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State feedback control of nonlinear systems: a simple approach
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A simple methodology for the design of state feedback controllers for nonlinear continuous-time systems is introduced. The
objective is to develop controllers that drive a nonlinear system from an initial condition into an assigned region of state
space. It is shown that such state feedback controllers can be derived by solving a set of inequalities obtained directly from
quantities given in the controlled system’s equation. The results are applied to the design of state feedback controllers that
achieve robust asymptotic stabilisation for a rather general class of nonlinear systems.
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1. Introduction

Techniques for the design of state feedback controllers for
nonlinear systems have received considerable attention in
the scientific literature for at least three quarters of a cen-
tury. Important progress has been made, but, to this day,
the process of deriving feedback controllers for nonlinear
systems remains a daunting one for many classes of sys-
tems. Important difficulties persist in conceptual as well as
in computational aspects of the theory of nonlinear feed-
back control. This paper revisits state feedback control of
nonlinear systems from a perspective that enhances intu-
itive insight and yields a relatively simple process for the
derivation of state feedback controllers.

We concentrate on the problem of designing state feed-
back controllers that drive a nonlinear system ! from an
initial condition into a specified region of state space, a
problem that includes asymptotic stabilisation. We show
that such feedback controllers can be derived simply by
solving a set of inequalities that is obtained directly from
quantities given in the equation of the controlled system.
These inequalities provide necessary and sufficient condi-
tions for the existence of appropriate feedback controllers
as well as computational means for controller design.

The discussion concentrates on ‘autonomous’ con-
trollers, namely, on controllers that operate on their own
with no need for external intervention. The control con-
figuration is described in Figure 1, where ! is the system
being controlled and C is a controller. It is assumed that
! is an input/state system, namely, that ! has its state as
output, so that C is a state feedback controller. We denote
by !c the system induced by the closed-loop configuration.
In formal terms, our control objective can be described as
follows.

∗Email: hammer@mst.ufl.edu

Problem 1.1: Let ! be an input/state system, let X0 be a
set of potential initial conditions of !, and let D0 be an
open domain in Rn. Referring to Figure 1, find necessary
and sufficient conditions for the existence a state feedback
controller C that takes !c from every initial condition in X0

into D0 in finite time. If such a controller exists, provide a
method for its derivation.

The domain D0 of Problem 1.1 is called the target do-
main; it is the domain into which ! must be driven by the
state feedback controller C.

We show in Section 3 that state feedback controllers
that fulfill the design objective of Problem 1.1 can be de-
rived from the solution of a set of inequalities; the inequal-
ities are obtained directly from quantities that appear in the
differential equation of the controlled system !. Further-
more, we show that, whenever achievable, the objective of
Problem 1.1 can be achieved by static state feedback con-
trollers, namely, by controllers that are described by a state
feedback function, rather than being described by a dif-
ferential equation. All controllers derived in this paper are
robust in the sense that they continue to perform their task
in the presence small deviations or errors.

In Section 6, we specialise our discussion to the case
where the target domain D0 is a small neighbourhood of the
state-space origin and consider the existence and the design
of state feedback controllers that take the controlled system
! closer and closer to the origin of its state space as time
progresses. In other words, we examine the existence and
the design of state feedback controllers that asymptotically
stabilise a given nonlinear system !. As before, we show
that such controllers can be derived from the solution of a
set of inequalities obtained directly from quantities given
in the differential equation of !.

C⃝ 2013 Taylor & Francis
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144 J. Hammer

Figure 1. State feedback.

To be specific, consider a time-invariant input/state sys-
tem ! described by the differential equation

! :
ẋ(t) = f (x(t), u(t)), t ≥ 0,

x(0) = x0,
(1.1)

where x(t) ∈ Rn is the state of ! and u(t) ∈ Rm is the input
of ! at the time t. Here, f: Rn × Rm → Rn is a continuous
function, and x0 is the initial state of !. (In Section 6, the
function f is required to be twice continuously differen-
tiable.) Small uncertainties about the exact values of f and
of x0 are allowed.

Referring to Problem 1.1, our objective is to derive
(whenever possible) a state feedback controller C that takes
! from its initial condition x0 into the target domain D0. We
show in Section 3 that, if such a state feedback controller
exists, it can be chosen as a static time-invariant state feed-
back controller, namely, as a member of the simplest class
of controllers. Such a controller is characterised by a state
feedback function ϕ: Rn → Rm that generates the input
signal u(t) of ! according to the equation

u(t) = ϕ(x(t)). (1.2)

The corresponding control configuration is shown in
Figure 2, where !ϕ denotes the closed-loop system. The
differential equation of !ϕ is given by

!ϕ :
ẋ(t) = f (x(t),ϕ(x(t))), t ≥ 0,

x(0) = x0.
(1.3)

As !ϕ includes no external input, it as an autonomous sys-
tem. In these terms, Problem 1.1 reduces to the following:
find necessary and sufficient conditions for the existence
of a state feedback function ϕ such that, for every initial
state x0 ∈ X0, there is a time τ > 0 at which the state of !ϕ

satisfies x(τ ) ∈ D0.

Figure 2. Static state feedback control.

An important aspect of the present approach is its con-
ceptual simplicity. We show in Sections 2 and 3 that an ap-
propriate state feedback function ϕ can be calculated from
the solution of a set of inequalities derived directly from the
function f that appears in the differential equation (1.1) of
the controlled system !. Furthermore, Problem 1.1 has a
solution if and only if this set of inequalities has a solution.
In this sense, the methodology presented here is reminiscent
of linear state feedback theory, where state feedback func-
tions are derived directly from matrices that appear in the
controlled system’s differential equation. Notwithstanding,
the present methodology is very different from its linear
counterpart; it does not yield exclusively linear feedback
functions when the controlled system ! is linear.

When discussing feedback controllers that take a system
! from an initial condition into an assigned target domain
in state space, it is natural to contemplate the form of the
path taken by the closed-loop system as it makes its way.
We focus here on paths formed by broken straight lines,
namely, paths that consist of successions of straight line
segments. The state feedback function ϕ is designed to
guide the closed-loop system !ϕ along a broken line from
an initial condition x0 to the target domain D0. Of course,
errors and disturbances, which are permitted, may distort
the form of the path. Other categories of paths can also be
employed.

The construction of state feedback functions ϕ is de-
scribed in detail in Sections 2 and 3. We provide here a
simplified (and somewhat inaccurate) overview of this con-
struction. At a state x ∈ Rn, let U1(x) be the set of all input
values u ∈ Rm for which the vector f (x, u) points from x
to the target domain D0. Let D1 be the set of all states x ∈
Rn at which the set U1(x) is not empty. The set D1 is de-
rived by solving an inequality induced by the function f of
(1.1), namely, by the function that appears in the differential
equation of the controlled system !.

At each point x ∈ D1, choose a value u(x) ∈ U1(x) and
define the state feedback function ϕ(x) := u(x). Then, in
view of (1.3), the path derivative ẋ(t) = f (x(t),ϕ(x(t))) of
the closed-loop system !ϕ is directed toward D0 at every
point x(t) ∈ D1. As a result, the state x(t) of the closed-
loop system !ϕ moves toward the target domain D0 as time
progresses. In the special case when the target domain D0

is a single point, the fact that ẋ(t) points toward D0 at every
point of D1 implies that the closed-loop system !ϕ moves
within D1 in constant direction toward D0, thus tracing a
straight line segment.

Having built the set D1, we look at the difference set
D′

2 := Rn \ D1, namely, the set of remaining states. At a
state x ∈ D′

2 , denote by U2(x) the set of all input values
u ∈ Rm for which the vector f(x, u) points from x to a point
of the set D1. Let D2 be the set of all points x ∈ D′

2 at
which U2(x) is not empty. As before, at each point x ∈ D2,
choose a value u(x) ∈ U2(x) and define the state feedback
function ϕ(x) := u(x). The set U2(x) and the domain D2
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are calculated by solving an inequality based on the given
function f of (1.1). Considering (1.3), we conclude that the
derivative ẋ(t) = f (x(t),ϕ(x(t))) points toward the set D1

at all points x(t) of D2. Consequently, the state trajectory x(t)
takes !ϕ from every point of D2 toward a point of D1. Once
a point of D1 is reached, the values of the state feedback
function ϕ previously defined on D1 take !ϕ to the target
domain D0. Thus, the resulting state feedback function ϕ

takes the closed-loop system !ϕ to the target domain D0

from all points of the union D1 ∪ D2.
Continuing with this process, we derive in a recursive

manner a sequence of domains D1, D2, . . . ⊆Rn, as follows.
Let i ≥ 1 be an integer, and assume that the domains D1, D2,
. . . Di ⊆ Rn have been derived. Then, define the difference
set

D′
i+1 := Rn \

⎛

⎝
⋃

j=0,...,i

Dj

⎞

⎠

that consists of all points outside these domains. At each
point x ∈ D′

i+1, let Ui+1(x) be the set of all input values
u ∈ Rm for which the vector f (x, u) points from x to a
point of the set Di. Denote by Di+1 the set of all points
x ∈ D′

i+1 at which Ui+1(x) is not empty. The domain Di+1

is obtained from the solution of an inequality based on the
given function f of (1.1). At each point x ∈ Di+1, choose a
value u(x) ∈ Ui+1(x) and define the state feedback function
ϕ(x) := u(x). Then, considering (1.3), the path x(t) of the
closed-loop system !ϕ points toward the set Di at all points
of Di+1. As a result, !ϕ moves from any point of Di+1

toward a point of Di. Once a point of Di is reached, the
previously defined values of ϕ on Di take the closed-loop
system into the set Di−1. From there, previously defined
values of ϕ assure that !ϕ progresses to the set Di−2, and
so on, until !ϕ reaches the target domain D0.

Schematically, the progression of the closed-loop sys-
tem !ϕ toward its target domain can be described as de-
picted in Figure 3. Note that, in general, the domain Di

Figure 3. Domains and paths.

may not be a connected set for some or for all integers
i = 1, 2, . . .

In summary, the static state feedback function ϕ so
constructed takes the system ! to the target domain D0

from any point of the union:

S(D0) :=
⋃

i≥0

Di.

Furthermore, we show in Section 3 that this is an exclusive
feature of the set S(D0): there is no state feedback controller,
not static nor dynamic, which, in finite time, can take ! into
the target domain D0 from an initial state outside S(D0).
Thus, recalling that X0 denotes the set of all potential initial
conditions of !, we conclude that there is a state feedback
controller solving Problem 1.1 if and only if

X0 ⊆ S(D0). (1.4)

We show in Section 3 that, whenever it exists, a state feed-
back controller C that solves Problem 1.1 can be imple-
mented as a static state feedback function ϕ. The state
feedback function ϕ is obtained from the solution of a set
of inequalities based on the function f given in the differen-
tial equation (1.1) of the controlled system !.

As mentioned earlier, the tools presented here can be
used to derive feedback controllers that asymptotically sta-
bilise a nonlinear system !. To this end, simply choose the
target domain D0 as a tight neighbourhood of the origin
and derive a state feedback function ϕ that takes ! into
D0. Then, expand ϕ onto D0 by patching it together with a
linear state feedback function that asymptotically stabilises
a linearisation of ! at the origin. The resulting state feed-
back function provides asymptotic stabilisation of ! over
the domain S(D0). This process yields a simple approach
to global stabilisation of nonlinear system by state feed-
back. The critical computational step involves the solution
of a set of inequalities based on the function f given in the
differential equation (1.1) of !. A detailed discussion of
asymptotic stabilisation is provided in Section 6.

As mentioned earlier, we show in Section 3 that, when-
ever solvable, Problem 1.1 can be solved by a static state
feedback controller. Thus, in the context of Problem 1.1,
dynamic state feedback is not necessary. Considering the
discussion of the previous paragraph, it also follows that
asymptotic stabilisation of nonlinear systems, whenever
possible, can be achieved by static state feedback. This
is not to say that dynamic state feedback controllers are to
be ignored, as they may offer broader capabilities of mold-
ing the dynamical behaviour of the closed-loop system !c.
The static state feedback controllers derived in this report
can help calculate desired dynamic controllers. Indeed, a
stabilising static state feedback controller can be used to
obtain a fraction representation of the controlled system !,
and such a fraction representation can be utilised to derive
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146 J. Hammer

dynamical state feedback controllers that assign desirable
dynamical behaviour to the closed-loop system (Hammer,
1984, 1985, 1989, 1994).

To conclude, static state feedback controllers that lead
a nonlinear system ! into a prescribed target domain D0

in state space can be derived from the solution of a set of
inequalities obtained directly from the function f given in
the differential equation (1.1) of the controlled system !. If
this set of inequalities has no solution, then there is no state
feedback controller, not static nor dynamic, that takes ! into
D0 from the desired initial condition. These facts provide
a simple and transparent foundation for the solution of a
wide range of problems in nonlinear control. In Sections 2
and 3, these principles are formulated within a framework
that assures robustness of the closed-loop feedback system
!ϕ , guaranteeing that small errors in the function f or in
the implementation of the state feedback function ϕ do not
breach control objectives.

Alternative approaches to the control of nonlinear
systems can be found in Lasalle and Lefschetz (1961),
Lefschetz (1965), Hammer (1984, 1985, 1989, 2004, 1994),
Desoer and Kabuli (1988), Verma (1988), Sontag (1989),
Chen and de Figueiredo (1990), Paice and Moore (1990),
Verma and Hunt (1993), Sandberg (1993), Paice and van
der Schaft (1994), Baramov and Kimura (1995), Georgiou
and Smith (1997), Logemann, Ryan, and Townley (1999),
Hammer (2004), the references cited in these publications,
and others.

The paper is organised as follows. Section 2 introduces
basic concepts and notation, while Section 3 expands on
these concepts and utilises them to derive state feedback
controllers that solve Problem 1.1. Section 4 derives nec-
essary and sufficient conditions for robust state feedback
control of nonlinear systems. Section 5 consists of two
examples that demonstrate the computation of robust state
feedback controllers using the formalism developed in Sec-
tion 4. The paper concludes in Section 6 with the derivation
of state feedback controllers that provide robust asymptotic
stabilisation of nonlinear systems.

2. Basics

In this section, we introduce some of the notions that under-
lie our discussion. Let ! be an input/state system described
by the differential equation (1.1) with a continuous func-
tion f : Rn × Rm → Rn, and consider the static state feedback
configuration of Figure 2. We concentrate on necessary and
sufficient conditions for the existence of a state feedback
function ϕ : Rn → Rm for which the closed-loop system
!ϕ proceeds from an initial state x0 into a specified target
domain D0 in state space. First, some notation.

Notation: As usual, the superscript T indicates the trans-
pose. Throughout our discussion, we employ the Euclidian
norm | · | given, for an m-dimensional vector u = (u1, u2,

. . . , um)T ∈ Rm, by

|u| :=
√

u2
1 + u2

2 + · · · + u2
m.

In practice, systems often have bounds on the maximal
input signal amplitude they can tolerate. These bounds are
determined by structural limitations of a system’s compo-
nents. To incorporate such bounds into our considerations,
we assume that the controlled system ! allows only input
signals whose amplitude does not exceed a specified mag-
nitude M > 0. It is convenient to state this fact formally for
future reference.

Assumption 2.1: The controlled system ! permits only
input signals u of magnitude |u| ≤ M, where M > 0 is a
specified real number.

Note that when Assumption 2.1 is valid, the solution
x(t) of the controlled system’s differential equation (1.1) is
a continuous function of time. We take implicit advantage
of this continuity in our forthcoming discussion.

Given a point s ∈ Rn and a real number ρ > 0, the open
ball B(s, ρ) of centre s and radius ρ is, as usual, the set

B(s, ρ) := {x ∈ Rn : |x − s| < ρ}.

With every non-zero vector z ∈ Rn, we associate a unit
vector ẑ in the direction of z; we take ẑ to be the zero vector
when z = 0. Formally,

ẑ :=
{
z/|z| if z ̸= 0,

0 if z = 0.
(2.1)

A slight reflection shows that the function ·̂ is continuous
everywhere, except at the origin.

An object that is frequently used in our discussion is
the straight line segment ℓ(y, z) that connects two distinct
points y, z ∈ Rn; it consists of the set of points:

ℓ(y, z) := {α(z − y) + y : α ∈ [0, 1]}. (2.2)

Using such straight line segments, we build the following
body in Rn.

Definition 2.2: Given two points z, s ∈ Rn and a real number
ρ > 0, the ball-cone χ (z, s, ρ) is a body in Rn consisting of
all straight line segments that start in the open ball B(s, ρ)
and end at z, namely,

χ (z, s, ρ) : =
⋃

y∈B(s,ρ)

ℓ(y, z)

= {x ∈ Rn : x = α(z − y)

+ y,α ∈ [0, 1], y ∈ B(s, ρ)}.

The point z is the apex of the ball-cone χ (z, s, ρ), while s
is its centre of base.
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Figure 4. A ball-cone χ (z, s, ρ).

Note that, when s = z, the ball-cone reduces to the ball
χ (s, s, ρ) = B(s, ρ).

Visually, the ball-cone is akin to a cone, except that
instead of a cone’s ‘flat’ base, the ball-cone has a ball, as
depicted in Figure 4. The shaded area in the figure shows
a standard right circular cone c(z, s, ρ) whose vertex is at
z, the centre of its base is at s, and the radius of its base
is ρ. The angle between the generator and the axis of the
right circular cone c(z, s, ρ) is denoted by θ in the figure.
We refer to θ as the opening angle of the ball-cone χ (z, s,
ρ). Note that the angle between the generator and the axis
of χ (z, s, ρ) is larger than θ , since a ball-cone has the entire
n-dimensional ball B(s, ρ) as its ‘base’.

For the right circular cone c(z, s, ρ), we have

ρ = |s − z| tan θ . (2.3)

2.1 Directional error

Consider a system ! described by the differential equa-
tion (1.1), and assume that the system is at a state z ∈ Rn.
Suppose that it is necessary to make ! proceed from the
state z to a state s ̸= z ∈ Rn along the straight line segment
that connects the two states, namely, along the segment
ℓ(z, s) of (2.2). For ! to proceed from z to s along this
straight line segment, the trajectory x(t) of ! must have the
following feature: the derivative ẋ = f (x, u) must point
in the direction from z to s at all points x ∈ ℓ(z, s). As
the direction of the derivative ẋ is given by the function
f, there must be, at every state x ∈ ℓ(z, s), an input value
u(x) for which f (x, u(x)) points in the direction of the unit
vector (̂s−z). Considering the representation (2.2) of the
line segment, every point x of ℓ(z, s) is characterised by the
triplet z, s, α; hence, we can express the appropriate input
value at each point as a function u(z, s, α). In these terms, it
follows that ! can be driven along the straight line segment
from z to s if an only if there are input values u(z, s, α) ∈
Rm such that

f̂ (α(z − s) + s, u(z, s,α)) = (̂s−z) for all α ∈ [0, 1].
(2.4)

The requirement (2.4) implies complete accuracy and,
as a result, cannot be implemented in practice. We must
modify the requirement into a form that allows for small
errors and leads to a robust implementation. To this end, we

replace (2.4) by the following somewhat weaker condition:
rather than pointing exactly at s, we allow the derivative
ẋ = f (x, u) to point to the vicinity of s. Permitting such
deviation in the direction of motion removes the burden of
absolute accuracy and facilitates a robust implementation.

Formally, let ε > 0 be a real number that describes the
available directional accuracy. Then, (2.4) is replaced by
the requirement that there be an input function u(z, s, α) ∈
Rm satisfying

∣∣f̂ (α(z − s) + s, u(z, s,α)) − (̂s−z)
∣∣

< ε for all α ∈ [0, 1]. (2.5)

The error ε may be caused by a combination of factors,
including inaccuracies of the function f and errors in the
implementation of the input u(z, s, α). We say that (2.5)
represents a directional error of ε. As usual, the term ‘er-
ror’ indicates an unpredictable event. The expression ‘an
error of ε’ refers to all errors whose magnitude does not
exceed ε.

To be meaningful, condition (2.5) must be valid at all
states through which the system might pass on its way
from z to s. Due to the directional error of ε, the motion
of ! induced by the input values u(z, s, α) may not be
confined to the straight line segment connecting z to s. To
characterise the states through which the system may travel
under condition (2.5), let θ (ε) ≥ 0 be the supremal angle
between the two unit vectors f̂ (α(z − s) + s, u(z, s,α))
and (̂s−z) that is consistent with a directional error of
ε; namely, θ (ε) is the angle between the two unit vec-
tors f̂ (α(z − s) + s, u(z, s,α)) and (̂s−z) when |f̂ (α(z −
s) + s, u(z, s,α)) − (̂s−z)| = ε. Build a ball-cone with
opening angle θ (ε) and base centre s, as depicted in
Figure 5. Letting ρ(z, s, ε) be the base radius of this ball-
cone, it follows by (2.3) that

ρ(z, s, ε) = |z − s| tan θ(ε). (2.6)

Letting *(z, s, ε) denote the resulting ball-cone, we
have

*(z, s, ε) =
⋃

y∈B(s,ρ(z,s,ε))

ℓ(z, y)

= {x ∈ Rn : x = α(z − y) + y,α ∈ [0, 1],

y ∈ B(s, ρ(z, s, ε))}, (2.7)

where the radius ρ(z, s, ε) is given by (2.6).
To express our quantities directly in terms of ε, consider

the supremal case when

∣∣f̂ (α(z − s) + s, u(z, s,α)) − (̂s−z)
∣∣ = ε.
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148 J. Hammer

Figure 5. Directional errors.

Then, the triangle formed by the two unit vectors
f̂ (α(z − s) + s, u(z, s,α)) and (̂s−z), when pinned to-
gether at their tail and connected by a straight line segment
at their heads, is a bilateral triangle with sides of length 1
(the unit vectors) and base of length ε. The height h of this
triangle is determined by the Pythagorean theorem to be
h =

√
1 − ε2/4, and the apex angle of this triangle is

θ (ε) = 2 arctan
ε/2
h

= 2 arctan
ε/2

√
1 − ε2/4

. (2.8)

A direct examination of Figures 4 and 5 shows that θ (ε) is
the opening angle of the ball-cone *(z, s, ε). Note that θ (ε)
is completely determined by ε.

In view of (2.6), the base radius ρ(z, s, ε) of the ball-cone
*(z, s, ε) is given by

ρ(z, s, ε) = |z − s| tan

(

2 arctan
ε/2

√
1 − ε2/4

)

. (2.9)

For ε → 0, this yields the first-order approximations:

θ (ε) =̇ ε,

ρ(z, s, ε) =̇ |z − s|ε.

As we discuss next, condition (2.5) must be valid within the
entire ball-cone *(z, s, ε), if it is to be meaningful.

2.2 Ball-cones and invariance

Note that the ball-cone *(z, s, ε) of (2.7) is not an open
set, since it does not include a neighbourhood of the apex
z. However, a slight reflection shows that, except for z, all
points of *(z, s, ε) are interior points. Given a subset S ⊆ Rn,

denote by S the closure of S in Rn. We start now the process
of showing that the closure of a ball-cone *(z, s, ε) forms an
invariant set in the sense that, as long as the directional error
does not exceed ε, the trajectory of the closed-loop system
does not exit *(z, s, ε) before reaching a vicinity of s.

Proposition 2.3: Let z, s ∈ Rn be two distinct points, and
let ε > 0 be a directional error for which the opening
angle of the ball-cone *(z, s, ε) satisfies θ (ε) < π /4. Then,
*(z′, s, ε) ⊆ *(z, s, ε) for all z′ ∈ *(z, s, ε).

Proof: For a point z′ ∈ *(z, s, ε), we can write

*(z′, s, ε) = {x ∈ Rn : x = α(z′ − y ′) + y ′,α ∈ [0.1],

y ′ ∈ B(s, ρ(z′, s, ε))}, (2.10)

where, according to (2.6), we have ρ(z′, s, ε) =
|z′−s|tan θ (ε). Considering that z′ ∈ *(z, s, ε), it follows
from (2.7) that

z′ = β(z − y) + y (2.11)

for some β ∈ [0, 1] and y ∈ B(s, ρ(z, s, ε)). Substituting
into (2.10), we get

*(z′, s, ε) = {x ∈ Rn : x = α(β(z − y) + y − y ′)

+ y ′,α,β ∈ [0.1], y ∈ B(ρ(z, s, ε),

y ′ ∈ B(ρ(z′, s, ε)}. (2.12)

We claim that the point

x = α(β(z − y) + y − y ′) + y ′ (2.13)

of (2.12) is a member of *(z, s, ε) for all α, β ∈ [0, 1].

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 1

3:
34

 2
0 

Ja
nu

ar
y 

20
15

 



International Journal of Control 149

To this end, note first that when α = β = 1, we get x =
z, so that x ∈ *(z, s, ε), and our claim is valid in this case.
Next, consider the case where α and β are not both equal
to 1. Then, x can be rewritten in the form

x = αβ(z − η) + η, (2.14)

where a comparison of (2.13) and (2.14) yields, after some
simplification, that

η = y − 1 − α

1 − αβ
(y − y ′) for all α,β ∈ [0, 1]

satisfying αβ ̸= 1. (2.15)

Now, assume for a moment that η ∈ B(s, ρ(z, s, ε)). Then,
setting δ := αβ ∈ [0, 1], we can rewrite (2.14) in the form
x = δ(z−η) + η. In view of (2.7), this implies that x ∈
*(z, s, ε). As the latter is true for every point x of the
ball-cone *(z′, s, ε) and for all z′ ∈ *(z, s, ε), it follows
that *(z′, s, ε) ⊆ *(z, s, ε) for all z′ ∈ *(z, s, ε). Thus, our
proof will conclude upon showing that η ∈ B(s, ρ(z, s, ε)).

To prove the latter, examine the coefficient of (2.15)

γ (α,β) := 1 − α

1 − αβ
,

where α, β ∈ [0, 1] and αβ ̸= 1. Considering that

∂γ (α,β)
∂β

= (1 − α)α
(1 − αβ)2

> 0 for all α,β ∈ [0, 1],αβ ̸= 1,

it follows that γ (α, β) is a monotone increasing function of
β for all α, β ∈ [0, 1], αβ ̸= 1. Since we have γ (α, 0) =
(1−α) and γ (α, 1) = 1, we conclude that 0 ≤ γ (α, β) ≤ 1
for all α, β ∈ [0, 1], αβ ̸= 1. Thus, we can rewrite (2.15) in
the form

η = γ (α,β)(y ′ − y) + y, γ (α,β) ∈ [0, 1],

which implies that η is a point on the straight line segment
connecting y and y′.

Now, recall that y ∈ B(s, ρ(z, s, ε)); if we can show that
also y ′ ∈ B(s, ρ(z, s, ε)), then, since B(s, ρ(z, s, ε)) is a
convex set, it would follow that η ∈ B(s, ρ(z, s, ε)), and our
proof would conclude. Further, since y ′ ∈ B(s, ρ(z′, s, ε))
by (2.12), and since the two balls B(s, ρ(z′, s, ε)) and
B(s, ρ(z, s, ε)) are concentric (with centre at s), the inclu-
sion y ′ ∈ B(s, ρ(z, s, ε)) would follow from the inequality
ρ(z′, s, ε) ≤ ρ(z, s, ε). By (2.9), this inequality would be
a consequence of the inequality |z′−s| ≤ |z−s|. Thus, our
proof will conclude upon showing that the last inequality is
valid.

Using the Proposition’s assumption that θ (ε) < π /4, we
infer from (2.6) that

ρ(z, s, ε) < |z − s|. (2.16)

Subtracting s from both sides of (2.11), we obtain z′−s=
β(z−y) + (y−s) = β(z−s) + (1−β)(y−s). As 0 ≤ β ≤ 1,
we can write

|z′ − s| = |β(z − s) + (1 − β)(y − s)| ≤ β|z − s|
+ (1 − β)|y − s|. (2.17)

Now, since y ∈ B(s, ρ(z, s, ε)), we have |y−s| ≤ ρ(z, s,
ε); using (2.16) this yields |y−s| < |z−s|. Substituting into
(2.17), we obtain |z′−s| < β |z−s| + (1−β)|z−s| =|z−s|, and
our proof concludes. !

Proposition 2.3 is an important component of our forth-
coming discussion. As is it valid for θ (ε) < π /4, we restrict
our attention from now on to cases that satisfy this re-
quirement. In light of (2.8), this assumption is not overly
restrictive; a direct calculation shows that it corresponds to
0 < ε < 0.7654. Normally, directional errors are small, and
their corresponding opening angles much smaller than π /4.

Assumption 2.4: The directional error satisfies θ (ε) <

π /4.

The next statement is a technical result. It will help us
later to show that a system pointed toward a point s with
directional error of ε, remains within the closed ball-cone
*(z, s, ε) until reaching a vicinity of s.

Notation 2.5: For a real number β > 0, the symbol 0(β)
represents the set of all functions ω: R → Rn for which
limβ → 0|ω(β)|/β = 0.

Lemma 2.6: Let x, x′, s, z ∈ Rn be points and assume that
x ′ − x = βâ + µ(x ′, x), where β > 0 is a real number,
â is a unit vector satisfying |̂a − (̂s − x)| < ε, and µ(x′,
x) ∈ 0(β). If x ∈ *(z, s, ε), then also x ′ ∈ *(z, s, ε) for
sufficiently small β > 0.

Proof: Consider x as a fixed point, so that x′ is a function
of β. Note that, if x = s, then x is the centre of the ball
B(s, ρ(z, s, ε)) ⊆ *(z, s, ε); in such case, every point x′

sufficiently close to x is in B(s, ρ(z, s, ε)) and, consequently,
in *(z, s, ε). Thus, the statement is valid when x = s.

Next, examine the case where x ̸= s. Let θ (ε) be
the opening angle of the ball-cone *(z, s, ε). Since x ∈
*(z, s, ε), it follows by Proposition 2.3 that *(x, s, ε) ⊆
*(z, s, ε). This implies that *(z, s, ε) includes the straight
line segment ℓ(x, s) as well as any straight line segment that
connects x to a point of the ball B(s, ρ(x, s, ε)).

Applying magnitude to the equation in the Lemma’s
statement, we obtain 0 ≤ |x ′ − x| ≤ β |̂a| + |µ(x ′, x)| =
β(1 + |µ(x′, x)|/β), since â is a unit vector. As
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µ(x′, x) ∈ 0(β), this implies that limβ→0|x′−x| = 0. Keep-
ing in mind that x ̸= s, the latter implies that there is a real
number β0 > 0 such that

|x ′ − x| < |s − x|/2 for all 0 < β < β0. (2.18)

Further, define the real number ξ := |̂a − (̂s−x)| < ε,
and let θ (ξ ) be the angle between the unit vectors â and
(̂s−x). Then, as the function (2.8) is strictly monotone
increasing over our range and ξ < ε, we have that θ (ξ ) <
θ (ε). Let ψ(x′) be the angle formed between the vector x′−x
and the unit vector (̂s−x). Using the expression x ′ − x =
βâ + µ(x, x ′) and the fact that (̂x − s) is a unit vector, we
can write

ψ(x ′) = arccos

(
(x ′ − x) · (̂s−x)

|x ′ − x|

)

= arccos

(
βâ · (̂s−x) + µ(x, x ′) · (̂s−x)

√
β2 + µ(x, x ′) · µ(x, x ′) + 2βµ(x, x ′) · â

)

= arccos

(
â · (̂s−x) + µ(x, x ′) · (̂s−x)/β

√
1 + µ(x, x ′) · µ(x, x ′)/β2 + 2µ(x, x ′) · â/β

)

.

Considering that limβ→0|µ(x, x′)|/β = 0, we conclude that

0 ≤ lim
β→0

ψ(x ′) = arccos(â · (̂s−x)) = θ (ξ ) < θ (ε).

(2.19)

Now, denote ζ := θ (ε)−θ (ξ ); in view of (2.19), there is
a real number β1 > 0 such that ψ(x′) < θ (ε)−ζ /2 for all 0 <

β < β1. Then, for all 0 < β < min {β0, β1}, the vector x′−x
forms an angle smaller than θ (ε) with the line segment ℓ(x,
s), and, by (2.18), the length of x′−x does not exceed |x−s|.
This shows that x ′ ∈ *(x, s, ε), and, since x ∈ *(z, s, ε),
the lemma follows by Proposition 2.3. !

In Section 3, we examine state feedback functions ϕ that
take a system ! from a state z to a state s, while continually
aiming at s with directional error of ε. At that point, Lem-
ma 2.6 will help us show that such state feedback keeps the
closed-loop system !ϕ within the ball-cone *(z, s, ε) until
a vicinity of s is reached. This fact turns out to be critical
to our discussion.

2.3 Directional uncertainty and interception

We start by characterising the set of all states from which a
system ! with directional error of ε can reach the vicinity
of a specific target state. For a state s ∈ Rn, let 5(s, ε) be
the set of all states of ! at which the trajectory of ! can be
pointed in the direction of s with a directional error of ε >

0. Recalling Assumption 2.1, we have

5(s, ε) =
{
x ∈ Rn \ s : |f̂ (x, u(x)) − (̂s−x)|

< ε for some u(x) ∈ Rm satisfying |u(x)| ≤ M
}
.

(2.20)

Figure 6. Interception.

Note that pointing the path of ! toward s does not guarantee
that ! can reach s from x, since it might not be possible to
maintain this direction all the way from x to s. The set of
all states from which ! can actually reach the vicinity of s
will be characterised shortly.

Considering that our objective is to move the state of !

in the direction of s within 5(s, ε), we have to make sure that
f(x, u(x)) ̸= 0 at all states x along the way, since otherwise
a stationary point is met at (x, u(x)) and the system stops
progress. Now, substituting f(x, u(x)) = 0 into (2.20) yields
|(̂s−x)| < ε, or 1 < ε, since f̂ (x, u(x)) = 0 whenever f (x,
u(x)) = 0 (see (2.1)). Thus, Assumption 2.4 guaranties that
f(x, u(x)) ̸= 0 at all points of 5(s, ε), and stationary points
are avoidable in 5(s, ε).

Problem 1.1 requires the design of a feedback controller
that takes ! from an initial state x0 = z into a target domain
D0. The path that takes ! from z to D0 is, generally speak-
ing, unpredictable, since the closed-loop system is subject
to a directional error of ε. Nevertheless, as Proposition 2.3
hints (this connection is made precise in Proposition 3.1),
the closed-loop system remains confined to the closed ball-
cone *(z, s, ε). Thus, if every path through *(z, s, ε) meets
the target domain D0, we are assured that the objective of
entering D0 is achievable, despite possible directional er-
rors. These considerations lead us to the following notion.

Definition 2.7: An open domain D0⊆Rn intercepts the
ball-cone *(z, s, ε) if ℓ(z, y) ∩ D0 ̸= ∅ for all y ∈
B(s, ρ(z, s, ε)).

When the target domain D0 intercepts the ball-cone *(z,
s, ε), then every ray within the ball-cone from the apex z
meets D0. We show later that this implies that every path
taking ! from z to s with directional error of ε must enter
D0. The situation is depicted schematically in Figure 6. In
particular, note that D0 intercepts the ball-cone *(z, s, ε)
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whenever z ∈ D0; this is, of course, the degenerate case
here.

Our interest in the system’s progress ends upon entering
the target domain D0. Therefore, in Figure 6, our interest
is confined to the ‘upper’ part of the ball-cone, namely to
the part between the apex z and the set D0. Formally, this is
described by the following notion.

Definition 2.8: Let D0 be an open subset of Rn that inter-
cepts the ball-cone *(z, s, ε), and denote by Ď0 := D0 \ D0

the boundary of D0. Then, the restriction *D0 (z, s, ε) is the
set

*D0 (z, s, ε)

:=

⎧
⎨

⎩

{⋃
ℓ(y, z) : y ∈ *(z, s, ε) ∩ Ď0

and ℓ(y, z) ∩ D0 = ∅
}

if z /∈ D0,

∅ if z ∈ D0.

(2.21)

When z ̸∈ D0, the restriction *D0 (z, s, ε) consists of all
points of the closed ball-cone *(z, s, ε) that are between the
apex z of the ball-cone and the target domain D0, including
z and the ‘upper’ boundary of D0. The restriction is repre-
sented graphically in Figure 6. It is a closed and bounded
set in Rn, as follows.

Lemma 2.9: Let D0 ⊆ Rn be an open set that intercepts
the ball-cone *(z, s, ε). Then, the restriction *D0 (z, s, ε) is
a compact set.

Proof: According to Definition 2.8, the restriction
*D0 (z, s, ε) is a subset of *(z, s, ε), and hence is a bounded
set. Thus, it remains to show that the restriction is a
closed set. To this end, consider a sequence of points
x1, x2, . . . ∈ *D0 (z, s, ε) that converges to a point x ∈ Rn.
We have to show that x ∈ *D0 (z, s, ε). By Definition 2.8,
there is a sequence of points y1, y2, . . . ∈ *(z, s, ε) ∩ Ď

such that xi ∈ ℓ(yi, z) and ℓ(yi, z) ∩ D0 = ∅, i = 1, 2, . . .

As *(z, s, ε) ∩ Ď is a closed subset of a bounded set, it
is a compact set, and whence the sequence y1, y2, . . .

has a convergent subsequence that converges to a
point y ∈ *(z, s, ε) ∩ Ď. It follows then that ℓ(y, z) =
limi → ∞ℓ(yi, z), so that ℓ(y, z) ∩ D0 = (limi→∞ ℓ(yi, z)) ∩
D0 = limi→∞(ℓ(yi, z) ∩ D0) = ∅. Referring again to Def-
inition 2.8, we conclude that ℓ(y, z) ⊆ *D0 (z, s, ε). This
implies that, if x ∈ ℓ(y, z), then x ∈ *D0 (z, s, ε), and it fol-
lows that *D0 (z, s, ε) is a closed set. Thus, our proof will
conclude upon showing that x ∈ ℓ(y, z).

To show the latter, assume by contradiction that x̸∈ℓ(y,
z). Then, considering that ℓ(y, z) is a closed set, the com-
plement of ℓ(y, z) is an open set, and hence there is a real
number µ > 0 such that the ball B(x, µ) includes no points
of ℓ(y, z). As the sequence {xi} converges to x, there is an in-
teger N > 0 such that |x−xi| < µ/2 for all i ≥ N. This implies
that none of the points {xi}∞i=N gets closer than µ/2 to the
segment ℓ(y, z). Considering that the segments {ℓ(yi, z)}∞i=1

all have the common apex z, this implies that none of the
points {yi}∞i=N gets closer than µ/2 to y, contradicting the
fact that y is a limit point of the sequence {yi}. Thus, we
must have that x ∈ ℓ(y, z), and our proof concludes. !

3. Existence and construction of state feedback
functions

3.1 Reaching the target domain

We start our investigation of the existence of state feedback
functions that solve Problem 1.1 by considering states from
which the controlled system can be driven into the target
domain along a path related to a straight line.

Proposition 3.1: Let ! be a system described by (1.1),
where the function f is continuous. Let z, s ∈ Rn be a pair of
points, let ε > 0 be a real number, let 5(s, ε) be given by
(2.20), and let D0 ⊆ Rn be an open domain that intercepts
*(z, s, ε). If *D0 (z, s, ε) ⊆ 5(s, ε), then there is a state
feedback function ϕ with directional error of ε that takes !

from z into D0 in finite time.

Proof: As the proposition is clearly true when z ∈ D0,
we consider the case where z ̸∈ D0. Let x(t) be the state
of the system ! at the time t, and let u(x(t)) be the input
of ! at t. Use the initial state x(0) = z, so that x(0) ∈
*D0 (z, s, ε) by Definition 2.8. As *D0 (z, s, ε) ⊆ 5(s, ε) by
the proposition’s assumption, it follows that x(0) ∈ 5(s, ε).
Consequently, there is an input value u(x(0)) ∈ Rm such
that

|f̂ (x(0), u(x(0))) − ̂(s − x(0))| < ε. (3.1)

Now, let τ ≥ 0 be a real number for which the following
is true: there is a state feedback function u(x) that drives !

with a directional error of ε in such a way that the state sat-
isfies x(t) ∈ *D0 (z, s, ε) for all t ∈ [0, τ ]. We are interested
in the upper limit of τ , namely, in the quantity

T := sup τ. (3.2)

In view of (3.1), we have τ ≥ 0, so also T ≥ 0.
By (1.1), we can write for a real number δ > 0 that

x(t + δ) = x(t) + f (x(t), u(x(t))) δ + 0(δ). (3.3)

Setting t = 0 and considering that x(0) = z ∈ *(z, s, ε), it
follows by Lemma 2.6 that there is a real number δ0 > 0
such that x(δ) ∈ *(z, s, ε) for all 0 < δ < δ0. Clearly, if
x(δ) ∈ D0 for some 0 < δ < δ0, then our proof is complete,
as the target domain has been reached. Otherwise, it follows
by Definition 2.8 that x(δ) ∈ *D0 (z, s, ε) for all 0 < δ <

δ0. Also, since *D0 (z, s, ε) ⊆ 5(s, ε) by the proposition’s
assumption, it follows that x(δ) ∈ 5(s, ε) for all 0 < δ < δ0.

Next, by (3.2), there is a sequence of times t1, t2, . . . ∈
[0, T] converging to T such that x(ti) ∈ *D0 (z, s, ε) for all
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152 J. Hammer

i = 1, 2, . . . As *D0 (z, s, ε) is compact by Lemma 2.9, the se-
quence {x(ti)}∞i=1 has a convergent subsequence {x(tik )}∞k=1
and limk→∞ x(tik ) ∈ *D0 (z, s, ε). Considering that x(t) is
the solution of the differential equation (1.1) with a bounded
input function (Assumption 2.1), it follows that x(t) is a con-
tinuous function of time; thus, limk→∞ tik = T implies that
limk→∞ x(tik ) = x(T ), and whence x(T ) ∈ *D0 (z, s, ε).

Further, since *D0 (z, s, ε) ⊆ 5(s, ε) by assumption,
x(T) ∈ 5(s, ε). Thus, there is an input value u(x(T)) ∈ Rm

such that |f̂ (x(T ), u(T )) − ̂(s − x(T ))| < ε. Using (3.3)
with t = T and Lemma 2.6, this implies that there is a
real number δ1 > 0 such that x(T + δ) ∈ *(z, s, ε) for all
0 < δ < δ1. Selecting one such value of δ, we are left with
the following two options: (i) x(T + δ) ̸∈ D0, or (ii) x(T + δ)
∈ D0. Case (i) implies that x(T + δ) ∈ *D0 (z, s, ε), violat-
ing the fact that T is the supremum given by (3.2). Thus,
(ii) must be valid, and our proof concludes. !

Proposition 3.1 forms the foundation of our solution of
Problem 1.1. The solution is based on a concept introduced
in the next subsection.

3.2 The expansion set

Let D0 be an open domain in Rn serving as the target domain
for the system !. Let ε > 0 be a real number, let f : Rn × Rm

→ Rn be a continuous function, and let 5(s, ε) be given
by (2.20). Then, in view of Proposition 3.1, the system !

can be driven into the target domain D0 by a state feedback
function with directional error of ε from any point of the
set

E1
f (D0, ε) :=

⎧
⎨

⎩z ∈ Rn

∣∣∣∣∣∣

D0 intercepts *(z, s, ε)
for some s ∈ Rn and

*D0 (z, s, ε) ⊆ 5(s, ε).

⎫
⎬

⎭ (3.4)

Definition 3.2: E1
f (D0, ε) is the expansion set of D0 rela-

tive to f with directional error of ε.

In view of Definitions 2.7 and 2.8, we have that

D0 ⊆ E1
f (D0, ε). (3.5)

Proposition 3.1 can then be restated in the following
form.

Proposition 3.3: Let ! be a system described by (1.1)
with a continuous function f. Let ε > 0 be a real number,
let D0 ⊆ Rn be an open domain, and let E1

f (D0, ε) be the
expansion set. Then, there is a state feedback function ϕ

with directional error of ε that takes ! from every initial
state z ∈ E1

f (D0, ε) into D0 in finite time.

A partial inverse of Proposition 3.3 is provided by the
following.

Proposition 3.4: Let ! be a system described by the dif-
ferential equation (1.1) with a continuous function f. Let
D0 be an open domain in Rn, let ε > 0 be a real number,
and let E1

f (D0, ε) be the expansion set. If the difference
set E1

f (D0, ε)\D0 is empty, then there is no state feedback
function with directional error of ε that drives ! from a
state outside of D0 into D0 in finite time.

Proof: The proof is by contradiction. Assume that
E1

f (D0, ε)\D0 = ∅, but there is a state z ̸∈ D0 from which
! can be driven into D0 by a state feedback function with
directional error of ε. Let ϕ: Rn → Rm be such a state feed-
back function, and let s ∈ D0 be a point reached by the
closed-loop system !ϕ from z. Recalling that a directional
error of ε includes all directional errors smaller than ε, it
follows by the proof of Proposition 3.1 that D0 intercepts
*(z, s, ε).

Now, let x(t) be the state of the closed loop system !ϕ

at the time t, as it progresses from z to s. Set x(0) = z, and
let t1 > 0 be a time at which x(t1) = s ∈ D0. Considering
that D0 is an open set, x(t1) is an interior point of D0. In
view of Assumption 2.1, all input values of ! are uniformly
bounded, and, as a result, x(t) is a continuous function of t.
Define the time

t∗ := inf{t ≥ 0 |x(t) ∈ D0 }; (3.6)

as x(t1) is an interior point of D0, it follows that t1−t∗ ≥ 0.
We claim that x(t∗) is a boundary point of D0.

Indeed, assume, by contradiction, that x(t∗) ∈ D0. As D0

is an open set by the proposition’s assumptions, there is a
real number δ > 0 such that the ball B(x(t∗), δ) of radius δ

and centre x(t∗) is included in D0. By the continuity of x(t),
there is a real number µ > 0 such that |x(t∗)−x(t)| < δ/2
for all times t satisfying |t∗−t| < µ. But then, x(t∗−µ) ∈
B(x(t∗), δ) and, since B(x(t∗), δ)⊆D0, it follows that x(t∗−µ)
∈ D0, in contradiction to the definition of t∗ as the infimum
(3.6). Thus, x(t∗) ̸∈D0 and x(t∗) is a boundary point of the
open domain D0.

Consider next the vector f(x(t∗), ϕ(x(t∗))). We claim
that this vector has the following two properties: (a) it is
not zero, and (b) it points toward a point of D0. To prove
this claim, note that, if f(x(t∗), ϕ(x(t∗))) = 0, then x(t∗) is
a stationary point of the closed-loop system !ϕ . In such
case, !ϕ remains at the state x(t∗) indefinitely, and, as x(t∗)
̸∈ D0, the closed-loop system !ϕ never reaches a point of
D0. This is in contradiction to the fact that x(t1) ∈ D0, since
t1 ≥ t∗. Thus, f(x(t∗), ϕ(x(t∗))) ̸= 0 and (a) is valid.

Regarding (b), it follows by (3.6) and the continuity
of the function x(t) that there is a real number η0 > 0
such that x(t∗ + η) ∈ D0 for all 0 < η < η0. Using the
differential equation (1.1) of !, we can write x(t∗ + η) =
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x(t∗) + ηf(x(t∗), ϕ(x(t∗))) + 0(η), or

x(t∗ + η) − x(t∗) = η[f (x(t∗),ϕ(x(t∗))) + 0(η)/η].
(3.7)

Considering that x(t∗ + η) is an interior point of D0 for all
0 < η < η0, it follows that the vector

fη := f (x(t∗),ϕ(x(t∗))) + 0(η)/η

points from x(t∗) to an interior point of D0 for all 0 < η < η0.
As all directions may include a directional error of ε, there
is then a point s′ ∈ D0 such that |̂fη − ̂(x(t∗) − s ′)| < ε.
Denote ξ (η) := |f̂η − ̂(x(t∗) − s ′)| < ε.

Using the facts that limη→00(η)/η = 0 and that f (x(t∗),
ϕ(x(t∗))) ̸= 0, it follows that the unit vector

f̂η := f (x(t∗),ϕ(x(t∗))) + 0(η)/η
|f (x(t∗),ϕ(x(t∗))) + 0(η)/η|

satisfies the condition limη→0 f̂η = f̂ (x(t∗),ϕ(x(t∗))).
Therefore, for every real number ζ > 0, there is a real
number 0 < η1 < η0 such that

|f̂η − f̂ (x(t∗),ϕ(x(t∗)))| < ζ (3.8)

for all 0 < η < η1. In particular, we can choose 0 < ζ <

ε. Then, the vector f(x(t∗), ϕ(x(t∗))) points in the direction
of a point of D0 with a directional error not exceeding ε.
By (3.7) and (3.8), we obtain that x(t∗) ∈ 5(x(t∗ + η), ε),
and by the definition of η we have x(t∗ + η) ∈ D0. Thus,
x(t∗) ∈ E1

f (D0, ε) by (3.4). Recalling that x(t∗) ̸∈ D0, this
contradicts the assumption that E1

f (D0, ε) \ D0 = ∅, and
our proof concludes. !

Our ensuing discussion depends on the fact that the
expansion set is an open set, as follows.

Lemma 3.5: Let ! be a system described by (1.1) with a
continuous function f, and let D0 be an open domain in Rn.
Then, the expansion set E1

f (D0, ε) is an open set for every
ε > 0.

Proof: First, we show that the set 5(s, ε) is an open set.
Indeed, consider a point s ∈ Rn at which 5(s, ε) ̸= ∅.
Then, since ε < 1 by Assumption 2.4, it follows in (2.20)
that f(x, u(x)) ̸= 0 for all x ∈ 5(s, ε). Consequently,
the unit vector f̂ (y, u(x)) is a continuous function of
y in a neighbourhood of x at any x ∈ 5(s, ε). Now,
consider a point x ∈ 5(s, ε) and let u(x) ∈ Rm be an
input value at which |f̂ (x, u(x)) − (̂s−x)| < ε. Denote
δ := ε − |f̂ (x, u(x)) − (̂s−x)| > 0. By continuity, there
are real numbers ζ 1, ζ 2 > 0 such that |f̂ (x ′, u(x)) −
f̂ (x, u(x))| < δ/3 for all |x′−x| < ζ 1 and ̂(s − x ′′) −
(̂s−x)| < δ/3 for all |x′′−x| < ζ 2. Let ζ := min {ζ 1, ζ 2}.
Then, for all y ∈ B(x, ζ ), we have |f̂ (y, u(x)) − (̂s − y)| =

|[f̂ (y, u(x)) − f̂ (x, u(x))] + f̂ (x, u(x))−[ ̂(s − y) −
(̂s−x)] − (̂s−x)| ≤ |f̂ (y, u(x)) − f̂ (x, u(x))| +
|(̂s − y) − (̂s−x)| + |f̂ (x, u(x)) − (̂s−x)|≤δ/3 + δ/3
+ |f̂ (x, u(x)) − (̂s−x)| <ε. This shows that B(x, ζ )⊆5(s,
ε) (the constant input value u := u(x) is used for all y ∈
B(x, ζ )). Consequently, 5(s, ε) is an open set.

Now, consider a point z ∈ E1
f (D0, ε). By (3.4), there

is a point s ∈ Rn such that D0 intercepts *(z, s, ε) and
*D0 (z, s, ε) ⊆ 5(s, ε). The fact that D0 and 5(s, ε) are
both open sets implies that there is a real number ρ1 > 0
such that D0 intercepts *(y, s, ε) and *D0 (y, s, ε) ⊆ 5(s, ε)
for all y ∈ B(z, ρ1). Consequently, B(z, ρ1) ⊆ E1

f (D0, ε).
As this argument is valid at every point z ∈ E1

f (D0, ε), it
follows that E1

f (D0, ε) is an open set. !

3.3 Iterating expansion sets

Iterating the construction (3.4) of an expansion set, we build
a sequence of sets E0

f (D0, ε), E1
f (D0, ε), E2

f (D0, ε) . . . by
setting

Ei+1
f (D0, ε) := E1

f (Ei
f (D0, ε), ε), i = 1, 2, . . .

E0
f (D0, ε) := D0.

(3.9)

According to (3.5), we have the relationship

Ei
f (D0) ⊆ Ei+1

f (D0), i = 0, 1, 2, . . . ,

so that we have obtained a monotone increasing sequence
of sets. Translating Proposition 3.3 to the current notation,
we obtain

Proposition 3.6: Let ε > 0 be a real number, and let D0

be an open domain in Rn. There is a static state feedback
controller with directional error of ε that drives ! from
every initial state z ∈ Ei+1

f (D0, ε) into Ei
f (D0, ε).

Iterating Lemma 3.5 yields the following.

Lemma 3.7: Let ! be a system described by the differential
equation (1.1) with a continuous function f, and let D0 be
an open domain in Rn. Then, the expansion set Ei

f (D0, ε)
is an open set for all ε > 0 and all i = 1, 2, . . .

We can introduce now the main notion of our discussion.

Definition 3.8: Let D0 be an open domain in Rn, let f :
Rn × Rm → Rn be a continuous function, and let ε > 0 be a
real number. The expansion Ef(D0, ε) of D0 with respect to
f and ε is given by

Ef (D0, ε) :=
⋃

i≥0

Ei
f (D0, ε). (3.10)

Considering that the union of open sets is an open set,
we conclude from Lemma 3.7 that the following is true.
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154 J. Hammer

Corollary 3.9: Let f: Rn × Rm → Rn be a continuous func-
tion and let ε > 0 be a real number. Then, for every open
domain D0 ⊆ Rn, the expansion Ef(D0, ε) is an open set.

The definition of a union directly yields the next state-
ment.

Lemma 3.10: If x ∈ Ef(D0, ε), then there is a first integer
i ≥ 0 such that x ∈ Ei

f (D0, ε).

Our interest in the expansion set Ef(D0, ε) originates
from the following statement, which is one of the main
results of our discussion.

Theorem 3.11: Let ! be a system described by the differ-
ential equation (1.1) with a continuous function f, and let D0

be an open domain in Rn. Then, (i) and (ii) are equivalent.

(i) There is a static state feedback controller with di-
rectional error of ε that drives ! from a state z ∈
Rn into D0 in finite time.

(ii) z ∈ Ef (D0, ε).

Furthermore,

(iii) For a state z ̸∈ Ef (D0, ε), there is no state feedback
controller – not static nor dynamic – that drives !

from z into D0 in finite time with a directional error
of ε.

Proof: First, consider a point z ∈ Ef(D0, ε). Accord-
ing to Lemma 3.10, there is a first integer i such that
z ∈ Ei

f (D0, ε). In view of Proposition 3.6, this implies that
there is a state feedback function ϕ with a directional error
of ε that drives ! from z to a point z1 ∈ Ei−1

f (D0, ε) in
finite time. The same Proposition implies further that the
state feedback function ϕ can be extended to take ! from z1

to a point z2 ∈ Ei−2
f (D0, ε) in finite time, and so on, until !

reaches a point zi ∈ D0. As the number of such segments is
finite and each segment is traversed in finite time, the total
time is also finite. Hence, (ii) implies (i).

Conversely, assume by contradiction that (i) is valid, but
z ̸∈ Ef (D0, ε). Considering (3.10), the latter implies that

z /∈ Ei
f (D0, ε) for any i = 0, 1, 2, . . . (3.11)

Now, let ϕ: Rn → Rm be a state feedback function satisfying
(i), and denote by x(t) the trajectory of the closed-loop
system !ϕ from the initial state x(0) = z to a point s ∈
D0. Let T be the time at which !ϕ reaches s. As x(t) is
a solution of the differential equation (1.1) with bounded
input (Assumption 2.1), it follows that x(t) is a continuous
function of t. Further, as D0 ⊆ Ef (D0, ε) by definition, we
conclude that s ∈ Ef(D0, ε). By replacing the open set D0

by the open set Ef(D0, ε) in the proof of Proposition 3.4,
we conclude that the assumption at the start of the current

paragraph leads to a contradiction. Hence, (i) implies (ii),
and (i) and (ii) are equivalent.

Finally, to prove (iii), consider again a state z ̸∈ Ef (D0,
ε), and assume, by contradiction, that there is a state feed-
back controller C that takes ! from z to a point s of D0 in
finite time T. By the previous part of the proof, it follows
that C is not a static state feedback controller. Then, C must
be a dynamic state feedback controller. Denote by x(t), 0
≤ t ≤ T the path of the closed-loop system !c from x(0)
= z to x(T) = s. Note that, irrespective of the nature of the
controller C, the system ! receives an input value u(t) at
the state x(t) at every time 0 ≤ t ≤ T, and this input func-
tion takes the closed-loop system !c from z into D0. As
the latter is accomplished through the values of f(x(t), u(t)),
0 ≤ t ≤ T, the argument used in the previous paragraph also
shows that our current assumption leads to a contradiction.
Therefore, (iii) is valid, and the proof concludes. !

So far, we have given no consideration to continuity
features of the state feedback function ϕ that guides !

toward the target domain D0. We show next that a piecewise
continuous implementation of ϕ can be used.

Theorem 3.12: Let ! be a system described by the dif-
ferential equation (1.1) with a continuous function f. Let
D0 be an open domain in Rn, let ε > 0 be a real number
consistent with Assumption 2.4, and assume that the initial
state of ! satisfies x0 ∈ Ef (D0, ε). Then, there is a piecewise
continuous state feedback function ϕ that takes ! from x0

into D0 in finite time, with a directional error of ε.

Proof: The proof is an elaboration on the proofs of The-
orem 3.11 and Lemma 3.5. Assume that the closed-loop
system has reached a point x1 ∈ Ei

f (D0, ε), i ≥ 1. There is
then an input value u(x1) ∈ Rm for which the vector f(x1,
u(x1)) points to a point y ∈ Ei−1

f (D0, ε). As Ei−1
f (D0, ε) is

an open set by Lemma 3.7, the state y is an interior point of
Ei−1

f (D0, ε). Recall from the proof of Lemma 3.5 that f(x,
ϕ(x)) ̸= 0 at all points of Ef(D0, ε)\D0, since the closed-loop
system cannot have a stationary point there. Combining this
with the continuity of the function f, it follows that there is
a real number δ′

1 > 0 such that the vector f(x′, u(x1)) points
to a point of Ei−1

f (D0, ε) for all x ′ ∈ B(x1, δ
′
1). In addition,

as Ei
f (D0, ε) is an open set, there is a real number δ′′

1 > 0
for which the ball B(x1, δ

′′
1 ) is included in Ei

f (D0, ε). Let-
ting δ1 := min{δ′

1, δ
′′
1 }, we conclude that the constant value

ϕc(x′) := u(x1) can be used as a state feedback function
at all states x′ ∈ B(x1, δ1). When we reach a point x2 in
the boundary of the ball B(x1, δ1), we repeat this process
to obtain a radius δ2 analogous to δ1; extend the function
ϕc with the corresponding new constant value. Continu-
ing in this manner, one of the following two option must
result: (a) the closed-loop system !ϕc

reaches a point of
the set Ei−1

f (D0, ε); or (b) the sequence of radii δ1, δ2, . . .

converges to zero for all possible choices of δ1, δ2, . . .
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In case (a), the state feedback function ϕc takes the
closed-loop system !ϕc

into Ei−1
f (D0, ε); as ϕc is a piece-

wise constant function, it is piecewise continuous, and our
theorem follows by recursion on i. In case (b), let z be a
limit point of the sequence x1, x2, . . . . As the argument of
the previous paragraph applies to the point z in the same
way it applied to the point x1, we conclude that there is a
real number δ > 0 such that the ball B(z, δ) has the same
features as the ball B(x1, δ1), contradicting the possibility
that limi→∞δi = 0 for all possible choices of the radii δ1,
δ2, . . . . Hence, case (b) leads to a contradiction, and our
proof concludes. !

The proof of Theorem 3.11 outlines a simple and ef-
fective method for calculating state feedback functions that
drive a given system ! into a desired domain in state space
with a directional error of ε: at each state x of a domain
Ei

f (D0, ε), choose a state feedback function ϕ for which
the vector f (x, ϕ(x)) points to a point of Ei−1

f (D0, ε). Such
a value of ϕ is obtained by solving an inequality based on
the function f – the function that is given in the differential
equation of the controlled system !. Section 5 demon-
strates this process of deriving state feedback functions on
two examples.

4. Robust control

The question often arises as to whether a system can be
controlled toward an assigned objective under conditions
of imperfect accuracy, with no specific inaccuracy speci-
fied. The motivation behind this question originates from
the fact that controller accuracy can frequently be improved
at additional cost. Formally, this leads us to the notion of ro-
bustness, which addresses the issue of whether an imperfect
controller can be effective. If an imperfect controller can
be effective, then one can proceed further to estimate the
maximal tolerable controller error. In more precise terms,
we refer to the following.

Definition 4.1: A robust implementation of a state feed-
back controller is an implementation with a non-zero direc-
tional error.

Our investigation of robust implementations requires
the next notion.

Definition 4.2: Let f : Rn × Rm → Rn be a continuous
function, and let D0 be an open domain in Rn. The super
extension set of D0 with respect to f is

Ef (D0) :=
⋃

ε>0

Ef (D0, ε). (4.1)

Combining this notion with Theorem 3.11 leads to the fol-
lowing characterisation of the circumstances under which
a robust implementation can be effective.

Theorem 4.3: Let ! be a system described by the differen-
tial equation (1.1) with a continuous function f. Let D0 be an
open domain in Rn, and let Ef(D0) be the super expansion
set. Then, (i) and (ii) are equivalent.

(i) There is a robust implementation of a static state
feedback controller that drives ! from a state z ∈
Rn into D0 in finite time.

(ii) z ∈ Ef(D0).

Furthermore,

(iii) For a state z ̸∈ Ef(D0), there is no robust implemen-
tation of a state feedback controller – not a static
nor a dynamic controller – that takes ! from z into
D0 in finite time.

Proof: Since z ∈ Ef(D0), it follows from (4.1) that there is
a real number ε > 0 such that z ∈ Ef(D0, ε). Consequently,
parts (i) and (ii) follow directly from Theorem 3.11(i) and
(ii). Regarding (iii), the fact that z ̸∈ Ef(D0) means that there
is no ε > 0 for which z ∈ Ef(D0, ε). Thus, (iii) is a conse-
quence of Theorem 3.11(iii). !

Considering that a union of open sets is an open set, the
following is a consequence of Corollary 3.9.

Corollary 4.4: Let f: Rn × Rm → Rn be a continuous func-
tion, and let D0 be an open domain in Rn. Then, the super
expansion set Ef(D0) is an open set.

5. Examples

In this section, we demonstrate the computation of robust
controllers. We start with an example where the controlled
system has a one-dimensional state space.

Example 5.1: Consider the system

ẋ = x2 + xu

with the target domain D0 = B(0, 0.1), namely, a ball of
radius 0.1 around the origin. Considering that this is a one-
dimensional system, it follows by Theorem 3.11 that we
are looking for a state feedback function ϕ : R → R that
satisfies the following inequalities:

(i) x2 + xϕ(x) < 0 for x ≥ 0.1; and
(ii) x2 + xϕ(x) > 0 for x ≤ −0.1.

There are, in fact, infinitely many state feedback functions
ϕ(x) that satisfy these inequalities at all states x ∈ R in
a robust manner. To demonstrate one such state feedback
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156 J. Hammer

Figure 7. Closed-loop trajectory as a function of time for Example 5.1.

function, define

sgn(x) :=

⎧
⎨

⎩

1 for x > 0,

0 for x = 0,

−1 for x < 0.

Then, for an input magnitude bound of M > 0, the state
feedback function given by

ϕ(x) := −x(1 + sgn(x))

satisfies the requirements for all |x| ≤ M/2. A brief examina-
tion shows that this function tolerates non-zero implemen-
tation errors, and hence provides robust control. According
to (1.3), this state feedback function yields a closed-loop
system !ϕ with the differential equation ẋ = −x2sgn(x).
A slight reflection shows that this closed-loop system ap-
proaches the origin asymptotically. Figure 7 shows the tra-
jectory of !ϕ as a function of time, starting from two initial
states: x(0) = −1 (left side of the figure) and x(0) = 1 (right
side of the figure).

Next, we demonstrate the construction of a state
feedback function for a nonlinear system with a two-
dimensional state space.

Example 5.2: Consider a system ! with a two-
dimensional state space and a one-dimensional input de-
scribed by the differential equation

! :
ẋ = x2 − y2

ẏ = u
= f (x, y, u).

We use again the target domain D0 = B(0, 0.1). For the sake
of transparency, we ignore here the input magnitude bound
M; it can be readily incorporated. Note that the first com-
ponent of f cannot be directly affected by a state feedback

function, since the input u does not appear in it. Whenever
x2 > y2, we have ẋ > 0, so the state will move generally to
the right, as indicated by the arrows in Figure 8 . Similarly,
when x2 < y2, we have ẋ < 0, and the state will move gener-
ally toward the left, as indicated in the same figure. Seeing
that ẏ = u, it follows that the tilt of the state’s trajectory can
be assigned as desired by selecting the value of the input u.
Combining the observations of the last three sentences, we
conclude that f can be directed toward the origin only in the
domains marked A in Figure 8. Consequently, the domains
marked A form the domain E1

f (D0) in this case. In explicit
form, we have

E1
f (D0)

=
{ (

x

y

)
: y2 > x2 and x > 0; or y2 < x2 and x < 0

}
.

A slight reflection shows that, in the remaining parts
of the plane, the direction of the vector f can always be

Figure 8. Orientations of motion for Example 5.2.
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oriented toward a point of E1
f (D0) by choosing an appro-

priate input value u. Furthermore, within E1
f (D0), the vector

f can also be oriented toward a point of E1
f (D0) by choosing

an appropriate input value u. Consequently,

E2
f (D0) ⊇ R2 \ E1

f (D0),

and E2
f (D0) can be taken as an open set that includes the set

R2 \ E1
f (D0). Specifically, E2

f (D0) is formed by an open
set that includes the domains marked as B in Figure 8.
Combining our conclusions, we obtain in this case that

Ef (D0) = E1
f (D0) ∪ E2

f (D0) = R2

(ignoring input magnitude bounds). Thus, according to The-
orem 4.3, there is a state feedback function ϕ that takes !

to a close vicinity of the origin from every bounded domain
in state space (with suitable input magnitude bound).

We construct now one such state feedback function (as
usual, there are infinitely many appropriate state feedback
functions). To simplify the form of our state feedback func-
tion, define the domain

A′ := {(x, y) : x2 − y2 < 0, x > 0, |y/x| < 100

or x2 − y2 > 0, x < 0, |y/x| < 100}.

This domain is obtained from the domain A by excluding
a thin angle around the y-axis. All remaining points of the
plane are included in the domain

B ′ := R2 \ A′.

Then, a slight reflection shows that the following state feed-
back function assigns directions to the vector f (x, y, ϕ(x,
y)) that point to the origin within A′, and point to A′ within
B′. Consequently, this feedback function takes ! into D0 in
finite time from every state (x, y) in the plane (with input
magnitude bound determined by |(x, y)|).

ϕ(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x2 − y2)y/x for all (x, y) ∈ A′,
(5(x2 − y2) + 1) for all (x, y) /∈ A′

with (y ≥ 0 and x > 0),
(5(x2 − y2) − 1) for all (x, y) /∈ A′

with (y > 0 and x < 0),
(5(y2 − x2) − 1) for all (x, y) /∈ A′

with (y ≤ 0 and x > 0),
(5(y2 − x2) + 1) for all (x, y) /∈ A′

with (y < 0 and x < 0).

Figure 9 shows the path of the closed-loop system !ϕ in
state space, starting from four different initial conditions –
one initial condition in each quadrant; the origin is at the
centre of each subfigure.

6. Asymptotic stabilisation

The feedback methodology developed in the previous sec-
tions can be used to achieve global asymptotic stabilisation
of nonlinear systems by static state feedback under rather
general conditions. In fact, Examples 5.1 and 5.2 demon-
strate static state feedback controllers that achieve global
asymptotic stabilisation. To consider this issue in general,
let ! be a system described by the differential equation
(1.1), where f is twice continuously differentiable. Given a
state feedback function ϕ, denote by !ϕ(x0, t) the response
of the closed-loop system as a function of the time t, when
started at the initial state x0. We aim to derive a state feed-
back function ϕ that takes ! asymptotically from x0 to the
origin; namely, we look for a state feedback function ϕ for
which limt → ∞!ϕ(x0, t) = 0. It is convenient to assume in
this section that ! has a stationary point at the origin, i.e.,
that f(0, 0) = 0.

Clearly, a state feedback function ϕ that achieves global
asymptotic stabilisation of ! can be built in two steps:

(i) Use the technique of Theorem 4.3 to derive a state
feedback function ϕ1 that brings ! from the initial
state x0 into a close vicinity V = B(0, ρ) of the
origin, where ρ > 0 is a small radius.

(ii) Use the linear approximation of ! at the origin

ẋ(t) = ∂f (0, 0)
∂x

x(t) + ∂f (0, 0)
∂u

u(t) (6.1)

to derive a linear state feedback function ϕ2 that
takes ! asymptotically to the origin from within V.

Patching ϕ1 and ϕ2 together into one function ϕ yields a
state feedback function that drives ! asymptotically from
an initial state x0 to the origin, thus achieving asymptotic
stabilisation.

As step (ii) involves the use of a linear state feedback to
asymptotically stabilises ! near the origin, we must assume
that the linear approximation (6.1) is stabilisable.

Preliminary consideration must be given to the question
of how close must ! be taken to the origin, before a linear
state feedback function can be activated. The proof of the
next statement includes an estimate of the radius ρ∗ of a ball
B(0, ρ∗) from within which a linear state feedback function
can take ! asymptotically to the origin.

Proposition 6.1: Let ! be a system with the differential
equation ẋ(t) = f (x(t), u(t)), where f is twice continuously
differentiable and f (0, 0) = 0, and assume that the lin-
ear approximation (6.1) of ! at the origin is stabilisable.
Then, there is a real number ρ∗ > 0 and an m × n constant
matrix F such that the solution x(t) of the differential equa-
tion ẋ(t) = f (x(t), Fx(t)) satisfies limt → ∞x(t) = 0 for all
initial conditions x(0) ∈ B(0, ρ∗).
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Figure 9. Trajectories of the closed-loop system of Example 5.2.

Proof: As f (0, 0) = 0 and the linear system (6.1) is stabil-
isable, there is an m × n constant matrix F for which every
solution z(t) of the linear differential equation

ż(t) = ∂f (0, 0)
∂x

z(t) + ∂f (0, 0)
∂u

Fz(t) =: Dz(t) (6.2)

satisfies limt→∞z(t) = 0; here,

D := ∂f (0, 0)/∂x + (∂f (0, 0)/∂u)F (6.3)

is a constant n × n matrix. As this linear system is asymp-
totically stable, it follows by Lyapunov’s theory that there is
a constant symmetric positive definite matrix P such that

d

dt
[zT (t)Pz(t)] < 0 (6.4)

for all z(t) ̸= 0. Invoking the derivative, we get żT (t)Pz(t) +
zT (t)P ż(t) < 0 for all z(t) ̸= 0. Substituting from (6.2)

yields

zT (t)DTP z(t) + zT (t)PDz(t) < 0

for all z(t) ̸= 0. Consequently, the symmetric matrix

Q := −(DTP + PD) (6.5)

is positive definite.
Turning now to the nonlinear system !, define the func-

tion

g(x) := f (x, Fx).

Then, the closed-loop system around ! with the linear
state feedback function F is described by the differential
equation

ẋ(t) = g(x(t)), x(0) = x0. (6.6)
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Using the fact that f is twice continuously differentiable and
expanding it around the origin yields, according to Taylor’s
theorem, that

g(x) = Dx + 1
2

⎛

⎜⎝
x
...
x

⎞

⎟⎠

T

g(2)(ξ )

⎛

⎜⎝
x
...
x

⎞

⎟⎠ , (6.7)

where D is given by (6.3),

g(2)(ξ ) :=

⎛

⎜⎝
H (g1(ξ ))

...
H (gn(ξ ))

⎞

⎟⎠

is an n2 × n2 matrix with H(gi(ξ )) being the n × n Hessian
of the i-th component of g, and ξ ∈ Rn is an appropriate point
determined according to the error term of Taylor’s theorem.
To simplify notation, define the n-dimensional vector

µ(x, ξ ) := 1
2

⎛

⎜⎝
x
...
x

⎞

⎟⎠

T

g(2)(ξ )

⎛

⎜⎝
x
...
x

⎞

⎟⎠ ,

so that

g(x) = Dx + µ(x, ξ ). (6.8)

Substituting the solution x(t) of (6.6) into (6.4) instead
of z(t), and using the form (6.8) of g, we obtain

d

dt
[xT (t)Px(t)] = gT (x(t))Px(t) + xT (t)Pg(x(t))

= (Dx(t) + µ(x(t), ξ (t)))T Px(t)

+ xT (t)P (Dx(t) + µ(x(t), ξ (t)))

= −xT (t)Qx(t) + [µT (x(t), ξ (t))Px(t)

+ xT (t)Pµ(x(t), ξ (t))]

= xT (t)Qx(t)

×
[
−1 + µT (x(t), ξ (t))Px(t) + xT (t)Pµ(x(t), ξ (t))

xT (t)Qx(t)

]
,

x(t) ̸= 0, (6.9)

where Q is given by (6.5). Now, according to Taylor’s theo-
rem and the fact that f is twice continuously differentiable,
µ(x, ξ ) is a second-order term in x. Combining this with
the fact that Q is positive definite, it follows that, for a real
number ρ > 0, the quantity

e(ρ) := sup
x,ξ∈B(0,ρ),x ̸=0

∣∣∣∣
µT (x, ξ )Px + xT Pµ(x, ξ )

xT Qx

∣∣∣∣

satisfies

lim
ρ→0

e(ρ) = 0.

Consequently, for every real number 0 < α < 1, there is a
radius ρα > 0 such that 0 < e(ρ) < α for all 0 < ρ ≤ ρα .
Substituting this fact into (6.9), we obtain that

d

dt

[
xT (t)Px(t)

]
< 0 (6.10)

for all x(t) ̸= 0 satisfying x(t) ∈ B(0, ρ), where 0 < ρ ≤ ρα

and 0 < α < 1.
Next, let p1 be the smallest eigenvalue of P and let p2

be the largest eigenvalue of P. Then, since P is a positive
definite matrix, we have

p2 ≥ p1 > 0. (6.11)

By classical features of eigenvalues of positive definite ma-
trices, we can write

p1|x|2 ≤ xT Px ≤ p2|x|2 (6.12)

for all x ∈ Rn. Now, select a real number 0 < α < 1 and
consider the positive number

ρ∗ := p1

p2
ρα. (6.13)

Note that by (6.11), we have ρ∗ ≤ ρα .
An initial state x(0) ∈ B(0, ρ∗) satisfies xT(0)Px(0) ≤

p2|x(0)|2 ≤ p2ρ
∗ = p1ρα . In view of (6.10) and the fact

that ρ∗ ≤ ρα , this implies that xT(t)Px(t) ≤ p1ρα for all t ≥
0. But then, by (6.12), we have p1|x(t)|2 ≤ p1ρα , or |x(t)|2

≤ ρα for all t ≥ 0. In other words, when x(0) ∈ B(0, ρ∗),
then the state of ! stays within the ball B(0, ρα) for all t
≥ 0, and (6.10) is valid for all t ≥ 0. Lyapunov’s theorem
then guarantees that limt → ∞x(t) = 0. This concludes our
proof. !

The proof of Proposition 6.1 proves the following
statement.

Corollary 6.2: Under the notation and conditions of
Proposition 6.1, the system ! can be asymptotically sta-
bilised by linear state feedback within a ball of radius ρ∗

around the origin, where ρ∗ is given by (6.13).

In view of Proposition 6.1 and Corollary 6.2, we can
obtain asymptotic stabilisation of the system ! if we can
find a state feedback function that takes ! from its initial
state into the ball B(0, ρ∗), where ρ∗ is given by (6.13).
Combining this with Theorem 4.3 and recalling that linear
state feedback is robust, yields the following, which is the
main result of this section.
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Theorem 6.3: Let ! be a system described by the differ-
ential equation (1.1), where the function f is twice continu-
ously differentiable and f(0, 0) = 0. Assume that the linear
approximation (6.1) of ! at the origin forms a stabilisable
linear system. Let X0 ⊆ Rn be the set of all potential initial
states of !, let ρ∗ be given by (6.13), and let Ef(B(0, ρ∗)) be
the super expansion set. Then, the following two statements
are equivalent.

(i) ! is robustly and asymptotically stabilisable over
the domain X0 of initial states.

(ii) X0 ⊆ Ef(B(0, ρ∗)).

7. Conclusion

In summary, we have described a general framework for
the construction of state feedback controllers for nonlinear
systems. The main step of this construction involves the
solution of a set of inequalities based on the given func-
tion f that appears in the differential equation (1.1) of the
controlled system !. These inequalities are induced by re-
quiring the vector f(x, u) to point in an appropriate range
of directions. As the examples of Section 5 demonstrate,
the calculation of stabilising feedback controllers is rather
simple in this framework.

In the special case of systems with states of dimensions
1, 2, and 3, the selection of state feedback functions can be
visualised. However, visualisation is, of course, not neces-
sary; the corresponding inequalities can be solved compu-
tationally in any dimension, and appropriate state feedback
functions are derived from these solutions.
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