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State feedback for non-linear control systems 

JACOB HAMMERt 

A theory of static state feedback for non-linear discrete-time systems is developed. 
The theory applies to non-linear systems possessing a recursive representation of the 
form xk+ 1 = f(xk, ud, where f is a continuous function, and it deals with the 
construction of continuous state feedback functions that internally stabilize a given 
system. The theory yields an explicit method for the computation of stabilizing 
feedback functions, and several examples of the computation of such functions are 
provided. 

1. Introduction 
The present paper is devoted to the development of a theory of static feedback for 

nonlinear discrete-time systems described by recursive representations of the form 

xk+i=f(xk,ud, k=0,1,2, ... ( 1.1) 

Here {ukH0=o is a sequence of m-dimensional real vectors, serving as the input 
sequence of the system; {xdk=o is a sequence of p-dimensional real vectors, serving as 
the output sequence of the system; and f is a continuous function, called the recursion 
function. It is assumed that the initial condition x 0 is specified. For the sake of 
convenience, we refer to a system described by a recursion of the form (1.1) as an 
input/state system. 

The basic control configuration considered is of the form shown in the Figure. The 
feedback loop is closed through the continuous feedback function a(x, v), and :E 
denotes the given system that needs to be controlled. The external input sequence of 
the closed loop is the sequence { vk }k= 0 of m-dimensional real vectors, and the overall 
input/output relation induced by the configuration is denoted by :Ea. The configur­
ation depicts static feedback in the sense that the current output u of the feedback 
function a is determined by the current values of x and v, and is given by the relation 

( 1.2) 
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When this relation is substituted into the recursive representation ( 1.1) of the given 
system :E, a recursive representation for the closed-loop system :Ea results in the form 

( 1.3) 
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The main objective of the theory developed in the present paper is to facilitate the 
computation of feedback functions a for which the closed-loop system shown in the 
Figure is internally stable. By 'internally stable' we mean that the closed-loop system 
is stable, and its stability is preserved when small noises tint the output signals of L 
and a. 

As is well known, the classical theory of feedback mainly deals with additive 
feedback configurations, which are configurations in which the feedback function a is 
of the form 

a(x, v) = v - <p(x) ( 1.4) 

where <p is a continuous function. In the present paper we allow a substantial 
departure from classical feedback theory by not requiring the feedback function a to 
be additive. As it turns out, in general, static additive feedback is not adequate for the 
global stabilization of non-linear input/state systems. When the additivity restriction 
is removed, a rather general class of non-linear input / state systems can be stabilized 
by static feedback. In the case that the given system I: is linear (i.e. when f(x, u) = 
Ax+ Bu), the theory developed here includes the results of the standard linear state­
feedback theory. 

The basic notion of stability that we employ relates to continuity; a system is 
regarded stable if it induces a continuous map from its space of input sequences to its 
space of output sequences. Internal stability is then added as an additional require­
ment, by demanding that the closed-loop system La maintain its stability despite small 
noises that may corrupt the output signals of Land of a. Following Hammer ( 1986), 
the present theory deals with stabilization over bounded domains. The basic design 
objective is to obtain internal stabilization of the given system L over a bounded 
domain of input sequences. The design specifications include the desired maximal 
amplitudes of the input sequences and of the output sequences of the stabilized closed­
loop system. The design procedure then derives a continuous feedback function a 
for which the closed-loop system La is internally stable and does not exceed the 
specified output amplitude bound, as long as the input amplitude does not exceed its 
own specified bound. From a theoretical standpoint, the bounds on the input and 
output amplitudes can be chosen arbitrarily large; in practice, however, such bounds 
originate from the physical characteristics of the systems involved. We adopt here the 
notion of stabilization over a bounded domain for two main reasons. First, it allows 
the designer to incorporate into the design procedure realistic and imperative 
considerations relating to the maximal signal amplitudes permitted by the physical 
setup. And, secondly, it yields a substantial simplification of the mathematical 
complexity of the stabilization problem. 

The basic notion on which our non-linear state-feedback theory rests is the notion 
of an eigenset of the given recursion function f of the system I: that needs to be 
controlled. In order to describe this notion, we need some notation. As usual, [RP 
denotes the set of all p-dimensional real vectors, where p > 0 is an integer. By ITP: [RP x 
!Rm-+ [RP we denote the standard projection onto the first p coordinates given, for 
any vector x = (x 1 , ... , xp+m) E [RP x !Rm, by ITPx == (x 1 , ... , xp). Now let L be 
a system having a recursive representation xk+ 1 = f(xk> uk), where f: [RP x !Rm-+ [RP is 
a continuous function. An eigenset of the function f is a subset E c [RP x !Rm that 
satisfies the conditionf[E] c ITP[E], wheref[E] simply denotes the image of the set E 
under the function f In qualitative terms, an eigenset is simply a set of states and 
corresponding inputs having the property that when the system is started from a state 
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within the set, any input corresponding to that state generates a new state which is 
again within the set. The notion of an eigenset is naturally related to the notion of an 
invariant set commonly used in the theory of autonomous systems. 

In the context of feedback theory, the eigensets of interest are non-empty and 
bounded; namely, they are non-empty eigensets E satisfying EC [ -ct, ct]P X [ -ct, ctr 

for some real number ct> 0. Here [ - ct, ct JP denotes the set of all p-dimensional real 
vectors whose coordinates belong to the interval [ -ct, ct]. As discussed in § 4, the 
computation of bounded eigensets just involves the solution of certain sets of 
inequalities derived from the given recursion function f Once the bounded eigensets 
off are known, stabilizing feedback functions (J for the system :E can be computed, 
whenever they exist. The necessary and sufficient conditions for the existence of a 
stabilizing feedback function are rather simple in this framework. Somewhat 
inaccurately stated, these conditions amount to the requirement that the recursion 
function f possess a non-empty, open and bounded eigenset. In§ 4 we provide a few 
examples on the computation of stabilizing feedback functions for non-linear 
input/state systems. 

The present paper is written within the framework of Hammer (1984, 1986). 
Recent studies of the theory of stabilization for non-linear systems can be found in 
Desoer and Lin ( 1984), Desoer and Kabuli ( 1988), Tay and Moore ( 1989), Sontag 
(1981, 1989), the references listed in these papers, and others. 

2. Notation and basics 
The systems that we consider are discrete-time systems, accepting sequences of 

m-dimensional real vectors as their input and generating sequences of p-dimensional 
real vectors as their output, where m and pare arbitrary positive integers. For an integer 
m > 0, denote by S(!Rm) the set of all sequences { u0 , u1 , ... } of m-dimensional real 
vectors ui E !Rm, i = 0, 1, 2, .... Then a system is simply a map :E: S(!Rm)-+ S(!RP), 
transforming m-dimensional input sequences into p-dimensional output sequences. 
Given a subset Sc S(!Rm), denote by L[SJ the image of the set Sunder L, namely the 
set of all elements x E S(IRP) satisfying x = :Eu for some element u ES. 

For a vector u E !Rm, denote lul == max {lud, i = 1, ... , m}, the maximal absolute 
value of the coordinates. For a sequence u E S(!Rm) let lul == supi~o lud, so that I · I 
becomes the usual l':tJ norm. For most of our discussion we shall employ a weighted /00 

norm, given by p(u) == supi~o 2-ilud for all u E S(!Rm). From the norm p we construct 
a metric p( ·, ·) on our spaces of sequences, given by p(u, v) == p(u- v). For a set 
Sc S(!Rm) we denote by S the closure of the set with respect to the topology induced 
by p. Unless explicitly stated otherwise, continuity of maps over spaces of sequences 
is with respect to the topology induced by the metric p. 

Of particular importance to our discussion are spaces of bounded sequences. For 
a real number e > 0 we denote by S(em) the set of all sequences u E S(!Rm) satisfying 
lul ~ e, namely, the set of all m-dimensional sequences bounded bye (with respect to 
the /00 norm). A system :E: S(!Rm)-+ S(!RP) is said to be BI BO (bounded-input bounded­
output) stable if for every real number e > 0 there is a real number M > 0 such that 
:E[S(em)] C S(MP) . 

We can now define the basic notion of stability that we employ in our discussion. A 
system L: S(!Rm)-+ S(IRP) is stable if it satisfies the following two conditions: (i) it is 
BIBO stable, and (ii) for every real number e > 0 the restriction :E: S( em)-+ S( !RP) is a 
continuous map (with respect to the topology induced by the metric p). As shown 
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previously (Hammer 1984, 1986, 1989), this notion of stability is particularly 
convenient for the solution of the stabilization problem for non-linear discrete-time 
systems, and it conforms with the qualitative notion of stability that originates from 
the Lyapunov theory. 

It will be convenient to have at our disposition the notion of a homogeneous 
system, which is defined as follows (Hammer 1987). 

Definition 2.1 
A system l:: S(IRm) ~ S(IRP) is a homogeneous system if for every real number ex> 0 

and for every subset S c S( cxm) the following holds: Whenever there exists a real 
number() > 0 such that l:[SJ c S( {)P), the restriction of I: to the closure S of the set Sin 
S(cxm) is a continuous map l::S~S(()P). 

In qualitative terms, a system is homogeneous if it is continuous whenever its 
outputs are bounded. For our present purposes, we shall need the following class of 
homogeneous systems (Hammer 1987). 

Proposition 2.1 
Let I:: S(IRm) ~ S(IRP) be a system having a recursive representation of the 

form xk+ 1 = f(xk, uk) with the initial condition x 0. If the recursion function 
f: !RP x IRm ~ !RP is a continuous function then l: is a homogeneous system. 

One of the most important properties of homogeneous systems is the fact that a 
homogeneous system is stable (i.e. bounded and continuous) whenever it is BIBO 
stable. This fact is a direct consequence of the definition of a homogeneous system, 
and it yields a substantial simplification of the theory of stabilization. In view 
of Proposition 2.1, all of the systems l: discussed in the present paper are homo­
geneous systems. Furthermore, in the feedback configuration shown in the Figure let 
l:: S(IRm) ~ S(IRP) be an input/state system represented by xk+ 1 = f(xk, uk), and let 
u: IRP x IRm ~ IRm be a continuous feedback function. Then, since f and u are both 
continuous functions, it follows by ( 1.3) and Proposition 2.1 that the closed-loop 
system La is also a homogeneous system. 

3. Feedback functions, stabilization and eigensets 
The classical theory of feedback deals largely with additive feedback configur­

ations, which require the feedback function u in the Figure to be of the form (1.4). As it 
turns out from our ensuing discussion, the restriction to additive feedback functions is 
too constrictive in our present framework. The class of non-linear input/state systems 
that can be globally stabilized through the use of static additive feedback is quite 
small. In generalizing the theory of state feedback to non-additive feedback functions, 
we should like to maintain two of the most fundamental properties of the feedback 
operation. These are continuity and reversibility. 

The continuity requirement is quite obvious-we require the feedback function u 
to be a continuous function. Reversibility is a somewhat more subtle property, 
requiring the feedback operation to be reversible in the sense that it can be 'undone' by 
another feedback operation. To explain the reversibility property more fully, consider 
a classical additive feedback configuration. In this case the feedback function is of the 
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form 

a= v - </>(x) == a-(x, v) (3.1) 

In order to apply this feedback function, set u = a-(x, v) in the Figure and obtain the 
closed-loop system L 11- , with v serving as the external input. Next, apply the feedback 
function 

a+ (x, w) == w + </>(x) (3.2) 

to the closed-loop system L 11- by setting v = a+ (x, w). The new closed-loop system is 
then (L 11 - ) 11+, and, as we show in a moment, it has the same input/output relation as 
the original system L. Thus the feedback operation represented by a- is undone by 
a+, with w serving now as the external input. Indeed, in view of (1.3), the recursion 
function f 11- of L 11- is given by 

f 11- (x, v) = f(x, v - </>(x)) (3.3) 

where f is the recursion function of the original system L. When the feedback function 
a+ is applied to the closed-loop system L 11-, the recursion function f 11-u+ of the 
resulting system (L 11-) a+ becomes, by ( 1.3), 

f 11- 11+ (x, w) = fu-(x, w + </>(x)) = f(x, (w + </>(x)) - </>(x)) 

= f(x, w) (3.4) 

and the original recursion function is recovered. Thus additive feedback is a reversible 
feedback operation. On a level of principles, a reversible feedback operation 
guarantees that no information about the original system L is irretrievably lost when 
the loop is closed. The reversibility of the additive feedback operation has substantial 
implications in classical feedback theory and practice; for instance, feedback configur­
ations can be used in practice to measure parameters of an unstable system L by 
inserting it into a stabilizing reversible feedback loop. The parameters of L can then be 
recovered from the parameters of the closed loop by reversing the feedback operation. 
All feedback functions a considered in the present paper are required to yield 
reversible feedback operations. 

The reversibility requirement lends itself to a fairly straightforward analysis. Let 
a: IRP x IRm-+ !Rm, (x, v) ~a(x, v), be a function, and for every element x E IRP denote by 
ax: !Rm-+ !Rm the partial function given by ax( v) == a(x, v) for all v E !Rm. The recursion 
function f 11 of the closed-loop system L 11 is then given by 

fu ( X, V) = f ( X, <Ix( V)) (3.5) 

where f is the recursion function of the system L. Assume now that the system La is 
itself enclosed in a feedback loop, using the feedback function w: IRP x IRm---+ !Rm, 
(x, w)~w(x, w) = v, so that there are now two feedback loops around L, and let Law 
denote the final system. Then, as before, the recursion function fuw of Law is given by 

(3.6) 

Now the feedback function w is required to 'undo' the feedback operation induced by 
the function a, so that fuw(x, w) = f(x, w) for all x and w. This reversion of the 
feedback operation has to hold for all input/state systems L: S( !Rm)---+ S( IRP); namely, it 
has to hold for all functionsf: IRP x !Rm-+ IRP. Thus we must have w = axwAw), and wx 
must be a right inverse of ax for every x. By the classical theory of functions, this 
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means that for all states x the function (J x must be a surjective (onto) function; the 
function wx, being a right inverse of (J x, must then be injective ( one-to-one). But then, 
since (J and ware both required to be feedback functions, (J x and wx must both belong 
to the same class of functions, and thus must both be injective and surjective, i.e. set 
isomorphisms. We conclude that, in order to induce a feedback operation that is 
reversible by feedback, the feedback function (J has to be such that (J x is a set 
isomorphism for all states x. Clearly, (J x: IRm ~ Im (J x is a set isomorphism exactly 
when (J x: IRm ~ IRm is injective. This leads to the following definition of the class of 
permissible feedback functions. 

Definition 3.1 

Let L: S(IRm) ~ S(IRP) be an input/state system, having the recursive representa­
tion xk+ 1 = f(xk, uk). A reversible feedback function for L is a continuous function 
(J:IRPxlRm~IRm, (x,v)1---+(J(x,v) for which the partial function (Jx:IRm~IRm, 
Vl---+(J x( v) = (J(x, v) is an injective function for any possible state x. 

Remark 3.1 

When restricting ourselves here to the study of feedback functions that satisfy the 
conditions of Definition 3.1, we do not mean to imply that there is no interest in 
studying more general classes of feedback functions for which these conditions are not 
necessarily satisfied. We just single out here a family of 'nice' feedback functions, and 
we show in the sequel that this family is wide enough to allow global stabilization of a 
large class of non-linear input/state systems. Dealing with feedback functions that 
satisfy the conditions of Definition 3.1 is particularly convenient, since such feedback 
functions preserve many of the classical conceptual properties of feedback 
configurations. 

We turn now to a discussion of stability. Let fJ > 0 be a real number. The 
configuration shown in the Figure is input/output stable (for input sequences bounded 
by()) if the restriction La: S(fJm) ~ S(IRP) is a stable system. One of the advantages of 
our set-up is the simplicity it yields in the treatment of the notion of input/output 
stability. Indeed, let L: S(IRm) ~ S(IRP) be a system having a recursive representation of 
the form xk+ 1 = f(xk, uk), where f: IRP x IRm ~ IRP is a continuous function, and let 
(J: IRm x IRP ~ IRm be a reversible feedback function. Then, using ( 1.3), the recursive 
representation of La is given by xk+ 1 = f(xk, (J(Xk> vk)), and, since f and (J are both 
continuous functions, it follows that the system La also has a continuous recursion 
function. Consequently, by Proposition (2.1), the system La is homogeneous, and thus, 
by Definition 2.1, it is stable whenever it is bounded. This proves the following 
statement. 

Proposition 3.1 

Let L: S(IRm) ~ S(IRP) be a system having a recursive representation of the form 
xk+ 1 = f(xk> uk), wheref: IRP x IRm ~ !RP is a continuous function. Let (J: IRm x IRP ~ IRm 
be a reversible feedback function and let () > 0 be a real number. Then the system 
La: S( em)~ S( IRP) is input /output stable if and only if there is a real number [J > 0 such 
that La[S(fJm)] C S([JP). 

We emphasize that when the system La is stable in the context of Proposition 3.1, 
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it is not just BIBO stable but is also continuous with respect to the topology induced 
by the metric p. Thus, in order to guarantee input/output stability over the input 
domain S((r), it is enough to make sure that the output sequences are all bounded. 
This obviously leads to a substantial simplification of the mathematical framework. 

As is well known, the notion of input/output stability is too weak a notion of 
stability for practical applications, since it does not account for the effect of 
inaccuracies and internal noises. The feedback configurations discussed in the present 
paper are required to be internally stable in the sense that small noises added to the 
output of the system l: or to the output of the feedback function a do not destroy 
stability. Formally, denote by f: IRP x !Rm-+ [RP the given recursion function of the 
system l:, and let <J: [RP x !Rm-+ !Rm be the feedback function. To incorporate noise 
effects, assume that the output of the system l: is given by the recursion 

xk+ 1 = f(xk, uk) + nk+i, k = 0, 1, 2, ···} 

Xo = Xoo + no 
(3.7) 

where n E S(IRP) is a noise sequence, and where x 00 is the specified nominal initial 
condition. Thus inaccuracies in the initial condition are also permitted. In a similar 
fashion, the output of the feedback function is given by 

(3.8) 

where v E S(!Rm) is a noise sequence, and v E S(!Rm) is the external input sequence of the 
closed-loop system. We denote by La,n,v the input/output relation of the closed loop 
system with the noises n and v present. We continue to denote by l: 11 the closed loop 
without the noises. Clearly, the system I:11,n,v can be regarded as a system accepting the 
three input sequences v, n and v. To make this fact explicit, we write l: 11,n,v: S(!Rm) x 
S(!RP) x S(IRm)-+ S(IRP), where the first space in the cartesian product represents the 
space of input sequences v of the closed-loop system, the second space represents the 
noise n and the third space represents the noise v. Both noises are assumed to have 
'small' amplitudes, not exceeding a bound that is denoted bye. The notion of internal 
stability is then defined as follows. 

Definition 3.2 
The configuration shown in the Figure is internally stable (for input sequences 

bounded by 8) if there is a real number e > 0 such that Lu,n,v:S(8m) x S(eP) x 
S(em)-+S(!RP) is a stable system. 

In qualitative terms, internal stability means that the output of the closed-loop 
system is bounded and depends continuously on the input signal v as well as on the 
noise signals n and v, where continuity is with respect to the topology induced by the 
metric p. The static state feedback theory developed in the present paper leads to the 
construction of feedback functions that internally stabilize the given system. In 
analogy with Proposition 3.1, we can obtain the following simplified condition for 
internal stability. 

Proposition 3.2 
Let l:: S(!Rm)-+ S( [RP) be a system having a recursive representation of 

the form xk+ 1 = f(xk> uk), where f: [RP x !Rm-+ [RP is a continuous function. Let 



1968 J. Hammer 

u: !Rm x [RP~ !Rm be a reversible feedback function and let 8 > 0 be a real number. Then 
the system La is internally stable (for input sequences bounded by 8) if and only if there 
is a pair of real numbers e, b > 0 such that 

La,n,v[S(8m) X S(eP) X S(em)J C S(bP) 

Proof 

In view of(l.3), (3.7) and (3.8), the recursion function fa.n,v of the system :Ea,n,v is 
given by 

!a,n,v(x, v, n, v) = f(x, u(x, v) + v) + n (3.9) 

By the continuity of the functions f and u, this implies, through Proposition 2.1, that 
the system La,n,v:S(8m) x S(eP) x S(em) ~s(IRP) is a homogeneous system, and hence 
the present assertion is a direct consequence of the definition of a homogeneous 
system. [] 

The basic notion on which our state feedback theory rests is the notion of an 
eigenset of a function, which is defined below. Before stating the definition, we need 
some notation. Let e > 0 be a real number. Given a point x E !Rn, denote by 86'ix) the 
open ball of radius e around the point x, namely the set of all points yE !Rn satisfying 
IY - xi < e. For a subset S c !Rn denote 

86'E(S) == LJ Blix) (3.10) 
xeS 

The set BIE(S) is clearly an open neighbourhood of the set S, and it consists of all 
points y E !Rn for which there is a point x E S such that IY - xi < e. The dimension of the 
space within which the ball 86'£ is taken, i.e. n here, is determined by S, and is omitted 
from the notation. Finally, recall that ITP: [RP x !Rm~ [RP is the standard projection 
onto the first p coordinates (see § 1). 

Definition 3.3 

An eigenset E of a function f: !RP x !Rm~ [RP is a subset E c IRP x !Rm satisfying 
f[E] c ITP[E]. An e-eigenset <ff of the function f is a subset Cc [RP x !Rm satisfying the 
conditionf[BE(C)J c ITP[CJ, where e > 0 is a real number. 

In order to point out the significance of eigensets to state feedback theory, consider 
the closed-loop system :Ea:S(8m) ~ S(IRP) shown in the Figure. Let f be the recursion 
function of the given system L and let u be the feedback function. Denote by n0 the set 
of all pairs {x, u) E [RP x !Rm that may appear as arguments of the recursion function f 
during the operation of the closed-loop system. Letting :Eav]k be the kth element of the 
output sequence Lav, the set n0 is given by 

no= {(x, u) E !RP x [Rm: x = Lav]k, u = u(x, vk) for some v E S(8m) 

and k E { 0, 1, 2, ... } } (3.11) 

We now show that n0 is an eigenset of the recursion function! Recall that a set Sc !Rn 
is bounded if there is a real number ex> 0 such that Sc [ -ex, ex]n. 

Lemma 3.1 
If :Ea: S( em) ~ S( IRP) is input/output stable then the set n0 is a bounded eigenset of 

the recursion function f of the system L. 
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Proof 
Assume that La: S(Bm)---4 S(IRP) is input/output stable. Let (x, u) be any point in the 

set n 0 • Then there is an input sequence v E S(8m) and an integer k ~ 0 such that 
x = Lav]k and u = a(x, vk). Denote y == Lav]k+ 1 and w == a(y, vk+ i), and note that, 
by definition, also (y, w) E n0 , so that y E IIP[n 0 ]. Furthermore, from the recursive 
representation of I:, it follows that y = f(x, u), and hencef(x, u) E IIP[n 0 J. Since the 
latter holds for any point (x, u) E n 0 , it follows thatf[n 0 ] c IIP[n 0 J, and n 0 is an 
eigenset of the function f Next, to show that the set n 0 is bounded, recall that, by 
the input/output stability of La, there is a real number o > 0 such that La[S(8m)] c 

S(oP), which implies that lxl ~ o for all x E IIP[n 0 ]. Combining this with the fact 
that lvkl ~ 8 for all v E S(8m) and all k, it follows by the continuity of the function 
a: [RP x [Rm---4 [RP that there is a real number a> 0 such that lul = la(x, vk)I ~ a for 
all x E IIP[n 0 J, all v E S(8m) and all k. Consequently, by the definition of the 
norm I· I, l(x, u)I ~ max {o, a}== f3 for all (x, u) E n 0 , and hence the set n0 is 
bounded by {3. D 

Assume next that the system La: S(8m) ---4 S(!RP) is internally stable, and let e > 0 be 
as in Definition 3.3. Let n := {(x, u) E [RP x [Rm: x = La,n,vv]k, u = a(x, vk) + vk for some 
v E S(8m), n E S(eP), v E S(em) and k E {O, 1, 2, ... } }. Define the set 

<ff:= {(f(x, u), a(f(x, u), v)), (x, u) En and VE [ -8, Br} 

u{(Xoo, lT(Xoo, v)), VE [ -8, Br} (3.12) 

where f is the recursion function of the system :E, u is the feedback function and x 00 is 
the nominal initial condition. We now show that <ff is a (-eigenset of the function f for 
some real number ( > 0. 

Proposition 3.3 
If the system La: S( em) ---4 S(IRP) is internally stable then the set <ff of (3.12) is a 

bounded (-eigenset of the recursion function f of the system L for some real number 
(>0. 

Proof 

Assume that La: S(Bm)---4 S(IRP) is internally stable. To consider the boundedness of 
our sets, let (x, u) En be a point. Then, by Proposition 3.2, there is a real number o > 0 
such that lxl ~ o. Combining this with the continuity of the function a, it follows that 
there is a real number ti> 0 such that la(x, v)I ~ ti for all x E Ilp[n] and v E [ -8, er. 
Hence the set n is bounded, and, by the continuity of the functions f and u, it follows 
that the set <ff is bounded as well. Thus it only remains to show thatf[&l{(C)J c IIP[CJ 
for some real number ( > 0. 

It follows directly from (3.12) thatf[n] c IIP[C], and so our proof will conclude 
upon showing that &l{(<ff) c n. Note that the output xk of the closed-loop system at 
time k depends only on the input elements v0 , ••• , vk- i, and the noise elements 
n0 , ••• , nk and v0 , ••• , vk- l (where v0 , .•. , vk- l and v0 , ••. , vk- l denote the empty set 
when k = 0). Now let (x, u) be any point in the set n. There are then an integer k ~ 0, 
input elements v0 , ••• , vk- i, and noise elements n0 , ••• , nk and v0 , ••• , vk such that 
x = La,n,vvl and u = u(x, vk) + vk, where v E S(8m). From the definition of the set n 
it follows directly that 

(3.13) 
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for any nk+ 1 E [ - t:, t: JP, Vk+ 1 E [ - t:, t: ]m and Vk + 1 E [ - 8, 8]m, since it is simply the 
next pair of output and input values of L. Now, in view of the fact that a 
is a continuous function and its arguments here are bounded, there is a real number 
~ > 0 such that la(f(x, u) + nk+1 , vk+1 )- a(f(x, u), vk+1 )1 <te for all (x, u) En 
and vk+ 1 E [ -e, eJm, whenever Ink+ 1 I < ~- This implies that for any (x, u) En, 
vk + 1 E [ -e, eJm, Ink+ 1 I < ~ and z E ~E/2 ( a(f(x, u), vk + 1) there is an element vk + 1 E 
( -t:, e)m satisfying z = a(f(x, u) + nk+ 1 , vk+ 1) + vk+ 1 . Thus, letting (==min {te, 0, it 
follows from (3.13) and the definition of the norm I· I that ~~((f(x, u), a(f(x, u), v)) c n 
for any (x, u) E Q and VE [ -8, 8]m. Similarly, also ~~(x 00 , a{x 00 , v)) c Q for all 
v E [ -e, eJm. In view of (3.12), the last two facts imply that ~dC) c n, and our 
proof concludes. D 

Before continuing with our discussion of internal stability, we list some elementary 
properties of eigensets. Given a subset Sc !RP x !Rm, denote by S(x) the set of all 
elements u E !Rm for which (x, u) ES. 

Proposition 3.4 

Let C1 and C2 be two t:-eigensets of the function f: !RP x !Rm~ !RP. Then the 
following hold: 

(i) the union C1 u C2 is an e-eigenset of the function f; 

(iv) let Cc !RP x !Rm be any subset satisfying the conditions II _r.JCJ = IIP[C 1 ] and 
C(x) c C1 (x) for all x E IIP[C]; then C is an t:-eigenset of the function f 

The rather straightforward proof of this proposition is omitted here. 

We continue now with our investigation of the implications of the notion of 
internal stability for non-linear state feedback systems. Recall that the graph of a 
function g: !RP~ !Rm is simply a subset of !RP x !Rm consisting of all points of the form 
(x, g(x)), x E !RP. A major role in our theory is played by the notion of a uniform graph, 
which is a subset Sc !RP x !Rm satisfying the following condition: there is a continuous 
function g: !RP~ !Rm and a real number ( > 0 such that ~~(g(x)) c S(x) for all 
x E IIP[S]. The function g is then called a graphing function for the set S. The notion of 
a uniform graph is quite simple on an intuitive level. First, a uniform graph S contains 
the graph of the continuous function g. Furthermore, it also contains the graph of any 
continuous function g' that differs from g by less than (, namely any continuous 
functiong' satisfying lg'(x) - g(x)I < ( for all x E IIP[SJ. The notion ofa uniform graph 
is a natural tool for the description of functions whose values may be corrupted by 
noise. We are now in a position to introduce the most important notion of our present 
study. 

Definition 3.4 

A continuous function!: !RP x !Rm~ !RP is uniformly conductive at a point x0 E !RP if 
it has a bounded t:-eigenset C for which the set ~('.(C) is a uniform graph, and 
x 0 E IIP[CJ. 
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In order to point out the significance of a conductive function, we state now the 
following theorem, which is the main result of the present paper. 

Theorem 3.1 

Let I:: S(!Rm)-+ S(!RP) be a system having a recursive representation xk+ 1 = 
f(xb uk) with the initial condition x 00 , where f: [RP x !Rm-+ [RP is a continuous 
function. Then the following two statements are equivalent: 

(i) there exists a reversible state feedback function <1: [RP x !Rm-+ !Rm for which the 
closed-loop system Lu: S( om) -+ S( [RP) is internally stable, where (} > 0 is a real 
number; 

(ii) the recursion function f is uniformly conductive at the point x 00 . 

Thus we have a complete characterization of internal stabilizability by static state 
feedback. The significance of this result is twofold. First, from a theoretical point of 
view, it provides a direct link between properties of the given recursion function f of 
the system that needs to be stabilized, and the existence of a stabilizing state feedback. 
From a practical point of view, we shall see later that eigensets of functions can be 
quite readily computed. Once the eigensets are known, one can check whether f is 
uniformly conductive, and, if it is, stabilizing feedback functions <1 for the system L can 
be directly derived. This yields then an explicit procedure for the computation of 
stabilizing feedback functions. The proof of Theorem 3.1 consists of Proposition 3.5 
and 3.6 below. In the next section we discuss the existence and the computation of 
eigensets, and we provide a number of examples of the computation of stabilizing 
reversible feedback functions <1. 

Remark 3.2 

Note that the nominal initial condition x00 of the system L in Theorem 3.1 can be 
chosen as any point in the e-eigenset C over which the recursion function f of I: is 
conductive. Explicit examples are provided in § 4. 

As the first step in the proof of Theorem 3.1, assume that the system Lu is internally 
stable, and consider the set <ff of (3.12). In view of Proposition 3.3, <ff is a bounded 
(-eigenset of the recursion function f of the system L. Furthermore, it is a direct 
consequence of our construction of the set C (see the proof of Proposition 3.3) that 

(x, ~{(a(x, v))) c ~c(<ff) for all x E np[~c(<ff)] and v E S(Om) 

Now define the function g: [RP-+ !Rm by 

g(x) == a(x, 0) 

(3.14) 

( 3.15) 

Then, since a is a continuous function, so also is g. By (3.14), we have (x, ~{(g(x))) c 

~c(<ff) for all x E np[~c(<ff)]. Finally, since x00 E np[<ff] by (3.12), it follows that the 
function f is uniformly conductive at x 00 , with g being the graphing function. This 
proves the following fact, which simply means that (i) implies (ii) in Theorem 3.1. 

Proposition 3.5 

Let I:: S(!Rm)-+ S(!RP) be a system having a recursive representation 
xk+ 1 = f(xk, ud with the initial condition x 00 , where f: [RP x !Rm-+ [RP is a con-
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tinuous function. If there is a reversible feedback function a: IRP x Rm-+ Rm such that 
Lu: S((r)-+ S(RP) is internally stable then the recursion function f of the system Lis 
uniformly conductive at the point x 00 . 

Next we prove the converse direction of Theorem 3.1, namely that condition (ii) 
implies condition (i). 

Proposition 3.6 

Let L: S(Rm)-+ S(RP) be a system having a recursive representation 
xk+ 1 = f(xk, ud with the initial condition x00 , where f: RP x Rm-+ RP is a con­
tinuous function, and let e > 0 be a real number. If the recursion function f is uni­
formly conductive at the point x 00 then there exists a reversible state feedback 
function a: RP x Rm-+ Rm for which the closed-loop system Lu: S(em)-+ S(RP) is 
internally stable. 

Proof 

Assume that f is uniformly conductive at x 00 . We construct a reversible state 
feedback function a for which the closed-loop system Lu: S(em)-+ S(RP) is internally 
stable. Since f is uniformly conductive, it has a bounded e-eigenset <ff for which TIP[G] 
contains the point x 00 and PAe(G) is a uniform graph. Invoking the definition of a 
uniform graph, let g: !RP-+ IRm be a graphing function of PAe(G) and let ( > 0 be a real 
number for which (x, PA{(g(x))) c PAe(G) for all x E TIP[PAe(G)]. Let A== (/3e and define 
a function a: IRP x Rm-+ IRm, (x, v) ~a(x, v) by 

a(x, v) ==AV+ g(x) (3.16) 

It is then a direct consequence that (x, a(x, v)) E PAe(G) for all x E TIP[PAE(G)] and for 
all v E [ -e, er. Furthermore, since ;. i= 0 and g is a continuous function, a is a 
reversible feedback function (which is, in fact, additive). Let b > 0 be a bound on the 
set G, so that <ff c [ - b, b]P x [ - b, br. Then, since the recursion function of the 
closed-loop system Lu isf(x, a(x, v)), since (x, a(x, v)) E PAe(G) for all x E TIP[PAe(G)] 
and for all VE [ -e, er, since f[PAE( <ff)] C <ff and since Xoo E <ff, it follows that for all 
integers k ~ 0 the kth output vector Luv]k E Ilp[G] c [ -b, b]P. Thus Lu[S(em)] c 

S(bP), which, by Proposition 3.1, implies that the closed-loop system Lu is input/out­
put stable. 

Furthermore, in order to prove the internal stability of La, let f3 > 0 be a real 
number such that lg(x + n) - g(x)I < t( for all x E .@e(Ilp[c9']) whenever n E IRP 
satisfies lnl < {3. The existence of f3 is a direct consequence of the continuity of g over 
the entire space and the fact that x is restricted to a bounded closed domain. Let 
~:=min {/3, tn. Then, by construction, we have (x + n, a(x + n, v) + v) E PAe(c9') for all 
x E Ilp[c9'], v E [ -e, e]m, n E [-~, ~JP and v E [-~, ~]m. The fact that f[PAe(c9')] c 

<ff C [ - (), b]P X [ -(), b]m then implies that Lu,n,v[S(em) X S(~P) X S(~m)] C S((b + ~)P), 
and it follows by Proposition 3.2 that La is internally stable. D 

The feedback function a constructed in (3.16), although appropriate for the proof 
of the proposition, is quite restrictive from a practical point of view. The set of inputs u 
that it generates for the system L at each state x is given by PAm(g(x)), which, in 
general, might be only a small subset of the set PAiG)(x) that describes the permissible 
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inputs u at the state x. This results in an undue restriction of the output vectors that 
the closed-loop system Lu can reach. In order to increase the set of output vectors 
generated by the closed-loop system, we can proceed as follows. Let C be a bounded 
e-eigenset over which the recursion function f of the system 1: is conductive, and let 
<J: !RP x Rm---+ Rm be any reversible feedback function satisfying the following con­
dition for some real number O < ( < e: 

( 3.17) 

for all x E IIP[3'£(C)]. Now, since the function a is continuous over the entire space 
and since there is a real number {J > 0 such that IIP[!llAC)J c [ -b, b]P, there is a real 
number -c > 0 such that la(x + n, v) - a(x, v)I < !(e - () for all x E IIP[3'£(C)J and 
v E [ -e, 8Jm whenever n E [ --c, -cJP. Let ~==min {-c, t(e-()}. Then one has (x + n, 
a(x + n, v) + v) E 3'£(C) for all XE Ilp[CJ, VE [ -e, ()Jm, n E [ - ~' ~JP and VE [ - ~' ~]m. 
Combining this with the fact that C is a bounded e-eigenset, i.e. that f[!ll£( C)] c 
Ilp[CJ C [-(),{)JP, it follows that Lu,n,v[S((Jm) X S(~P) X S(~m)J C S(({J + ~)P), and Lq 
is internally stable by Proposition 3.2. Thus any reversible feedback function (J 
satisfying (3.17) internally stabilizes the system L, and we can state the following. 

Theorem 3.2 
Let 1:: S(Rm)-+ S(IRP) be a system having a recursive representation xk+ 1 = 

f(xk, uk) with the initial condition x00, where f: RP x Rm-+ RP is a continuous 
function, and let () > 0 be a real number. Assume that the recursion function f is 
uniformly conductive at the point x00 and let C be an e-eigenset off for which !lli<ff) 
is a uniform graph and x00 E IIP[CJ. Then every reversible feedback function 
(J: IRP x Rm---+ Rm satisfying ( 3.17) yields an internally stable closed-loop system 
Lu: S((Jm)-+ S(RP). 

It is clear from (3.17) that the function g(x) == (J(x, 0) forms a graphing function for 
the set !llAC). The feedback function (J constructed in (3.16) obviously belongs to the 
class of feedback functions satisfying (3.17). Generally speaking, in order to find a 
feedback function (J that satisfies ( 3.17), one has to construct a continuous family { (J x} 
of homeomorphisms (JA-e, BT-+Im (Jx for which Im (Jx c&B~(C)(x) for all xETip[&BiC)J. 
In general, the construction of all possible families { (J x} is not an easy problem, and, 
as is well known, it is the subject of homotopy theory. However, some of the families 
{ (J x} are quite easy to construct, and one of them is in fact given by ( 3.16). An 
additional family { (J x }, i.e. an additional reversible feedback function <J, that can 
easily be constructed is described in the following corollary. This feedback function 
yields, in general, a domain of stabilization that is larger than the one provided by 
(3.16). 

Corollary 

In the notation of Theorem 3.2, let g be a graphing function for 3'£(8). Let 
r: Rm-+ R be a continuous scalar positive valued function satisfying the fol­
lowing conditions: (i) there is a real number K > 0 such that r(x) ~ K for all x E Rm; 
and (ii) there is a real number O < ( < e such that for every x E TIP[3'£(cff)J the ball 
81,cxi(g(x)) c Bl~[CJ(x). Define the function 

r(x) 
(J(X, v) == 0 v + g(x) 
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Then (J is a reversible feedback function, and the closed-loop system 1:a: S(Om) ~ S(IRP) 
is internally stable. 

Proof 

The validity of the corollary is a consequence of the following. First, since r(x) ~ K, 

the function (Jx is a homeomorphism for every x. The continuity of the functions g(x) 
and r(x) implies the continuity of (J(x, v). Finally, condition (ii) of the corollary implies 
that (3.17) is satisfied for the present (J, and the conclusion of the corollary is then valid 
by Theorem 3.2. D 

The feedback function given by ( 3.16) is a particular case of the feedback functions 
described by the corollary, with the function r(x) simply being taken as a constant. In 
practice it is desirable to increase the set Im (J x as much as possible, so as to provide 
the system I: in the Figure with a set of input vectors u that is as large as possible at 
each instant, since this results in an increased set of reachable output vectors x in the 
next step. Consequently, in the corollary it is desirable to choose the value of r(x) as 
large as possible for each x, without violating, of course, the continuity of r and 
condition (ii) of the corollary. In the next section we discuss the computation of 
stabilizing feedback functions described by the corollary, and we provide some 
computational examples. As it turns out, the corollary provides an effective, 
implementable and relatively simple method for the computation of stabilizing 
feedback functions for global non-linear control. Of course, in general, a further 
increase of the domain of stabilization can be obtained through the use of more 
general feedback functions, as described in Theorem 3.2. 

Another point of interest is the connection between our results here and the 
standard linear state feedback theory. In the next section we show that when the given 
system L is a linear finite-dimensional time-invariant system, the class of feedback 
functions described by the corollary to Theorem 3.2 includes the classical linear state 
feedback functions. 

4. The construction of eigensets and feedback functions 
The present section is devoted to a brief discussion of the computational aspects of 

the static state feedback theory developed in§ 3. A number of detailed examples on the 
computation of eigensets and feedback functions are provided. It is probably most 
appropriate to start with an examination of the linear case, to show that our results 
include standard linear state feedback theory. In addition to providing a connection 
to previously known material, this will also enable us to exhibit some of the simplest 
instances of eigensets and feedback functions. Since the purpose of the discussion of 
the linear case here is mainly didactic, we restrict ourselves to the consideration of a 
single-input linear system 1:: S(IR) ~ S(IR") with n > 1 states. The recursion function is 
then of the form 

( 4.1) 

and we assume that the pair (A, b) is reachable and that the initial condition is x00 = 0. 
Then, without loss of generality, the pair (A, b) can be taken in controller canonical 
form, and, denoting by xi,k the ith component of the state vector at time k, the 
recursion becomes 

(4.2) 
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The components f 1 , ... ,fn of the recursion function fare then given by 

f,(x,u):x,:1 , i=l, ... ,n-1} (4.3) 

fn(x, u) - L aixi + u 
i= 1 

where, somewhat abusing our notation, xi here denotes the ith component of the 
vector x. Assume further that the desired bound on the input amplitude is 8 and that 
the desired bound on the output amplitude (including the noise) is b, so that we need 
to find a reversible feedback function CT: Rn x R ~ R such that I:11 is internally stable 
and I: 11 [S(8)] c S(bn). Now let ( > 0 be a real number satisfying 

n 

I lai!C <fb, c <tb (4.4) 
i= 1 

Then it is easy to verify that the set 

{ 
n I n I 1 1 i( . } <ff= (x,u)ER x R: .L aixi+u ~-'5,lxil~-

3
'5+-,z=l, ... ,n 

,=1 3 n 
(4.5) 

is an e-eigenset off for e = (/n. A graphing function for this set is then given by 

n 

g(x) := - L aixi (4.6) 
i= 1 

Letting A== b/30 and defining the function CT: Rn x R ~ R by 

n 

CT(x, v) == AV - L aixi (4.7) 
i= 1 

we obtain a reversible feedback function. By the corollary to Theorem 3.2 it then 
follows that CT internally stabilizes the system L over the input space S(O). It is also 
clear that t5 and (J can be chosen arbitrarily large here, and internal stabilization over 
the entire space can be achieved. Obviously, (4.7) is a standard linear state feedback 
formula, and thus classical linear state feedback results are included in our framework. 

We turn now to a brief discussion of the computational aspects of the non-linear 
state feedback theory developed in§ 3. A more complete study of this topic will be 
provided in a separate report. As we have seen, the process of computing a static state 
feedback function that stabilizes a given non-linear input/state system can be divided 
into three main steps. First, one needs to find an appropriate e-eigenset of the given 
recursion function of the system that needs to be stabilized. Then a graphing function 
for the e-eigenset needs to be found. Finally, a stabilizing state feedback function CT 

needs to be computed, using Theorem 3.2 or its corollary. Of course, all of this is under 
the assumption that the recursion function of the system that needs to be stabilized is 
uniformly conductive. 

Generally speaking, the computation of e-eigensets of functions involves the 
solution of certain sets of inequalities. More specifically, let I:: S( Rm) ~ S( RP) be 
an input/state system with the recursive representation xk+ 1 = f(xk, uk), where 
f: RP x Rm~ RP is a continuous function. Assume that the system I: needs to be 
stabilized over a range of output amplitudes lxl ~ '5. According to our discussion in 
§ 3, we need to find an e-eigenset <ff of the function f for which the projection IIP[GJ 
onto the state space is bounded by '5. This can be handled in the following way. Find 
a subset !1£ c RP and a real number ( > 0 for which the following conditions hold: 
(i) !1£ c [ -'5, t5JP; (ii) for each element x E ~~(!1£) there is a non-empty bounded subset 
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o/i(x) c Rm such that f[£!6\(x), BB~(o/i(x))] c PI; and (iii) there is a real number a> 0 
such that o/i(x) c [ -a, ar for all x E PI. Then it follows directly from the definitions 
that the set 

c&"=={(x,u)ERPxRm:xEPI and uEo/i(x)} (4.8) 

is an e-eigenset of the function f fore = (. This procedure will in general, yield a class [ 
of e-eigensets of the function f, where [ is empty in the case that no such B-eigensets 
exist. Now there are two possibilities-either [ contains an e-eigenset c&" for which 
&Be(c&") is a uniform graph, or it does not. In the first case let Cg E IE be an e-eigenset for 
which &Be(c&"g) is a uniform graph, and let g(x) be a graphing function for &Be(c&"g). Then 
a stabilizing feedback function u for the system L can be directly computed using 
Theorem 3.2 or its corollary. Otherwise, if IE does not contain an e-eigenset c&" for which 
&Be(c&") is a uniform graph, it follows by Theorem 3.1 that the system I: cannot be 
internally stabilized with output amplitude bounded by the specified bound (). 
However, it may still be possible to internally stabilize the system I: if the output 
amplitude bound () is increased. 

In qualitative terms, condition (ii) of the previous paragraph is a controllability­
type condition. It requires that for every state x E PI there be a set o/i(x) of input values 
u that steer the state so that it stays within the set PI, even if errors ( of amplitudes not 
exceeding() in x or in u are present. Condition (iii) simply requires all relevant input 
values to have bounded ampitudes; Proposition 3.4 (iV) can be used to help satisfy this 
condition in the case where the sets of input values turn out to be too large. For low­
dimensional systems e-eigensets can also be found through graphical methods. 

We consider now some examples of the computation of e-eigensets and stabilizing 
feedback functions. The simplest case is, of course, that of a single-input single-output 
system, so we consider this first. 

Example 4.1 
Let L: S(R) ~ S(R) be the input/state system with the recursive representation 

xk+l = (xk) 2 sin xk + [1 + (xk) 2 ]uk, k = 0, 1, 2, ... (4.9) 

and the nominal initial condition x 00 = 0. Suppose that it is required to internally 
stabilize the system L. Let e, () > 0 be the desired bounds on the input and output 
amplitudes of the closed-loop system respectively. From ( 4.9) the recursion function f 
of the given system is a continuous function R x R ~ R given by 

f(x, u) = x 2 sin x + (1 + x 2 )u ( 4.10) 

The first step is to construct an appropriate e-eigenset for the function f Since the 
output (including the noise) has to be bounded by(), we start by considering the set~ 
of all elements (x, u) E [-(), ()] X R for which f[~J C [ -i(), in namely 

!1fi = {(x, u) ER x R: lx2 sin x + (1 + x 2 )ul ~i(), lxl ~ ()} (4.11) 

Incidentally, the set !1fi is a bounded uniform graph, and a continuous graphing 
function for it is given, for instance, by 

2 • 

(x) = _ x sm x 
g 1 +x 2 

( 4.12) 

Next, set 

y == x 2 sin x + ( 1 + x2 )u ( 4.13) 
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Then for any pair of elements x and y the appropriate input value is given by 

y- x 2 sin x 
U=----

1 +x 2 ( 4.14) 

Thus for each value of x the set Oll'(x) of all input values u for which IYI ~ fc5 consists of 
all elements u E IR satisfying 

-fc5 - x 2 sin x fc5 - x 2 sin x 
------~u~-----

1 + x 2 1 + x 2 ( 4.15) 

Now let C == min {tM 1 + x 2 
), !xi ~ c5} = tM 1 + <52 ) and let Oll(x) be the set of all 

elements u E IR for which 

- f c5 - x 2 sin x r f c5 - x 2 sin x 
----2--+~~u~ 2 -C 

l+x l+x 
( 4.16) 

Note that for every pair of elements (x, u), where lxl ~ c5 and u E Oll(x), we have 
lf(x, u)I ~ fc5. Consequently, setting e == C and recalling that ( < tc5, it follows that 
the set 

8 == {(x, u) E 1R x IR: lxl ~ fc5, u E Oll(x)} ( 4.17) 

is an e-eigenset of the function f Furthermore, it is easy to see that fJJ i;( 8) is a uniform 
graph, and a possible choice of a graphing function for it is 

2 • 

( 
) _ x sm x 

g X - - 1 + X2 

In order to construct a stabilizing feedback function for the system l: by using the 
corollary to Theorem 3.2, we define 

.l(x) •= (i !"x 2 -C )/ e ( 4.18) 

Noting that l(x) ~ -iN[( 1 + <52)8] for all !xi ~ c5, it then follows by our construction and 
the corollary to Theorem 3.2 that 

x 2 sin x 
a(x, v) = J(x)v -

1 2 +x 
( 4.19) 

is a reversible feedback function that internally stabilizes the system l: for all input 
sequences belonging to S( 8). The nominal initial condition of l: can be any satisfying 
lx00 I ~ f c5. Since the numbers c5 and 8 here can be chosen as large as desired, internal 
stabilization of the system 1: is obtained over an arbitrarily large domain. Note, 
however, that when c5 is increased, the maximal permissible noise amplitude ( 
decreases . 

As this example demonstrates, the non-linear static state feedback theory 
developed in § 3 can be used to explicitly compute reversible feedback functions that 
internally stabilize a given non-linear system. In the example other stabilizing 
feedback functions can be obtained by changing the graphing function g or the 
function A, or by using an entirely different form of the feedback function a consistent 
with the conditions of Theorem 3.2. As can be seen from the example, the stabilizing 
feedback function a is, in general, non-additive, and non-additive feedback is indeed 
essential for achieving stabilization over large domains. 
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We next provide an additional example of the computation of a stabilizing 
feedback function for a non-linear system. This time the system that needs to be 
stabilized has two states and one input. 

Example 4.2 
The term 'nominal' is used here to refer to signals before noise is added. Consider 

the non-linear input /state system l:: S( IR)--+ S( IR2
) described by the recursion 

[
x 1 ,k+ 1] [ (xl.k)

2 
+ x 2 ,k J 

x 2 ,k+ 1 = sin x 2 ,k + [1 + (x 2 ,k)
2

]uk 

( 4.20) 

where x 1 and x 2 are the coordinates of the state vector, and the nominal initial 
condition is x 00 = 0. The recursion function is clearly given by 

f(x, u) = 
[ 

(xi)
2 
+ x 2 J 

sin x 2 + [1 + {x2 )
2 ]u 

( 4.21) 

The output sequences of the closed-loop system (including the noise) are required to 
be bounded by the real number {J > O; the input sequences are taken from S(8), where 
e > 0 is a specified real number. In order to construct a stabilizing feedback function, 
we first need to find an appropriate e-eigenset for the recursion function f Assume 
that the noise level does not exceed !fJ; namely, take O < e < -i-fJ and consider the set~ 
of all points (x 1, x2 , u) E IR2 x 1R satisfying l(x 1, x 2 )1 ~ {J and lf{x, u)I ~ tfJ. In explicit 
form, the set ~ consists of all points for which the following conditions hold: 
(i) l(x 1, x 2 )1 ~ fJ; (ii) l(x 1 )

2 + x 2 I~ jfJ; and (iii) !sin x 2 + [1 + (x 2 )
2 ]ul ~ ffJ. Denote 

Y1 == (x1) 2 + X2 

Y2 == sin x 2 + [1 + {x2 )
2 ]u 

Then for a given value of y1 

( 4.22) 

( 4.23) 

(4.24) 

Now let ( 1 and ( 2 be real numbers describing the permissible range for y 1 excluding 
the noise, so that -( 1 ~ y 1 ~ ( 2 ; as we shall see later, ( 1 and ( 2 can be chosen positive 
here. By (ii), IYi I~ jfJ, so that O < ( 1, ( 2 ~ jfJ. Since x 1 and y 1 correspond to the same 
state, also -( 1 ~ x 1 ~ ( 2 . Let e1 denote the maximal permitted noise amplitude on x 1. 
Then 0<e 1 <-ifJ, and the entire range for x 1, including the noise, is -( 1 -e 1 ~x 1 ~ 
( 2 + e1 . For each x 1 it follows from (4.24) that the nominal domain of x 2 is given by 

- ( 1 - (xi) 2 ~ x 2 ~ ( 2 - (xi) 2 
( 4.25) 

and, since the nominal x 2 is bounded by jfJ, the two conditions -( 1 -(xi) 2 ~ -jfJ 
and ( 2 - {x1 )

2 ~ jfJ must hold. In order to satisfy the first condition, we need 

( 1 +(( 1 +ei) 2 ~jfJ, ( 1 +(( 2 +ei) 2 ~j{J (4.26) 

The second condition will then hold since ( 2 ~ jfJ. 
Next, allowing a noise level of O < e2 < -i-fJ for x 2 , we need, by ( 4.22), that 

-( 1 ~ (x 1 )
2 + x 2 ~ ( 2 , or 

( 4.27) 
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numbers such that ( 4.27) holds whenever 

-~1~(yi) 2 +Y2~~2, l(Y1,Y2)l~1c5, ln1l~e', ln2l~e' (4.28) 

Defining z == (yi) 2 + y 2 , we get from (4.22) and (4.23) 

z = [(xi) 2 + x2] 2 + sin x 2 + [1 + (x2)2 Ju, - ~ 1 ~ z ~ ~2 ( 4.29) 

Thus for every permissible x 1, x 2 and z the input value is determined by 

z - [{x1 )
2 + x2] 2 - sin x 2 

U= 1 +(x2)2 (4.30) 

Further, setting the maximal noise level of the noise v of (3.8) at lvl ~ min 
{!~1/(l+c5 2),H 2/(l+c5 2)}==e", and denoting e==min{e',e"}, 171 ==~1 -e and 
172 == ~2 - e, we find that the nominal domain 0//(x) for u is 

-171 - [(xi) 2 + x2] 2 - sin x 2 172 - [(x 1)2 + x2] 2 - sin x 2 -----------~u~----------
1 + (x2)2 1 + (x2)2 ( 4.31) 

for any permissible values of x 1 and x 2 • It then follows that the set of all points 
(x 1, x 2 , u) E IR2 x 1R for which -~ 1 ~ x 1 ~ ~2, -~ 1 -(xi) 2 ~ x 2 ~ ~ 2 -(xi) 2 and 
u E 0//(x) forms an e-eigenset for our recursion function! It is then easy to verify that 
f!Je( C) is a uniform graph, and a graphing function for it can be directly obtained from 
( 4.31 ). A possible choice for the graphing function is 

( ) 
_ t(112 -111) - [(x1) 2 + X2]2 - sin x 2 

g X - 1 + (x2)2 (4.32) 

Using this graphing function, a stabilizing feedback function can be derived using the 
corollary to Theorem 3.2 as follows. Recalling that () is the desired bound on the input 
amplitude of the closed-loop system, define A(x) == t{171 + 172)/{[1 + (x2)2]8}. Then a 
reversible feedback function that internally stabilizes the system L is given by 

u(x, v) == A(x)v + g(x) ( 4.33) 

where lvl ~ 8. Thus we have obtained a stabilizing feedback controller for our system. 
The domain over which internal stabilization is achieved can be increased by 
increasing the value of c5. The nominal initial condition of the system :E can be any 
{x01, x02) satisfying -~ 1 ~ x01 ~ ~2 and -~ 1 -(x 0i) 2 ~ x02 ~ ~2 -(x 0i) 2; the noise 
amplitudes must not exceed e. 

As we have seen throughout our discussion, and in particular in Theorem 3.1, the 
notion of a uniformly conductive function is the most fundamental notion of the 
theory of static state feedback for non-linear systems. An input/state system is 
internally stabilizable if and only if its recursion function is uniformly conductive. We 
conclude this section with a discussion related to the question of the size of the class of 
uniformly conductive functions. The result that we provide below in this context is 
both strong and weak at the same time. It is strong since it shows that the class of 
uniformly conductive functions is very large, and includes most systems of practical 
interest. At the same time, it is rather weak, since it is based on linearization 
techniques, and is thus of a local nature, referring only to stabilization over small 
amplitudes of the state variables. This contrasts with the scope of the non-linear state 
feedback theory developed in the present paper, which is a truly global non-linear 
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feedback theory, entirely devoid of linearization techniques or local arguments. Still, 
the result is relevant to our present discussion, and so we provide it here without 
proof. It is a direct consequence of Theorem 3.1 and some well-known results on local 
stabilization of non-linear systems through linearization. 

FrfJposition 4.1 
Let f: !RP x Rm~ !RP be a function that is continuously differentiable in a 

neighbourhood of the origin. Let J == (A, B) be the jacobian matrix of the partial 
derivatives off at the origin, partitioned into the p x p matrix A and the p x m matrix 
B. If the pair (A, B) is reachable then the function f is uniformly conductive at the 
origin. 

To conclude, a comprehensive static state feedback theory for non-linear systems 
has been presented in§ 3. The theory is of a global nature, and provides necessary and 
sufficient conditions for stabilization. These conditions are stated in terms of 
properties of the given recursion function of the system that needs to be stabilized. 
When stabilization is possible, the theory provides a computational method that 
yields static reversible feedback controllers that internally stabilize the system. The 
main step of this method is the derivation of a-eigensets of the given recursion 
function, and it involves the solution of certain sets of inequalities. Computer 
programs can be developed to implement the required computations. 
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