1,...,N

juiðkðrÞÞj

u 0 : ¼ uiðkðNÞÞ 2 Dm

Then, using (54) and (55), we obtain

jgðxiðkðrÞÞ, uiðkðrÞÞÞ � gðxiðkðrÞÞ, u
0
Þj

¼ jgðxiðkðrÞÞ, uiðkðrÞÞÞ � gðxiðkðrÞÞ, uiðkðNÞÞÞj

¼ j½gðxiðkðrÞÞ, uiðkðrÞÞÞ � gðxiðkðNÞÞ, uiðkðNÞÞÞ�

� ½gðxiðkðrÞÞ, uiðkðNÞÞÞ � gðxiðkðNÞÞ, uiðkðNÞÞÞ�j

� j½gðxiðkðrÞÞ, uiðkðrÞÞÞ � gðxiðkðNÞÞ, uiðkðNÞÞÞ�j

þ j½gðxiðkðrÞÞ, uiðkðNÞÞÞ � gðxiðkðNÞÞ, uiðkðNÞÞÞ�j

<�=2þ �=2 ¼ �

contradicting Property 1. Thus, our initial assumption
leads to a contradiction, and the proof is complete. &
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For a function f :Rn
�Rm

!Rn and an integer i� 1,
we denote by f i(x, u0, . . ., ui� 1) the i-th iteration of f,
given recursively by

f 1
ðx, u0Þ :¼ f ðx, u0Þ,

f i
ðx, u0, . . . , ui�1Þ :¼ f ðf i�1

ðx, u0, . . . , ui�2Þ, ui�1Þ,

i ¼ 2, 3, . . .

It will be convenient to use the notation f |i1(x,
u0, . . ., ui� 1) :¼ (f 1(x, u0), f 2(x, u0, u1), . . ., f

i(x, u0, . . .,
ui� 1)) for the corresponding string of iterated values.
Note that if f is uniformly continuous, so are the
functions f i and f |i1 for every integer i� 1. It will be
convenient to use the notation f i(x, �) : (Rm)i!
Rn : (u0, . . ., ui� 1)! f i(x, u0, . . ., ui� 1) to denote the cor-
responding partial function. We now adapt the classical
notion of reachability to our present needs.

Definition 8: Let S :S(Rm)!S(Rp) be a system having
a realization of the form (7) with a state space of dimen-
sion n and a recursion function f. The system S is locally
state-reachable if the following is true for every real
number B>0: for every real number �>0, there is
a real number $>0 such that N$(f

n(x, u0, . . ., un� 1)�
f n(x,N�(u0, . . ., un� 1)) for all u0 ,. . ., un� 12R

p and for
all x2Bn.

In intuitive terms, a locally state-reachable system is
characterized by the following property: any sufficiently
small change in the state of the n-th step can be achieved
by a small change of the input string. It can be readily
confirmed that a reachable linear system is also locally
state-reachable.

Next, we review the notion of a detectible system.

Definition 9: Let S :S(Rm) ! S(Rp) be a system with
a realization of the form (7), and let SS :S(R

m)!S(Rn)
be the input/state part of S. The system S is detectible
if, for every real number �>0, there is a real number
B>0 such that |Ssu|�B whenever |Su|� �.

We are now ready to prove the existence of the
inverse bound function under rather general conditions.

Proposition 5: Let S :S(Rm)!S(Rm) be a system with
a uniformly continuous realization of the form (7).
Assume that S is detectible and locally state-reachable,
and that S0¼ 0. Then, S has an inverse bound function.

Proof : Let xkþ 1¼ f(xk, uk), yk¼ h(xk) be a realization
of S satisfying the conditions of the Proposition.
Here, f :Rn

�Rm
!Rn and h :Rn

!Rp are uniformly
continuous functions. Let Ss :S(R

m)!S(Rn) be the
input/state part of S. Further, let �>0 be a real
number, and consider the set of all output sequences
ImbS\S(�m). The fact that S0¼ 0 implies that Imb

S\S(�m) 6¼ � for all �� 0, since ImbS and S(�m)

both contain the zero sequence. The detectability of S
implies that there is a real number B>0 such that
Imb S\S(�m)� h[ImbSs\S(Bn)]. Consequently, only
states and values of f bounded by B affect
ImbS\S(�m). Fixing two real numbers �, ">0, we
show now that 
(�, ") is well defined.

First, by the uniform continuity of the output
function h, there is a real number 
>0 such that
|h(x0)� h(x)|<" whenever |x0 � x|<
. Also, by the
uniform continuity of the recursion function f, there is
a real number �>0 such that

f jn1ðx,N�ðu0, . . . , un�1ÞÞ � N
=2ðf j
n
1ðx, u0, . . . , un�1ÞÞ

ð56Þ

for all x and u0, . . . , un� 1. As S is locally state-reachable
by assumption and |x|�B, there is a real number$0 >0
such that N$:(f

n(x, u, . . . , un� 1))� f n1(x,N�(u0, . . ., un� 1))
for all x2Bn and all u0, . . . , un� 12Rp. Setting $ :¼min
{$0, 
/2}, we clearly still have

N$ðf
n
ðx, u0, . . . , un�1ÞÞ � f jn1ðx, N�ðu0, . . . , un�1ÞÞ

ð57Þ

Being interested only in states bounded by B and
using the fact that f is uniformly continuous, it follows
by Lemma 8 that there is a real number D>0 such
that the following is true for all |x|�B: for every
u :¼ (u0, . . . , un� 1)2Rnm, there is an element
u0 :¼ (u00,. . ., u

0
n�1)2Dnm, such that

j f j n1 ðx,uÞ � f j n1 ðx,u
0
Þj < $ ð58Þ

Consequently, we can limit our attention to input values
bounded by D without incurring errors exceeding $.

Now, consider an output sequence y 2 Imb S \

Sð�mÞ. In view of our earlier discussion, there is a
sequence x2S(Bn) such that y¼ h(x). There is then an
input sequence u2S(Rm) such that x¼Ss u. Let x0 be
the initial condition of the system S. Then, the state
values of S at steps that are integer multiples of n are
given by

xkn ¼ f n
ðxðk�1Þn, uðk�1Þn, uðk�1Þnþ1, ..., uðk�1Þn þ ðn�1ÞÞ,

k ¼ 1, 2, . . . :

In view of (56), (57) and (58), there are input
vectors bounded by (Dþ �), i.e. input values u0ðk�1Þn,
u0ðk�1Þnþ1, . . ., u

0
ðk�1Þnþðn�1Þ 2 (Dþ �)m such that

xkn ¼ f n
ðxðk � 1Þn, u

0
ðk � 1Þn,u

0
ðk � 1Þn þ 1, . . .,

u 0
ðk � 1Þn þ ðn � 1ÞÞ, k ¼ 1, 2, . . .

ð59Þ
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and

jf jn1ðxðk�1Þn, u
0
ðk�1Þnþ1, . . . ,

u0ðk�1Þnþðn�1ÞÞ � f jn1 ðxðk�1Þn, uðk�1Þn,

uðk�1Þnþ1, . . . , uðk�1Þn þ ðn�1ÞÞj

< 
=2 þ $ � 
, k ¼ 0, 1, 2, . . . : ð60Þ

Combining the segments u0ðk�1Þn,u
0
ðk�1Þnþ1, . . .,

u0ðk�1Þnþðn�1Þ, k¼ 1, 2, . . ., into a sequence u02S(Rm), we
clearly obtain that

u 0
2 SððDþ �ÞmÞ

Furthermore, (59) and (60) imply that the state sequence
x0 :¼Ss u

0 satisfies

jx � x0j < 


It follows then by the definition of the inverse bound
function 
(�, ") that 
(�, ")�Dþ �, which proves that

(�, ") exists. This concludes our proof. œ

Combining Proposition 5 and Corollary 1, we
obtain the following result, which shows that configura-
tion (42) facilitates tracking for a rather wide class of
non-linear systems.

Theorem 5: Let S :S(Rm)!S(Rm) be a stable system
with a uniformly continuous realization of the form (7),
and let ", �>0 be two real numbers. Assume that S is
detectable and locally state-reachable, and that S0¼ 0.
Let S(S, �) be the set of all output signals of S that are
bounded by �. Then, for the class of signals S(S, �), the
following are true: the closed loop system S"

A is uniformly
BIBO-internally stable, and it uniformly tracks the class
of signals S(S, �) with an error bounded by ".

5.4. Approximate model matching

The general case of the model matching problem
can be addressed by using an approach similar to the
one used in } 4.2 for controlling BIBO-minimum phase
systems. Let S :S(Rm)!S(Rm) be the system that
needs to be controlled and let ’ :S(Rm)!S(Rm) be the
model that needs to be matched. We say that ’ is a
unimodular system if it is invertible, and if ’ and ’�1

are both stable systems. Consider now the control
configuration.

(61)

Let S"
A,’ denote the system represented by the closed

loop. We will use the following notion.

Definition 10: Let X(A), C :S(Rm)!S(Rm) be systems,
where X(A) depends on a real parameter A that can
take arbitrarily large values. Let S�S(Rm) be a class
of signals and let ">0 be a real number. The system
X(A) uniformly approximates the system C over the class
of signals S with an error bounded by � if the following
is valid: for every real number �>0, there is a real
number A0� 0 such that |X(A)u�Cu|� �þ � for all
A�A0 and for all signals u2S.

The next statement indicates that configuration (61)
does indeed provide a solution to the approximate
model matching problem under the listed conditions.
Its proof can be obtained by combining the arguments
used in the proof of Theorem 3 with the arguments
leading to Theorem 5, taking into consideration
the unimodularity of the model ’.

Theorem 6: Let S :S(Rm)!S(Rm) be a stable system
with a uniformly continuous realization of the form (7),
let ’ :S(Rm)!S(Rm) be a unimodular system, and let ",
�>0 be two real numbers. Assume that S is detectable
and locally state-reachable, and that S0¼ 0. Define the
class of signals S :¼ ’�1[ImbS\S(�m)], and let �>0 be a
real number such that |’�1(u)� ’�1(v)|� � whenever
|u� v|� " and u2S. Then, for the class of signals S,
the following are true: the closed loop system S"

A,’ is uni-
formly BIBO-internally stable and it uniformly approxi-
mates the system ’�1 with an error bounded by �.

Note that when the system ’ is linear, configuration
(61) achieves approximate linearization of the system S
over the appropriate class of input signals.

6. Conclusions

Starting from the classical control principle that
advocates the use high forward gain in feedback control
loops, we have developed a general methodology for the
design of non-linear tracking systems. For non-mini-
mum phase systems, this methodology involves the use
of a control configuration with minor hysteresis prop-
erties. An important advantage of the resulting design
technique is that it requires a rather small number of
variable design parameters—only one variable design
parameter (the gain) is required for controlling
minimum phase systems, while only two variable design
parameters (the gain and the hysteresis magnitude) are
required in general. The small number of variable
design parameters makes this methodology particularly
convenient for design through simulation, as one can
easily experiment with the parameter values until a
desirable outcome is obtained. The same methodology
can be also be used to achieve approximate model
matching.

⊕e
yu  e+

A S z

j

_
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