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Abstract 

The rudimants of the module theoretic appr:::>ach to 
linear system theory are briefly reviewed. Two types of 
integer invariants of systems are menti:::>ned: the reduced 
reachability indices, and the latency indices. The 
reduced reachability indices are related t:::> the problem 
of reducing a system thr:::>ugh the application of causal 
precompensation. The latency indices are related to the 
problem of causal factorization of one system over 
another. 

1. INTRODUCTION 

In this sh:::>rt note we wish to summerize some of the 
basic features of the module theoretic approach to linear 
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(coefficientwise). Also, given an element 
in the set AR of scalar Laurent series, one can define 
an operation of multiplication 

1 
1 "° t-to 1 

(1.2) ku = ~t +tl [.rt ktut . 
0 0 J= 0 -J 

(convolution). The importance of these operati :::>ns is that, 
under them, the set AR f:::>rms a field, and the set ARm 
forms an m-dimensional linear space over this field (a 
AR - linear space). 

The relevance of AR-linearity to our discussion 
stems from the fact that it is closely related to time 
invariance. Indeed, the system L induces a map 

system the ory. Our discussion will be mainly on a des - m p f: AR AR which assigns to each input sequence 
criptive level, and proofs will be omitted. A more 
detailed discussion of the topics mentioned below can 
be found in HAMMER and HEYMANN [1981 a and b]. 

F:::>rmal Laurent series: Consider a discrete time 

u E ARm its corresponding output sequence y = fu EARP. 
If the map f is AR-linear, then, in particular, it 
com.mutes with the element z EAR, that is, fzu = zfu 
for every u E ARm. But, by (1.2), multiplication by z 

linear time-invariant system L, At each instant of time represents a one step time shift of the sequence to the 
t, the system L admits an m-dimensional real vector left, s:::> that the last equation implies that f com.mutes 
ut E Rm as input, and has a p-dimensional real vector with the time shift operator. Thus, AR-linearity implies 
yt ERP as output. Each input sequence uto' ut

0
+1,... time invariance (KALMAN, FALB, and ARBIB [1969], WYMAN 

to L can be f :::>rmally represented as aLaurent series [1972]). Conversely, under s:::>me mild assumptions (see 
"° -t e.g., HAMMER and HEYMANN [1981a, section 2]), if the 

U = t~t Utz 
o linear system L is time invariant, then the map 

where ut E Rm for all t, the index t serves as the f: ARm ARP induced byit is AR-linear. Summerizing, 
time marker, and where t 0 is the finite time at which we have that, in a broad sense, AR-linearity is equiva-
the sequence "starts". The set of all such formal Laurent lent to time invariance of linear systems. 

m -t series is denoted by AR. Each series u = LUtz in 
ARm can be naturally divided into three parts: the 

) p -t (strict past part u := t~ utz ; the present part 
o , F -1 u := u

0 
; and the Cstrict1 future part u := t~ utz • 

In the set ARm one can define an operation of 
i i -t addition for every pair of elements u = t~t~ utz 

i = 1,2, by 

Rings and modules: The set ARm of Laurent series 
with coefficients in Rm contains, as subsets, the set 
+ JD. 0 -t n R of all (polynomial) elements of the form t~t

0
utz , 

t < O, and the set n-Rm of all ~ower serie~ elements 
0 - -t 

of the form t~ utz • In particular, n+R is the usual 
set of polynomials with real coefficients, and n-R is 
the set of all power series in z-l with real coeffi 
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cients. It is knowm that both of n+R and n-R form 
principal ide5l. domains under the operations of addition 
and multiplicatio n definei in (1.1) and (1.2). The set 
n+Rm forms a free n+R-module of rank m, and n-Rm 
f or ms a fre e n-R-module of rank m, both under the ope-
rati ons (1.1 ) and (1.2). 

Cl early, the AR-linear space 
n+R-modul e, and n+Rm is then an 

ARm is also a free 
n+R-submodule of it. 

Thus, we ca n consider the quotient n+R-module 
ARm/n+Rm. Each element in this quotient module is an 
equivalence class c of elements of ARm which are 
equal modulo their polynomial part. Explicitly, two ele 

-i-- i -t m 
ments u =Lutz EAR , i = 11 2 1 belong to the same 

. 1 1 ARm/~+Rm 1.'f d 1 'f 2 l equiva ence c ass c E ~, an on y 1. ut = ut 
for all t > 0 (i.e., the strictly future parts of the 
sequences are identical). As in any situation involving 
quotient modules, we can define a canonical projection 

TI ... : /\Rm -+ /)"'Rm/ r/ Rm , 

which assigns to every element in ARm its equivalence 
class in ARm/n+Rm. By definition, thls projection is 
an n+R-homomorphism. 

Anal ogously, the AR-linear space ARm forms an 
f.'-R-module as well, and n-Rm is a submodule of it. 
The quotient n-R-module ARm/n-Rm is then well defined. 
It consists of equivalence classes each of which contains 
all those elements in ARm which have the same strictly 
polynomial part; that is, two elements ui = u!z-t 
i = 1,2, in ARm belong to the same equivalence class 
in ARm/~-Rm if and only if u! = u! for all t < O. 
We also obtain an induced canonical project:.on of rrR-
modules 

TI : ARm -+ ARm/rtRm , 

whi ch assigns to each element in /\Rm 
class in ARm/n -Rm. The projecti ons 

its equivalence 
TI+ and TT are 

repeatedly employed in our discussion below. 

Transfer matrices: Let T be an mxp transfer 
matrix of a li near time invariant system. Every entry of 
T is evidently an element in AR, and thus T can be 
regarded as a linear transformation (matrix) ARm-+ ARP. 
CJnversely, let f: ARm-+ ARP be a AR-linear map. As 

usual, f can be represented as a matrix relative to spe-
cified bases '\, ••• um in ARm and y1, ... y :in ARP. 

P m 
Of particular importance is the case when ~' .• ·,Um e: R 
and y1, •.• ,y ERP, where Rm and RP are regarded 

P m as subsets (of "purly present" sequences) of AR and 
ARP, respectively. In such case, the matrix representa-
tion Zf of f is called a transfer matrix, and it 
coincides with the classical concept of transfer matri-
ces. Thus, a AR-linear map and a transfer matrix are 

equivalent quantities, and in our discussionbelow we 
shall make no distinction among them. 

A AR-linear map is called polynomial if all the en-
tries o~ its transfer mantrix are polynomials (in n+R); 
it is called causal if all tne entries of its transfer 
matrix are in n-R;it is called strictly causal if all 

-1 -the entries of its transfer matrix are in z n R; it :is 
called rational if all the entries of its transfer matrix 
are fractions of polynJmials; it is called a~ (input/ 
output)~ if it is both rational and strictly causal; 
and, finally, it is called bicausal if it is invertible 
and if both of it and its inverse are causal. 

2. KERNELS AND FACTORIZATION 

Let f: ARm-+ ARP be a AR-linear map. As we have 
seen before, such a map represents a linear time nvariant 
system admitting inputs from Rm and having its outputs 
in RP. Since f ir, AR-linear, it is evidently also 
an n+R-homomorphism. Whence, the map TI+f is again an 
n+R-hornomorphism, and A:= Ker n+f is an n+R-module. 
The module A consists of all input sequences (to the 
system represented by f) that lead to output sequences 
which have zero future parts. It forms an extension of 
the classical KALMAN [1965] realization module AK 
which consists of all past input sequence!. that lead to 
output sequences having zero future parts. We have that 

(2.1) 

The algebraic significance of the module A is that i t 
determines whether polynomial factorizati Jn of one map 
over another is possible, as follows (HAMMER and HEYMANN 
[1981b]). 

(2.2) THEOREM, Let f 1,f 2: ARm-+ /\RP be rational AR-
linear maps. 
(i) There exists a polynomial map P: ARP-+ ARP such 

+ + that f 2 = Pf1 if and only if Ker TI f 1 c Ker TI f 2 . 
(ii) There exists a polynomial uniI110dular map M: ARP~ 
ARP such that f 2 = Mf1 + Ker TI f 2 . 

In general, the module 

+ if and only if Kern f 1 

+ Ker TI f contains both 
polynomial and non-polynomial elements of ARm, and, 
when f is noninjective, this module is not finitely 
generated. (It contains the AR-linear space Ker f,) 
Nevertheless, for a particular f, it may happen that 
Ker TI+f cons i sts of polynomial elements only, that is, 

In such case, Ker n+f is equal to the Kalman realization 



module (1.2). When(*) holds, the map f is called 
strictly observable (HAMMER and HEYMANN [1981b]). We 
note that a strictly observable map is necessarilly 
i nj ec tiv e . Further, letting I be the identity, we 
clearly have that Ker TI+I = n+Rm. Thus, a strictly 
obsevable map f satisfies Ker TI+f C Ker TI+I. By Theo-
rem 2.2 this implies that there exists a polynomial map 
p such that Pf = I, i.e., a strictly observable map 
has a polyn:Jmial left inverse. As we show in the next 
section, the system theoretic significance of strictly 
Observable systems is that they are minimal in the sense 
that their MacMillan degree cannot be reduced by the 
application of causal precompensation 1 see Theorem 3.2(i) 
bel :>w). 

In complete analogy, one can also consider the n-R-
"!Odule Ker TI-f. This module consists of all the input 
sequences that lead to output sequences which are zer :J 
inthe past. Fr )m the algebraic point of view, this 
module determ i nes the solution to the problem of causal 
factorizati::m, as follows (HAMMER and HEYMANN [1981a]). 

(2.3) THEOREM. Let f 1,f 2: /\Rm-+ fl.RP be ./1.R-linear 

(i) There exists a causal map h: /I.RP-+ ./I.RP such that 
f 2 = hf 1 if and only if Ker TI-f 1 c Ker TI-f 2 • 

(ii) There exists a bicausal map t: /I.RP-+ ./I.RP such that 
f 2 tf 1 if and only if Ker TI-f1 = Ker TTf2 • 

As we can see, there is a complete analogy between 
The:>rems 2.2 and 2.3. 

3. KERNELS AND INDICES 

In the present section we limit our discussion to 
the case of injective maps (i.e., transfer matrices with 
AR-linearly independent columns ) . For the more general 
case, see HAMl,1ER and HEYMANN [1981 a and b]. 

Let f: fiRm-+ /I.RP be an injective rational ./1.R-
linear map. We assign next to each one of the modules 
Ker n+f and Ker TI-f a set of integers which turn out 
t have system theoretic significance. Before doing so, 
we briefly review the concept of proper bases. Let 
d = d z-t be an element in .fl.Rm • The order of d t --
is defined as ord d := min (dt f 0) if d f o, and 
ord d := m if d = O. When d is a polynomial, then 
the order is just the negative of the degree. The lea -

,., 
ding coefficient d of d is the first nonzero coef-
ficient in the Laurent series expansion, that is d .-

,., 
dord d if d f o, and d := 0 if d = O. A set of ele-
ments ~, ••• ,dn e .fl.Rm is properly independent if the 

leading coefficients ~, ..• , dn e Rm are linearly inde-
pendent over the field of real numbers R. A basis con-
sisting of properly independent elements is called a 

n proper basis. A proper basis ~, •.. ,dm EAR is ordered 
if ord d. ord d. for all i = l, ••• ,m-1. J.+1 - l. . 

Returning now to our modules, we have the following 
(HAMMER and HEYMANN [l98lb]). 

(3.1) THEOREM. Let f: /I.Rm-+ ARP be an injective ratio-
nal AR-linear map. Then, 
(i) the n+R-module Ker n+f has an ordered proper 
basis d1, •.• , dm ; and 
(ii) if a~, •.. ,d' is any ordered proper basis of the - -i m 
n+R-module Ker rr+f, then ord di ord di !_or all 
i = l, ... ,m. 

Now, let f: ARm-+ /I.RP be an injective rational 
AR-linear map, and let d , ••. ,d be an ordered proper l m 
basis of Ker rr+f. Then, the reduced reachability indices 

µ1~~···~m of f are defined as µi := -ord di' i = 
1, ••• ,m. In view of Theorem 3.1, these indices are 
uniquely determined by f. The system theoretic signifi-
cance of the reduced reachability indices is related to 
the characterization of the set of all dynamics that can 
be assigned to a given f by applying causal precompen-
sation. We next discuss this point. Let 

~+l = F~ + G1\ 

yk = 
be a reachable realization of the system represented by 
f. As is known, the dynamical properties of the system 
are determined by the pair of matrices (F,G), which we 
call a semi-realization of f. A semirealization (F,G) 
of f is canonical if there exists a matrix H such 
that (F,G,H) represents a canonical realization off. 
Finally, the reachability indices (or Kronecker invari-
ants) of a system are discussedfu ROSENBROCK [1970], 
BRUNOVSKY [1970], and KALMAN [1971]. We can now state 
the following (HAMMER and HEYMANN [1981b]) 

(3.2) THEOREM. Let f: /I.Rm-+ ARP be an injective linear 
i/o map with reduced reachability indices µ1_y~. · ·3-Lm· 
Then, 
(i) For every nonsingular causal precompensat or 
t: fl.Rm-+ fl.Rm, the reachability indices A1~A~ ••. ~Am 
of the system ft satisfy Ai~ µi for all i = 1, ..• m. 
The last condition holds with equality for all i = 1, ... , 
m if and only if ft is strictly observable. 
(ii) Let (F,G) be any reachable pair with m reacha-
bility indices 9 >e > .. . >-9 • If S. > µ. for all - 1- a- - m - i - 1 
i = 1, .•. ,m, then there exists a nonsingular causal 
precompensator t: ./I.Rm~ ./I.Rm such that (F,G) is a 
canonical semirealization of the system ft. 

I 



In particular, Theorem 3.2 implies that the reduced stances. One such circumstance is the problem of feedback 
reachability fudices are the minimal reachability indices representation of precompensators, which is stated as 
obtainable thr ':Jugh causalprecompensation, and that the follows. Let f: ARm ARP be the transfer of a given 
dynamical order of a strictly observable system cannot system, and suppose that one is required to design 
be further reduced through the application of causal around f a classical control configuration of the 
precompensation. form 

Consider now a particular type of causal precompen-
sators - the feedback precompensat ors, which are defined 
as follows. Let r: ARP~ ARm be acausal map, and 
assur.~e that it is connected as an output feedback around V f 

the system f: ARm ~ARP. The resulting system f (~- 6) r 
will then be given by 

fr = ftr , 

where t := [I+ rf]-l is an equivalent (bicausal) r 
precompensator. The following theorem states that a 
system can be maximally reduced (i.e., transformed into 
a strictly observable one) also by using causal output 
feedback abne (HAMMER and HEYMANN [198lb]). 

(3.3) 'IREOREM. Let f: ARm ARP be an injective linear 
i/-::i map with reduced reachability indices µ12).L2~., ·Ym· 
There exists a causal output feedback compensator 
r: ARP~ ARm such that f has reachability indices r 

In analogy to the case of Ker TI+f, one can also 
assign a set of integers to the n-R-module Ker n-f. 
F-::ir this purpose we need the following result (HAMMER 
and HEYMANN [1981a]), 

(3.4) THEOREM. Let f: ARm ARP be an injective AR-
linear map. Then, 
(i) the !fR-module Ker n-f has an ordered proper 
basis cL, ••• ,d ; and ~l m --
(ii) if dj_, ••• ,d~ is any ordered proper basis of 
Ker TI-f, then ord d! = ord d. for all i = 1, ••• ,m. 

-- l 1 

Now, let f: ARm ARP be an injective linear i/o 
map. We define the latency indices u~u~···~m of f 
as ui := -ord di - 11 i = 1, •.• ,m. In view of Theorem 
3.4, the latency indices are uniquely determined by f. 
The system theoretic significance of the latency indices 
is related to the problem of causal factorization with 
remainders, which is stated as follows. 

Causal division: Let f 1,f 2: ARm ARP be rational 
AR-linear maps. Find a pair of rational maps r: ARP~ 
/rnI' and q: ARm ARP, where r is causal, such that 

and where q has the minimal possible dynamical order. 

The problem of causal division appears as an under-
lying problem in a variety of control theoretic circum-

r 

which transforms f into a prescribed transfer matrix 
f'. In (3.6), r: ARP~ ARm is a causal output feedback, 
and v: ARm ARm is a causal precompensator. We add 
the requirement that v be nonsingular in order to 
prevent possible loss of degrees of freed-::im of the 
control variables. Thus, we have to find causal compen-
sators v and r, where v :is nonsingular, such that 

f' fv[I + rfv]- 1 . 

This problem can be solved in two steps: (i) compute 
an equivalent precompensator t: ARm ARm for which 
f 1 = ft, and (ii) find compensators v and r for 
which 

]-1 t = v[I + rfv . 

As we see, step (i) can be solved through ~he dual of) 
Theorem 2.3, whereas step (ii) requires the solution of 
the equation 

-1 -1 t = rf + V , 

which is of the form (3.5). 
Several other circumstances in which equation (3.5) 

is encountered are indicated in EMRE and HAUTUS [198o]. 
The connection between the latency indices and the 

problem of causal division of maps is given by the fol-
lowing result,the proof of which is given in HAMMER and 
HEYMANN [1981a, proof of Theorem 7.2]. (The reference 
also includes the required explicit constructions.) 

(3.7) THEOREM. Let f: ARm ARP be an injective linear 
i/o map with latency indices u1~ 2~ •.• ~um' and let 
f': ARm ARP be a rational AR-linear map. There exists 
a rational causal map r: ARP~ ARP such that f' 
rf + q, where the remainder q: Mm ARP has reacha-
bility indices Al~2-> ••• >A- which satisfy A.< u. - -m - 1- 1 
for a1l i = 1, ••• , m • 

The bound on the reachability indices of the 

J 

I 



remainder q given by Theorem 3.7 is tight in the 
following sense: There exists a map f': ARm ARP for 
which, in every equation of the form f' = rf + q with 
causal r, the reachability Ddices Al~.Z::.···'!!-mof q 
satisfy Ai~ ui for all i = 1, •.• ,m, where u1~u.z::.··· 
~um are the latency indices of f (see HAMMER and 
HEYMANN [1981a, Theorem 7.9]). 
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