
INT. J. CONTROL, 2003, VOL. 76, NO. 7, 643-656 
C"\ Taylor & Francis 
~ Taylor&FrancisGroup 

Sturdy control of discrete communication networks. Part II: Call reshaping 

JACOB HAMMER 

The problem of optimizing the efficiency of large capacity communication networks is considered. An important objec
tive is to reduce the effects of traffic uncertainties on network efficiency, especially in cases where statistical models of the 
traffic uncertainties are not available. The main result is the development of algorithms for adjusting the data flow of each 
network customer so as to optimize network efficiency. It is shown that, in some common situations, the use of feedback 
control makes it possible to eliminate completely the effects of traffic uncertainties on network efficiency, despite the lack 
of statistical models. 

1. Introduction 

Many of the signals commonly transmitted through 
digital communication networks lack detailed statistical 
models and incorporate large unmodelled uncertainties. 
The present paper concentrates on the optimization of 
network performance in the presence of such signals. By 
and large, traffic control algorithms can utilize two tac- · 
tics to help improve network efficiency: (i) selective 
admission, whereby only the most auspicious calls are 
allowed into the network; and (ii) reshaping of the sig
nals passing through the network. The reshaping of the 
signals is accomplished by buffers that store cells tem
porarily and release them later back into the flow. 
Traffic control that involves the use of buffering is 
referred to as dynamic traffic control. 

The issue of admission control was discussed in 
detail in the first part of the paper (Hammer 2003). 
The present part combines admission control with 
reshaping of call waveforms to achieve maximal net
work efficiency. The opt,imization criterion we use is 
asymptotic efficiency (see Hammer 2003). This criterion 
aims at the optimization of large capacity networks. 

The present paper concentrates on the quantitative 
aspects of the call reshaping process. Among other 
issues, we examine how to reshape call waveforms to 
help reduce the effects of uncertainties on the asymptotic 
efficiency of the network. In some common cases, appro
priate reshaping of the call waveforms may yield an 
asymptotic backbone efficiency of 1, even when large 
unmodelled uncertainties are present. 

A discrete communication network can be described 
by figure 1. Here, A represents the gate into the network; 
P and C are compensators used to control the flow of 
cells; .r represents a relatively short network segment 
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that connects the source controller C to the backbone 
controller P; 8 represents the backbone; and T repre
sents the destination of the data. 

Following Hammer (2003), a call is modelled as a 
sum 

c=x+v (1) 

where x represents the deterministic ( or nominal) part of 
the call, while v represents the uncertain part. Both x 
and v are piecewise constant functions over the partition 
{11, ••• ,lq} of the call cycle [1, T] (see Hammer 2003, §2 
for more details and notation). The only information 
available about the uncertain part v is an amplitude 
bound 

0 ~ A(v) ~ p (2) 

where A(v) := max{lvkl: k = 1, ... , T} represents the 
amplitude of v. No information is provided about the 
statistics of the uncertain part. 

The primary traffic control operations of the net
work are performed by the compensator P, which is 
located at the gate of the backbone. The role of the 
source compensator C is secondary; it provides long 
term storage, to help reduce the storage requirements 
of the router compensator P. Due to the subordinate 
role of C, it can be ignored when discussing the main 
outlines of the traffic control problem. Remark 1 later 
indicates that much of the cell storage capacity required 
for effective buffering can be delegated to C, without 
adversely affecting backbone performance. 

The present paper concentrates on sturdy traffic con
trol, namely, on the lossless control of network traffic 
under conditions of large and unmodelled uncertainties. 
The lossless transmission requirement sets sturdy traffic 
control somewhat apart from the more traditional sta
tistical traffic control algorithms, which do permit cell 
losses during certain rare traffic events (see, e.g. Atkins 
1980, Golestani 1991 and Chang 1994). It is shown in§ 5 
below that one can often achieve full asymptotic effi
ciency with no cell losses, despite large call uncertainties. 
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Figure 1. 

The use of traffic control to reshape call waveforms 
entails, of course, the delay some of the cells passing 
through the network. Such cell delays are referred to 
as buffering delays. The service specifications of each 
call class dictate the maximal buffering delay ( or jitter) 
a cell of the class may incur. Let { c1

, ••• , cm} be the 
family of call classes associated with our network, and 
let T(r) be the maximal buffering delay permitted for a 
cell of the class c', r = I, ... , m. We assume throughout 
our discussion that all cells can be delayed by at least 
one step, i.e. that 

T(r) :2: 1, r = l, ... ,m 

In general, certain call classes permit more buffering 
delay than others. For example, the class of computer 
data file transfers allows substantial buffering delays, 
while classes such as streaming audio or streaming 
video have a relatively low tolerance of buffering delays 
and jitter. For the extreme case where a class c' has no 
cell delay restriction, we set T(r) := T - I. The traffic 
control algorithms developed in this paper abide by all 
buffering delay constraints. In fact, maximal buffering 
delay is the only service requirement taken into consid
eration in our present discussion, as it is the one that 
most critically affects dynamic traffic control. Other ser
vice requirements are considered in ATM Forum (1997), 
Handel et al. (1994) and Schwartz (1996). 

The network optimization process developed in this 
paper is a global process that relies on the available call 
descriptions. It is not based solely on the momentary 
traffic load of the network, as are some of the classical 
traffic control algorithms (e.g. Decina and Toniatti 1990, 
Rathgeb 1991, CCITT 1992). 

The present study is a continuation of Hammer 
(2003) and depends on the notation and on the results 
introduced there. It is organized as follows. Section 2 
includes the basic framework for dynamic control of 
discrete communication networks. The shuffling algor
ithm, which forms an important tool in later sections of 
the paper, is described in § 3. In § 4 we discuss the pro
cess of reshaping call waveforms for improving network 
efficiency. The paper concludes with § 5, where we ex
amine the use of dynamic compensation to reduce the 
effects of call uncertainties on network efficiency. The 
results of§ 5 indicate that, in some common situations, 
the effects of call uncertainties on network efficiency can 

be completely eliminated, even in cases where statistical 
models of the uncertainties are not available. 

2. Reshaping of deterministic calls 

To clarify the basic issues involved with dynamic 
traffic control, we start by considering the case of deter
ministic calls, namely, of calls of the form (I) with v = 0. 
For convenience, here are a few items from Hammer 
(2003): 

(i) A family of call classes { c1
, ••• , cm} is complete 

if there are integers a 1, ... , am :2: 0 such that 
I:~: 1 a/ is a non-zero constant over [1, T]. 

(ii) A flow z through a backbone of capacity ¢ is 
lossless if its amplitude satisfies A(z) ~ ¢. 

(iii) ci denotes the value of a call ci at a step k. 

The next statement demonstrates that an incomplete 
family of call classes can be transformed into a complete 
family by adding one more call class. The statement also 
characterizes the minimal fraction of backbone capacity 
that has to be devoted to the new class to achieve 
asymptotic efficiency of 1. 

For a family F = { c1
, ••• , cm} of call classes and an 

additional call class c, denote by F(c) := {c1
, ... , cm, c} 

the augmented family of calls. Consider a lossless flow 
z( ¢) = I:~: 1 ai( ¢ k + am+l ( ¢ )c through a backbone of 
capacity ¢; here, a 1 ( ¢), ... , am+I ( ¢) :2: 0 are integers. 
The capacity-fraction devoted to the call c is defined by 

( (,1,.)) ·= I:k=I am+l (¢)ck 
TJC,ZI/-' • Tep 

Finally, recall that the maximal asymptotic efficiency ry* 
of the family F was calculated in Hammer (2003, 
Theorem 3). 

Proposition 1: Let F = { c1, ... , ~} be an incomplete ,. J 

family of call classes over the partition { /1, ... , Iq} of 
[I, T], let ry* be the maximal asymptotic efficiency of the 

family F, and let¢ denote the backbone capacity: 

(i) There is a class class c over the partition 
{ / 1 , ..• , Iq} for which the augmented family 
F(c) is complete. 

(ii) Let c be any call class over the partition 
{/ 1, ••• ,/q} for which F(c) is a complete family, 
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and let z( ¢) be any lossless flow of the f amity 
F(c) with asymptotic efficiency of 1. Then, the 
capacity-fraction devoted to the class c satisfies 
limrp--.oo 77( c, z( ¢)) 2:: 1 - 77*. 

(iii) There is a call class c + over the partition 
{I 1, ••• ,lq} such that F(c+) is a complete family 
and the following holds. There is a lossless flow 
z+(c/>) of the family F(c+) with asymptotic effi
ciency of 1 and with capacity-fraction devoted to 
the class c + satisfying lim¢--.oo 77( c +, z + ( ¢)) = 
1 - 77*. 

The proof of Proposition 1 is in the Appendix. In 
view of Proposition 1, one can always construct a call 
class that completes a given family F into a complete 
family of call classes. The new class can be selected so 
that it lifts the asymptotic backbone efficiency to one, 
without affecting the transmission efficiency of the orig
inal family F. 

In practice, it is not always possible to add a new call 
class. It is usually more practical to reshape the wave
forms of the family's existing members, in an attempt to 
obtain a complete family. Waveforms of call classes can 
be reshaped by storing cells in buffers, and releasing the 
stored cells during later steps of the calls. Of course, 
such reshaping must be performed without violating 
the maximal delay specifications of the affected calls. 
We discuss next a somewhat restricted version of this 
problem, where only one of the call classes is being 
reshaped. 

Consider an incomplete family F = { c 1, ... , cm+l} of 
call classes. We examine the conditions under which the 
call class cm+I can be reshaped into a call class c for 
which the family F(c) := {c1

, ..• , cm, c} is complete. In 
this process, a number of calls of the class cm+I may be 
transformed into a (possibly different) number of calls 
of the class c. For instance, , 1 calls of cm+I may be 
transformed into , 2 calls of c, where 11, 12 are positive 
integers. Note that changing the waveform of a call does 
not hamper its content as long as the service require
ments are met. 

Our call reshaping process must abide by two con
straints: 

(i) Causality-cells can only be delayed (not 
advanced) in time; and 

(ii) Service requirements-cells cannot be delayed 
longer than the maximal delay specification of 
the class. 

Initially, we shall also require the following: 

(iii) no cells can be delayed beyond the time cycle 
time T. 

Referring to figure 1, constraint (i) means that the 
number of cells that have exited the compensator P up 
to a step k cannot exceed the number of cells that have 
entered Pup to the step k. Constraint (iii) means that all 
call processing is confined to the interval [1, T], namely, 
that the number of cells entering P during the interval 
[l, T] must equal the number of exiting cells during this 
interval. In formal terms, constraints (i) and (iii) reduce 
to the following. 

Lemma 1: Let c' and c" be two non-empty call classes 
over the interval [1, T]. Assume that c' has no cell delay 
restriction. Then, the following two statements are 
equivalent: 

(i) Every 11 calls of the class c' can be trans/ ormed 
into 12 calls of the class c" with no cell loss. 

( • ") "\""k I > "\""k II • h n ,1 6i=I ci _ ,2 6i=l ci , k = I, ... , T, wzt 

equality for k = T. 

The integers , 1 and , 2 of Lemma 1 can be character
ized easily in terms of the total number of cells contained 
in the calls c' and c". Indeed, for a call c, let #c be the 
total number of cells contained in the call. When trans
forming , 1 calls of c' into , 2 calls of c" without cell loss, 
we must clearly have , 1 #c' = , 2#c". Now, let f, > 0 be 
a least common integer multiple of #c' and #c", and let 
,', ," > 0 be integers satisfying 

f = ,'#c' = ,"#c" (3) 

By basic properties of least common multiples, there 
then is an integer,> 0 such that 

11 = n' and ,2 = n" (4) 

Equation 4 indicates that when discussing transfor
mations of calls of the class c' into calls of the class c", 
we can restrict our attention to the conversion of,' calls 
of c' into ," calls of c". It is important to note that,' 
and," are uniquely determined by the call classes c' and 

II 
C • 

To simplify notation, define the new call classes 
w := 11c' and Q := , 2c", so that one call w is trans
formed into one call Q. In general, there can be several 
· · 1 1 m Th mcommg c asses, say w , ... , w . e sum 

z := w1 + · · · +wm (5) 

may be combined and transformed in the compensator 
Pinto a single outgoing class Q over the call cycle [1, T]. 
Here, z is regarded as the incoming call and Q as the 
outgoing call. Then, Lemma 1 takes the following form. 

Lemma 2: Let w 1, ••• , wm and Q be non-empty call 
classes over the interval [ 1, T]. Assume that the classes 
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w1, ••• , c.i.r have no cell delay restrictions. Then, the fol
lowing two statements are equivalent: 

(i) The combination z := w1 + · · · wm can be trans
! armed into a call of the class Q with no cell 
loss. 

(ii) E:=l zi ~ E:=l Qi, k = I, ... , T with equality for 
k=T. D 

For classes defined over the partition { / 1, ••• ,lq} 
(where a segment ( consists of Ai steps), condition (ii) 
of Lemma 2 can be rewritten in the equivalent form 

j j 

I>iz(i) ~ 2::>iQ(i), j =I, ... ,q (6) 
i=l i=l 

with equality for j = q. 
To take into consideration restrictions on cell delays, 

let r(r) ~ 1 be the maximal buffering delay (in number 
of steps) allowed for cells of the call class w'. Clearly, for 
k > r(r), all cells of the class w' that have entered the 
compensator P during the steps 1, ... ,k- r(r), must 
have exited P by the end of step k. Hence, the total 
number of cells of t11e call w' that must have exited P 
by the end of step klis given by Er~t(r) Wt. 

To simplify no{ation, it is convenient to adopt the 
somewhat unusual convention that 

{3 

Lai:=0 
i=a 

whenever /3 < a 

Then, the class z can be transformed into Q, while 
upholding the maximal delay constraint of all classes 
w1

, ••• , wm, if and only if 

m k-T(r) k 

LLWt~LQi, k=l, ... ,T-1 
r=l i=l i=l 

(7) 
m T T 

LLwt= LQi 
r= l i= l i=l 

Combining with Lemma 2, this leads to the following 
statement, which characterizes the conditions for wave
form transformations. 

Proposition 2: Let w1, ••• , wm and Q be non-empty call 
classes over the interval [l, T]. Let r(r) be the maximal 
delay permissible for a cell of the class w', r = 1, ... , m. 
Then, statements (i) and (ii) are equivalent: 

(i) The combination z := w1 + · · · + wm can be trans
formed into the class Q without cell loss. 

(ii) (a) E7 = 1 zi 2'.'. E7= 1 Qi, k = 1, ... , T, with equal-
ity fork= T, and 

(b) "m "k - T(r) ~ < "k Q. 
wi = I wi = I w1 - wi=I o 
k= 1, ... ,T-1. 

3. The shuffling algorithm 

In the present section we develop an algorithm 
that implements the waveform transformation of 
Proposition 2. The algorithm is designed to delay each 
cell by the minimal possible number of steps. Recall that 
waveform transformations are performed by using the 
buffers of the compensator P of figure 1. 

Referring to Proposition 2, let Wt be the number of 
cells of the class w' that enter the compensator P during 
step i. For an integer j ~ i, let c0 (i,j; r) be the total 
number of cells of the set Wt that have left the compen
sator P by the end of step j, i.e. during the steps 
i, i + 1, ... ,j. Clearly, cells cannot be moved out of P 
before they have arrived at P, so 

c0 (i,J; r) := 0 for all j < i, r = 1, ... , m (8) 

Let 1(i,j; r) denote the number of cells of Wt that leave P 
during step j, so that 

c0 (i,j; r) := c0 (i,j - 1; r) + 1(i,J; r), 

i,j= 1, ... ,T, r= 1, ... ,m 

Consistency with (8) requires 1(i,j; r) := 0 for all j < i, 
r = 1, ... , m. Clearly, a traffic control algorithm is deter
mined by specifying the values of 1(i,j; r) for all i,j ~ i, 
and r. 

Now, for a step j E {1, ... , T}, define the set 
s(r,j) := {i ~ j: Wt > c0 (i,J; r)} and the integer 

a r . ·= {{mini: i E s(r,j)} if s(r,j) ¥= 0 
( ,J) . · "f ( ") 0 J 1 s r,J = 

When s(r,j) ¥= 0, then a(r,j) is the earliest step of w' 
from which cells are still stored in P at the end of step j. 
Consequently, at the step j, the longest delay of a cell of 
the class w' in the buffer of Pis [J - a(r,J)] steps. The 
maximal additional delay that such a cell can tolerate is 
then 

b(r,j) := r(r) - [J - a(r,J)] (9) 

We call b(r,j) the delay reserve of class w' at the step j. 
Clearly, the maximal cell delay specifications are met if 
and only if b(r,j) ~ 0 for all j = 1, ... , T and 
r= 1, ... ,m. 

Now, fix a step j E {1, ... , T}. Let {1r(l,j), ... , 
1r(m,j)} be a permutation of the list { 1, ... , m} 
such that, at the step j, the class w7r(l,J) has the low
est delay reserve; w7r(2,J) has the next lowest delay 
reserve, and so on, with w7r(m,J) having the highest 
delay reserve. In other words, b(1r(r,j),j) ~ 
b(1r(s,j),j) for all r > s, where r,s E {1, ... ,m}. The 
number of cells from step i of the class w7r(r,J) left in 
the buffers of P at the step j is given by 
[ 7r(r,j) (" . 1· ( "))] wi - c0 z,J - , 1r r,J . 

_.,. 
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Recall that Q is the outgoing call class of Proposition 
2. For a step j E {1, ... , T}, define recursively the fol
lowing quantities for r = 1, ... , m and i = 1, ... ,j 

-y(i,j; rr(r,j)) := min { [w7(,,j) - co(i,j - I; 1r(r,j))], 

[ Qr ~ t -y(k,J; rr( d,J))]} ( 10) 

Note that, if ,(k,j; 1r(d,j)) cells of step k of the class 
w1r(d,j) are leaving the buffers of P during step j for 
each k = 1, ... ,j and d = I, ... , r - 1, then the maximal 
number of additional cells that can leave the buffers of P 
during step j is Qj - E~-==\ E{=1 ,(k,j; 1r(d,j)). In view 
of the previous paragraph, this implies that ,(i,j; 1r(r,j)) 
is the maximal number of cells of step i of w1r(r,j) that can 
leave the buffers of P at the step j. This leads to the 
following traffic control algorithm. 

The shuffling algorithm: At each step j = 1, ... , T, in
ject into the backbone ,(i,j;p) cells from step i of the 
call class wP, where i = I, ... ,j, p = 1, ... , m, and 
,(i,j;p) is given by (10). 

An examination of the shuffling algorithm shows 
that it continuously shuffles the population of the cells 
stored in the buffer of p. It releases into the backbone 
cells that are closest to their delay limit, while storing in 
the buffer the newest arrivals. In the special case where 
all classes have the same maximal delay specification T, 

i.e. when r(r) = T for all r = 1, ... , m, the shuffling 
algorithm reduces to serial buffering. The next statement 
indicates that the shuffling algorithm can be used to 
transform the incoming combination z of (5) into the 
outgoing call Qin all cases in which such a transforma
tion is at all possible. 

Theorem 1: Let w1, .•. , vf1 and Q be non-empty call 
classes over the interval [1, T], and let r(r) be the maxi
mal delay allowed for cells of the class w', r = 1, ... , m. 
Then, the following two statements are equivalent: 

(i) The combination z := w1 + · · · + wm can be trans
! armed into the class Q without violating any max
imal cell delay specification and without cell loss. 

(ii) The shuffiing algorithm transforms z into Q with
out violating any maximal delay specification and 
without cell loss. 

Proof: Clearly, when (ii) is valid, so is (i). Conversely, 
assume that (i) is valid. Then, the conditions of 
Lemma 2(ii) are valid. In view of (10), this implies that 
Qj = E;=I E{=1 ,(k,j; d) for all j = 1, ... , T, so no 
cell loss occurs. Also, (7), (10), and the fact that 
b(1r(r,j),j) ~ b(1r(s,j),j) whenever r > s, imply that 
b(r,j) ~ 0 for all j =I, ... , T and r = 1, ... ,m. Thus, 

the shuffling algorithm transforms z into Q without 
violating any maximal delay requirements, and our 
proof concludes. D 

4. Optimal call transformations 

We turn now to the general problem of optimizing 
the transmission of a family of call classes by using call 
transformations. For the sake of simplicity, we continue 
to restrict ourselves to the case where only a single call 
class is being transformed. The results can be general
ized to situations where several call classes are trans
formed simultaneously. 

Let F = { c1, ... , cm+I} be a family of call classes 
over the partition { / 1, ••. , Iq} flowing through a back
bone of capacity ¢; let Ai be the number of steps of the 
segment Ii. Assume that a number of copies of the class 
cm+I is transformed into a class c' over the same parti
tion { / 1, ••• , Iq}. Consider the case where ai calls of the 
class /, i = 1, ... , m, and a calls of the class c' are 
injected into the backbone. To simplify notation, it is 
convenient to introduce the call class c := ac', and con
sider the family F(c) := { c1, ... , cm, c }. The flow 
through the backbone is then given by 

m 

z := Laici+c 
i=I 

(11) 

The amplitude of this flow is A(z). To simplify the ter
minology, we say that the class cm+I is transformed into 
the class c, although several copies of cm+I might have 
been used in this process. 

Define the rational numbers /3i := ad A(z), 
i = 1, ... , m. Recalling that c(j) is the value of c on 
the segment~, define the rational waveform 

()'(j) := c(j)/A(z), j =I, ... ,q 

Taking into account the fact that all quantities are non
negative, we obtain the relations 

0 5: ()' (j) 5: I, j = 1, ... , q 

t{J/(j) +o'(j) = :y:i '., I, j =I, ... ,q 

In Hammer (2003, equation (31)) we defined the 
quantities 

1 q . 

'I/Ji= TL A/(j), 
j=I 

i= I, .. . ,m 

In terms of these quantities, the relative efficiency of the 
flow z is 

'\:"'T m I q 

( ) L...,k=I Zk "'""' "'""' I ( ") T/r al,···,am,c = TA(z) = ~{3i'I/Ji+T~Ai J 
z=I J=I 

(12) 
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Working directly with ()' is rather complicated, due 
to the dependence of()' on the amplitude A(z) of the 
combined flow z. To circumvent this difficulty, note that, 
in order to achieve maximal efficiency as the backbone 
capacity¢ approaches infinity, the amplitude A(z) must 
satisfy 

lim A(z)/¢ = 1 
<p->00 

(13) 

Thus, when considering the case ¢---+ oo, one can 
replace A(z) by¢. If so, one can replace()'= c/ A(z) by 

() :=..:. = A(z) ()' 
¢ ¢ 

(14) 

as ¢ ---+ oo. The advantage of doing so is the fact that () 
bears a linear relationship to c, while ()' does not. 

Now, recall that the class c is obtained by a trans
formation of the class cm+l. Let£ > 0 be a least common 
multiple of integers #cm+l and #c. In analogy to (3), 
define the integers 1' := £/#cm+l and 1" := £/#c. 
Combining the 1' copies of c into one call, we redefine 
the class c so that 1" = 1. Then, using Lemma 1, (4), and 
(6), we can write 

j j 

1' L A;Cm+l (i) 2:'.: L A;c(i), j=l, ... ,q-1 
i=l i=l 
q q 

1' L A;Cm+l (i) = L A;c(i) 
i=l i=l 

(15) 

Next, let T 2:'.: 0 be the maximal cell delay specification 
for the class cm+l. We can rewrite (7) in the form 

k k+T 
I~ m+l <~ 1 ~cj _ ~cj, k= 1, ... ,T-T (16) 
j=l j=l 

Dividing the relations (15) and (16) by the backbone 
capacity ¢, yields 

I j 1 j ]_ L A;Cm+l (i) 2:'.: - L A;C(i) 
¢ i=l ¢ i=l 

j= 1, ... ,q-1 

I q 1 q 

~ ~ A;Cm+I (i) = ¢ ~ \c(i) 

I k 1 k+T 
]_ ~ Cr_n+l < - ~ C· 
,,I,.~} -,,1,.~J' k= l, ... ,T-T 
'f' j=I '+' j=l 

Finally, using (14), defining f3m+I := 1' /¢, and employ
ing the call pool ·parameter Pm+ 1 of the class cm+ 1 

(Hammer 2003, § 6), we obtain the relations 

j j 

f3m+l I:>;Cm+1(i) - L A;()(i) 2:'.: 0, j = 1, ... , q - 1 
i=l i=l 

q q 

f3m+l L A;Cm+l (i) - L A;()(i) = 0 
i=l i=l 

k+T k 
L ()j - f3m+ 1 L cj+ 1 

2:'.: 0 k = 1, ... , T - T 

j=l j=l 

f3m+l ::; Pm+I 

f3m+l 2:'.: 0 

(17) 

Reversing the point of view, we can use the relations 
(17) as the basis of an optimization process yielding a 
rational flow () that maximizes the asymptotic efficiency 
of the backbone. To this end, define the linear function 

m 1 q 

L := Lf3/lh +- L A;()(i) (18) 
. 1 T · I ]= I= 

where (31, ••• , f3m and ()(1 ), ... , ()(q) are regarded as vari
ables, while 'lj;1, ... , 7Pm, A1, ... , Am, and T are fixed 
parameters of the specified family F, the partition 
{11, ••• , Iq}, and the call cycle T . In view of (12), (13), 
and (14), the function L represents the relative efficiency 
of the flow in the limit, as ¢ ---+ oo. Consider then the 
maximization of L under the linear constraints 

m 

Ci) I: (3;ci u) + eu) ::; 1, j = 1, ... ,q 
i=l 

j = 1, ... ,q 

j = 1, ... ,q 

(ii) ()(j) ::; 1, 

(iii) ()(j) 2:'.: 0, 

(iv) (3; 2:'.: 0, 

(v) (3; ::; Pi, 

i=l, ... ,m + l 

i=l, ... ,m + l 
j j 

(vi) f3m+l L A;Cm+1(i) - L ,\()(i) 2:'.: 0, 
i=l i=l 

j=l, ... ,q-1 
q q 

(vii) f3m+I L A;Cm+I (i) - L A;()(i) = 0 
i=l i=l 

k+T k 
(viii) L ()j - f3m+I L cj+I 2:'.: 0, 

j=I j=I 

k= l, ... ,T-T 

(19) 

Arguments similar to the ones used in the proof of 
Hammer (2003, Theorem 4) yield the following result 
regarding the optimization of the backbone flow by 
reshaping one call class. 

JI" 
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Theorem 2: Let F = { c1, ••• , cm, cm+I} be an incom
plete family of call classes over the partition { /1, ... , Iq} 
of the interval [1, T], and let r:::; T - 1 be the maximal 
delay permitted for the call class cm+I. Let ¢ be the 
backbone capacity, and let PI, ... , Pm+I be the call pool 
parameters. Assume that the call class c1n+I is trans
formed into a call class c, and let F( c) := { c1, ... , cm, c} 
be the resulting family. Let 77(¢, c) be the maximal back
bone efficiency achievable for the family F(c) under the 
specified call pool constraints. Denote by L* the maxi
mal value of the function L of ( 18) under the constraints 
( 19). Then, the following are true: 

(i) 77(¢, c) :::; L*; and 

(ii) there is a class c* for which lim¢-+oo 77( ¢, c*) = L *. 

The class c* which yields the maximal asymptotic 
backbone efficiency of Theorem 2 can be obtained as 
follows. Let 8* ( 1), ... , 8* ( q), /3i, ... , /3:n+ 1 be values at 
which the maximum of L occurs under the constraints 
(19). Arguments similar to the ones employed in the 
proof of Hammer (2003, Theorem 4) imply that 
8*(1), ... ,O*(q), /3i, ... ,/3:n+i are rational numbers. Let. 
a > 0 be a least common integer denominator of 
8* ( 1), ... , 8* ( q), /3i, ... , /3:n+ 1• Then, the discussion lead
ing to Theorem 2 shows that an appropriate class c* is 
given by 

c* := a8* 

The same discussion also shows that the non-negative 
integer 

,* := af3:n+1 

is equal to the number of calls of the class cm+I that are 
used to build one copy of the class c*. The integers 

a7 := a/37, i= 1, .. . ,m 

are the respective populations of the call classes 
c1 

, ••• , cm in the optimal call package 

m 

* ~ * i * z = L..ta;c + c 
i=l 

Maximal asymptotic efficiency is then achieved by a flow 
formed by integer multiples of z*. For a given backbone 
capacity ¢, an integer /3 is selected through the integer 
division algorithm¢= /3A(z*) + r, where O:::; r < A(z*). 
The traffic control algorithm that achieves maximal 
asymptotic efficiency is then as follows: 

(i) use the shuffling algorithm to transform ,* calls 
of the class cm+I into one call of the class c*; 

(ii) assemble the package z*; and 

(iii) transmit /3 copies of the package z* into the 
backbone. 

To corroborate this construction, note that con
straints (19vi and vii) guarantee that c* can be obtained 
by a causal transformation of,* calls of the class cm+1

• 

Constraint (19viii) guarantees that the maximal cell 
delay specification r of the class cm+I is not violated 
during this transformation. 

The traffic control algorithm induced by Theorem 2 
provides an optimal flow control strategy in cases where 
only one of the call classes passing through the network 
(i.e. cm+I) permits buffering delays. If several of the call 
classes passing through the network permit buffering 
delays, Theorem 2 can be generalized as follows. First, 
regard the class c of (11) as a linear combination (with 
indeterminate coefficients) of all members of F that per
mit buffering delays. The optimal coefficients of this 
linear combination can then be obtained through the 
solution of a linear programming problem, in close 
analogy to the approach used in Theorem 2. The result
ing coefficients will be rational numbers, and a basic call 
package is assembled in analogy to the basic call pack
age z*. above. Finally, the integer /3 is calculated for the 
given backbone capacity¢. This results in a traffic con
trol algorithm that achieves maximal asymptotic back
bone efficiency. Note that no generality is lost by 
considering a single output class c*, since all output 
classes can be combined into one class. 

5. Dynamic traffic control for calls with uncertainties 

We turn now to the development of sturdy traffic 
control algorithms for families of call classes with ampli
tude uncertainties. Sturdy traffic control allows us to 
reduce-or sometimes even completely eliminate-the 
effects of call uncertainties on backbone efficiency, with
out employing statistical models of the uncertainties. 
The traffic control algorithms discussed in the present 
section depend on the use of feedback control. The use 
of feedback has been a mainstay of communication net
works from the early days (e.g. ATM Forum 1994, 1996, 
Ramakrishnan and Jain 1988 and Bolot and Shankar 
1990). The present discussion continues this tradition 
by incorporating the principles of sturdy control. 

We examine here the effects of uncertainties on 
families of calls whose nominal parts form a complete 
family. We show that, in many common cases, it is poss
ible to achieve asymptotic efficiency of 1, despite the 
uncertainties. We start with the simplest case: families 
of call classes whose maximal permissible cell delay 
exceeds the call cycle length T. Such call classes include 
short duration calls, like downloads of web pages; calls 
that consist of separate short segments, like phone calls; 
computer file transfers; and other similar call classes. 

Consider then a family of call classes F = 
{ c1

, ... , cm} over the partition I= { / 1, ... ,lq} of the 
interval [l, T]. Following (1) and (2), each call is given 
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by a sum ci = xi + d, i = 1, ... , m, where i is the deter
ministic part, d the uncertain part, and O ::; d ::; p. The 
values of d may vary from one sample of the call Ci to 
another, and are not known in advance. 

In the special case where none of the classes of the 
family F imposes any restrictions on cell delays, back
bone efficiency can be improved as follows. Transmit 
initially through the backbone a number of cells equal 
to the number of cells contained in deterministic parts 
x1

, ... , xm of the calls; store the remaining cells in the 
buffer system. Then, the total number of cells stored for 
the call / is 

T 
i ~i 

G' =~Vt (20) 
t=l 

Note that although ai is a priori a random number, its 
value becomes known at the end of the call /, i.e. at the 
step T. In somewhat oversimplified terms, if the cell 
delay restriction of the class ci permits, then the ai 
cells can be transmitted as a constant call of amplitude 
ai / T during the second call cycle [ T + 1, 2 T]. This will 
completely eliminate the effect of the uncertainties on 
backbone efficiency. 

As an example, consider the special case where the 
family F(x) = {x 1

, .•• , xm} of the deterministic parts 
forms a complete family of call classes. Let 
a 1, ... , am 2".: 0 be integers for which the combination 

m 

Z= LO'.iXi 
i=l 

(21) 

is a constant non-zero valued function over the interval 
[1, TJ. The corresponding combination of incoming call 
classes is then 

m 

z(c) := I:a/ 
i=l 

Assume that /3 > 0 copies of z( c) have been admitted 
into the compensator P, so that a total of /3ai samples 
of the call ci are being processed, i = 1, ... , m. As each 
call sample may have a different uncertain part, label the 
samples of the call ci by ci,j = xi + vi,j, j = 1, ... , (3ai, 
where O ::; d,j ::;; p. Then, as in (20) 

T 

ai,j == I: v~,j 
t=l 

is the number of cells of the call ci,j stored at the end of 
the call cycle. The bound p on the amplitude of the 
uncertain parts implies that O ::; ai,j ::;; T p. Let a(i, (3ai) 
be the total number of cells of calls of the class ci that 
are stored at the end of the step T. Then, 

/3a.; 

a(i, f3a;) = L ai,j :S; /3aiTP, 
j = l 

i = 1, . .. ,m 

The total number of cells a(/3) stored at the end of step 
T for the f3 copies of z( c) is then 

m (m ) a(/3) := ~ a(i, /3ai) ::; {3T p ~ ai =: 8(/3) (22) 

The value of a(/3) becomes precisely known at the end of 
the step T. At that point, the a(/3) stored cells can be 
shaped into a desirable waveform and transmitted over 
the next call period, if cell delay restrictions permit. 
Note that not all a(/3) cells must be stored within the 
buffers of P; most of these cells can usually be stored 
within their source buffers, as explained in Remark 1 
below. 

One option is to transmit the a(/3) stored cells into 
the backbone spread as evenly as possible over next call 
period [T + 1, 2T]. This results in a call of amplitude 

f(/3) = [a(/3)/T]+ 

where [·t denotes the least integer not smaller than [l 
Clearly, IR(/3) - [a(/3)/T]I ::; 1 and, when the uncertain
ties are not all zero, a(/3) ---* oo as /3 ---* oo. These facts 
imply that 

lim f(/3)/[a(/3)/T] = 1 
/3.-00 

Consequently, this method of transmitting the stored 
cells achieves a relative efficiency of 1 for large back
bones. 

Now, let ¢ be the backbone capacity, let z be the 
constant flow of (21), and assume there are no call 
pool restrictions. Let /3 be the largest integer for which 
(3z ::;; ¢. In order for the present traffic control scheme to 
work, we need f(/3) ::; ¢, so assume that this is the case. 
Let 'Y 2".: 0 be the largest integer satisfying f(/3) + "fZ ::;; ¢. 
Then, overall asymptotic efficiency of 1 can be achieved 
as follows. At the start of the first call cycle, admit /3 
copies of z( c). During the first call cycle, transmit the 
constant flow (3z, which equals the number of cells con
tained in the deterministic parts of the admitted calls; 
store the remaining cells (which correspond to the uncer
tain parts of the calls). At the start of the second call 
cycle, admit 'Y copies of z( c). During the second call 
cycle, transmit the constant flow "fZ ( equal to the num
ber of cells contained in the deterministic parts) together 
with a flow of amplitude f (/3) of cells stored during the 
previous call cycle. For the new calls, store the number 
of cells exceeding "fZ. Continue similarly during sub
sequent call cycles. A slight reflection shows that this 
flow scheme achieves asymptotic efficiency of 1, com
pletely eliminating the effects of the uncertainties 
(assuming the proper conditions hold). 

To reduce cell delays, one may transmit the a(/3) 
stored cells during the first segment / 1 of the next call 
cycle, rather than distributing them over the entire inter
val [T + 1, 2T]. In such case, new calls must be admitted 
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into the network at the beginning of the second segment 
Ii of the cycle [T + 1, 2T], to fill the capacity left free 
when the a(/3) cells are exhausted. 

We shall assume in the remaining part of this section 
that new calls are admitted into the network at the 
beginning of each segment of the partition / = 
{/ 1, ••. ,/q} of each call cycle. For simplicity, we assume 
that all partition segments have the same number of 
steps, i.e. that 

}= 1, ... ,m 

New calls are then admitted into the network at the 
times 

0, T + 1, T + A + 1, T + 2A + 1, . . . (23) 

and the traffic control algorithm takes the following 
form. Let a(*) denote the number of cells contained in 
the uncertain components stored during a call cycle. The 
cells a(*) stored during the first call cycle [1, T] are 
released during the segment [T + 1, T + A]. The cells 
a(*) stored over the cycle [T + 1, 2T] are released during 
the segment [2T + 1, 2T + A]. The cells a(*) stored over 
the cycle [T + A + 1, 2T + A] are released over the seg
ment [2T +A+ 1, 2T + 2A], and so on. This process 
continues indefinitely, and we refer to it as the cycling 
process. 

So far, we have assumed that cell delays are not 
restricted. We remove now this assumption. In addition, 
we require that all cells stored during a call cycle be 
released during the first segment of the next call cycle. 
The latter restriction would be an inevitable requirement 
when the cell delay bounds satisfy 

r(i) < 2A, i = I, ... ,m 

In order for it to be possible to release all stored cells 
during the first segment of the next call cycle, i.e. during 
the steps T + 1, ... , T + A, we must have a(/3) / A ::; ¢, 
where ¢ is the backbone capacity. In view of (22), this 
is guaranteed whenever 

8(/3) / A ::; ¢ 

When a(/3) / A < ¢, the remaining empty backbone 
capacity is filled by admitting new calls at the step 
T + 1. More new calls are then admitted later at the 
step T + A + 1, after the release of all stored cells a(/3) 
has been completed. 

The process of releasing the stored cells during the 
first segment of the next call cycle in effect extends the 
call cycle by one segment. To represent this extension, 
define a new call cycle time 

T' := T+A 

On the interval [1, T'], induce the partition 
I':= {/ 1, ... ,/q+I} by adding the segment Iq+I := 
[ T + 1, T + A] to the original partition / = {/1 , •.. ,/q} 

of [1, T]. The original calls are then extended from [1, T] 
to [1, T'] by defining them as zero over the segment Iq+I· 

Now, define a rational function '!/J(/3) over the inter
val [1, T + A] by setting 

'l/Jk(/3) := /3z, k = I, ... , T } 

'l/Jk(/3) = a(/3)/A, k = T + 1, ... , T + A 
(24) 

Here, z is the constant value of the package of determi
nistic parts (21), and a(/3) is given by (22). Note that 
'!/J(/3) is constant over each one of the portions [1, T] and 
[T + 1, T + A]. The value of the function '!/J(/3) over the 
segment Iq+I depends on the uncertain parts of the calls, 
and will vary from one sample of the call package to 
another. 

To start our quantitative analysis, letµ(·) denote the 
unit step function, i.e. µ(t) = 1 when t ~ 0, and µ(t) = 0 
when t < 0. The quantity 

m 

a(k, /3) := {3p L a,(k - r(r))µ(k - r(r)), 
r=l 

k= 1, ... ,T+A 

is the largest number of cells that might be in the buffers 
at the step k, and one can write 

m min{k-r(r),T} 

L L a,(x~+p) 
r=l i=l 

m min{k-r(r),T} 

= a(k,/3) + L L a,x~ 
r=l i=l 

Since O ::; v' ::; p for all r = 1, ... , m, we obtain 

m min{k-r(r),T} 

L L a,(x~ +vD 
r=l i=l 

m min{k-r(r),T} 

::;a(k,/3)+L L a,x~, k=l, ... ,T+A 
r=l i=l 

for all uncertainties v 1
, ••. , vm. Now, define the special 

functions 

'Pk(J, /3) := /3z, k = 1, ... , T } 

'Pk(J,/3) = a(J,/3)/A, k = T + 1, ... , T + A 

(25) 

j = 1, ... , T + A. The following auxiliary result, whose 
proof is in the Appendix, brings us closer to the main 
statement of the present section. 

Lemma 3: The inequalities 

m min{k-r(r),T} k 

L L a,(x~ + vD ::; L 'l/Ji(/3), 
r=l i=l i=l 

k = 1, ... , T + A (26) 
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are valid for all uncertainties O ::; v, ::; p, i = l, ... , T, 
r = l, ... , m, if and only if 

m min{k-T(r),T} k 

L L a,(x, + p) ::; L 'Pi(k, {3), 
r=l i=l i=l 

k = l, ... , T + .X (27) 

Recall from Hammer (2003, § 4) that, for a complete 
family of call classes F = {x 1

, ... , xm}, the set of con
stancy coefficients vm(F) is the set of all integers 
{31, ••• , f3m 2:: 0 for which the linear combination 
E:1 f3iXi is constant and non-zero. The next statement 
provides necessary and sufficient conditions for achiev
ing asymptotic efficiency of 1, despite call uncertainties. 

Theorem 3: Let ci =xi+ vi, i = l, ... , m, be a family 
of call classes over the partition { / 1, ... , Iq} of the inter-
val [l, T], where the uncertain parts satisfy O ::; vi ::; p, 
i = l, ... , m, p > 0. Assume that the deterministic parts 
x1, ... , xm form a complete family of call classes over 
(1, T]. Let T(i) be the cell delay limitation of the class 
ci, i = l, ... , m. Assume that all partition segments 
Ii, ... , Iq have the same number of steps A 2:: 1, and that 
T(i) < 2.X, i = l, ... ,m. Let 'lfJ(l) be the rational func
tion of (24) for {3 = l. Then, the following two state
ments are equivalent. 

(i) There is a traffic control algorithm that achieves 
asymptotic efficiency of l for the family 
F = {c1

, ••• ,cm}. 

(ii) There is a set of integers a 1, ••• , am E 
vm( {x 1

, ••• , xm}) for which the following condi
tions hold: 

(a) Tp(E7 : 1 ai)/.X::; E:1 etiXi, and 

(b) ""m ""1_11in{k- T(r),T} ( ~+ )<""~ ·(k 1) 
L...,r= l L...,,= l a, X, p - L...,,=I r.p, ' ' 
k = l, ... ,T+.X. 

Proof: First note that the restrictions T(i) < 2.X, 
i = l, ... , m, imply that all stored cells left over from 
the first call cycle [1, T] must be transmitted during the 
segment lq+I = [T + 1, T + .X]. Denote T' := T + .X. 
Assume now that part (i) of Theorem 3 is valid, and 
let ¢ be the backbone capacity. Let Q denote the flow 
into the backbone over (1, T']. Then, by Hammer 
(2003, Theorem 1 ), Q must be constant over the inter
val (1, T]. Furthermore, since all calls admitted at the 
step T + l are constant over the segment lq+I, the 
same result implies that Q must also be constant over 
lq+I· Let Q' be the constant value of Q over (1, T], and 
let Q" be its constant value over lq+I · The values Q' 

and Q" do not have to be equal, since new calls can 
be admitted at the step T + l. 

Due to the unpredictable nature of the uncertain 
parts v1

, ... , vm, the backbone can be asymptotically 
filled over the interval [I, T] only if the flow there is a 

combination of the deterministic parts x 1
, ... , xm. In 

view of Hammer (2003, Theorem 1 ), this implies that 
there are integers /31, ... , f3m E Vm( {x 1, ... , Xm}) such 
that Q' = E:1 /3iXL k = l, ... , T. Let {3 > 0 be an inte
ger greatest common divisor of {31, ••• , f3m. Define inte
gers a 1, ••• , am 2:: 0 by setting {3i = {3ai, i = l, ... , m, 
and note that a 1, .•. , am E Vm( {x 1

, ..• , Xm} ). The num
ber of stored cells is given by (]"({3) := :E~:1 Ef=I {3iv1. 
Since all stored cells must be released during the interval 
lq +I, it follows that (]"({3) = .XQ". 

Extend now the call classes of the family F from the 
interval (1, T] to the interval [1, T + .X] by setting 
xi := 0, vi := 0, and / := xi + vi = 0 for all 
k E [T + 1, T + .X] and all i = l, ... ,m. We continue to 
use the symbol F to denote the resulting family of 
extended call classes. In view of the preceding, it must 
be possible to transform the incoming combination 
z(c) := f3E~:1 a/ over the interval (1, T + .X] into the 
call class Q over the time interval (1, T + .X], for all poss
ible samples of the uncertain parts v1

, ••• ( vm. By 
Proposition 2, this implies that {3 E~:1 E~~t r) a,c, ::; 
E~=I Qi, k = l, ... , T + .X. Since this condition must 
hold for all O ::; d ::; p, condition (ii)(b) follows from 
Lemma 3, upon observing that 

1 
cp(k, 1) = ~ r.p(k, {3) 

To show that (ii)(a) is also required, let 

and denote 

m 

z:= I:aixi 
i=l 

8:= Tp(ta) / A-z 

Assume, by contradiction, that 8 > 0, and consider the 
special case where the uncertainty samples satisfy vi= p 
for all i = l, ... , m. Then, (]"({3) = {3Tp(:E:, 1 aJ, and the 
flow amplitude Q" over lq+I satisfies 

Q" = a({3)/A = {3Tp(t a,)/ A= {3z + {38 (28) 

Now, in order to asymptotically fill the backbone over 
the interval (1, T], we have to select {3 as the integer 
determined by the division algorithm ¢ = {3z + ro, 
where O::; ro < z (Hammer 2003, Proof of Theorem 1). 
Substituting into (28), we obtain Q" = </> - ro + {38. This 
yields Q" >¢whenever {3 > z/8, a contradiction, since 
the capacity limit of the backbone is violated for suffi
ciently large values of {3. Thus, we must have 8 ::; 0, and 
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condition (ii)(a) is valid. Together with the earlier part 
of the proof, this shows that (i) implies (ii). 

Conversely, assume that condition (ii) of Theorem 3 
holds. It follows then by Lemma 3 that inequalities (26) 
are valid for all possible uncertain parts. Let 'l/J( 1) be the 
function mentioned in (26). Since 'l/J( 1) is a rational func
tion with a finite number of values, there is an integer 
f3 > 0 such that f3'l/J( 1) is an integer valued function. 
Define the call class 

Q:=f3'l/J(l) 

Then, by Proposition 2, it is possible to transform the 
combination {3z into the class Q over the interval 
[1, T + .\], for any values of the uncertain parts 
0 ::; vi ::; p, i = I, ... , m. Noting that Q is constant 
over the intervals [I, T] and lq+i, it follows by the dis
cussion preceding the present theorem that asymptotic 
efficiency of 1 can be achieved for the family F. This 
completes our proof. D 

~ 

Note that the Shuffling Algorithm can be used to 
perform the waveform transformations used in the 
Proof of Theorem 3. The proof of Theorem 3 includes 
the following traffic control algorithm. 

Traffic control of a complete family with uncertain
ties: Let ci = i + vi, i = I, ... , m, be a family of call 
classes over the partition { / 1, ... , Iq} of the interval 
[I, T], where all partition segments have the same 
number of steps ,\ 2: 1. Assume that the deterministic 
parts {x 1, ..• , xm} form a complete family of call 
classes, and that the conditions of Theorem 3(ii) are 
satisfied for the integers a::i, ... , am. Let z = E7=:::1 aii 
be the corresponding package of calls, and let ¢ be the 
backbone capacity. Then, for large backbone capaci
ties ¢, proceed as follows: 

(i) Use the integer division algorithm to write 
¢ = {31z + wi, where O::; w 1 < z. Admit {31 
packages at step 1. 

(ii) Using the Shuffling Algorithm, transmit {31 z 
cells during each one of the steps 1, 2, ... , T. 

(iii) Let a(*) be the number of cells remaining 
stored in the buffers at the end of step T. 
Using the integer division algorithm, write 
a(*)= , 1.\ + E:1, where O::; c1 < A. If c1 = 0, 
transmit into the backbone , 1 stored cells dur
ing the steps T +I, ... , T +A.If c1 I 0, trans
mit , 1 + 1 stored cells during the steps 
T +I, ... , T + s 1; during each of the steps 
T + c:1 + 1, ... , T + A, transmit , 1 stored cells 
and one network control cell (to obtain con
stant amplitude). The Shuffling algorithm is 
used during these transmissions. 

(iv) Denote ¢1 := ¢ - (, 1 + 1). Using the integer 
division algorithm, write ¢1 = {32z + w 2, 

where O ::; w 2 < z. Admit {32 new call packages 
z at the step T + 1. 

(v) Using the shuffling algorithm, transmit {32z 
cells of these calls during each one of the 
steps T + 1, T + 2, ... , 2T; store the remaining 
cells of these calls. The stored cells are trans
mitted during the segment [2T + 1, 2T + .\] as 
in step (iii). 

(vi) Using the integer division algorithm, write ,1 = {33z + w3, where O::; w 3 < z. Admit {33 
call packages z at the step T + ,\ + 1. 

(vii) Using the shuffling algorithm, transmit {33z 
cells of these calls during each one of the 
steps T + ,\ + 1, ... , 2T + .\; store the remain
ing cells of these calls. These stored cells are 
transmitted during the segment [2T + ,\ + 1, 
2T + 2-\] as in step (iii). 

(viii) Continue in this way, using the cycling process. 

The execution of the Traffic Control Algorithm 
depends on the number of cells a(*) stored in the buffer 
system at the end of each call package. The number a(*) 
depends on the uncertain parts of the calls, and is not 
known in advance; it becomes known at the end of the 
call cycle through a feedback process. Consequently, the 
Traffic Control Algorithm depends critically on the use 
of feedback. This use of feedback, together with the 
shuffling algorithm, allows us to eliminate the effect of 
uncertainties on backbone efficiency, as long as the con
ditions of Theorem 3 are satisfied. It should be noted 
that the Traffic Control Algorithm does not cause oscil
lations in the backbone flow ( compare to Schwartz 1996, 
Chapter 7, where possible oscillations in the backbone 
flow are discussed). 

It is important to note that Theorem 3 and the 
Traffic Control Algorithm do not require a detailed sta
tistical model of call uncertainties; only the uncertainty 
amplitude bound p is needed. Theorem 3 also shows that 
the possibility to eliminate the effect of uncertainties on 
the asymptotic efficiency of the backbone depends in a 
critical way on the values of the permissible cell delays 
7(1), ... ,7(m). 

The conditions of Theorem 3 can be restated in the 
form of a limitation on the disturbance amplitude 
bound p, as follows. For a list of integers a 1, ... , am E 

vm( {x 1
' ... 'xm} ), define the quantities 

7* :=min{7(r): a,#0,r= 1, ... ,m} (29) 

m 

s(k) := (k - T) L ai(k - 7(i))µ(k - 7(i))/ \ 
i=l 

k = T +I, ... , T + .\ (30) 
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'\"'m '\"'k r 
L.....r=l L.....i=max{l,min[k-T(r),T]+l} a.,xi 

Ck= I:~:1 (k - T(r))µ(k - T(r))a., 

k = T * + 1, ... , T, if T * + 1 :s; T ( 31 ) 

'\"'m '\"'T r 
L.....r=l L.....i=max{l,min[k-T(r),T]+l} a.,xi 

ck= [I:~7:,1 (min {k-

T(r), T} )µ(min {k - T(r), T} )a.,] - s(k) 

k = T + 1, ... , T + .X (32) 

m i 
ALi=I a.ix 

cr+ H I := T(I:;:1 a.;) (33) 

where, for any k = 1, ... , T + .X, set ck:= oo if the 
denominator of the expression is less than or equal to 
zero for that value of k. Finally, define 

c(a.1,···,a.m) :=min{ck: k= 1, ... ,T+.X+ 1} (34) 

Then, Theorem 3 can be restated in the following form, 
which constitutes the main result of the present section. 
It characterizes the largest uncertainty amplitude for 
which asymptotic efficiency of 1 can be obtained under 
the present circumstances. 

Corollary 1: Let ci = i + vi, i = 1, ... , m, be a family 
of call classes over the partition { /1, ... , Iq} of the inter-
val [ 1, T], where all segments have the same number of 
steps A 2: 1. Assume that x1, ••• , xm form a complete 
family of call classes, and that the uncertain parts 
satisfy O :s; vi :s; p, i = 1, ... , m. Let T(i) be the maximal 
delay permissible for a cell of the class ci, where 
T(i) < 2.X, i = 1, ... , m. Then, using (34), there is a traf
fic control algorithm that yields asymptotic efficiency of 
1 if and only if the following is true. There is a list of 
integers a.1, ... , CV.m E Vm( {x 1, ... , Xm}) for which the 
uncertainty amplitude bound satisfies p :s; c( a.1, ... , a.m). 

Proof: We show that the requirement p :s; 
c( a.1, ... , a.m) is equivalent to conditions (ii) of 
Theorem 3. Recalling that 'lj;k(l) = I:;: 1 a.ixi for 
k = 1, ... , T, and using the notation of (29)-(33), we 
can rewrite condition (ii)(b) of Theorem 3 in the form 

m min{k- T(r),T} m k 

I: I: a.,p::; I: I: a.,x, 
r= l i= l r=l i=max{l,min[k - T(r),T]+l} 

for k = 1, ... , T (35) 

and 

m min{k- T(r),T} m T 

L L a.,p:s;L L a.,x,+ps(k) 
r= l i= l r=l i=max{l,min[k - T(r),T]+l} 

fork= T + 1, ... , T + .X (36) 

The last condition can be rewritten in the form 

[ ( 

m min{k- T(r),T} ) l 
p I: I: a., - s(k) 

r= l i= l 

m T 

::; I: I: a.,x, 
r=l i=max{l,min [k- T(r),T]+l} 

for k = T + 1, ... , T + .X (37) 

Note that (36) is valid for any p > 0 when the left side of 
(37) is negative. Expressing (35) and (37) as inequalities 
for p (while using the definition of the step function µ( ·)) 
leads to the conclusion that condition (ii)(b) of Theorem 
3 is equivalent to the requirement 

p :s; min {ck: k = 1, ... , T + .X} 

Finally, in view of the definition of cT+HI, condition 
(ii)(a) of Theorem 3 is equivalent to the requirement 
p :s; cr+HI. Thus, the requirement p :s; min{ ck: 
k = I, ... , T + .X + 1} is equivalent to conditions (ii) of 
Theorem 3, and our proof concludes. D 

We consider now several simple applications of 
Corollary 1. First, a slight reflection shows that the 
value of the denominator of (31, 32) cannot exceed 
T(I:;:1 a.i). Also, define the quantity 

c := min {x,: r = 1, ... , m, i = I , .. . , q} 

the minimal among the waveform values, and assume 
that c f:-0. Assume also that there is at least one a., f:-0 
for which T(r) > .X. Then, the numerator of (31, 32) 
cannot be less than c(I:7:1 a.;). In this case, we also 
have that I:;:1 a.;xi :s; c(I:;:1 a.i), since c is a positive 
integer by assumption. Substituting these facts into (31-
33), we conclude that, whenever there is at least one 
a., IO with T(r) > .X and c I 0, one can achieve asymp
totic efficiency of 1 if the disturbance amplitude satisfies 

C 
P <-T 

This is, of course, just a simplified sufficient bound 
(larger values of p are possible; an accurate necessary 
and sufficient bound is provided by Corollary 1 ). 
Nevertheless, it provides insight into the nature of the 
traffic control problem when uncertainties are present. 

Consider another set of simple special circumstances. 
Assume that the number of cells transferred by one of 
the classes, say xm, is much higher than the number of 
cells transferred by other classes. Let 

(jm := min {xm(l), ... 'xm(q)} 

Then, the numerator of (31, 32) is not less than a.mam, 

while the denominator is not more than T(I:;:1 a.i), as 
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before. Also, the numerator of (33) is not less than ama.m 
for any value ,\ ~ 1. Thus, we obtain the bound 

O'.mam 
p < '°'m - T(~i=l a;) 

which is a convenient bound in cases where the bulk of 
the cells belong to the class xm. Whenever the uncer
tainty amplitude p does not exceed this bound, the back
bone can be operated with asymptotic efficiency of 1, 
despite the uncertainties. Of couse, the bound given by 
Corollary 1 is, in general, larger. 

It can be verified that p :::; c( a 1, ... , am) remains a 
sufficient condition for achieving asymptotic efficiency 
of 1 when the requirement r( i) < 2-X, i = 1, ... , m, is 
removed from Corollary 1. Consider then the special 
case when r(r) > T + A for all r = 1, ... ,m, namely, 
when all call classes permit large delays. An examination 
shows that (31) does not apply in this case, since r* > T, 
and that the denominator of (32) is zero. Consequently, 
Ek= oo for all k = l, ... , T + A in this case, and (33) is 
the only bound that needs to be enforced here. This 
leads to the following conclusion. If r(r) > T + A for 
all r = l, ... , m, then asymptotic efficiency of 1 can be 
achieved whenever the uncertainty amplitude satisfies 

< -XE:1 O'.;Xi 

p _ T(E:1 a;) 

As a final special case consider the following. 
Assume that one of the call classes, say the class cm, 
has a permissible cell delay time r(m) > T + -X; that its 
population am > O; and that ~ > 0. A direct examin
ation of (31-33) shows that all conditions of Corollary 1 
are satisfied when 

O'. am 
p< mm 

- TEr=l a, 
(38) 

Whence, in this case, asymptotic efficiency of 1 can be 
attained for all uncertainties that do not exceed this 
bound. Again, as in the earlier cases, the accurate 
bound of Corollary 1 will usually be larger than the 
current simplified sufficient bound. 

In intuitive terms, the present special case can be 
viewed as follows. When the bound (38) is valid, the 
maximal total population of cells that originate from 
the uncertain parts of calls (i.e. pT E~:1 a,) does not 
exceed the number of deterministic cells arriving with 
calls of the class cm. Since all cells of the class cm can 
be delayed into the extension [T + 1, T + -X], the shuf
fling algorithm can transmit the uncertain parts of the 
other call classes right after their arrival, while delaying 
a corresponding number of cells of the class cm to the 
extension [T + 1, T + -\]. 

We close with the following comment regarding buf
fer capacities. 

Remark 1: The traffic control algorithms presented in 
the present paper require buffering of cells. Usually, 
most of the buffered cells can be stored in the buff er 
of the source controller C of (figure 1 ), rather than in 
the buffers of the router controller P. To be specific, 
let t:,.. be the propagation delay (in number of steps) 
between C and P. Then, it is not necessary to store in 
the buffers of P more than 2t:,..¢ cells, where ¢ is the 
backbone capacity. 

Indeed, when a command is sent from P to C to 
summon more cells, it takes 2t:,.. steps for the new cells 
to arrive in P (t:,.. steps for the command to reach C and 
t:,.. steps for the new cells to reach P). Since the maximal 
number of cells that may exit P during the time interval 
2t:,.. cannot exceed 2t:,..¢, no more than 2t:,..¢ cells need to 
be stored in P. 

In most practical applications, the conduit repre
sented by E in figure 1 is relatively short, so that t:,.. is 
relatively small. Consequently, the storage requirements 
imposed on the router controller P are relatively modest. 

Appendix 

Proof ( of Proposition 1 ): We start by constructing a 
special call class c which completes F into a complete 
family of calls F(c). Let z' := E:1 a;ci be an optimal 
flow achieving the maximal asymptotic efficiency ry* 
(Hammer 2003, Theorem 3), and let A(z') be the am
plitude of z'. Define a call class c+ by setting 

c+(j) := A(z') - z'(j), j = 1, ... ,q (39) 

Then, the flow 

m 

z+ := I:a;ci + c+ 
i=l 

(40) 

is clearly constant over [1, T]. Consequently, the aug
mented family F(c+) := {c1

, ... , cm, c+} is a complete 
family of calls by Hammer (2003, Theorem 1). 

Next, let c be any call over the partition {/1, ... ,/q} 
for which the augmented family F(c) is complete. For 
a backbone capacity¢, let a 1(¢), ... ,am+i(¢) ~ 0 be a 
list of integers for which the flow z( ¢) := 

E:1 a;(</>)c; + O'.m+I (¢)c is lossless and with asymptotic 
efficiency of 1. For this flow, the total number of cells of 
family F call classes transmitted by z( ¢) is given by 

T m 

n(F, z(¢)) =LL a;(</>)ci 
k=l i=l 

The ratio n(F,z(</>))/(T</>) is, in fact, the efficiency of the 
flow z(F, ¢) := E:1 a;(¢ )ci of the family F. Since ry* is 
the maximal asymptotic efficiency of the family F, it 
follows that lim¢-+oon(F,z(¢))/(T¢)::; ry*. Also, since 
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z(ep) is a lossless flow with asymptotic efficiency of 1, we 
have 

lim ''I:X=t zk(ep) = 1 
rp-,oo Tep 

Combining the last two sentences with the fact that 

( "') _ I:,[=1 zk(ep) - n(F,z(ep)) 
'TJ c,z,YJ - Tep 

we obtain 

J!?' 11(c,z, </J) = fun Lf-1 zk(<P) - n(F,z(<P)) 
oo </J->oo Tep 

= 1 - lim n(F,z(ep)) > 1 * 
</J->oo Tep - - 'TJ 

( 41) 

This proves parts (i) and (ii) of Proposition 1. 
Regarding part (iii) of Proposition 1, using the class 

c+ of (39) and the integer division algorithm, let (3, c ~ 0 
be the two integers satisfying ep = (3A(z+) + c, 
0::; c < A(z+). Consider the flow z(ep) := (3z+, where 
z+ is the constant flow of (40). Then, I:,[=1 zk(ep) = 
T(3A(z+) and n(F,z(ep)) = I:,[=1 (3z{ The construction 
of z' implies that Iim<P_,00 n(F,z(ep))/(Tep) = 'TJ*. 
Substituting into (41) with c := c+, we get 

1. ( + "') 1. I:,[=1 zk(ep) - n(F, z(ep)) 
1m 'TJ c , z, YJ = 1m "' 

¢,->oo </J->oo T 'fJ 

= lim (T(3A(z+) _ n(F,z(ep))) 
</J->oo Tep Tep 

= lim (ep - c - n(F,z(ep))) = 1 - 'T/* 
r/J->oo ep Tep 

where we have used the fact that O::; c < A(z+). This 
completes our proof. D 

Proof ( of Lemma 3): Lemma 3 is a consequence of 
the following facts. 

(i) Fork = 1, ... , T, the right sides of (26) and (27) 
are identical. 

(ii) For k = 1, ... , T, the right side of (26) is inde
pendent of the values of the uncertain parts. 
Whence the worst case of the inequalities (26) 
occurs when the uncertain parts included on the 
left side of (26) are at their maximum level p. 

(iii) For k = T + 1, ... , T + ..\, note that the inclu
sion of an extra cell in the uncertain part of 

the left side of (26) cannot increase the right 
side of (26) by more than one, since ..\ ~ 1. 
Thus, the worst case of the inequalities (26) 
for each k = T + 1, ... , T + ,\ occurs when the 
uncertain parts included on the left side are at 
their maximal level p. 

(iv) For k = T + 1, ... , T + ..\, the lowest value of 
the right side of (26) occurs when the uncertain 
parts are zero at steps that are not included in 
the sum on the left side of (26). At the step 
k, such uncertain parts yield 't/Ji((3) = 'Pi(k, (3), 
i = T + 1, ... , T + ..\. D 
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