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STRICTLY OBSERVABLE LINEAR SYSTEMS*

JACOB HAMMER" AND MICHAEL HEYMANN

Abstract. A theory of strictly observable linear systems is developed in a module theoretic framework
which is consistent with the classical algebraic theory of linear time invariant realization. The theory
incorporates in a unified framework the reduction of linear systems through precompensation, through
state feedback, and through dynamic output feedback.

1. Introduction. In Hautus and Heymann [1978] and in Hammer and Heymann
[1981], the foundations for an algebraic theory of linear systems were formulated,
using the linear realization theory of Kalman [1965] (see also Kalman, Falb, and
Arbib [1969], Chapt. 10) as the starting point. In Hautus and Heymann [1978]
emphasis has been placed on the input/state behavior and on static state feedback
using the theory of K[z ]-modules (K[z] being the ring of polynomials in z over a
field K). In Hammer and Heymann [1981] the theory has been extended to investigate
the structure of dynamic as well as static output feedback. It has been shown there
that an important role in the theory of output feedback is played by the latency
structure and the latency kernel of the system. The latency structure is characterized
by the class of system inputs whose corresponding outputs are identically zero prior
to the time 0. This structure is algebraically expressed by modules over the ring
K[[z-1]] of power series (in z -1 over the field K) and led to a rich structure theory
as evidenced in Hammer and Heymann [1981].

In the present paper we focus on a "dual" class of inputs, namely, those that
generate outputs terminating at 0. This leads to a K[z]-module structure and in
particular to the concept of strict observability which is the main theme of the paper.
The basic definition of strict observability in our framework is that in the above
mentioned class of inputs all elements are polynomial (i.e., terminating at or before
t=0).

The concept of strict observability is closely related to various concepts that have
been studied (from various different points of view) in the literature. Probably the
first time the concept appeared was in Basile and Marro [1969] and in the paper by
Nikolskii [1970] who defined a linear system to be ideally observable if its state can
be observed from knowledge of the output alone (without knowledge of the corres-
ponding input). Nikolskii showed that ideal observability holds if and only if the
observability is maintained under every static state feedback law. The same concept
was introduced independently in Rappaport and Silverman [1971], who called it perfect
observability (see also Payne and Silverman [1973]). In Heymann [1972] the concept
of feedback irreducibility was introduced and a system was called feedback irreducible
if its observability is invariant (i.e., indestructible) under state feedback. Irreducibility
was also studied in Morse [1975], where a system was defined to be irreducible if the
subspace v*, i.e., the largest (A, B)-invariant subspace in the kernel of C, is zero
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2 JACOB HAMMER AND MICHAEL HEYMANN

(see also Morse [1973]). Morse showed that his definition of irreducibility is equivalent
to feedback irreducibility and obtained various other results on irreducible systems.
The equivalence of irreducibility and strong observability was shown in Molinary
[1976], and more recently the equivalence between the various concepts mentioned
above was discussed in Hautus [1979], where also an important characterizing rank
condition was given. Other recent related papers are Fuhrmann and Willems [1979],
[1981] and Khargonekar and Emre [1980].

In this paper we study the effects of bicausal precompensation (i.e., cascade
control) and of state as well as output feedback on the structural properties of linear
systems, with strict observability playing a central role in the theory.

In 2 we give some mathematical preliminaries reviewing the algebraic setup.
In 3 strict observability is formally defined and some basic consequences that follow
immediately from the definition are discussed. In particular, the structure of injective
precompensation orbits is investigated. Theorem 3.2 states that every injective input-
output (i/o) map can be made strictly observable by bicausal precompensation, and
Theorem 3.3 states the fact that an injective i/o map can be rendered strictly
observable, also, by static state feedback in every possible realization. Theorem 3.4
summarizes the properties of strictly observable i/o maps. In 4 the structure of
bounded f/K-modules is discussed. In 5 the structure of precompensation orbits
of injective i/o maps is investigated in detail. Reduced reachability indices are
defined. In Theorem 5.1 a Wiener-Hopf type factorization is proved for injective i/o
maps. A characterization of injective precompensation orbits based on the reduced
reachability indices is given in Theorem 5.3, and a "dynamics assignment" theorem
(by precompensators) is given in Theorem 5.5. Section 6 is devoted to an investigation
of the effect of dynamic output feedback. Theorem 6.5 states that an injective i/o
map can be made strictly observable, also, by output feedback. Theorem 6.6 gives an
"index assignment" result, i.e., it states that by output feedback any admissible set
of reachability indices can be attained for systems defined over infinite fields. In 7
contact is made between the present theory and the geometric control theory of
Wonham and Morse and supremal (A, B)-invariant subspaces in ker C are character-
ized. Finally, in 8 generalization to noninjective i/o maps is discussed.

2. Preliminaries on the mathematical setup. The reader is assumed to be familiar
with the mathematical setup and terminology of Hautus and Heymann [1978] as well
as Hammer and Heymann [1981], which we review briefly.

For a field K and a K-linear space S, we denote by AS the set of all formal
Laurent series in z -1 of the form

(21) s= } s,z-’ stS.
t=to

It can then be seen that, with coefficientwise addition and convolution multiplication,
the set AK forms a field, and under similar operations the set AS becomes a AK-linear
space. When S is finite dimensional, then so is also AS (as a AK-linear space) and
dimA,: AS dim: S.

The set AS contains as subsets the set f+S of (polynomial) elements of the form
,t_oStZ -t, and the set f-S of (power series) elements of the form ,t>=oStZ -t. In
particular, II+K and II-K form principal ideal domains under the operations defined
in AK. Furthermore, f+S and 1-S are free modules over fI+K and fl-K, respectively,
and in case the K-linear space S is finite dimensional, both of these modules are of
rank equal to dimc S.
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STRICTLY OBSERVABLE LINEAR SYSTEMS 3

Let U and Y be K-linear spaces. A AK-linear map f" AU AY represents a
linear time invariant system with input value space U and output value space Y (Wyman
[1972]). The order of the AK-linear map f is defined as ordf:=
inf {ord f-u -ord u l0 u AU}, and, in case U and Y are finite dimensional, ord/Y>
-c. Below we shall always assume that U and Y are finite dimensional and we denote

m := dim: U and p := dim: Y.

Further, let L denote the K-linear space of K-linear maps U--> Y. With every
AK-linear map/r. AU--> AY one associates an element :Y-r Ttz -t in AL, called the
transfer function of f. The coefficients Tk of the transfer function are given by
Tk := pk f iu, where the K-linear maps Pk and iu are defined as

i, U AU u -u (injection)

pk AY Y Y. ytz--- yk.

It can then be readily seen that the action of f on an element u u,z-’ AU is
given by the convolution formula

:-’.

For conciseness, we shall frequently identify AK-linear maps with their transfer
functions.

Next, we define some terminology. Let s be an element in AS. Then, s is called
(i) polynomial if s 12+S, (ii) strictly polynomial if s z fUS, (iii) causal if s fl-S, (iv)
strictly causal if s z-112-S, (v) static if s S, and (vi) rational if there exists a nonzero
polynomial tO f+K such that Os is polynomial. We denote by ArS the set of all
rational elements in AS, so that A,K is the field of polynomial quotients, and A,S is
a AK-linear space.

The above terminology also applies to AK-linear maps f" AU AY through
the respective properties of their transfer functions as elements of AL. Upon applying
the convolution formula (2.2), it is easy to verify that f is" (i) polynomial if and only
if ff[lq+U] c 12+Y, (ii) strictly polynomial if and only if ff[12+U] c z l2+Y, (iii) causal
if and only if f-[I)-U]clq-Y, (iv) strictly causal if and only if f-[lq-U]c z-12-Y,
(v) static if and only if f[U]= Y, and (vi) rational if and only if f[AU]cAY. A
strictly causal and rational AK-linear map f" AU--> AY is called a linear i/o (input-
output) map. A AK-linear map l" AU--> AU is called bicausal if it is causal and has
a causal inverse.

We associate with a linear i/o map f a number of related constructs. First, we
+define the two K-homomorphlsms

! UAU (natural injection),
+r AY AY/f+Y(=: F+Y) (canonical projection).

Then we associate with every linear i/o map if" A U--> AY the 12+K-homomorphism
+ ,+

called the restricted linear i/o map. We also associate with f its output value map
defined as

f :=p ff f+" l+U- Y.
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4 JACOB HAMMER AND MICHAEL HEYMANN

The output value map gives the output value at (time) 1, and is, in general, (only)
a K-linear map. In certain cases, there exists an lI/K-module structure on Y, com-
patible with its K-linear structure, such that the output value map f is an II/K
homomorphism as well. If this is the case then f is called a linear i/s (input-state) map.

By a realization of a restricted linear i/o map "/U F/Y, we refer to a triple
(X, g, h), where X is an rE/K-module, and where g" f/U X and h"X F/Y are
f K-homomorphlsms satisfying/= h g. The module X is called the state space. The
realization (X, g, h) is called reachable if g is surjective and observable if h is injective.
Clearly, the condition/r= h. g implies that ker g c ker/ Conversely, if ker g c ker 1
there exists an II/K-homomorphism h "X F/Y such that (X, g, h) is a realization
of/ 

Given a realization (X, g, h), the map g" f/U-X can be viewed as the output
response map of a linear i/o map g" AU AX, which, in fact, is a linear i/s map. We
say that g is reachable if g is surjective. Finally, if (X, g, h) is a realization of f, there
exists a (static) map H’X Y such that f H. g. The last formula is called a state
representation of f.

In the present paper we shall be particularly interested in the following type of
12/K-modules. An II/K-submodule A c AS is called bounded if there exists an integer
k < oo such that ord 8 =< k for every nonzero element 8 h. If A is a nonzero and
bounded module, then the least integer k satisfying this order inequality is called the
(order) bound of A. Clearly, f/S itself and all its f/K-submodules are examples of
bounded modules. A more detailed examination of the structure of bounded modules
is given in 4 below.

3. Strict observability: Basic properties. Let f" AU--> AY be a linear i/o map
and, as before, let 7r +’ A Y--> F+Y denote the canonical projection. We introduce the
following:

DEFINITION 3.1. A linear i/o map f’AU->AY is called strictly observable if
ker 7r+/r [1+ U.

It follows immediately from the definition that if f is strictly observable then
+/ker zr is bounded and the only AK-linear space contained in it is the null space

Since, obviously, ker/zc ker zr//r, it follows that if /v is strictly observable then /
is infective, (i.e., ker f 0). In Hammer and Heymann [1981, Lemma 5.11] it was
shown that every infective linear i/s map is strictly observable.

Let AU be a fixed AK-linear space and consider the class of all rational bicausal
AK-linear maps AU - AU. Clearly, this class forms a (noncommutative) group under
the operation of composition. Under the action of this group (with elements acting
as bicausal precompensators), the class of linear i/o maps AU AY is partitioned
into (mutually exclusive) equivalence classes called (bicausal) precompensation orbits.
We next investigate these orbits.

First observe that if a linear i/o map is injective, then so is every element in its
precompensation orbit. Thus, an orbit is either infective or nonin]ective. Since, as we
have seen, strict observability implies injectivity, it follows that if a precompensation
orbit contains strictly observable elements it is injective. The theorem below, the
proof of which is postponed to 5 (see Proof 5.2), states that the converse of the
above statement is also true, namely that every injective orbit contains strictly observ-
able elements.

THEOREM 3.2. Let f" AU AY be an in]ective linear i/o map. Then, there exists
a bicausal precompensator l" AU AU such that f is strictly observable.

Consider a reachable realization (X, g, h) of a linear i/o map f’A,U-* AY; let
g" AU-AX be the i/s map associated with g, and let f H g be the corresponding
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STRICTLY OBSERVABLE LINEAR SYSTEMS 5

state representation for f. Also let l" A U--> AU be a bicausal precompensator for
jr. We say that has a static state feedback representation in the realization (X, g, h)
if there exists a pair of static AK-linear maps F" AX--> AU and G" AU--> AU, with
G invertible, such that = (I +Fg)-IG.

In Hautus and Heymann [1978 Thm. 5.7], it was shown that has a static state
feedback representation in a reachable realization (X, g, h) if and only if/--1 [ker ] c

II/Uo
Suppose now that f" AU--> AY is an infective linear i/o map and that l" AU-->

AU is a bicausal precompensator for f such that f is strictly observable, that is,
ker 7r/lr/’c II/U. Let (X, g, h) be any reachable realization of jr and let g be the
restricted i/s map associated with g. Then ker ff ker g ker ]r (the equality following
from the i/s property), and it follows that

T-l[ker ] T-l[ker/r] /--l[ker r +jr] ker 7r+lrT iq+ U.

By the previous paragraph, we conclude that has a static state feedback representa-
tion over g and we just proved"

TI-IZOREM 3.3. Let f" AU--> AY be an inlective linear i/o map and let l" AU-->
AU be a bicausal precompensator such that f is strictly observable. Then has a
static state feedback representation in every reachable realization of f.

In Heymann [1972], a transfer matrix was called feedback irreducible if under
the application of static state feedback in a canonical realization, the resultant closed
loop system is necessarily also canonical, that is, the observability property is preserved.
We shall see that strict observability is equivalent to feedback irreducibility so that
Theorem 3.2 combined with Theorem 3.3 is equivalent to Theorem 6.64 in Heymann
[1972].

Let f’AU-->AY be a strictly observable linear i/o map and let 8(f) denote
its McMillan degree. If f’ is any other i/o map in the bicausal precompensation orbit
of f, then by Theorem 3.3, f can be obtained from f’ by static state feedback in
any reachable realization of f’. It follows, therefore, that (f)<-(f’), where (f’)
is the McMillan degree of f’. Thus, all strictly observable linear i/o maps in a given
(infective) bicausa! precomposation orbit have the same McMillan degree 8, which is
the minimal degree among all McMillan degrees of elements in the orbit. Furthermore,
strict observability implies feedback irreducibility. Conversely, suppose that f is a
feedback irreducible linear i/o map and let f H g be a canonical state representa-
tion of f. By Theorem 3.2, there exists a bicausal precompensator such that
f’ := f is strictly observable, and by Theorem 3.3, has a static state feedback
representation over g. It then follows (see Hautus and Heymann [1978], Cor. 5.9)
that g’:=g" is also a reachable linear i/s map and ker if= -[ker ff]. From the
feedback irreducibility of f it follows that the state representation f’= Hg’ is also
canonical, whence ker/r, ker ’. Consequently,

ker zr+/= ’[ker 7r+/r-] [ker/’] -[ker ’]

-’-[ker ] ker ff c f+U,
so that f is strictly observable. Our preceding discussion is summarized in the
following:

THEOREM 3.4. Consider the class of linear i/o maps in a fixed infective precomposi-
tion orbit. Let be the minimal McMillan degree of elements in the orbit. Then the
following statements are equivalent"

(i) f is strictly observable.
(ii) f is feedback irreducible.
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6 JACOB HAMMER AND MICHAEL HEYMANN

(iii) f has McMillan degree .
(iv) Every i/o map f’ in the orbit can be transformed into f by static state

feedback in any reachable realization.
Consider now two linear i/o maps f" AU AY and fa" AU - AW, and assume

that there exists a polynomial map P’AY-AW such that fa=P. fl. Then if
ukerTr f (i.e., if f(u)12/Y) it follows also that f2(u)=P, f(u)iq+W, that
is, u ker +a. We conclude then, that the existence of a polynomial map P such

fcker f2. That the converse of the abovethat f2 P fl implies that ker +- +-

statement is also true will be shown in the ensuing discussion. First, we need the
following auxiliary result (proof omitted), which is a consequence of the Smith-
McMillan canonical form theorem"

LEMMA 3.5. Let f" AU AY be a rational AK-linear map, let r := dimAr Im f
and let Yo Ybe any r-dimensional subspace. Then there exists a polynomial unimodular
map M" AY AYsuch that Im M. f AYo.

We also require the following result (compare Hammer and Heymann [1981,
Lem. 5.1]).

LEMMA 3.6. Let " AU AY be a AK-linear map. ff ker+ is a AK-
linear subspace, then kerf.

With the above lemmas we can now state and prove the polynomial factorization
theorem:

THEOREM 3.7. Let fl"AUAY and f2"AUAW be rational -linear
maps. There exists a polynomial AK-linear map P" AY AW such that f2 P" f
g and only g ker f ker f2.

Proof. That the condition of the theorem is necessary was seen in the discussion
preceding Lemma 3.5. To prove suciency, assume that ker fl c ker f. Let
r := dimAn Im f and let Y0 be any r-dimensional subspace of Y. By Lemma 3.5 there
exists a unimodular polynomial map M" AY AY such that ImM. f AY0. If we
denote fo :=Mf, it follows immediately from the necessity condition above com-
bined with the fact that both M and M- are polynomial maps, that ker f0
ker f, whence ker /oker f. Lemma 3.6 then implies that kerfo
ker f2 SO that there exists a AK-linear map Po" AYAW such that Po" fo rE.
Let Y Y be a direct summand of Yo in Y, that is, Y Yo Y. Also, let " AY AY
denote the projection onto A Yo along AY, i.e., if y yo + y AY is the decomposition
of y into its components yoAYo and yAY, then (y)=yo. We now define the
map P := Po" M and for each u AU we have

P" fl(U) Po q" Mfl(u) Pogtfo(U) Polo(u) fz(u),
whence P. fl-f2. To conclude the proof we need to show that P is polynomial,
and since by definition M is polynomial, it suffices to prove that so also is Po’q. To
this end, we first note that every element y I)/Y decomposes uniquely as y yo+ yl

with yo fl+Yo and yl fl+ Y1. Thus

Poc (y) Po(yo) Po(yo) PoFtMfl(u) P" fl(u) f(u)

for some uker +- +-
rr fl. Since by hypothesis ker rr//rl c ker rr fz, it follows that

f-2(u)=Po(y) Y/W, and the proof is complete. 71
COROLLARY 3.8. Let fl, fz" AU AY be two rational AK-linear maps. There

exists a unimodular polynomial map M AY AY such that fz Mr1 if and only
/f ker +- +-

7r fl=ker rr f2.
Proof. Necessity follows immediately from Theorem 3.7. To prove sufficiency,

/-assume that ker rr /l=ker rr fz. Then by Lemma 3.6, kerfl=ker/rz so that
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STRICTLY OBSERVABLE LINEAR SYSTEMS 7

dim Im fl dim Im f2 := r. Let Yo c y be an r-dimensional K-linear subspace and
let M1, ME" AY-> AY be unimodular polynomial maps such that Im Mlfl
Im Mf2 AYo (see Lemma 3.5). Denoting flo := Mlf and f2o := MEf2, we
obviously also have ker +r+]xo ker zr+f20. By Theorem 3.7, there exist then poly-
nomial maps Po, P2o" A Y-> AY such that /2o Pof+.o and flo PEof2o. Let
Y1 c Y be a direct summand of Yo in Y and let " AY--> AY be the projection
defined in the proof of Theorem 3.7. Now define the polynomial maps P1
(Plo-I) /I and P2-t(P2o-I) +I where I is the identity map in A Y. Clearly
then also lEo=P1 flo and flo=P2 f2o, and also P2" P =PI" P2 =L (The reader
can verify these facts by direct computation.) It follows that P is unimodular and the
unimodular map M:-MxPM1 satisfies the condition of the corollary.

We conclude the section with an additional characterization of strict observability.
COROLLARY 3.9. Let f’AU-->AY be a linear i/o map. Then f is strictly

observable if and only if it has a polynomial left inverse.
+IProof. First observe that if I" AU +AU is the identity map, then ker r U.

/ /IoThus, be definition, f is strictly observable if and only if ker r ker r By
Theorem 3.7 this kernel inclusion holds if and only if there is a polynomial map
P" AY - AU such that P f I, concluding the proof.

4. Bounded fl+K-modules. Let f" AU AY be an injective linear i/o map, say
of order k. It is then readily seen that ker r+]y is a bounded f+K-submodule of AU
and its order bound is less than or equal to (-)k. Indeed, if u 0 has order greater
than (-)k, then ordf(u)->_ordi+ordu>0, whence f(u)z-f-Y, and since
f(u) 0 it follows that u ker zr

In the present section we shall study the structure of bounded fl/K-submodules
of AU. We emphasize again that U is a finite dimensional K-linear space. The structure
of bounded l)+K-submodules of AU is essentially the same as that of submodules of
I)+U, which was discussed in some detail in Hautus and Heymann [1978, 6] and
also in Forney [1975].

Let A AU be a bounded f/K-submodule with order bound k A, and for each
integer j, let S U be the K-linear space spanned by the leading coefficients t U
of all elements u A which satisfy ord u -> . In this way, we obtain a chain of K-linear
spaces

(4.1) U S]--I S] SkA--1 Sk SkA+l 0

Now, by the finite dimensionality of U, there exists an integer kA(<-_k A) such that

Sk # Sk++I and Sk-j Sk+ for all ] > 0. We call the chain {Sj} the order chain of A and
the nonincreasing sequence of integers {/+i},/+i := dim Si, we call the order list of A. In
the special case when A- ker zr+] where f is a linear i/o map, we refer to the
order chain and the order list of A, respectively, as the reduced teachability chain and
the reduced teachability list of f.

PROPOSITION 4.2. Let A, A’ c AUbe bounded +K-submodules with order chains
{Si} and {S;} and order lists {/+j} and {/z;}, respectively.

(i) /f A’ c A then for each integer ], S; Si and lz <-_

(ii) If A’ c A and for each integer ], tz; tzi, then A’ A.
Proof. (i) This is an immediate consequence of the preceding discussion.
(ii) If A’c A, then the equalities/z; =/zi imply that S; Sj for all ], and if u

is any element, there exists an element u’ A’ such that ord (u u’) > ord u. Further,
u u’ e A so that by the same argument, there is an element u" e A’ such that ord (u
u’-u") >ord (u -u’). Proceeding stepwise, we finally find elements u’, u", , u A’
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8 JACOB HAMMER AND MICHAEL HEYMANN

such that ord (u-u’-u" ur)>k a, where k a is the order bound of A. Since
u-u’ u teA, we conclude that u-u’ u =0, whence u=u’+
u"+. + u e A, so that also A c A’, and we conclude that A A’, as claimed. [-1

We turn now to a brief review of some results on proper bases for AK-linear
spaces and f/K-modules. A set of elements u 1,’", Uk AU is called properly
independent if and only if their leading coefficients tl,’", tk e U are K-linearly
independent. A basis for a subspace Y c AU is called a proper basis if it consists of
properly independent elements. If ul, , Uk AU is a properly independent set of
vectors, then it is also AK-linearly independent, as was shown e.g. in Hammer and
Heymann [1981, Lem. 4.2], where also the following characterization of proper
independence was proved. (See also Forney [1975].)

LEMMA 4.3. A set of nonzero elements u 1, ", Uk AU is properly independent if
and only if for every set of scalars a 1, ak AK, or alternatively, if and only if for
every set of scalars a 1, ", ak f+K, the following holds:

k

ord Y. aiui =min{ordaiui[i 1,. ., k }.
i=1

Proper bases play a role in the theory of causal AK-linear maps analogous to the
role of bases in general in the theory of linear maps. In particular, let f’ AU AY
be a AK-linear map and let u 1,’" ’, u,, be a basis for AU. If acts causally on every
element ui, that is ord f(ui)>_ ord u, it is not necessarily implied that f is a causal
map. Yet, if Ul,.. ’, u,, is a proper basis, the causality of f is assured. This is shown
in the following proposition (see also Wolovich [1974])"

PROPOSITION 4.4. Let ul, u,, be a proper basis for the AK-linear space AU
and let f" AU AY be a AK-linear map. Then f is causal if and only if ord f(ui) >=
ord ui for all 1,..., m.

Proof. The "only if" part is true by definiton. To prove the "if" part, assume
ord f(u)>-ord u, 1,..., m, let 0u AU be any element and write u ==1 aiui
for appropriate scalars O AK, 1, , m. Then,

ord (u) ord E ai[(ui) >= min {ord a,/(u)li 1,. ., rn }
i=1

>-min{ordaiui[i 1,..., m}=ord u,

where the last step is by Lemma 4.3. Thus f is causal. [3
Through a similar application of Lemma 4.3, we also have the following:
COROLLARY 4.5. Let ul," u,, be a proper basis for AU and let l" AU AU

be a AK-linear map. Then is bicausal if and only if the following conditions both hold"
(i) ord (ui)=ord ug, i= 1,..., m, and
(ii) The set (u 1), ", (u,,) is a proper basis for AU.
A basis u 1," ’, u,, of an f/K-module A c AU is called proper if u 1, , u, are

properly independent, and it will be called ordered if ord ui >-ord Ui/l for all
1,2,... ,m-1.

THEOREM 4.6. Let A AU be a bounded f/K-submodule with order chain {S.}
and order list {txj}. Then (i) there exists an ordered proper basis for A. (ii) I1 u 1, , u,
is an order proper basis for A, then the following hold"

(4.7) ord u. fortx+l <f <-_txand <=ka;
For each integer <- k a, the set of leading coefficients

(4.8)
t31, ", t,,forms a basis for Si.
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STRICTLY OBSERVABLE LINEAR SYSTEMS 9

Proof. The proof is essentially the same as that of Theorem 6.11 in Hammer and
Heymann [1981], which deals with proper bases for fl-K-submodules of AU. We
shall therefore give only an outline. In view of the chain property of the Ss, there
exists a set u 1," , u,, of vectors in U (where m /Xk rank A) such that for each
ka<i<ka ou, u,, is a basis for Ss. Then, for each ka<-_i <-k a and each tZS+l</" --<
/xs, there is an element uj A having order and leading coefficient tj u. Obviously,
the set u 1,’", u,, is properly independent and the fl/K-module A’ generated by
u 1, , um satisfies A’ c A. That actually A’ A follows upon application of Proposition
4.2 (ii). Hence u1," ", u, is an ordered proper basis for A and satisfies conditions
(4.7) and (4.8) by construction Finally, that each ordered proper basis has these
properties follows from the fact that for each integer/’, every ordered proper basis
ul,." ", u, of A has precisely/xi elements whose order is greater than or equal to/"
and spank {tl," ", tk} S. [’]

fl K-submodules. An fl/K-homomorphism q" A-> A’ is calledLet A, A’ c AU be
order preserving if ord q(u)=ord u for each 0 # u A. If an order preserving q is
surjective it is obviously an isomorphism, and we call it in this case an order (preserving)
isomorphism. The submodules A and A’ are then called order isomorphic (compare
with the polynomial case in Hautus and Heymann [1978]).

PROPOSITION 4.9. Let A, A’ AU be bounded fl+K-submodules. Then A and A’
are order isomorphic if and only if they have the same order lists.

Proof. If A and A’ are order isomorphic, then it follows directly from Theorem
4.6 and Corollary 4.5 that they have the same order lists. Conversely, assume that
the bounded modules A and A’ are nonzero and have the same order lists. Then, by
Theorem 4.6, the following hold" (i) A and A’ have ordered proper bases u

respectively, (ii) m’and u , u,, m, and (iii) ord us ord us for all 1,. m.
By Hammer and Heymann [1981, Thm. 4.4], there exist then elements u,,+l, ",

and u.,+l,’’’, u, such that both of the sets ul," ", u, and u,..., u’ form proper
bases of AU, and ord us =ord us for all 1,..., n. But then, the AK-linear map
I’AUAU defined through its values as lus=us, i=l,...,n, is bicausal by
Corollary 4.5, and, since evidently lift,] fi,, our proof is complete.

It will be convenient in the sequel to define for a bounded fl+K module A AU
of rank m, a set of integers {ul, ’, u,,} called the degree indices of A, as follows. Let
u 1," ’, u,, be an ordered proper basis of A and for each i= 1,..., m define t,

-ord u. The relationship between the degree indices and the order list of h is
established by Theorem 4.6 through (4.7) and (4.8), as follows:

(4.10) v =-i for/-/,i+1 <f /-i, i-<k a.
An l)/K-submodule A = AU is called full if it contains a basis for AU. In case

A is a bounded module, then, clearly, A is full if and only if ranka+: A dim U.

5. The precompensation orbit of injective i/o maps. In the present section we
shall study the structure of the fl+K-module ker 7r+/r for injective linear i/o maps.
We shall also investigate the structural invariants of bicausal precompensation orbits.

It is well known from linear realization theory (see e.g. Fuhrmann [1976]) that
in view of the rationality of [ ker r//"/

is a full submodule of AU. It follows then
immediately, since ker 7r = ker r//r, that ker 7r is also full.

Let f" AU--> AY be an injective linear i/o map. We define the reduced reach-
ability indices {v1,’", v,,} of f as the degree indices of ker 7r+f. We observe that
in view of the strict causality of f, the ui are all positive integers. Indeed, if 0 u s
ker r/ then 0 ]r(u) s fl+ Y and ord u < ord )r(u) -< 0.
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10 JACOB HAMMER AND MICHAEL HEYMANN

Consider now an injective linear i/o map f" AU AY and let AU AU be
a bicausal precompensator for f[ Clearly - is also an order preserving Iq/K
isomorphism on AU, and since -[ker 7r//r"] ker 7r//7 we see (in view of Proposition
4.9) that the reduced reachability list or, equivalently, the set of reduced reachability
indices, is an orbital invariant of bicausal precompensation. Combining this fact with
Corollary 3.8, we obtain the following central factorization result"

THEOREM 5.1. Let f, f" AU AUbe injective linear i/o maps with reduced reach-
ability indices {u1,’", u,,} and {u’, u,,}, respectively. Then ui ui, 1,..., m
if and only if there exists a polynomial unimodular map M" AY AY and a bicausal
precompensator ’" AU - AUsuch that f" Mf.

Proof. If f’Mfl with M polynomial unimodular and bicausal, then, by
/f’ /f, whence ’[kerr/f’] kerr//"e, and by Prop-Corollary 3.8, ker r ker zr

osition 4.9, ker zr and ker have the same order lists (or equivalently the
same reduced reachability indices). Conversely, if ui u for 1,..., m, then

/fker zr and ker 7r/f have the same order lists,, and by Proposition 4.9 are order
isomorphic. Thus, there exists a bicausal isomorphism on AU, say --1, such that
ker zr//7’= --1 ker r/f ker r/f-. By Corollary 3.8 there exists then a unimodular
polynomial map M" AY AY such that f’ Mf l, concluding the proof.

A factorization of the type obtained in Theorem 5.1 is sometimes called in the
literature a Wiener-Hopf factorization (compare Fuhrmann and Willems [1979]).

Before proceeding with our discussion, we turn to the proof of Theorem 3.2,
which is an immediate consequence of Theorem 5.1.

Proof 5.2. Proof of Theorem 3.2. Assume that f has reduced reachability indices
{u1," .,u,,}. The injectivity of f implies that r:=dim Y->_m(=dim U). Let
f" AU AY be the AK-linear map whose transfer matrix is given by

f,= 0 z-
0

Clearly f’ is strictly observable and has the same reduced reachability indices
{u1,"’, u,} as f. Theorem 5.1 then implies that f=Mf’l for some polynomial
unimodular map M and a bicausal AK-linear map l- Then the map /--1 is a bicausal
precompensator for /r and the map f-,,=./r--1 is strictly observable since /r,,=
and by Corollary 3.8 ker 7r+/r’’= ker r+/r’( c f*U).

We conclude this section with a discussion of the problem of "dynamics assign-
ment" through bicausal precompensation. That is, we ask to what extent it is possible
to modify a system’s essential dynamic characteristics through the application of
bicausal precompensator.

We first recall some classical concepts. Let f" AU AY be a linear i/o map and
let := zr +./r././ be the restricted i/o map associated with/ The f/K-submodule
A := ker/= ker zr//r f’) 1)/ U, called the realization kernel (or realization module) of
f, uniquely defines the class of all canonical realizations of f (see e.g. Hautus and
Heymann [1978]). In particular, let XA := f/U/A, let gA := +UXA be the canonical
projection and let hA’Xa AY/I/Y denote the (unique) f/K-homomorphism such
that/ gA" ha. Then (XA, ga, ha) is a canonical realization of/e. Thus, the realization
kernel A characterizes the essential dynamical properties of f and its teachability
indices are the degree indices of the realization kernel A. (The reachability indices
are, of course, the well known Kronecker invariants of canonical realizations of f--see
also Hautus and Heymann [1978], Kalman [1971] and Kailath [1980]).
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STRICTLY OBSERVABLE LINEAR SYSTEMS

Let jr. AU AY be an injective i/o map with reachability indices {rl,"’", r,,}
and reduced reachability indices {vl, , v,}. Since, clearly, kerf
ker r+j"+ c ker +-f, it follows upon application of Proposition 4.2 (i) and formula
(4.10), that v for 1, , m. We have seen previously that the reduced reacha-
bility indices are orbital invariants for injective orbits of precompensation and they
are shared by all i/o maps in the orbit. This, in particular, holds also for the strictly
observable i/o maps. If f is strictly observable, then ker U, whence

+ffker ker +f]+, implying that the reduced reachability indices of coincide
with its reachability indices, that is, v, 1,..., m. Conversely, suppose an i/o
map ff in the precompensation orbit satisfies , 1,..., m. Then ker +=
ker (see Proposition 4.2 (ii)) and it follows that ker +ff= U, implying
that f is strictly observable. We just proved the following"

THEOREM 5.3. Consider a fixed infective bicausal precompensation orbit 0 and
&t {v, u} denote the reduced teachability indices of elements in O. Consider an
i/o map ff 0 with teachability indices {, }. Then (i) v, 1,..., m;
(ii) v, 1,. , m g and only gf is strictly observable.

In 3 we saw that the McMillan degrees of i/o maps in an injective bicausal
precompensation orbit are bounded below by the McMillan degree of the strictly
observable i/o maps in the orbit. Since the McMillan degree of an i/o map is equal
to the sum of its reachability indices, this result is of course contained in Theorem
5.3, which gives a much stronger minimality result.

Before we proceed further, we wish to make a few remarks on the explicit
construction of ker and the computation of the reduced reachability indices.
Suppose ff is an injective linear i/o map with transfer matrix if= (z-). Then
rank ff m and we let (z) denote the least common denominator of the entries
of . Then . ff is a polynomial matrix and there exists a unimodular polynomial
matrix M, such that M($. if)= [], where D is a nonsingular polynomial matrix.
Hence M.ff=[*], and we claim that ker+ff=O .D-+U. Indeed, u
ker w if and only if /(u)= ff u Y (where we do not distinguish sharply
between the map and its associated transfer matrix). But, since M is a unimodular
polynomial matrix, ft. u +Y if and only if M. ft. u fl+Y, which in turn holds
if and only if $-Du +Y. Now, ker+ is a full bounded submodule of AU and
hence has an ordered proper basis {dr,..., din}. The reduced reachability indices of

ff are then {v1,’’ ", } where =-ord d. Finally, we note that upon defining the
matrix D+ := [d, , d], we can also write ker +ff=D++U, whence there exists
a unimodular polynomial matrix N such that ($-D)N =D+.

LEMMA 5.4. Let K be an infinite field and let A +U be a full +K-submodule
with order indices {, ., }, (i i+x). Further, let {vx, ., v}, (vi ui+), be a
set of positive integers such that v , 1, , m. Let Y be a K-linear space such
that dim Y =r m. Then there exists an infective linear i/o map f’AU AY with
reduced reachability indices {Vl," ", v} and ker[= A.

Proof. Let d,...,d be an ordered proper basis for A and define the matrix
D := [d, , d]. Let a K be any element which is not a zero of det D. (Such an

exists since K is infinite.) For each 1,..., m let 8 :=-v and define the
(m x m)-matrix D0:= diag ((z-a), (z-a)*). We now let ff’AUAY be the
K-linear map whose transfer matrix is defined by

=[D0 D-]0

where the zero submatrix is (m-r) m and may be empty. To see that f has the
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12 JACOB HAMMER AND MICHAEL HEYMANN

desired properties, note first that Do and D are right coprime and ker/r DI+U (see
// f/also Hautus and Heymann [1978]). Furthermore, ker 7r =DD- U, whence it

follows that the set (z-a)-1. d1,’", (z-a)-m. d, forms a proper basis for
ker r+ff, and since ord [(z -ct)-’di] -vi, the proof is complete.

THEOREM 5.5. Let K be an infinite field and consider an infective bicausal
precompensation orbit 0 with reduced reachability indices {ul,"’’, u,}. Let A c f/U
be a full f+K-submodule with order indices {trl,"" ,tr,}. There exists an i/o map
ff 0 such that ker/= A/f and only if tri >- ui, 1,..., m.

Proof. Necessity follows from Theorem 5.3 (i). To see the sufficiency, let tr >_-,i,
1, .., m. By Lemma 5.4 there exists an injective linear i/o map f0, (not necessarily

in O), which has {’1,""’, ,,,} as reduced reachability indices and ker0 A. Let
be any i/o map in O. By Theorem 5.1 there exist then a unimodular polynomial map
M and a bicausal AK-linear map such that fl=Mfo. Thus,
where f O, and by Corollary 3.8 ker 7r+/ ker 7r f0, concluding the proof.

It is noteworthy that the requirement of infinite fields in Theorem 5.5 and Lemma
5.4 is an essential one. To demonstrate this fact, consider the following elementary
example. Let K be the field of integers modulo 2. Let dim Y dim U 1 and consider
as realization kernel the module A= z(z + 1)f+U. The degree index of A is cr 2,
but A cannot be (canonically) associated with precompensation orbits whose reduced
reachability index is u 1.

6. Strict observability and output feedback. In 3 we have seen that every
injective i/o map can be rendered strictly observable by static state feedback. The
main result of the present section is that every injective i/o map can be rendered
strictly observable also by application of (dynamic) causal output feedback.

We begin with some preliminaries. Let f’AU AY be a linear i/o map and
let l" AU AU be a bicausal precompensator for [. We shall say that is f-causal
if there exist a causal AK-linear (ouput feedback) map " AY AU, and an invertible
static map V" AU AU such that " (I + -)-1V. Similarly, we shall say that " is
]’-polynomial if there exist a polynomial AK-linear map g," AY AU and an invertible
static map V" AU -AU such that is strictly causal and -= (! + -)-1V. Denot-
ing ’ :=/r-, we obtain through a simple calculation that if - is f-polynomial, then
[-1 is/r, polynomial, and if/" is )Lcausal, then/--1 is/r’-causal.

While it is always true that ker r//’= ’[ker r/[’], it is in general not true that
a similar formula relates ker/’ (cker 7r//r’) with ker[ (ker r/[). An exception
to this general situation is given in the following:

LEMMA 6.1. Let 1" AU AY be a linear i/o map, let AU AU be a bicausal
precompensator and let ’ := . If is f--polynomial, then ker [= ’[ker)’].

Prool. If u ker [ then u fVU and/r(u) f/Y. Since ff is a polynomial map,
it then also follows that g,[(u) f/U. Thus, ’-l(u) V-I(I +,f-)u f/U. Moreover
f-’[-l(u)=[[[-l(u)=f(u)f/Y. Hence /’-l(u)ker/r’ (or u/-[kerf"]) and
consequently ker[ [[ker [’]. The inverse inclusion follows similarly from the fact
that/’-1 is/r’-polynomial, and the lemma follows.

Combining Lemma 6.1 with Proposition 4.9, we obtain
THEOREM 6.2. Let f’AUAY be a linear i/o map, let I’AUAU be a

bicausal precompensator and write f-’=f. . If is f-polynomial then f and
f’ have the same sets of teachability indices.

Consider now an injective linear i/o map f’ AU- AY, and let AU AU be
a bicausal precompensator for f. Clearly, in view of the injectivity of f, there exist
a AK-linear map g,’ AY - AU and an invertible static map V" AU AU such that
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STRICTLY OBSERVABLE LINEAR SYSTEMS 13

-= (I + gff)-I V and gj is strictly causal. Next, let g g-+ g+ where g- is causal and
g+ is (strictly) polynomial. Then g-. J is obviously strictly causal, and so also is g+ if,
being the difference of two strictly causal maps. Thus, we have the following:

= (z + gf-v (z + g-+g+)-v
(6.3)

(I + g-f)-[I + g+f(I + g-ff)-]- V F- -+

where -:=(I+g-f- is a bicausal precompensator for ff and is fZcausal, and
where + := [I + g+ff(I + g-)-]-t V = (I + g+(ff-))- V is a bicausal precom-
pensator for f l- and is (f/-)-polynomial. If we now apply Theorem 6.2, we
conclude that the maps f and f l- have the same sets of reachability indices,
the important fact being that l- represents a (dynamic) causal output feedback
around f. This proves the following"

THEOREM 6.4. Let " AU AY be an injective linear i/o map and assume that

" AU AU is a bicausal precompensator for ff such that ff is rational and has
reachability indices 1, ",. Then there exists a causal -linear map g" AY AU
such that ff(I + gff)- also has teachability indices t, ", .

As an immediate consequence of Theorems 3.2 and 6.4, we have the following
result:

THEOREM 6.5. Let f" AU AY be an infective linear i/o map. Then f can be
transformed into a strictly observable map by application of causal (dynamic) output
feedback.

Finally, upon application of Theorem 6.4 to Theorem 5.5, we obtain
THEOREM 6.6. Let K be an infinite field and let f" AU AY be an infective i/o

map with reduced reachability indices vt, ., v. For every set of integers , ,
satisfying v, 1,.. , m, there exists a causal -linear map g" AY AU such
that ff(I + gff)- has , ., as reachability indices.

7. Some/urther properties o[ ker +. In the present section, we wish to make
formal contact between the present theory and some concepts that appeared in the
linear system theory literature. In particular, we wish to make contact with concepts
from the geometric theory as expounded by Wonham and Morse (see e.g. Wonham
[1979]). It will be assumed that the reader is familiar with the basic concepts of that
theory, and with the basic algebraic framework of linear realization theory (as pre-
sented, e.g., in Hautus and Heymann [1978]).

Let f" AU AY be a linear i/o map and let (X, g, h) be a reachable realization
of ff (i.e., +’+ h.g, and g "+UX is surjective). The unobservable subspace
(submodule) of (X, g, h) is defined as ker h X and we say that (X, g, h) is observable
if ker h 0, i.e., if h is injective. Let g" AU denote the (extended) i/s map
associated with g and let f =Hg be the corresponding state representation (i.e.,
H=p.h).

We recall that a subspace S X is called weakly invariant if the controlled
trajectory for every x S can be maintained in S by choice of control action. Weakly
invariant subspaces coincide with the well known (A, B)-invariant spaces of geometric
linear system theory (see in particular Hautus [1979] for comparison of the various
concepts). Of particular interest is the maximal weakly invariant subspace contained
in ker H, which is frequently denoted in the literature by v*. We shall show below
that v* is related to ker +ff and, in particular, that v* pxg[ker +].

The g+K-module ker +ff consists of the class of all inputs for which the
corresponding output is identically zero for all t 1. Let u ker +ff be any control
and write u =u + +u-, where u ++U and u-z--U. Then O=pffu =pHgu
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14 JACOB HAMMER AND MICHAEL HEYMANN

Hpxgu Hplgu + +Hplgu- and, in view of the strict causality of g, pxgu-= 0 and we
havepgu pxgu + e ker H. The state pxgu + gu + X is the state at time I generated
by the control u +. This state is maintained in kerH by application (after 0) of the
control u-, and hence it is clear that plgu v*, so that pg[ker r+]v] c v*. To see that
the inverse inclusion also holds, let x e v* be any state. In view of the reachability of

/ t’l+ =pgu Further, there exists u(X, g, h), there exists u U such that x gu + +

-1z ll-U such that the corresponding state trajectory (starting at x) remains in ker H,
i.e., the output trajectory is identically zero. Thus, pkf(U + U-)=0 for all k >_-1,
whence u u++u- ker r+/. We summarize the above discussion in the following:

THEOREM 7.1. Let (X, g, h) be a reachable realization of a liner i/o map f" AU -AY and let f H. be the corresponding (reachable) state representation. Then the
maximal weakly invariant subspace in ker H is given by

(7.2) v* pxg[ker
We shall next investigate several properties of v * and its relation to unobservability

and feedback. First, the following can be readily verified.
LEMMA 7.3. Let f" AU- AY be a linear i/o map and let f =Hg be a state

representation for f. Then,
(i) pg[ker zr+/] ker H.

(ii) If A AU is an tl+K-module satisfying plg[A]
Consider now the reachable realization (X, g, h) and let =H.g be the asso-

ciated state representation. Clearly, the unobservable subspace $ ker h satisfies
S = ker H, and it is easily seen that, in fact, S is the maximal gl+K-module contained
in ker H. Let us apply static state feedback F’X U in the reachable realization
(X, g, h) (see Hautus and Heymann [1978] for details). Then the reachable extended
linear i/s map g" AU AX is transformed into the reachable i/s map F :-- g(I +Fg)-,
and the i/o map /r is transformed into fF:=f(I+Fg)- (so that fF=Hgl). Let
gF := P gF i+ be the output response map associated with gF. Then there is a reachable
realization (XF, gF, hF) of fF, and we denote the unobservable subspace of this
realization by SF := ker hv. We then have the following theorem, which gives a sharp
insight into the nature of the subspace v*( i6g[ker

THEOREM 7.4. Let f’AU AY be an infective linear i/o map, let (X, g, h) be
a reachable realization and let f H.g be the associated state representation. Then
the following hold"

(i) For every static state feedback F’X
(ii) There exists a static state feedback Fo"X U (for which Fo is strictly observ-

able) such that SFo pg[ker
Proof. (i) The reachability of (X, g, h) implies that, for each feedback F, the

realization (XF, gv, h) is also reachable (see e.g. Hautus and Heymann [1978]).
Hence gF is surjective and there is an f+K-module A c I)+U such that SF gF[A]
plgv[A] and, since SF =ker H, it follows by Lemma 7.3 that A cker 7r+]. Thus,
denoting ’:= (I +Fg)-a, we obtain

Sv pvEA] pav[ker zr+fF plg’[ker r+/-] pg-’-l[ker r+]] plg[ker zr+],
as claimed.

(ii) By Theorem 3.3, there exists an Fo such that fFo is strictly observable (i.e.,
ker +-zr frof+U), so that gFo[kerTr+fro]X is an f+K-module. Then since
gF[ker +-r fFo] PlgVo[ker r+-fFo] pg[ker r+[], it follows that pg[ker
(= plg,Fo[ker zr+Fo]) is an f+K-module in ker H, so that plg[ker zr+/7] Sro. Combin-
ing this with (i) above, we have that pl,[ker
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STRICTLY OBSERVABLE LINEAR SYSTEMS 15

In the special case when f is a strictly observable i/o map, we have that
pl[ker r/f] g[ker g]=0, implying that for every static state feedback F’X--> U,
SF 0. Thus, the observability is preserved under state feedback, in agreement with
Theorem 3.4.

8. Remarks on noninjective i/o maps. We turn now to some observations and
comments on noninjective i/o maps. If f" AU AY is a linear i/o map, we say that
f has a static kernel if there exists a K-linear subspace Uo U such that ker f AUo.
If ker f is static, f can be made injective by simple restriction of the input value
space. The noninjectivity of f then stems from the fact that its input value space was
chosen to be too large. We proceed now to extend the framework of our theory to
noninjective i/o maps.

In Hammer and Heymann [1981, Prop. 5.6], it was shown that a linear i/s map
always has a static kernel. Consider now a linear i/s map f" AU-AY and assume
that kerf AUo for a subspace Uo U. Choose a direct sum complement U U
for Uo such that U UoU and let P" U U denote the projection of U onto
U along Uo. There evidently exists then an injective i/s map/’" AU AY such that

(8.1) f =fP.
The above restriction procedure, and the fact that injective i/s maps are always

strictly observable, motivate us in extending the concept of strict observability to
noninjective i/o maps as follows:

DEFINITION 8.2. A linear i/o map f’AU-->AY is called extended strictly
observable if the following conditions hold"

(i) f has a static kernel AU0 c AU.
(ii) There exists a subspace U1 c U such that U1 U0 U and a strictly observ-

able i/o map fl’ AUa - AY such that f fx. P1, where PI" U --> Ua is the projection
onto U along U0.

The following theorem generalizes Theorem 3.2 to noninjective linear i/o maps.
THEOREM 8.3. Let if" AU AY be a linear i/o map. There exists a bicausal

precompensator l" AU --> AU such that f is extended strictly observable.
The proof of Theorem 8.3 depends on the following:
LEMMA 8.4. Let ff’AU->AY be a linear i/o map. There exists a bicausal

precompensator " AU --> AU such that has a static kernel.
The proof of Lemma 8.4 depends on (and is an easy consequence of)he existence

of proper bases for AK-linear spaces as discussed in Hammer and Heymann [1981].
The details of the proof are omitted.

Proof 8.5. Outline ofproofof Theorem 8.3. By Lemma 8.4, there exists a bicausal
precompensator ’" AU AU such that the map ’ := f" has a static kernel AUo.
There exists then a direct sum complement AUt to AU0 and an injective i/o map
f"" AUI- AY such that f-’ =f-". P1, where PI’ U--> U1 is the projection onto U1
along U0. By Theorem 3.2 there exists a bicausal precompensator 12’ AUt--> AU1
such that f- :=f". l-2 is strictly observable. Finally, it can be shown that 1-2 can
be extended to a bicausal AK-linear map I"3’ AU--> AU such that l"2Px =Px 1"3, and
we have f- P1 f’-" l-2P f-"P: i3 f" l-3 f(l/3), concluding the proof. [3
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