
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016
VOL. 45, NOS. 7–8, 830–863
http://dx.doi.org/10.1080/03081079.2016.1158513

Static state feedback control of asynchronous sequential
machines

Jung-Min Yanga and Jacob Hammerb

aSchool of Electronics Engineering, Kyungpook National University, Daegu, Republic of Korea; bDepartment
of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

ABSTRACT

Static controllers, which consist of logical gates with no memory
elements, form the simplest class of controllers for asynchronous
sequential machines. This paper presents necessary and sufficient
conditions for the existence of static state feedback controllers that
control a given asynchronous sequential machine so as to match
a specified model. The process of designing static state feedback
controllers is described.

ARTICLE HISTORY
Received 16 December 2014
Accepted 14 February 2016

KEYWORDS
Asynchronous sequential
machines; state feedback;
non-linear control

1. Introduction

Asynchronous sequential machines, or – as they are often called – clockless logic circuits,
play a critical role in the construction of high-speed computing systems and in the
modelling of signalling chains in molecular biology (Hammer 1994). The use of asyn-
chronous sequential machines in advanced computers, in the design of new-generation
microprocessors, and in the implementation of parallel and distributed digital systems has
become more and more prevalent in recent years, as performance demands on computing
systems have continued to grow. The use of asynchronous sequential machines has also
expanded into digital communications, as asynchronous digital communication networks
have started to take hold (Sparsø and Furber 2001;Martin andNyström 2006; Tinder 2009;
and others).

The presence of asynchronous sequential machines in broader and broader application
areas has made it more and more common for engineers to face the task of dealing with
asynchronous sequentialmachines that exhibit undesirable behaviour.Whenencountering
an asynchronous sequential machine that exhibits undesirable behaviour, one has to
choose between two options: (i) replace the faulty machine with a newly designed one; or
(ii) attempt to correct the behaviour of the faulty machine. The first option, namely that
of replacing the faulty machine, is not always practical. For example, consider an asyn-
chronous sequential machine representing a biological signalling chain that has developed
defects as a result of senescence or viral infection. It goeswithout saying that such amachine
cannot be replaced by a newly designed one, as the machine forms an inseparable part of
an organism. Similarly, asynchronous machines that form parts of inaccessible systems,

CONTACT Jacob Hammer hammer@mst.ufl.edu
© 2016 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 831

such as devices implanted in the human body or devices placed on remote platform in
space, cannot be readily replaced.

In such cases, one must attempt to correct the behaviour of a faulty asynchronous
machine, rather than replace it. The behaviour of a faulty asynchronous sequentialmachine
can often be corrected by an external controller that monitors the machine and applies
commands that steer the machine towards acceptable behaviour. Such controllers can
be designed through control theoretic methodologies; they are referred to as corrective
controllers. Corrective controllers for asynchronous computing machines can often be
implemented remotely by the use of software patches; corrective controllers for biological
systems can be inserted through the use of viral vectors. As a result, corrective controllers
emerge as an important tool in a wide range of critical applications.

The use of control theoretic techniques to overcome deficiencies in the operation of
asynchronous sequential machines has been discussed in Murphy, Geng, and Hammer
(2002, 2003), where dynamic state feedback controllers for asynchronous machines are
investigated; in Geng andHammer (2005), where dynamic output feedback controllers for
asynchronous machines are examined; in Venkatraman and Hammer (2006b, 2006c),
where dynamic state feedback controllers are used to eliminate the effects of infinite
cycles on asynchronous sequential machines; in Yang and Hammer (2008, 2010), where
dynamic feedback controllers are used to counteract adversarial interventions; in Peng and
Hammer (2010, 2012), where dynamic output feedback controllers are used to overcome
indeterminacy in non-deterministic asynchronous machines; in Yang and Kwak (2010),
where industrial applications of dynamic feedback controllers for asynchronous sequential
machines are demonstrated; and in Yang (2011), where the reduction of asynchronous
machines is discussed.

The controllers employed in these publications are all dynamic feedback controllers,
namely they are formed by asynchronous sequential machines that include memory
elements. In the present paper, we direct our attention to the simplest class of controllers –
static state feedback controllers. Static controllers consist only of logical gates and require
no memory elements; as a result, they are simpler to implement. The present paper
characterizes the conditions under which static state feedback controllers can be used
to achieve a prescribed control objective, thus characterizing cases in whichmore complex
controllers can be avoided. As one might expect, the control objectives that can be met
with static state feedback controllers are somewhat more restrictive than those that can be
met with dynamic state feedback controllers. Nonetheless, as we show, static state feedback
controllers can be used to accommodate a range of control objectives.

In technical terms, a static state feedback controller is represented by a function that
assigns an input character to each state of the controlled machine. This contrasts with
a dynamic controller, which is represented by an asynchronous sequential machine that
generates strings of input characters in response to state transitions of the controlled
machine.

To be specific, recall that an input/state asynchronous sequential machine ! is charac-
terized by a triplet (A,X, f), whereA is the input alphabet (or the input set),X is the state set,
and f : X ×A → X is the recursion function of!. In operation, the machine! starts from
a given initial state x0 and is driven by a sequence of input characters u0, u1, u2, . . . ∈ A. In
response to this input sequence, the machine embarks from its initial state on a sequence
of states x1, x2, . . . ∈ X according to the recursion

832 J.-M. YANG AND J. HAMMER

Figure 1. The static state feedback configuration.

! : xk+1 = f (xk, uk), k = 0, 1, 2, . . . (1)

As depicted in Figure 1, a static state feedback controller for the machine ! is repre-
sented by a function ϕ : X × A → A that generates the current input character uk of !

from the current state xk of ! and the current external input character vk according to the
relation

uk = ϕ(xk, vk), k = 0, 1, 2, . . .

When the feedback function ϕ is combined with !, we obtain the closed-loop machine
!ϕ depicted in Figure 1 and described by the recursion

!ϕ : xk+1 = f (xk,ϕ(xk, vk)), k = 0, 1, 2, . . . (2)

In practice, static state feedback functions are implemented by logical gates; no memory
elements are used.

In this paper, we concentrate on characterizing the capabilities of static state feedback
controllers, when used as tools to achieve model matching of asynchronous sequential
machines. In formal terms, we address the following issue.
Problem 1: Given a pair of asynchronous machines ! = (A,X, f) and !′ = (A,X, f ′)
with the same state set X and the same input alphabet A, find necessary and sufficient
conditions for the existence of a state feedback function ϕ : X × A → A for which
!ϕ = !′. If such a function exists, describe its construction.

In Problem 1, the system !′ serves as the model that must be matched by the closed-
loop machine !ϕ . Necessary and sufficient conditions under which model matching of
asynchronous machines can be achieved by static state feedback are derived in Sections 4
and 5.

A few words are in place regarding the equality !ϕ = !′ listed in Problem 1. Recall
that an asynchronous machine can be in one of two kinds of states: a stable state – a state
in which the machine lingers until a change occurs in its input; or a transient state – a state
throughwhich themachine passes quickly (ideally, in zero time) on its way from one stable
state to another. Users are aware only of stable states, since transient states are traversed by
the machine very quickly. Accordingly, the equality !ϕ = !′ of Problem 1 refers to stable
transitions, namely to transitions between stable states. It means that !ϕ and !′ have the
same stable states and the same transitions between stable states. A formal discussion of
this point is provided in Subsection 2.1.

Another issue that is important to the operation of asynchronous machines relates
to the fact that the inputs of an asynchronous machine must be kept constant as long
as the machine is in transition; input characters are allowed to change only when an
asynchronous machine is in a stable state. The reason for this is rather simple. Due to

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 833

speed and asynchrony, it is not possible to aim an input change at a particular transient
state; an asynchronous machine in transition moves through its transient states so quickly
that it is not possible to predict at what state the machine will be when an input change
actually occurs. As a result, changing an input value while an asynchronous machine is
in transition may result in an unpredictable outcome. This need to restrict changes in the
input of an asynchronousmachine to times at which themachine is in a stable state leads to
the notion of fundamental mode operation, an operating policy whereby input characters
of an asynchronous machine can change only when the machine is resting at a stable state
(e.g. Kohavi 1978).

The main difference between the impact of a static state feedback controller and that
of a dynamic state feedback controller on the controlled machine ! = (A,X, f) can be
visualized in rather simple terms. A static state feedback controller, being described by a
function ϕ : X × A → A, always creates the same input character for ! in response to a
pair (x, v) ∈ X × A; on the other hand, a dynamic controller may create a different input
character in response to the same pair (x, v), depending on the history of the closed-loop
machine, since different histories may place the controller in different states of its own
when encountering the pair (x, v). This fundamental difference between these two types of
controllers makes the conditions for model matching by static state feedback controllers
somewhat more restrictive, when compared with the conditions for model matching by
dynamic state feedback controllers. However, the practical simplicity of implementing
static controllers gives them an edge, whenever they are applicable.

In this paper, we consider two types of model matching by static state feedback con-
trollers. The first type, considered in Section 4 below, examines the case where the input
alphabet of the closed-loop machine !ϕ can be different from the input alphabet of the
controlled machine !; in a sense, a ‘natural’ input alphabet is used for !ϕ instead of
the original input alphabet A of !. A lookup-table is then utilized to translate between
characters of the two alphabets. If it is permitted to use such a natural input alphabet for
controlling !ϕ , then the necessary and sufficient condition for model matching becomes
exceedingly simple; it can be expressed as an inequality between two numerical matrices
of zeros and ones. In its nature, this condition is similar to the necessary and sufficient
condition for model matching by dynamic state feedback controllers derived in Murphy,
Geng, and Hammer (2002, 2003), but the numerical matrices involved in the present
case are different. The construction of static state feedback controllers that achieve model
matching via this methodology is described in Section 4.

In traditional model matching, the input alphabet of the closed-loop machine !ϕ

must be equal to the common input alphabet of the controlled machine ! and the
model !′. Necessary and sufficient conditions for the existence of static state feedback
controllers that achieve traditional model matching of asynchronous sequential machines
are derived in Section 5. Here, in addition to the numerical matrix inequality discussed in
the previous paragraph, a further condition appears. This condition comes to guarantee
that the feedback function can be implemented in a consistent manner. The construction
of appropriate static feedback controllers is also described in Section 5.

Modelmatching has beenwidely studied in the control theoretic literature. In particular,
model matching for sequential machines has been examined within an automata theoretic
framework in Hammer (1994, 1996), Barrett and Lafortune (1998), Yevtushenko et al.
(2008), and others. Model matching was also investigated within the theory of supervisory

834 J.-M. YANG AND J. HAMMER

control (see, e.g., Thistle and Wonham (1994), Kumar, Nelvagal, and Marcus (1997), and
many others), as well as in a large variety of other frameworks and contexts. The studies
mentioned in this paragraph do not address specialized issues that relate to the operation
of asynchronous sequential machines, such as the distinction between stable and transient
states or the notion of fundamental mode operation.

The present paper is organized as follows. Section 2 explores the notion of fundamental
mode operation for asynchronousmachineswith static state feedback controllers. Section 3
examines the implementation of static state feedback controllers and its implications on
the conditions under which such controllers can achieve model matching. Necessary
and sufficient conditions for model matching with static state feedback controllers are
derived in Sections 4 and 5, where Section 4 concentrates on model matching with
an expanded input alphabet, while Section 5 addresses the traditional form of model
matching. A detailed example runs through the entire discussion, demonstrating notions
and constructions.

2. Fundamentals

2.1. Notation

Let ! = (A,X, f) be an input/state asynchronous machine. Recall that the recursion
function f : X × A → X is, in general, only a partial function; it may not be defined over
its entire domain. A state/input pair (x, v) ∈ X × A is a valid pair of ! if f is defined
at (x, v). A valid pair (x, v) is a stable combination if f (x, v) = x, namely, if ! lingers
at x until the input character v is changed; in such case, we often refer to x as a stable
state. On the other hand, if f (x, v) ̸= x, then the pair (x, v) is a transient combination; the
machine cannot linger at x when the input is v. An asynchronous machine passes through
a transient combination very quickly, ideally in zero time.

Consider the case where the machine ! is at a stable combination (x, v′), when the
input character v′ changes to a different character, say, the character v. This change gives
rise to a chain of transitions

x1 = f (x, v), x2 = f (x1, v), x3 = f (x2, v), . . . , (3)

which may or may not terminate (e.g. Kohavi 1978). If this chain of transitions does not
terminate, then! has an infinite cycle. The control of asynchronousmachines with infinite
cycles is considered in Venkatraman and Hammer (2006a, 2006b, 2006c); in the present
paper, we restrict our attention to asynchronous machines with no infinite cycles, namely,
we adopt the following.
Convention 1: Asynchronous machines considered in this paper have no infinite cycles.

Under Convention 1, the chain of transitions (3) must terminate. This means that there
is an integer i ≥ 1 such that xi = f (xi, v). Then, (xi, v) is a stable combination, and the
state x′ := xi is the next stable state of the pair (x, v). The transition from (x, v) to (x′, v)
is called a stable transition. If i > 1 in (3), then the transition from (xj, v) to (xj+1, v),
j = 0, 1, . . . , i − 1, where x0 := x, is a transient transition. Thus, a stable transition may
include several transient transitions along its way.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 835

The stable recursion function s : X × A → X of ! is defined by setting s(x, v) := x′,
where x′ is the next stable state of the pair (x, v). Using s as the recursion function yields
the stable state machine !|s := (A,X, s) induced by !. If !|s = !, namely if s = f , then
! is a stable state machine.

It is important to note that users of themachine! are aware only of its stable transitions.
Transient transitions are too quick to be noticed, and too quick to have anymaterial impact
on a user. As a result, themeaningful behaviour of an asynchronousmachine! is described
by its stable recursion function s. The reason why we have to consider transient transitions
in addition to stable transitions when discussing the control of an asynchronous machine
! is that the strategy for controlling ! involves the transformation of undesirable stable
transitions of ! into transient transitions of the closed-loop machine !ϕ of Figure 1. The
feedback function ϕ is designed so that only desirable stable transitions appear in !ϕ ,
whereas undesirable transitions are turned into transients. The objective of the current
paper is to derive necessary and sufficient conditions for the existence of such a feedback
function ϕ.

States of the machine ! that are not associated with any stable combination will not
be noticed by a user, and, as a result, are of no practical significance. It is therefore
common in the literature about asynchronous machines to ignore states that have no
stable combination, and to omit such states from the state set X. We will follow this
convention in our discussion.
Convention 2: Every member of the state set X of an asynchronous machine ! =
(A,X, f) has at least one stable combination.

2.2. Fundamental mode operation

When dealing with asynchronous sequential machines, we have to be careful to avoid any
operation that may result in an unpredictable response of the machine. In particular, one
must avoid changing the input character while a machine is in transition. The reason for
that is quite simple: if the input character of an asynchronous machine is changed while
the machine undergoes a chain of transitions, asynchrony and the rapid speed at which
transient transitions occur prevent an exact characterization of the machine’s state at the
instant at which the input character changes. Considering that the effect of an input change
depends on the state of the machine at which the input change occurs, changing the input
while a machine is in transition may result in an unpredictable outcome.

To avoid such potential uncertainty, a common operating policy for asynchronous
machines is to prohibit changes to the input while a machine is in transition. In other
words, under this operating policy, input changes are allowed only when the machine is
in a stable state. Then, the state of the machine at which the input change occurs is well
defined, and, as a result, so is the effect of the input change on the response of the machine
(we are dealing in this paper with deterministic asynchronous machines). This brings us
to the following common operating policy (e.g. Kohavi 1978).
Definition 1: An asynchronous machine is operated in fundamental mode if its input
can change only while the machine is in a stable state.

Throughout our discussion, all asynchronous machines are operated in fundamental
mode. To be specific, consider an asynchronous machine ! with the stable recursion

836 J.-M. YANG AND J. HAMMER

function s. Assume that ! is in a stable combination at a state x, when a string of input
characters u := u1u2 · · · uk, k ≥ 1, is applied to it. In fundamental mode operation, the
string is applied in a step-by-step manner, namely one input character at a time; the next
input character is applied only after ! has reached a stable state with the preceding input
character. Thus, after the input character u1 is applied, we wait until! has reached its next
stable state x1 := s(x, u1); then, the input character u2 is applied, and we wait again until
! has reached its next stable state x2 := s(x1, u2); then, the input character u3 is applied,
and so on. At each step, the next input character is applied only after confirming that !

has reached a stable state. The outcome of this process is denoted by

s(x, u) = s(x, u1u2 · · · uk) := s(· · · s(s(x, u1), u2) · · · uk).

Denoting by A+ the set of all non-empty strings of characters of a set A, the last equation
extends the stable recursion function s : X × A → X into a function s : X × A+ → X.

We examine now the implications of fundamental mode operation on the use of static
state feedback controllers. Recall that a static state feedback controller is represented by a
function ϕ : X×A → X. This means that, for any external input character v of the closed-
loop system !ϕ of Figure 1, the function ϕ can assume only one value at any given state
x of the controlled machine !. This is a substantial restriction over the flexibility afforded
by a dynamic feedback controller, since the latter has its own states; its response at a pair
(x, v) can vary, depending on the operational history of the closed-loop machine.

In addition to the natural restrictions that come with a static feedback controller, the
selection of the feedback function ϕ is also restricted by the requirement of fundamental
mode operation. Refer again to an asynchronous machine ! = (A,X, f) connected to a
state feedback function ϕ : X × A → X as depicted in Figure 1; the resulting closed-
loop machine !ϕ is described by (2). Assume that ! is at a stable combination with a
state x1 ∈ X while the external input character of !ϕ is v′. Then, the input character
that ! receives from the feedback function ϕ is u′ := ϕ(x1, v′), so that (x1, u′) is a stable
combination of !.

Consider now the case where the external input character of !ϕ changes to v; then,
the input character of ! changes to u := ϕ(x1, v). Assume that (x1, u) is a transient
combination of!, and let x2 := f (x1, u) be the next state of!. Assume further that (x2, u)
is still not a stable combination, and let x3 = f (x2, u) be the succeeding state of !. Now,
if ϕ(x2, v) ̸= ϕ(x1, v), then we have a situation where the input of ! changes while ! is
in transition. Indeed, it takes some time for ! to transition from the state x2 to its next
state, and it takes some time for the value of ϕ to change from ϕ(x1, v) to ϕ(x2, v). In an
asynchronous environment, these times are unrelated. If ! transitions from x2 before ϕ

has changed its value, then the next state of ! will be x3; on the other hand, if ϕ changes
its value while! is still at the state x2, then the next state of! will be x′

3 := f (x2,ϕ(x2, v)).
When ϕ(x2, v) ̸= u, it may very well happen that x′

3 ̸= x3, thus creating a potential
uncertainty. Clearly, this forms a violation of fundamental mode operation. Consequently,
to preserve fundamental mode operation, we must have that ϕ(x2, v) = ϕ(x1, v).

To fully examine the consequences of this observation, let (x1, u), (x2, u), (x3, u), . . . ,
(xi, u), i > 2, be the chain of transitions from the pair (x1, u) to the next stable combination
(xi, u), where xj+1 = f (xj, u), j = 1, 2, . . . , i− 1. Then, (x1, u), (x2, u), (x3, u), . . . , (xi−1, u)
are all transient combinations. Let v be the external input character of the closed-loop

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 837

machine !ϕ of Figure 1. By fundamental model operation, the external input character
v must be kept constant until !ϕ has reached its next stable state (which happens very
quickly; ideally, in zero time). According to the argument of the previous paragraph,
fundamental mode operation also dictates that we must have ϕ(x1, v) = ϕ(x2, v) = · · · =
ϕ(xi−1, v) = u. This constant value u of the feedback functionϕ will then take! to the next
stable combination (xi, u). At the state xi, the machine ! has reached a stable state, and
the value of ϕ can change. In other words, we can have ϕ(xi, v) ̸= u; fundamental mode
operation imposes no restriction on the value ϕ(xi, v). From an operational standpoint,
the state xi is reached while ϕ still produces the input character u for!; once xi is reached,
ϕ senses the pair (xi, v), and, as ! is at the stable state xi, the value of ϕ can change. This
argument proves the following statement which underlies our discussion in this paper.
Proposition 1: Let ! = (A,X, f) be an input/state asynchronous machine and let ϕ :
X × A → X be a function. Then, the following two statements are equivalent.

(i) The closed-loop asynchronous machine !ϕ operates in fundamental mode.
(ii) For every valid pair (x, v) of the closed-loop machine !ϕ , the function ϕ satisfies

ϕ(x, v) = ϕ(f (x,ϕ(x, v)), v) whenever the next step (f (x,ϕ(x, v)),ϕ(x, v)) is a
transient combination of !.

Referring to Proposition 1, note that when the next step (f (x,ϕ(x, v)),ϕ(x, v)) of
! forms a stable combination, there is no restriction on the value of ϕ at the pair
(f (x,ϕ(x, v)), v), namely there is no restriction on the value ϕ(f (x,ϕ(x, v)), v). On the
other hand, when the next step (f (x,ϕ(x, v)),ϕ(x, v)) is a transient combination of !,
then ϕ must have the same value at the two pairs (x, v) and (f (x,ϕ(x, v)), v); otherwise,
the input character of ! will change during a transient, in violation of fundamental mode
operation.

The requirement of Proposition 1(ii) restricts the class of feedback functions ϕ that can
be used for the machine !. This imposes a restriction on the class of models that can be
matched when using static state feedback controllers. As a result, the class of models that
can be matched by static state feedback is somewhat smaller than the class of models that
can be matched with dynamic state feedback controllers, a class of models characterized
in Murphy, Geng, and Hammer (2002, 2003). In intuitive terms, it is easy to see why static
state feedback controllers are more restrictive: a dynamic controller is affected by three
variables – the external input character v, the state x of !, and the internal state of the
controller itself; a static controller, on the other hand, is affected only by two variables –
the external input character v and the state x of !.
Example 1: Consider a simple asynchronous machine ! = (A,X, f) that represents
a home security system and is described by the state flow diagram of Figure 2; here,
A = {a, b, c, d} andX = {x1, x2, x3, x4}. The initial state of the machine is x1, and the input
character c represents a reset of the machine by its owner. Input characters a, b, and d
represent potential break-in points, such as a window, a rear door and a terrace. The alarm
system has three alarm states represented by stable states at x2, x3 and x4. Stable states
at x2 and x4 represent highest alarm states and cannot be reset by the owner (to prevent
tampering).

An examination of Figure 2 shows that the recursion function f : X × A → X of ! is
given by Table 1 and the stable recursion function s : X ×A → X of! is given by Table 2.

838 J.-M. YANG AND J. HAMMER

Figure 2. The state flow diagram of!.

Table 1. The recursion function f of!.

a b c d

x1 x2 x3 x1 x2

x2 x3 – – x2

x3 x3 x4 x1 x4

x4 – x4 – x4

Table 2. The stable recursion function s of!.

a b c d

x1 x3 x4 x1 x2

x2 x3 – – x2

x3 x3 x4 x1 x4

x4 – x4 – x4

For this machine, applying the input character b at the state x1 results in the chain of
transitions (x1, b)(x3, b)(x4, b), where the first two pairs are transient pairs and the last pair
is a stable combination. In view of Proposition 1, any feedback function ϕ : X × A → A
that yields a closed-loop machine !ϕ that operates in fundamental mode must satisfy the
following requirement: If there is an external input character v ∈ A for which ϕ(x1, v) = b,
then we must also have that ϕ(x3, v) = b. On the other hand, the value ϕ(x4, v) can be any
character of A that forms a valid pair with x4; according to Table 1, this value can be any
one of the characters b or d.

2.3. Operations on transition chains

Let ! = (A,X, f) be an asynchronous machine with the stable recursion function s.
We say that a state x′ is stably reachable from a state x if there is a string u ∈ A+

such that x′ = s(x, u). Based on this notion, the matrix of stable transitions was used in
Murphy, Geng, and Hammer (2002, 2003) to characterize all pairs of states that are stably
reachable from each other. As seen there, the matrix of stable transitions is a critical tool
for characterizing the ways in which dynamic state feedback controllers can modify the
behaviour of the machine !.

An examination of Proposition 1 leads us to the conclusion that, in order to examine
the capabilities of static state feedback controllers, we must take into consideration not

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 839

only the endpoints of a stable transition, but also the transient states encountered along
the way. For a given external input character v, the value of the feedback function ϕ(x, v)
on a particular state x may be determined by an unrelated stable transition in which x is
a transient state. In other words, for a given external input character v, the closed-loop
machine !ϕ can implement only stable transitions that either have no transient or stable
states in common; or, if they do have states in common, the values of ϕ on these states
must be the same. As a result, when considering static state feedback controllers, we must
examine entire chains of transitions, not just stable endpoints.

To accommodate this requirement, it is convenient to introduce a function that pro-
duces the chain of transitions induced by a given state/input pair. Referring to the asyn-
chronous machine ! = (A,X, f) with the stable recursion function s, let (x, v) ∈ X × A
be a valid pair of !, and let x1 = f (x, v), x2 = f (x1, v), x3 = f (x2, v), · · · , xi = f (xi, v) be
the chain of transitions from the pair (x, v) to the next stable state xi = s(x, v), i ≥ 1. This
induces the string of pairs (x, v)(x1, v)(x2, v) · · · (xi, v); here, we adopt the convention that
stable combinations at the end of a transition chain are listed only once. Then, no state can
appear more than once in such a string of pairs, if the machine ! has no infinite cycles.

Now, letN be a character not in any of the sets A or X; we useN to indicate the lack of a
transition. Then, using the above notation, define the function τ : X×A → (X×A)+∪N :
(x, v))→ τ (x, v) by setting:

τ (x, v) =
{

(x, v)(x1, v) · · · (xi−1, v)(xi, v) if (x, v) is a valid pair,
N otherwise;

(4)

here, xi = s(x, v) is the next stable state of the pair (x, v), and x1 ̸= x and xi−1 ̸= xi,
so that no duplicates appear in the string of pairs listed in the first line of (4). Then,
τ (x, v) generates the string of all state/input pairs traversed by ! as it undergoes the
stable transition from (x, v) to s(x, v). We refer to τ as the transition chain function of the
machine !.
Example 2: Referring to the asynchronous machine ! of Example 1, we have seen in
that example that τ (x1, b) = (x1, b)(x3, b)(x4, b).

Next, denoting by P(X ×A) the set of all subsets of X ×A, we split the chain of pairs of
(4) into a simple set of pairs using the splitting operator $: (X × A)+ ∪ N → P(X × A)

defined by

$(a) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(x, v), (x1, v), · · · , (xi, v)}
if a = (x, v)(x1, v) · · · (xi−1, v)(xi, v)
and i ≥ 1;

{(x, v)} if a = (x, v);
∅ if a = N .

Example 3: Continuing from Example 2, we have that $((x1, b)(x3, b)(x4, b)) =
{(x1, b), (x3, b), (x4, b)}.

It is sometimes necessary in our discussion to delete the last member of a transition
chain; for this purpose, we define the operator $− : (X × A)+ ∪ N → P(X × A) that

840 J.-M. YANG AND J. HAMMER

truncates the last pair from the outcome of the splitting operator, as follows.

$−(a) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(x, v), (x1, v), · · · , (xi−1, v)}
if a = (x, v)(x1, v) · · · (xi−1, v)(xi, v)
and i > 1;

{(x, v)} if a = (x, v)(x1, v);
∅ if a = N or if a = (x, v).

Note that the third case in the definition of$−(a) includes the case where a is itself a stable
combination.
Example 4: Referring to Example 2, we have that $−((x1, b)(x3, b)(x4, b)) = {(x1, b),
(x3, b)}.

3. The chain reachability matrix

3.1. The one-step chain reachabilitymatrix

In order to apply the condition of Proposition 1, we must examine the entire chain of
transitions associated with every stable transition of the asynchronous machine !. The
most convenientway to accomplish that is through amatrix that portrays all such transition
chains. We generate such a matrix using the transition chain function τ of (4), as follows.

First, some notation. For a machine ! = (A,X, f) with the stable recursion function s,
denote by s[x × A] the set of all next stable states of the state x, namely

s[x × A] := {x′ ∈ X : x′ = s(x, a) for a character a ∈ A}.

Definition 2: Let! = (A,X, f) be an asynchronousmachine with the state set of n states
X = {x1, . . . , xn}, the stable recursion function s, and the transition chain function τ , and
let N be a character not in A nor in X. The one-step chain reachability matrix ρ+(!) is an
n × nmatrix whose (i, j) entry is

ρ+
ij (!) =

{
{$(τ (xi, v)) : v ∈ A and s(xi, v) = xj} if xj ∈ s[xi × A];
N otherwise;

i, j = 1, 2, . . . , n.
Similarly, the truncated one-step chain reachability matrix ρ−(!) is given by

ρ−
ij (!) =

{
{$−(τ (xi, v)) : v ∈ A and s(xi, v) = xj} if xj ∈ s[xi × A];
N otherwise;

i, j = 1, 2, . . . , n.
As we can see, the entry ρ+

ij (!) consists of sets of pairs; each such set of pairs includes
all state/input pairs encountered in a one-step stable transition from the state xi to the
state xj. The entry ρ−

ij (!) also consists of sets of pairs; however, here each such set of pairs
consists of all state/input pairs encountered in a one-step stable transition from the state
xi to the state xj, except for the stable combination reached at the end.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 841

Example 5: Consider again themachine! of Example 1. Here, we have n = 4, so ρ+(!)

and ρ−(!) are both 4 × 4 matrices. To demonstrate the derivation of the matrix ρ+(!),
note from Table 2 that ! has a stable transition from the state x1 to the state x3, induced
by the input character a, namely s(x1, a) = x3. Using Table 1, we can see that the chain of
transitions behind this stable transition is (x1, a)(x2, a)(x3, a). Consequently, we have that
τ (x1, a) = (x1, a)(x2, a)(x3, a), and it follows that

ρ+
1,3(!) = {$τ (x1, a)} = {(x1, a), (x2, a), (x3, a)}.

Applying a similar process to each one-step stable transition of !, we obtain the matrix

ρ+(!) =

⎛

⎝
{(x1,c)} {(x1,d),(x2,d)} {(x1,a),(x2,a),(x3,a)} {(x1,b),(x3,b),(x4,b)}

N {(x2,d)} {(x2,a),(x3,a)} N
{(x3,c),(x1,c)} N {(x3,a)} {(x3,b),(x4,b)},{(x3,d),(x4,d)}

N N N {(x4,b)},{(x4,d)}

⎞

⎠ .

To obtain the truncated one-step chain reachability matrix ρ−(!), we simply exclude
the stable combination at the end of each entry of ρ+(!); this yields the matrix

ρ−(!) =

⎛

⎜⎜⎝

N {(x1, d)} {(x1, a), (x2, a)} {(x1, b), (x3, b)}
N N {(x2, a)} N

{(x3, c)} N N {(x3, b)}, {(x3, d)}
N N N N

⎞

⎟⎟⎠ .

The following statement is a direct consequence of Definition 2.
Proposition 2: Let ! = (A,X, f) be an asynchronous machine with the state set X =
{x1, . . . , xn} and the truncated one-step chain reachability matrix ρ−(!). Then, the follow-
ing is true for any pair of integers i ̸= j ∈ {1, 2, . . . , n}:

ρ−
ij (!) ̸= N if and only if there is a one-step stable transition from the state xi to the state

xj.
ρ+
ij (!) ̸= N if and only if there is a one-step stable transition from the state xi to the state

xj.

3.2. Implementation considerations

We turn now to the question of when can a collection of stable transitions be implemented
by a static state feedback controller. To this end, we employ two common projections:
&X : X × A → X : &X(x, a))→ x is the projection that extracts the state x from a
state/input pair (x, a); similarly, &A : X × A → A : &A(x, a))→ a the projection that
extracts the input character a from a state/input pair (x, a).We expand the domain of these
two projections from the set X × A to the set (X × A) ∪ N by setting

&XN = ∅,&AN = ∅,

where ∅ is the empty set. The following notion is critical to our discussion.
Definition 3: Let S ⊆ (X × A) ∪ N be a set that may include state/input pairs and the
character N . Then, S is an implementable set if the following is true for any members
α,α′ ∈ S: if &Aα ̸= &Aα′, then also &Xα ̸= &Xα′.

842 J.-M. YANG AND J. HAMMER

In other words, a set S is implementable if distinct pairs in S always have distinct states;
or, equivalently, if each state is paired in S with at most one input character.
Example 6: Using the state set and the input set of Example 1, it follows that
{(x1, a), (x2, a), (x3, b)} is an implementable set, while {(x1, a), (x1, b), (x3, c)} is not an
implementable set.

When S ⊆ (X ×A) ∪N is an implementable set, we can use the members of S to define
a function φ : X → A by setting φ(x) := a for every pair (x, a) ∈ S. A slight reflection
shows that, when S is not an implementable set, such a function does not exist, since, in
such case, a single member of X is assigned to two or more different characters of A. This
leads us to the following simple statement, which underlies much of our discussion.
Proposition 3: Let S ⊆ (X×A)∪N be a non-empty set. Then, the following two statements
are equivalent.

(i) There is a function φ : X → A such that (x,φ(x)) ∈ S for all x ∈ &XS.
(ii) S is an implementable set.

Example 7: Using the implementable set {(x1, a), (x2, a), (x3, b)} of Example 6, we can
define a partial function φ : X → A by setting φ(x1) := a, φ(x2) := a, φ(x3) := b. This
partial function can then be extended into a function over the entire set X by setting, for
example, φ(x4) := d.

Implementable sets play a critical role in our discussion, since they form the foundation
for characterizing the existence of state feedback functions. At this point, we continue
our discussion of implementable sets by addressing the following question: under what
circumstances is the union of two implementable sets also an implementable set? An easy-
to-test answer to this question is provided by the following statement. (The symbol #S
denotes the cardinality of a set S and the symbol \ is used to denote set difference.)
Proposition 4: Let S, S′ ⊆ (X × A) ∪ N be implementable sets. Then, the union S ∪ S′ is
an implementable set if and only if #[(S ∩ S′) \ N] = #(&XS ∩ &XS′).
Proof: A slight reflection shows that the equality #[(S ∩ S′) \ N] = #(&XS ∩ &XS′) is
valid if and only if every state that appears in pairs that are common to S and S′ is paired
with the same input character in both S and S′. Hence, the union S ∪ S′ includes no pairs
in which the same state is paired with different input characters. This proves the assertion.

!
The condition of Proposition 4 leads us to a new operation between sets of pairs,

which combines sets of pairs whenever the outcome is an implementable set; otherwise, it
generates the character N .
Definition 4: The compatible union S , S′ of two sets S, S′ ⊆ (X × A) ∪ N is given by

S , S′ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N if S = N;
N if S′ = N;
N if #[(S ∩ S′) \ N] ̸= #(&XS ∩ &XS′);
S ∪ S′ otherwise.

(5)

Combining Definition 4 with Proposition 4, we obtain the following fact.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 843

Proposition 5: Let S, S′ ⊆ (X×A)∪N be implementable sets. Then, the compatible union
S , S′ is an implementable set whenever it is not N.
Example 8: Consider, for example, the two entries S := ρ+

12(!) = {(x1, d), (x2, d)} and
S′ := ρ+

23(!) = {(x2, a), (x3, a)} of Example 5. Here, S∩ S′ = ∅; also,&XS = {x1, x2} and
&XS′ = {x2, x3}, so we have &XS ∩ &XS′ = {x2}. Consequently, #[(S ∩ S′) \ N] = 0 ̸=
#(&XS ∩ &XS′) = 1, and it follows from (5) that S , S′ = N .

On the other hand, we have ρ+
13(!) = {(x1, a), (x2, a), (x3, a)} and ρ+

23(!) =
{(x2, a), (x3, a)}, so that #[(ρ+

13(!) ∩ ρ+
23(!)) \ N] = #{(x2, a), (x3, a)} = 2 and

#[(&Xρ+
13(!) ∩ &Xρ+

23(!))] = #{x2, x3} = 2; consequently, ρ+
13(!) , ρ+

23(!) =
{(x1, a), (x2, a), (x3, a)}.

Another convenient notational tool is the following,which simply turns two sets S1, S2 ⊆
(X × A) ∪ N into a list of two members:

S1 ⊕ S2 :=

⎧
⎪⎨

⎪⎩

{S1, S2} if S1 ̸= N and S2 ̸= N;
S1 if S2 = N;
S2 if S1 = N .

(6)

Example 9: Using the sets of Example 8, we have simply that ρ+
13(!) ⊕ ρ+

23(!) ={
{(x1, a), (x2, a), (x3, a)}, {(x2, a), (x3, a)}

}
.

Given a collection of sets S1, S2, . . . , Sm ⊆ (X × A) ∪ N , where m ≥ 2, we use the
notation

⊕

i=1,2,...,m
Si :=

⎧
⎪⎨

⎪⎩

{⊕i=1,2,...,m−1 Si, Sm} if
⊕

i=1,2,...,m−1 Si ̸= N and Sm ̸= N;
⊕

i=1,2,...,m−1 Si if Sm = N;
Sm if

⊕
i=1,2,...,m−1 Si = N .

Finally, the compatible union of two lists {S1, S2, . . . , Sm} and {S′
1, S

′
2, . . . , S

′
m′} of subsets

of (X × A) ∪ N is defined by

{S1, S2, . . . , Sm} , {S′
1, S

′
2, . . . , S

′
m′} :=

⊕

i=1,...,m,
j=1,...,m′

Si , S′
j,

namely the list of all compatible unions of any two members. Note that every member of
{S1, S2, . . . , Sm} , {S′

1, S
′
2, . . . , S

′
m′} is an implementable set, unless the result of the entire

operation is N .

3.3. Themulti-step chain reachabilitymatrix

Using the operations introduced in the last subsection, we can define an operation akin
to matrix multiplication among matrices whose entries are families of implementable sets.
Let B andC be two n×nmatrices whose entries are lists of implementable sets orN . Then,
the product BC is also an n × nmatrix whose entries are lists of implementable sets or N ,
and it is defined as follows. For every pair of integers i, j ∈ {1, 2, . . . , n}, the i, j entry of the

844 J.-M. YANG AND J. HAMMER

product BC is

(BC)ij :=
{
{Bi1 , C1j} ⊕ {Bi2 , C2j} ⊕ · · · ⊕ {Bin , Cnj}

}
. (7)

For future use, we record the following fact, which is a direct consequence of Proposition 4
and Definition 4 of compatible union.
Proposition 6: Let B and C be n× n matrices whose entries are lists of implementable sets
or N. Then, the product BC is also an n × n matrix whose entries are lists of implementable
sets or N.

Using the product (7), we can define powers of the one-step chain reachability matrix
by setting

ρp(!) := ρ+(!) for p = 1,
ρp(!) := (ρ−(!))p−1ρ+(!) for p ≥ 2. (8)

For notational purposes, it is convenient to define the zero power of ρ(!) as a matrix
that includes all stable combinations of !, as follows. Let X = {x1, . . . , xn} be the state set
of the asynchronous machine !. For an integer i ∈ {1, 2, . . . , n}, let σi ⊆ {xi} × A be the
set of all stable combinations of the state xi. Then, we define the n × n matrix ρ0(!) by
setting

ρ0
ij(!) :=

{
σi if j = i,
N else,

for all i, j ∈ {1, . . . , n}. This notation will be handy in our ensuing discussion.
Example 10: Referring again to the machine! of Example 1, it follows from Table 2 that

ρ0(!) =

⎛

⎜⎜⎝

{(x1, c)} N N N
N {(x2, d)} N N
N N {(x3, a)} N
N N N {(x4, b), (x4, d)}

⎞

⎟⎟⎠ .

Further, referring to Example 5, we have

ρ1(!) = ρ+(!).

Also, according to (8), we have

ρ2(!) = ρ−(!)ρ+(!),

where ρ−(!) and ρ+(!) are given in Example 5. We demonstrate the calculation of this
product by calculating one of the entries, say the (1, 2) entry. Using (7), we have

ρ2
12(!) =

(
ρ−(!)ρ+(!)

)
12

=
{
{ρ−

11(!) , ρ+
12(!)} ⊕ {ρ−

12(!) , ρ+
22(!)} ⊕ {ρ−

13(!) , ρ+
32(!)}

⊕ {ρ−
14(!) , ρ+

42(!)}
}

=
{
N ⊕ {(x1, d), (x2, d)} ⊕ N ⊕ N

}

= {(x1, d), (x2, d)}.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 845

Calculating the remaining entries in a similar fashion, we obtain

ρ2(!) = ρ−(!)ρ+(!) =
⎛

⎜⎜⎝

N {(x1, d), (x2, d)} ρ2
1,3(!) ρ2

1,4(!)

{(x2, a), (x3, c), (x1, c)} N {(x2, a), (x3, a)} ρ2
2,4(!)

{(x3, c), (x1, c)} {(x3, c), (x1, d), (x2, d)} N ρ2
3,4(!)

N N N N

⎞

⎟⎟⎠ ,

where

ρ2
1,3(!) =

{
{(x1, d), (x2, a), (x3, a)}, {(x1, a), (x2, a), (x3, a)}

}
;

ρ2
1,4(!) =

{
{(x1, a), (x2, a), (x3, b), (x4, b)}, {(x1, a), (x2, a), (x3, d), (x4, d)},

{(x1, b), (x3, b), (x4, b)}, {(x1, b), (x3, b), (x4, d)}
}
;

ρ2
2,4(!) =

{
{(x2, a), (x3, b), (x4, b)}, {(x2, a), (x3, d), (x4, d)}

}
;

ρ2
3,4(!) =

{
{(x3, b), (x4, b)}, {(x3, b), (x4, d)}, {(x3, d), (x4, b)}, {(x3, d), (x4, d)}

}
.

Continuing in this pattern, we get

ρ3(!) =
(
ρ−(!)

)2
ρ+(!) = ρ−(!)ρ2(!)

=

⎛

⎝
N N {(x1,d),(x2,a),(x3,a)}} ρ3

1,4(!)

{(x2,a),(x3,c),(x1,c)} N N ρ3
2,4(!)

N {(x3,c),(x1,d),(x2,d)} N N
N N N N

⎞

⎠ ,

where

ρ3
1,4(!) =

{
{(x1, d), (x2, a), (x3, b), (x4, b)}, {(x1, d), (x2, a), (x3, d), (x4, d)},

{(x1, a), (x2, a), (x3, b), (x4, b)}, {(x1, a), (x2, a), (x3, b), (x4, d)},
{(x1, a), (x2, a), (x3, d), (x4, b)}, {(x1, a), (x2, a), (x3, d), (x4, d)}

}
;

ρ3
2,4(!) =

{
{(x2, a), (x3, b), (x4, b)}, {(x2, a), (x3, b), (x4, d)}, {(x2, a), (x3, d), (x4, b)},

{(x2, a), (x3, d), (x4, d)}
}
.

Wewill see later that it is not necessary in this case to computer higher powers of ρ(!).
Next, we define an operation akin to matrix addition. As before, let B and C be two

n × nmatrices whose entries are lists of sets or N . Then, the sum B ⊕ C of B and C is also
an n × nmatrix whose entries are lists of sets or N , where the i, j entry is

(B ⊕ C)ij := Bij ⊕ Cij,

i, j ∈ {1, 2, . . . , n}. In view of (6), the following is true.
Proposition 7: Let B and C be n× n matrices whose entries are lists of implementable sets
or N. Then, the sum B ⊕ C is also an n × n matrix whose entries are lists of implementable
sets or N.

Finally, we define the following

846 J.-M. YANG AND J. HAMMER

Definition 5: The p-multistep chain reachability matrix ρ(p)(!) of an asynchronous
machine ! is obtained by summing the powers ρ0(!), ρ(!), ρ2(!), . . . , ρp(!) of the
chain reachability matrix of ! up to a step p ≥ 0:

ρ(p)(!) :=
⊕

i=0,1,...,p
ρi(!). (9)

The p-multistep reachability matrix plays an important role in our discussion.
Example 11: Using the data of Example 10, we obtain (after removing duplicate
members)

ρ(3)(!) = ρ0(!) ⊕ ρ1(!) ⊕ ρ2(!) ⊕ ρ3(!)

=

⎛

⎝
{(x1,c)} {(x1,d),(x2,d)} ρ1,3(!) ρ1,4(!)

{(x2,a),(x3,c),(x1,c)} {(x2,d)} {(x2,a),(x3,a)} ρ2,4(!)

{(x3,c),(x1,c)} {(x3,c),(x1,d),(x2,d)} {(x3,a)} ρ3,4(!)

N N N {(x4,b),(x4,d)}

⎞

⎠

where

ρ1,3(!) =
{
{(x1, d), (x2, a), (x3, a)}, {(x1, a), (x2, a), (x3, a)}

}
;

ρ1,4(!) =
{
{(x1, b), (x3, b), (x4, b)}, {(x1, b), (x3, b), (x4, d)}, (10)

{(x1, d), (x2, a), (x3, b), (x4, b)}, {(x1, d), (x2, a), (x3, d), (x4, d)},
{(x1, a), (x2, a), (x3, b), (x4, b)}, {(x1, a), (x2, a), (x3, b), (x4, d)},
{(x1, a), (x2, a), (x3, d), (x4, b)}, {(x1, a), (x2, a), (x3, d), (x4, d)}

}
;

ρ2,4(!) =
{
{(x2, a), (x3, b), (x4, b)}, {(x2, a), (x3, d), (x4, d)},

{(x2, a), (x3, b), (x4, d)}
}
;

ρ3,4(!) =
{
{(x3, b), (x4, b)}, {(x3, b), (x4, d)}, {(x3, d), (x4, b)}, {(x3, d), (x4, d)}

}
.

The significance of the p-multistep reachability matrix originates from the fact that
every entry that is not N represents a transition that can be implemented by static state
feedback, as described in the following statement. This statement forms the foundation of
our discussion in this paper.
Theorem 1: Let ! = (A,X, f) be an asynchronous machine with the state set X =
{x1, . . . , xn}. Then, the following two statements are equivalent.

(i) There is an integer p ≥ 1 and a pair of integers i, j ∈ {1, 2, . . . , n} for which ρ
(p)
ij (!) ̸=

N.
(ii) There is a state feedback function φ : X → A for which the autonomous closed-loop

machine !φ has a stable transition from xi to xj in fundamental mode operation.

Proof: We start by showing that (i) implies (ii). Assuming that (i) is valid, let p ≥ 1 be
an integer, and let i, j ∈ {1, 2, . . . , n} be a pair of integers for which ρ

(p)
ij (!) ̸= N . Then,

according to (5) and (7), the entry ρ
(p)
ij (!) includes a non-empty list of implementable

sets; let S ⊆ X × A be one of these implementable sets. By Proposition 3, we can then

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 847

define a partial function φ : X → A that satisfies

S = {(x,φ(x)) : x ∈ &XS}.

If p = 0, then, by the definition of ρ0(!), the pair (x,φ(x)) is a stable combination for
all x ∈ &XS, and the feedback function φ simply keeps ! at the corresponding stable
combination. If p = 1, then the feedback function φ induces a one-step stable transition
from the state xi to the state xj.

Further, to consider the case where p > 1, recall that each member of an entry of the
truncated one-step chain reachability matrix ρ−(!) originates from a transition chain
that takes ! from one stable combination to the next stable combination, where the stable
combination at the end of the transition chain has been omitted. Also, each member of an
entry of the one-step chain reachability matrix ρ+(!) originates from a transition chain
that takes ! from one stable combination to the next stable combination, but here the last
stable combination is included. Considering the definition of matrix multiplication (see
(7)), we conclude that the set S originates from p consecutive transition chains of!, where
each transition chain represents a one-step stable transition of !; except for the last step,
! proceeds to the next step while in the last stable state of the previous step. Let us denote
the p transition chains from which S originates as follows:

(x1,1, v1)(x1,2, v1) · · · (x1,k1 , v1);
(x2,1, v2)(x2,2, v2) · · · (x2,k2 , v2);

· · ·
(xp,1, vp)(xp,2, vp) · · · (xp,kp , vp).

(11)

Here, each row represents a one-step stable transition; for each integer ℓ = 1, 2, . . . , p, the
pair (xℓ,kℓ

, vℓ) is the next stable combination of the pair (xℓ,1, vℓ). As these form consecutive
stable transitions, we have that

xℓ,kℓ
= xℓ+1,1 for all ℓ = 1, 2, . . . , p − 1. (12)

Considering that the matrix ρ−(!) omits the last stable pair in each transition chain, it
follows that the pairs that actually appear in S are the following:

(x1,1, v1), (x1,2, v1), · · · , (x1,k1−1, v1),
(x2,1, v2), (x2,2, v2), · · · , (x2,k2−1, v2),

· · ·
(xp−1,1, vp−1), (xp−1,2, vp−1), · · · , (xp−1,k2−1, vp−1),

(xp,1, vp), (xp,2, vp), · · · , (xp,kp , vp).

(13)

Note that the last chain does include the stable combination at the end, since the last term
originates from ρ+(!). Using the data of (13), the function φ is given by

φ(xa,b) = va, b = 1, 2, . . . , (ka − 1), a = 1, 2, . . . , p,
φ(xp,kp) = vp.

848 J.-M. YANG AND J. HAMMER

Here, the integer a is fixed along each chain of transitions from one stable combination to
the next, while b indicates the transient states encountered along the way. At the end of the
last stable transition, namely when a = p and b = kp, the relation φ(xp,kp) = vp makes the
closed-loop machine !φ stay indefinitely at the stable combination (xp,kp , vp) of !, which
forms the end of the entire process.

When p = 1, then φ has only one value, namely the character v1. If p > 1, then, for
every integer a = 1, 2, . . . , p − 1, the function φ changes its value from va to va+1 at the
state xa,ka ; this change starts the chain of transitions of the next stable step (see (12)). As
this change in the value of φ occurs at a stable state of !, fundamental mode operation is
preserved (see Proposition 1). At the last state xp, the feedback function φ maintains the
value vp, thus keeping ! in the stable combination (xp,kp , vp). As a result of these values
of φ, the closed-loop system !φ moves through the entire string of consecutive transition
chains given by (11), going from the state x1,1 to the state xp,kp and resting at the last
stable combination (xp,kp , vp). Hence, the feedback function φ induces the required stable
transition without violating fundamental mode operation. This proves that (i) implies (ii).

Conversely, assume that (ii) is valid. Then, there must be a string of stable transitions
that takes the machine ! from the state xi to the state xj. Considering that this string of
stable transitions is implemented by a static feedback function φ, it follows by Proposition
3 that the state/input pairs encountered along this string of stable transitions must form
an implementable set. In other words, there must be an integer p ≥ 1 and a string of stable
transitions as described by (11). In view of the discussion surrounding (13), this implies
that ρ(p)

ij (!) ̸= N . Consequently, (i) is valid and our proof concludes. !
The following statement shows that it is sufficient to consider p-multistep chain reach-

ability matrices up to step p = n − 1. This result is analogous to a statement that appears
in a different context in Murphy, Geng, and Hammer (2002, 2003).
Theorem 2: Let ! = (A,X, f) be an input/state asynchronous machine with n states.
Then, the following two statements are equivalent for all integers i, j ∈ {1, 2, . . . , n}.
(i) ρ

(n−1)
ij (!) ̸= N

(ii) ρ
(p)
ij (!) ̸= N for an integer p ≥ 0.

Proof: Let X = {x1, x2, . . . , xn} be the state set of !. Consider a pair of integers i, j ∈
{1, 2, . . . , n}, and let p ≥ n be an integer. Clearly, if (i) is valid, then it follows directly
from the definition of ρ(p)

ij (!) (see Definition 5) that (ii) is valid for all integers p ≥ n− 1.
Consequently, (i) implies (ii).

Conversely, assume that (ii) is valid for an integer p ≥ 0. If p ≤ n − 1, then (i) is
also valid by the definition of ρ

(n−1)
ij (!) (see Definition 5). Therefore, it only remains to

consider the case where p ≥ n. To this end, let S be a member of ρ
(p)
ij (!), and let (11) be

the string of transition chains that induces S. A slight reflection shows that a transition of
! that consists of p stable steps encounters p+ 1 stable states along the way, including the
first state x1,1 and the last state xp,kp (recall that stable transitions always start from a stable
state and end at a stable state). Specifically, in (11), the transition encompasses the list of
stable states

{x1,1, x2,1, . . . , xp,1, xp,kp}, (14)

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 849

which includes p + 1 states. To make it clear that there are p + 1 states in this list, denote

xp+1,1 := xp,kp ,
vp+1 := vp.

With this notation, the list (14) becomes

{x1,1, x2,1, . . . , xp,1, xp+1,1}. (15)

Now, for p ≥ n, the list (15) includes p+ 1 ≥ n+ 1 states. As there are only n different
states in the state set X of !, there must be a repeating state in the list (15). In other
words, there are two integers a < b, where a, b ∈ {1, 2, . . . , p + 1}, such that xa,1 = xb,1.
Considering that all the states listed in (14) originate from the same implementable set,
it follows by Definition 3 of an implementable set that the equality xa,1 = xb,1 implies
that va = vb in (11). Let us cut out the chains of transitions from xa,1 to the stable state
encountered just before xb,1, to obtain the string of transition chains

(x1,1, v1)(x1,2, v1) · · ·
· · ·

(xa−1,1, v2)(xa−1,2, v2) · · ·
(xb,1, vb)(xb,2, vb) · · ·

· · ·
· · · (xp,1, vp)(xp,2, vp) · · · (xp,kp , vp).

Then, bearing inmind that according to our notation (xp,kp , vp) = (xp+1,1, vp+1), this string
of transition chains gives rise to a set of pairs that is a member of the entry ρ

(p−(b−a))
ij (!).

Finally, if still (p − (b − a)) ≥ n, the same process can be repeated to further shorten
the string. Continuing in this manner, the string can be shortened until it yields a member
of ρ(n−1)

ij (!). This concludes our proof. !
Based on Theorem 2, we define the following notion.

Definition 6: The chain reachability matrix of an asynchronous machine! with n states
is the n × nmatrix ρ(!) := ρ(n−1)(!).
Example 12: The chain reachabilitymatrix of the asynchronousmachine! of Example 1
is given by ρ(!) = ρ(3)(!), where ρ(3)(!) is given in Example 11.

4. Model matching through table lookup

4.1. The chain skeletonmatrix

The chain reachability matrix ρ(!) allows us to derive a simple solution to the problem of
modelmatchingwith state feedback, but in a somewhat non-traditionalway; the traditional
model matching approach is considered in the next section. The approach considered in
the present section yields a simpler condition for the existence of a feedback function that
achieves model matching, at the cost of a somewhat more elaborate implementation.

Recall that model matching by static state feedback refers to the problem of finding a
feedback function ϕ which, when connected around a given asynchronous machine !,

850 J.-M. YANG AND J. HAMMER

yields a closed-loop machine !ϕ that matches a specified stable state machine !′. In the
approach to model matching considered in the present section, the closed-loop machine
!ϕ does not necessarily have the same input alphabet as the model !′ it is required to
match. Instead, in order to match the response of the model !′, the closed-loop machine
!ϕ must be operated in the following manner: for each input character v of !′, there is a
corresponding input character a(v) of !ϕ such that the response of !ϕ to a(v) is the same
as the response of !′ to v.

In this approach, operating the closed-loop machine !ϕ so as to match the model !′

involves the preliminary step of finding the character a(v) that corresponds to the model’s
input character v. The collection of all corresponding pairs (v, a(v)) of input characters
can be listed in a table. This table then serves as a ‘lookup table’, to be used in the process
of controlling !ϕ so as to match the model !′. When the two machines !′ and !ϕ are at
the same stable state, the response of !′ to v is obtained from !ϕ by applying the input
character a(v).

We start our discussion by defining the following matrix.
Definition 7: Let! be an asynchronous machine with the state set X = {x1, . . . , xn} and
with the chain reachability matrix ρ(!). The chain skeleton matrix κ(!) of ! is an n × n
matrix of zeros and ones, with the entries

κij(!) :=
{
1 if ρij(!) ̸= N ,
0 if ρij(!) = N ,

i, j = 1, 2, . . . , n.
Example 13: In Example 12, we calculated the chain reachability matrix ρ(!) of the
machine ! of Example 1. Applying Definition 7 to ρ(!), we obtain the chain skeleton
matrix

κ(!) =

⎛

⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 1

⎞

⎟⎟⎠

of the machine !.
At this point, it is important to compare the notions introduced here to notions used in

Murphy, Geng, and Hammer (2002, 2003), where dynamic state feedback controllers are
investigated. First, recall the one-step matrix of stable transitions R1(!), which is defined
as follows. Let cij be the set of all input characters that take ! from a stable combination
with the state xi to a stable combinationwith the state xj; using the stable recursion function
s of !, we have

cij := {v ∈ A : s(xi, v) = xj}.

Then, letting N be a character that is not in A nor in X, the i, j entry of the n × n matrix
R1(!) is given by

R1
ij(!) =

{
cij if cij ̸= ∅,
N cij = ∅,

(16)

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 851

i, j = 1, 2, . . . , n. Based on this, the one-step skeletonmatrixK1(!) introduced inMurphy,
Geng, and Hammer (2002, 2003) is given by

K1
ij(!) =

{
1 if R1

ij(!) ̸= N ,
0 otherwise,

i, j = 1, 2, . . . , n. Equivalently, we have

K1
ij(!) =

{
1 if xj = s(xi, v) for some v ∈ A,
0 otherwise,

i, j = 1, 2, . . . , n.
Now, let !′ = (A,X, f ′) be an asynchronous machine model that must be matched by

applying static state feedback to the asynchronous machine !. Let K1(!′) be the one-step
skeletonmatrix of!′, let κ(!) be the chain skeletonmatrix of!, and suppose that κ(!) <
K1(!′), where the inequality is taken entry by entry. Considering that these matrices
include only zeros and ones, this implies that there is a pair of integers i, j ∈ {1, 2, . . . , n}
for whichK1

ij(!
′) = 1while κij(!) = 0. The fact thatK1

ij(!
′) = 1means that themodel!′

has a stable transition from the state xi to the state xj. To check whether such a transition
can be implemented in ! with a static state feedback controller, note that, by Definition 7,
the equality κij(!) = 0 means that ρij(!) = N . In view of Definition 6 and Theorem 2,
we conclude from this that ρ(p)

ij (!) = N for all integers p ≥ 1. By Theorem 1, this implies
that there is no state feedback function that can guide ! through a stable transition from
xi to xj in fundamental mode operation. As such a transition is present in the model !′,
we conclude that, when κ(!) " K1(!′), model matching by static state feedback is not
possible. However, in the opposite case, namely when κ(!) ≥ K1(!′), model matching
can be achieved through the following process.

4.2. The process of tablemodelmatching

Let us now examine the case where κ(!) ≥ K1(!′). Consider a pair of integers i, j ∈
{1, . . . , n} for which K1

ij(!
′) = 1. Then, we must also have that κij(!) = 1; in view

of Definition 7, this entails that ρij(!) ̸= N . Consequently, we can select a member
Sij ∈ ρij(!) which is not N . By Theorem 1, there is then a feedback function φij : X → A
for which the closed-loop machine !φij has a stable transition from the state xi to the state
xj in fundamental mode operation.

Now, let J be the set of all pairs of integers (i, j) ∈ {1, . . . , n} × {1, . . . , n} for which
K1
ij(!

′) = 1. Then, following the process of the previous paragraph, we can construct
for each pair (i, j) ∈ J a feedback function φij : X → A for which the closed-loop
machine !φij has a stable transition from the state xi to the state xj in fundamental mode
operation.

Next, let A be an alphabet with exactly #J characters. Assign to each pair (i, j) ∈
J a unique character αij ∈ A. This induces a set isomorphism α : A ∼= J : αij)→
(i, j).

852 J.-M. YANG AND J. HAMMER

Figure 3. State flow diagram of!′
1.

Using the functions {φij} constructed in the last two paragraphs, we can define a partial
function ϕt : X × A → A, where A is the input set of !, by setting

ϕt(xi, u) :=
{

φij(xi) if (i, j) ∈ J and u = αij;
undefined otherwise.

(17)

We can now match the model !′ using the closed-loop machine !ϕt as follows. Build
a partial function T : X × A → A by setting

T(xi, v) :=
{

αij if s′(xi, v) = xj,
undefined otherwise,

(18)

As any function over a finite set, the function T can be represented by a table.
Now, operate the closed-loop machine !ϕt in the following manner: when !ϕt and

!′ are both at the state xi and the external input character v is received, apply the input
character αij = T(xi, v) to the closed-loopmachine!ϕt . This will then take!ϕt to the state
xj, the same state which !′ reaches when the input character v is applied to it. In this way,
we obtain a solution to the model matching problem, although this solution is somewhat
indirect, as it requires the use of the table T to translate input characters of the alphabet A
to input characters of the alphabet A. We refer to this method of model matching by the
term table model matching. Our discussion proves the following.
Theorem 3: Let ! be an asynchronous machine with the chain skeleton matrix κ(!),
and let !′ be a model with the one-step skeleton matrix K1(!′). Then, the following two
statements are equivalent.

(i) ! can match the model !′ through table model matching.
(ii) κ(!) ≥ K1(!′).

Example 14: Assume that the security system represented by the machine ! of Example
1 must be adapted to a different set-up. The newly required response is given by the
asynchronous machine !′

1 described in the state flow diagram of Figure 3. We show now
that this adaptation can be achieved by table model matching. Note that the response of
!′

1 to the input characters a, b, and c is the same as that of !, but !′
1 exhibits a different

response to the input character d.
An examination of Figure 3 shows that!′

1 has the stable recursion function s
′
1 described

by Table 3.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 853

Table 3. The stable recursion function s′1.

a b c d

x1 x3 x4 x1 x4

x2 x3 – – x2

x3 x3 x4 x1 x2

x4 – x4 – x4

From the stable recursion function s′1 described by Table 3, we obtain the one-step
matrix of stable transitions of !′

1:

R1(!′
1) =

⎛

⎜⎜⎝

{c} N {a} {b, d}
N {d} {a} N
{c} {d} {a} {b}
N N N {b, d}

⎞

⎟⎟⎠ . (19)

Based on R1(!′
1), the one-step skeleton matrix of !′

1 is

K1(!′
1) =

⎛

⎜⎜⎝

1 0 1 1
0 1 1 0
1 1 1 1
0 0 0 1

⎞

⎟⎟⎠ .

Referring to the chain skeleton matrix κ(!) derived in Example 13, we can see right away
that κ(!) ≥ K1(!′

1). Consequently, by Theorem 3, there is a feedback function ϕt that
controls the machine ! so as to match the model !′

1 by table model matching.
To derive the feedback function ϕt , we can restrict our attention to entries of the matrix

K1(!) that have the value of 1, namely to the entries

J := {(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 4)}.

Retracing the procedure described in Subsection 4.2, we build an appropriate feedback
functions φij : X → A for each pair (i, j) ∈ J . The feedback function φij is built so as
to induce an autonomous transition of the closed-loop machine !φij from the state xi of
! to the state xj of !. Specifically, the function φij is obtained from the state/input pairs
included in a member of the corresponding entry ρij(!) of the chain reachability matrix
ρ(!) that was derived in Example 12. To this end, consider the pair (1, 1). As we have that
ρ11(!) = {(x1, c)}, the (partial) function φ11 : X → A is defined only at one state by

φ11(x1) = c. (20)

Next, considering the pair (1, 3) of J , the entry ρ13(!) includesmanymembers, and any
oneof thesemembers is adequate for ouruse; let us use themember {(x1, d), (x2, a), (x3, a)},
for example. From these pairs, we obtain the (partial) function φ13 : X → A given by

φ13(x1) = d, φ13(x2) = a, φ13(x3) = a. (21)

854 J.-M. YANG AND J. HAMMER

Table 4. The set isomorphism α.

µi ∈ A α(µi) ∈ J

µ1 (1, 1)
µ2 (1, 3)
µ3 (1, 4)
µ4 (2, 2)
µ5 (2, 3)
µ6 (3, 1)
µ7 (3, 2)
µ8 (3, 3)
µ9 (3, 4)
µ10 (4, 4)

Table 5. The function T .

(x , v) ∈ X × A T(x , v) ∈ A α(µi) ∈ J

(x1, c) µ1 (1,1)
(x1, a) µ2 (1, 3)
(x1, b), (x1, d) µ3 (1, 4)
(x2, d) µ4 (2, 2)
(x2, a) µ5 (2, 3)
(x3, c) µ6 (3, 1)
(x3, d) µ7 (3, 2)
(x3, a) µ8 (3, 3)
(x3, b) µ9 (3, 4)
(x4, b), (x4, d) µ10 (4, 4)

Further, turning to the pair (1, 4) ∈ J and using the member {(x1, b), (x3, b), (x4, b)} of
ρ14(!), we obtain the (partial) function φ14 : X → A given by

φ14(x1) = b, φ14(x3) = b, φ14(x4) = b.

Continuing in this manner, we obtain all functions φij : X → A, (i, j) ∈ J .
Now, as J has 10 elements, it follows from Subsection 4.2 that the alphabetAmust have

10 characters as well; for example, we can use the alphabet

A = {µ1,µ2, . . . ,µ10}.

With this alphabet, we build a set isomorphism α : A ∼= J described by Table 4. Using the
one-step transition matrix R1(!′

1) of the model, we can build now the function T of (18);
the result is given in Table 5. Then, we can define the (partial) function ϕt : X × A → A
by setting

ϕt(xi,µℓ) := φα(µℓ)(xi)

for all pairs (xi,µℓ) for which the expression φα(µℓ)(xi) is meaningful.
Now, consider the closed-loopmachine!ϕt in conjunctionwith Table 5. Let us examine

first the case when !′
1 and !ϕt are both in a stable combination at the state x1, when the

input character c is applied to themodel!′
1. Then, according to Table 5, the input character

µ1 must be applied to the closed-loopmachine!ϕt . By Table 4, this results in the feedback
function φ11 being applied to !; in view of (20), this causes the input character c to be

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 855

applied to !. As a result, ! stays in a stable combination at the state x1, simulating the
response of the model !′

1.
To examine another case, assume that the model !′

1 is in a stable combination at the
state x1, when the input character a is applied to it. According to Table 5, this requires us
to apply the character µ2 to!ϕt , which results in applying to! the feedback function φ13.
In view of (21) and the transition table of ! given in Table 2, this drives !ϕt to a stable
combination at the state x3, again imitating the model !′

1. Continuing in this manner, we
can easily verify that !ϕt does indeed simulate the model !′

1 by table model matching.
We turn next to traditional model matching, which requires additional considerations

for the following reason. The use of the alphabet A makes it possible to tolerate inconsis-
tencies among the functions {φij} in the sense that two such functions may take different
values on a particular state/input pair; this is thanks to the fact that each function φij is
associated with a different character of the alphabet A in the overall feedback function ϕt .
However, in traditional model matching, different values of the feedback function on the
same state/input pair form an inconsistency in the definition of the feedback function, and
therefore cannot be tolerated. We discuss this point in the next section.

5. Traditional model matching

5.1. Necessary and sufficient conditions for traditional model matching by static
state feedback

Let! = (A,X, f) be an asynchronous machine with the state set X = {x1, x2, . . . , xn}, and
let!′ = (A,X, s′) be a stable state machine serving as a model. Here,!′ has the same state
set X as !. Considering that !′ is a stable state machine, its stable recursion function is
the same as its recursion function, namely it is s′. Our objective is to find a state feedback
function ϕ : X × A → A for which !ϕ = !′, where the equality refers to the stable state
machine induced by !ϕ .

Now, let s be the stable recursion function of the asynchronous machine ! we need
to control. To examine the conditions under which ! can match the model !′ via static
state feedback, consider the case where!′ has two distinct one-step stable transitions with
the same input character v. Specifically, assume that the input character v induces in !′ a
stable transition from the state xi to the state xj, and, in addition, it also induces in !′ a
stable transition from the state xi′ to the state xj′ . Recalling from (16) the one-step matrix
of stable transitions of !′, this means that v ∈ R1

ij(!
′) ∩ R1

i′j′(!
′).

Now, assume that there is a static state feedback function ϕ : X × A → A for which
the closed-loop machine !ϕ emulates the stable transitions of the model !′, namely that
!ϕ = !′. Let ρ(!) be the chain reachability matrix of !. Then, in the closed-loop
machine !ϕ , the external input character v must induce a stable transition from xi to xj
as well as a stable transition from xi′ to xj′ . Considering that these two transitions use the
same external input character v, the feedback function ϕ depends for these two transitions
only on the state of !. In view of Proposition 3, this implies that the union ρij(!) ∪
ρi′j′(!)must contain an implementable set. RecallingDefinition 4 of compatible union and
Proposition 5, this implies that we must have ρij(!) , ρi′j′(!) ̸= N . The same argument
applies to all stable transitions of !′ that are induced by the external input character v,
since, for a constant external input character, the feedback function ϕ is only a function of

856 J.-M. YANG AND J. HAMMER

the state of !. This argument leads us to a necessary and sufficient condition under which
model matching by state feedback is possible. At this point, it is convenient to introduce
the following quantity for a character v ∈ A:

F(v|!′) =
{
(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n} : v ∈ R1

ij(!
′)
}

. (22)

Theorem 4: Let ! = (A,X, f) and !′ = (A,X, s′) be asynchronous machines, where !′

is a stable state machine. Let ρ(!) be the chain reachability matrix of !, let R1(!′) be the
one-step matrix of stable transitions of !′, and, for an input character v ∈ A, let F(v|!′)
be given by (22). Then, the following two statements are equivalent.

(i) There is a static state feedback function ϕ : X × A → A for which !ϕ = !′.
(ii) ,(i,j)∈F(v|!′)ρij(!) ̸= N for all v ∈ A.

Proof: The fact that (i) implies (ii) is a consequence of the discussion preceding the
statement of the theorem. Conversely, assume that (ii) is valid. For a character v ∈ A,
denote

σ (!|!′, v) :=
⊔

(i,j)∈F(v|!′)

ρij(!).

If σ (!|!′, v) ̸= N , then, by Theorems 1 and 2, there is a feedback functionφv : X → A for
which the closed-loop machine !φv implements all one-step stable transitions induced by
the input character v on the model!′. We can then combine the functions φv for different
input characters v ∈ A into one partial function ϕ : X × A → X : ϕ(x, v))→ φv(x) at
all pairs (x, v) ∈ X × A for which F(v|!′) ̸= ∅. Then, by construction, the closed-loop
machine !ϕ simulates all one-step stable transitions of the model !′. As a result, !ϕ also
implements any succession of stable transitions of !′, and we have !ϕ = !′. This shows
that (ii) implies (i), and our proof concludes. !

It is worthwhile to consider a few special circumstance that may appear in Theorem 4.
First, clearly, if F(v|!′) = ∅, then the character v is not a permissible input character
of the model !′, and hence v will never be applied to the closed-loop machine !ϕ that
simulates the model. As a result, there is no need to define the feedback function ϕ on
any of the pairs (x, v), x ∈ X, as these pairs will never appear during the operation of the
closed-loop machine !ϕ .

Similarly, consider an integer i ∈ {1, 2, . . . , n} for which (i, j) /∈ F(v|!′) for all integers
j ∈ {1, 2, . . . , n}. Then, the pair (xi, v) is never used by the model !′. Clearly, in such case,
the feedback function ϕ does not need to be defined on the pair (xi, v), as this pair will
never be used during model matching.

The general process of constructing a feedback function for traditional model matching
can be outlined as follows.
Procedure 1: Construction of a feedback function (traditional model matching).

Let ! = (A,X, f) and !′ = (A,X, s′) be asynchronous machines with the state set
X = {x1, x2, . . . , xn} and the input alphabet A = {v1, . . . , vm}, where !′ is a stable state
machine. Let ρ(!) be the chain reachability matrix of ! and let R1(!′) be the one-step
matrix of stable transitions of!′. Assume that condition (ii) of Theorem4 is satisfied. Then,
performing the following steps for every input character v ∈ A results in a construction of
a (partial) function ϕ : X × A → A which, when used as a feedback function for !, yields
!ϕ = !′. The steps below are based on Theorem 4.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 857

Step 1. Calculate the chain reachability matrix ρ(!) of the controlled machine !, follow-
ing the process described in Subsection 3.3.

Step 2. Calculate the one-step stable reachability matrix R1(!′) of the model !′ using
(16).

Step 3. Set ℓ = 1.
Step 4. Using (22), find the set of pairs F(vℓ|!′).

IfF(vℓ|!′) = ∅ and ℓ < m, then replace ℓ by ℓ+1 and repeat from the beginning
of Step 4.
If F(vℓ|!′) = ∅ and ℓ = m, then go to Step 8.

Step 5. If ,(i,j)∈F(vℓ|!′)ρij(!) = N , then model matching is not possible (Theorem 4).
Terminate the procedure.

Step 6. Pick any member of ,(i,j)∈F(vℓ|!′)ρij(!) and denote it by Sℓ. Let t(ℓ) be the
cardinality of Sℓ and let

{(xℓ1, uℓ1), (xℓ2, uℓ2), . . . , (xℓt(ℓ), uℓt(ℓ))} ⊆ X × A

be the elements of Sℓ. Define the feedback function ϕ : X × A → A on the subset
X × {vℓ} by setting

ϕ(xℓi, vℓ) := uℓi, i = 1, 2, . . . , t(ℓ).

Step 7: If ℓ < m, then replace ℓ by ℓ + 1 and repeat from Step 4.
Step 8: Terminate the procedure. The resulting functionϕ achievesmodelmatching!ϕ =

!′.

Needless to say, Procedure 1 is utilized only once during the life of a system, namely
during the system’s design stage. We demonstrate the construction of feedback functions
in Example 15 below. Before that, we discuss a few features and special cases that help
clarify several underlying issues.

5.2. Comparing the conditions for table model matching with the conditions for
traditional modelmatching

To compare our discussion in this section to the discussion of Section 4, it is helpful to
restate Theorem 3 in a form that more closely resembles Theorem 4. To this end, let !

be an asynchronous machine with the state set X and the input alphabet A, and let !′

be an asynchronous machine model with the same state set and input alphabet. A brief
examination of Theorem 3 shows that, in our present notation, the machine ! can match
the model !′ by table model matching if and only if ρij(!) ̸= N whenever there is an
input character v ∈ A for which (i, j) ∈ F(v|!′). It is worthwhile to restate Theorem 3 in
these terms.
Theorem 5: Let ! = (A,X, f) and !′ = (A,X, s′) be asynchronous machines, where !′

is a stable state machine. Let ρ(!) be the chain reachability matrix of !, let R1(!′) be the
one-step matrix of stable transitions of !′, and, for an input character v ∈ A, let F(v|!′)
be given by (22). Then, the following two statements are equivalent.

(i) ! can match the model !′ through table model matching.
(ii) ρij(!) ̸= N whenever there is an input character v ∈ A for which (i, j) ∈ F(v|!′).

858 J.-M. YANG AND J. HAMMER

In view of Definition 4 of the compatible union, condition (ii) of Theorem 4 is clearly
violated if there is an input character v ∈ A such thatρij(!) = N for a pair (i, j) ∈ F(v|!′).
By this observation, Theorems 5 and 4 lead to the following statement.
Corollary 1: If traditional model matching by static state feedback is possible, then so is
table model matching.

Note, however, that the converse of Corollary 1 is not true in general: the feasibility
of table model matching does not imply the feasibility of traditional model matching.
Still, as the condition for table model matching (Theorem 3(ii)) is easier to check than
the condition for traditional model matching (Theorem 4(ii)), it is helpful to check first
whether the model !′ can be matched by ! through table model matching; if not, then
traditional model matching will also not be possible. On the other hand, if table model
matching is possible, then we can continue to check whether the condition for traditional
model matching holds as well.

In the next subsection, we point out a special, but not uncommon, case in which the
calculation of a feedback function ϕ that achieves traditional model matching can be
simplified. Specifically, we refer to cases where there are similarities between the machine
! and the model !′.

5.3. Exploiting similarities between the controlledmachine and themodel

Let ! be an asynchronous machine with the state set X = {x1, x2, . . . , xn} and the stable
recursion function s, and let !′ be a model with the same state set X and with the stable
recursion function s′. As before, our objective is to find a feedback function ϕ : X×A → A
for which !ϕ = !′. Now, let v ∈ A be an input character and refer to the family F(v|!′)
of (22). Assume that there is a pair of integers (i, j) ∈ F(v|!′) for which also

s(xi, v) = xj. (23)

Then, the machine ! has a stable transition that is identical to a stable transition of the
model !′. This stable transition of ! may originate from a chain of transitions through
the states xi, xi1, . . . , x

i
ki−1, x

j of !; here, xi1, . . . , x
i
ki−1 are transient states that ! passes on

its way from a stable combination with the state xi to a stable combination with the state
xj. In such case, the entry ρij(!) of the chain transition matrix includes the member

{(xi, v), (xi1, v), . . . , (xiki−1, v), (x
j, v)}. (24)

Further, assume that there is another pair of integers (i′, j′) ∈ F(v|!′) such that

s(xi
′
, v) = xj

′
.

Just as before, this pair may induce a chain of transitions in !, passing through states
xi′ , xi′1 , . . . , x

i′
ki′−1, x

j′ . Then, the entry ρi′j′(!) of the chain transition matrix includes the
member

{
(xi

′
, v), (xi

′
1 , v), . . . , (x

i′
ki′−1, v), (x

j′ , v)
}

. (25)

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 859

Figure 4. State flow diagram of!′
2.

As the members (24) and (25) both have the same input character v, they are consistent.
Consequently,

{(xi, v), (xi1, v), . . . , (xiki−1, v), (x
j, v)} ∪ {(xi′ , v), (xi′1 , v), . . . , (xi

′
ki′−1, v), (x

j′ , v)}
∈ ρij(!) , ρi′j′(!). (26)

The argument used to derive (26) leads to the following conclusion.
Proposition 8: Let ! and !′ be asynchronous machines with the same state set X =
{x1, . . . , xn}. Let s be the stable recursion function of !, let ρ(!) be the chain transition
matrix, and let F(v|!′) be given by (22). Assume that there is an input character v ∈ A
such that s(xi, v) = xj for all pairs (i, j) ∈ F(v|!′). Then, using the notation of (24), the
following is true.

⋃

(i,j)∈F(v|!′)

{(xi, v), (xi1, v), . . . , (xiki−1, v), (x
j, v)} ∈

⊔

(i,j)∈F(v|!′)

ρij(!). (27)

When the condition of Proposition 8 is satisfied, then the elements of the union on the
left side of (27) represent valid pairs of the controlled machine! for which the stable state
behaviour of ! itself simulates the model !′. In such case, the external input character
v of the closed-loop machine !ϕ can be directly applied to the machine !; the feedback
function ϕ can then serve as the identity function for this input character. In other words,
we can set

ϕ(xi, v) := v whenever s(xi, v) = xj for all pairs (i, j) ∈ F(v|!′). (28)

Of course, for input characters for which (28) is not valid, the feedback function ϕ must
be constructed by following Procedure 1. If applicable, this observation may simplify the
construction of the feedback function ϕ.
Example 15: Assume that the machine ! of Example 1 must be adapted to yet another
operating environment, where its response must conform to the asynchronous machine
!′

2 described by the state flow diagram of Figure 4. We show now that this adaptation can
be accomplished by traditional model matching.

860 J.-M. YANG AND J. HAMMER

Table 6. The stable recursion function s′2.

a b c d

x1 x3 x4 x1 x2

x2 x3 – – x2

x3 x3 x4 x1 x2

x4 – x4 – –

The stable recursion function s′2 of !′
2 is described by Table 6 (note that !′

2 is a stable
state machine). Using the stable recursion function s′2, we can find the one-step matrix of
stable transitions of !′

2, which is given by (29).

R1(!′
2) =

⎛

⎜⎜⎝

{c} {d} {a} {b}
N {d} {a} N
{c} {d} {a} {b}
N N N {b}

⎞

⎟⎟⎠ . (29)

Comparing Tables 2 and 6, we can see that s(x, v) = s′2(x, v) for all valid pairs (x, v) ∈
X × {a, b, c}. Consequently, in view of (28), we can set

ϕ(x, v) = v for all (x, v) ∈ X × {a, b, c}. (30)

Thus, we only have to check the case of the input character d. For this input character, it
follows from (29) that

F(d|!′
2) = {(1, 2), (2, 2), (3, 2)}.

Applying Theorem 4, we calculate the compatible union
⊔

(i,j)∈F(d|!′
2)

ρij(!) = ρ12(!) , ρ22(!) , ρ32(!)

= {(x1, d), (x2, d)} , {(x2, d)} , {(x3, c), (x1, d), (x2, d)}
= {(x1, d), (x2, d), (x3, c)} ̸= N . (31)

Combining (31) with (30) and Proposition 8, we conclude that ,(i,j)∈F(v|!′)ρij(!) ̸= N
for all v ∈ A. Consequently, it follows by Theorem 4 that there is a static state feedback
function ϕ : X × A → A for which !ϕ = !′

2.
We turn now to the assembly of the feedback function ϕ : X × A → A. First, referring

to (30), we can set

ϕ(x, v) := v for all states x ∈ X and for all input characters v ∈ {a, b, c}.

Further, for the input character d, we define ϕ according to the pairs that appear in (31),
namely we set

ϕ(x1, d) := d,
ϕ(x2, d) := d,
ϕ(x3, d) := c.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 861

This completes the construction of the feedback function ϕ in this case.With this feedback
function, we obtain !ϕ = !′

2.
Note that, in this case, Corollary 1 implies that there also exists a feedback function ϕt

which, when applied to !, achieves table model matching of !′
2.

As we can see from Examples 14 and 15, it is often possible to achieve design objectives
using static state feedback controllers. When this is possible, it facilitates a controller
implementation that is simpler than the implementation of dynamic controllers employed
by Murphy, Geng, and Hammer (2002, 2003) and Venkatraman and Hammer (2006b).
Example 16: In Example 14, we have introduced the model !′

1 and we have seen that !
can match !′

1 via table model matching. Let us examine now whether ! can also match
the model !′

1 by traditional model matching. To this end, recall that the one-step matrix
of stable transitions R1(!′

1) is given in (19), while the chain reachability matrix ρ(!) is
given in Example 12. Let us examine, for instance, the input character d. From (19) we can
see that

F(d|!′
1) = {(2, 2), (3, 2), (1, 4), (4, 4)}.

Applying Theorem 4, we calculate the compatible union
⊔

(i,j)∈F(d|!′
1)

ρij(!) = ρ22(!) , ρ32(!) , ρ14(!) , ρ44(!)

= {(x2, d)} , {(x3, c), (x1, d), (x2, d)} , ρ14(!) , {(x4, b), (x4, d)},

where ρ14(!) is given by (10). A brief examination of (10) shows that the pair (x3, c) that
appears in ρ32(!) is incompatible with all members of ρ14(!), since the latter all include
either the pair (x3, b) or the pair (x3, d). Consequently,

⊔

(i,j)∈F(d|!′
1)

ρij(!) = N ,

and hence, by Theorem 4, it is not possible for the machine ! to match !′
1 by traditional

model matching. However, as we have seen in Example 14, the machine ! can match !′
1

via table model matching.

6. Conclusion and future research

Static state feedback controllers furnish the simplest means of controlling asynchronous
sequential machines, since static controllers are represented by functions, rather than by
machines. In practical terms, this means that static controllers can be implemented by
logical gates; they require no memory elements.

In this paper, we discussed two methodologies for model matching by static state
feedback: traditionalmodelmatching and tablemodelmatching. The secondmethodology
is applicable under somewhat broader conditions than the traditional one, at the expense
of a slightlymore involved implementation. For bothmethodologies, we derived necessary
and sufficient conditions for achieving model matching by static state feedback. Checking
these conditions is undemanding, as they are based simply on counting the number

862 J.-M. YANG AND J. HAMMER

of members of certain sets that are derived from the given recursion functions of the
controlled machine and the desired model.

When model matching by static state feedback is possible, we provided effective pro-
cedures for the construction of appropriate feedback functions. The execution of these
procedures was demonstrated by computational examples.

Future research in this direction includes characterizing the conditions under which
static state feedback controllers can be deployed as part of an adaptive control scheme
for asynchronous sequential machines; the conditions under which static state feedback
controllers can be used as part of a defensive mechanism against adversarial interventions
in the operation of asynchronous machines; and applications of static controllers in other
branches of the theory of control for asynchronous sequential machines.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work of J.-M. Yang was supported in part by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and
future Planning [number 2015R1A2A1A15054026], and in part by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
[number 2015R1D1A1A01056764].

Notes on contributors

Jung-Min Yang is a professor at the School of Electronics Engineering,
Kyungpook National University, Republic of Korea. He received his BS, MS
and PhD degrees in Electrical Engineering from Korea Advanced Institute
of Science and Technology (KAIST) in 1993, 1995 and 1999, respectively.
His research interests include corrective control of asynchronous sequential
machines and control of complex Boolean networks.

Jacob Hammer is a professor of electrical and computer engineering at the
University of Florida in Gainesville, Florida, USA. He received his BSc, MSc
and DSc degrees from the Technion – Israel Institute of Technology in Haifa,
Israel. His research interests are in the general area of control theory, including
the control of linear and non-linear systems and the control of asynchronous
sequential machines.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 863

References

Barrett, G., and S. Lafortune. 1998. “Bisimulation, the Supervisory Control Problem, and Strong
Model Matching for Finite State Machines.” Discrete Event Dynamic Systems: Theory and
Applications 8 (4): 377–429.

Geng, X., and J. Hammer. 2005. “Input/Output Control of Asynchronous Sequential Machines.”
IEEE Transactions on Automatic Control 50 (12): 1956–1970.

Hammer, J. 1994. “On Some Control Problems in Molecular Biology.” In Proceedings of the IEEE
Conference on Decision and Control, Lake Buena Vista, FL, 4098–4103.

Hammer, J. 1996. “On Corrective Control of Sequential Machines.” International Journal of Control
65 (2): 249–276.

Kohavi, Z. 1978. Switching and Finite Automata Theory. 2nd ed. New York: McGraw-Hill.
Kumar, R., S. Nelvagal, and S. I. Marcus. 1997. “A Discrete Event Systems Approach for Protocol
Conversion.” Discrete Event Dynamic Systems: Theory and Applications 7 (3): 295–315.

Martin, A. J., and M. Nyström. 2006. “Asynchronous Techniques for System-on-Chip Design.”
Proceedings of IEEE 94 (6): 1089–1120.

Murphy, T. E., X. Geng, and J. Hammer. 2002. “Controlling Races in Asynchronous Sequential
Machines.” In Proceeding of the IFACWorld Congress, Barcelona: Elsevier BV.

Murphy, T. E., X. Geng, and J. Hammer. 2003. “On the Control of Asynchronous Machines with
Races.” IEEE Transactions on Automatic Control 48 (6): 1073–1081.

Peng, J., and J. Hammer. 2010. “Input/Output Control of Asynchronous Sequential Machines with
Races.” International Journal of Control 83 (1): 125–144.

Peng, J., and J. Hammer. 2012. “Bursts and Output Feedback Control of Non-deterministic
Asynchronous Sequential Machines.” European Journal of Control 18 (3): 286–300.

Sparsø, J., and S. Furber. 2001. Principles of Asynchronous Circuit Design – A Systems Perspective.
Dordrecht: Kluwer Academic.

Thistle, J. G., and W. M. Wonham. 1994. “Control of Infinite Behavior of Finite Automata.” SIAM
Journal on Control and Optimization 32 (4): 1075–1097.

Tinder, R. F. 2009. Asynchronous Sequential Machine Design and Analysis: A Comprehensive
Development of the Design and Analysis of Clock Independent State Machines and Systems. San
Mateo, CA: Morgan & Claypool.

Venkatraman, N., and J. Hammer. 2006a. “Controllers for Asynchronous Machines with Infinite
Cycles.” In Proceedings of the 17th International Symposium on Mathematical Theory of Networks
and Systems, Kyoto.

Venkatraman, N., and J. Hammer. 2006b. “On the Control of Asynchronous Sequential Machines
with Infinite Cycles.” International Journal of Control 79 (7): 764–785.

Venkatraman,N., and J.Hammer. 2006c. “Stable Realizations ofAsynchronous SequentialMachines
with Infinite Cycles.” In Proceedings of the Asian Control Conference, 45–51. Bali, Indonesia.

Yang, J.-M. 2011. “Model Matching Inclusion for Input/State Asynchronous Sequential Machines.”
Automatica 47 (3): 597–602.

Yang, J.-M., and J. Hammer. 2008. “State Feedback Control of Asynchronous Sequential Machines
with Adversarial Inputs.” International Journal of Control 81 (12): 1910–1929.

Yang, J.-M., and J. Hammer. 2010. “Asynchronous Sequential Machines with Adversarial
Intervention: The Use of Bursts.” International Journal of Control 83 (5): 956–969.

Yang, J.-M., and S. W. Kwak. 2010. “Realizing Fault-Tolerant Asynchronous Sequential Machines
Using Corrective Control.” IEEE Transactions on Control Systems Technology 18 (6): 1457–1463.

Yevtushenko, N., T. Villa, R. K. Brayton, A. Petrenko, and A. L. Sangiovanni-Vincentelli. 2008.
“Compositionally Progressive Solutions of Synchronous FSMEquations.”Discrete Event Dynamic
Systems: Theory and Applications 18 (4): 51–89.

	1. Introduction
	2. Fundamentals
	2.1. Notation
	2.2. Fundamental mode operation
	2.3. Operations on transition chains

	3. The chain reachability matrix
	3.1. The one-step chain reachability matrix
	3.2. Implementation considerations
	3.3. The multi-step chain reachability matrix

	4. Model matching through table lookup
	4.1. The chain skeleton matrix
	4.2. The process of table model matching

	5. Traditional model matching
	5.1. Necessary and sufficient conditions for traditional model matching by static state feedback
	5.2. Comparing the conditions for table model matching with the conditions for traditional model matching
	5.3. Exploiting similarities between the controlled machine and the model

	6. Conclusion and future research
	Disclosure statement
	Funding
	References

