
International Journal of Control
Vol. 81, No. 12, December 2008, 1910–1929

State feedback control of asynchronous sequential machines with adversarial inputs

Jung-Min Yanga and Jacob Hammerb*

aDepartment of Electrical Engineering, Catholic University of Daegu, 330 Kyongsan, Kyongbuk, Republic of Korea;
bDepartment of Electrical and Computer Engineering, University of Florida,

Gainesville, FL, USA

(Received 5 October 2007; final version received 17 January 2008)

The problem of controlling an asynchronous sequential machine in the presence of adversarial inputs is
considered. Here, an adversarial input is an unknown and unauthorised input that attempts to interfere with the
operation of the machine. The objective is to develop automatic state feedback controllers that counteract the
effects of the adversarial input and restore desirable behaviour to the controlled machine. Necessary and
sufficient conditions for the existence of such controllers are presented in terms of an inequality condition
between two numerical matrices. Whenever a controller exists, an algorithm for its design is provided.

Keywords: asynchronous machines; control systems; feedback; disturbance rejection; computer security

1. Introduction

Unauthorised and adversarial input agents have,
regretfully, become an unavoidable feature of modern
day computing. These agents aim to interfere with the
proper operation of computing systems, often attempt-
ing to subdue them to hostile objectives. The present
paper addresses the question of how a computing
system can be made immune to such attempts to
interfere with its operation. Specifically, we propose to
deploy automatic controllers that continually
monitor a computing system and take corrective
action whenever an adversarial input attempts to
intercede. The paper presents necessary and sufficient
conditions for the existence of such controllers; when
a controller exists, an algorithm for its design is
also provided.

In formal terms, the discussion revolves around
asynchronous sequential machines that have two input
signals: one input signal facilitates control of the
machine, while the other is used by an adversarial
agent (or by a disturbance) to interfere with the
operation of the machine. The control diagram is
shown in Figure 1, where ! is the asynchronous
sequential machine being controlled, and C is another
asynchronous sequential machine that serves as a
controller. The machine ! has two inputs: u is the
control input used to steer the machine to proper
operation; and w is the adversarial input operated by an
adversarial agent or by a disturbance. The purpose of
the controller C is to counteract action at the input w
and to endow the closed loop machine with desirable

behaviour. Section 7 presents necessary and sufficient
conditions for the existence of such a controller C, and
Section 8 describes the structure of the controller. The
closed loop machine described by the diagram is
denoted by !c(v,w), where v is the external input of
the closed loop machine. In our present discussion, C is
a state feedback controller – it has access to the state of
the machine !.

Our discussion is within the context of model
matching. Let !0 be an asynchronous sequential
machine that describes the desired behaviour of the
closed loop system. We refer to !0 as the model.
Of course, the model !0 is not affected by the
adversarial input w – it has no adversarial input; !0

accepts only user commands as its input. The objective
is to derive a controller C that drives the machine ! so
that, from a user’s perspective, the closed loop system
matches the behaviour of the model !0, irrespective of
actions taken at the adversarial input. In other words,
we would like to have !cð",wÞ ¼ !0ð"Þ for all
adversarial input values w. This is the perturbed
model matching problem. In this paper, we derive
necessary and sufficient conditions for the existence of
such a controller C; when C exists, we provide an
algorithm for its construction.

Recall that an asynchronous sequential machine
has two kinds of states: stable states, namely, states at
which the machine dwells indefinitely with its present
input value, and transient states, or states the machine
passes transiently along its way to the next stable state.
Only stable states are perceivable by the machine’s

*Corresponding author. Email: hammer@mst.ufl.edu

ISSN 0020–7179 print/ISSN 1366–5820 online

! 2008 Taylor & Francis
DOI: 10.1080/00207170801930225
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

user; transient states are traversed by the machine very
quickly (ideally, in zero time), and are imperceptible to
the user. Thus, when eliminating the effects of an
adversarial input, it is only necessary to eliminate the
effects on stable states; effects on transient states are
unnoticeable and, therefore, inconsequential.

The ability to control an asynchronous machine
! so as to eliminate the effects of adversarial inputs
and match a specified model depends on certain
features of reachability and detectability introduced
in x4. The essence of these features is condensed in x6
and 7 into a numerical matrix of zeros and ones, called
a skeleton matrix. The skeleton matrix characterises the
possibilities of controlling the machine ! in the
presence of an adversarial input. More specifically,
the skeleton matrix characterises those aspects of the
performance of ! that can be preserved by an
automatic controller despite activity at the adversarial
input. In x7, we show that the perturbed model
matching problem is solvable if and only if the skeleton
matrix satisfies a certain numerical inequality; compare
to Murphy, Geng and Hammer (2002, 2003).

The present paper deals with the control of
asynchronous sequential machines utilising the form-
alism of Murphy et al. (2002, 2003), Geng and
Hammer (2004, 2005), and Venkatraman and
Hammer (2006a,b,c). Of course, asynchronous sequen-
tial machines are a topic within the general area of
discrete mathematics. To a large extent, our terminol-
ogy and notation follow Eilenberg (1974). Studies
dealing with other aspects of the control of discrete
event systems can be found in Ramadge and Wonham
(1987), Hammer (1994, 1995, 1996a,b, 1997),
Dibenedetto, Saaldanha and Sangiovanni–Vincentelli
(1994), Thistle and Wonham (1994), Barrett and
Lafortune (1998), the references cited in these papers,
and others. It seems, however, that these publications
do not address issues that are peculiar to the function
of asynchronous machines, such as the avoidance of
critical races and the distinction between stable states
and transient states.

An important aspect of the operation of asynchro-
nous sequential machines is fundamental mode opera-
tion; e.g., Kohavi (1970). Under fundamental mode
operation, the input variables of an asynchronous
machine are kept constant while the machine

undergoes state transitions. Fundamental mode opera-
tion comes to guarantee deterministic behaviour.
Indeed, if an input value is changed while a machine
undergoes state transitions, then the state at which the
input change occurs becomes unpredictable; this may
result in an unpredictable outcome.

In the case of Figure 1, fundamental mode
operation means that (i) the controller C must be
in a stable state while ! undergoes transitions, and
(ii) the machine ! must be in a stable state while C
undergoes transitions. All systems considered in this
paper are designed to operate in fundamental mode.

The paper is organised as follows. Section 2 reviews
and expands the basic notation and framework of our
discussion, and Section 3 introduces adversarial inputs
and examines some of their potential effects. Two
notions that are critical to the solution of the adversarial
model matching problem – the notions of reachability
and detectability – are discussed in Section 4. Section 5
introduces a test that determines whether or not an
adversarial action can be counteracted. Necessary and
sufficient conditions for the existence of a controller
that solves the perturbed model matching problem are
derived in Sections 6 and 7, while the structure of the
controller is described in Section 8. The paper concludes
in Section 9 with a comprehensive example.

2. Notation and basics

Let A be a finite non-empty alphabet, let A* be the set
of all finite strings of characters of A, and let Aþ be the
set of all non-empty strings in A*. To simplify our
notation later, we assume that the alphabet A does not
include the digits 0 and 1. The length jwj of a string
w 2 A& is the number of characters of w. For two
strings w1,w2 2 A&, the concatenation is the string
w :¼w1w2 obtained by appending w2 to the end of w1.
A partial function f:S1!S2 is a function whose
domain is a subset of S1.

Consider an asynchronous sequential machine with
two inputs: a control input through which the machine
is operated and an adversarial input that attempts
to interfere with the operation of the machine.
We represent such a machine by a sextuple
!¼ (A'B,Y,X, x0, f, h), where A is the control input
alphabet, B is the adversarial input alphabet, Y is the
output alphabet, X is a set of n states, and x0 is
the initial state of the machine; f:X'A'B!X
(the recursion function) and h:X!Y (the output
function) are partial functions. The machine ! operates
recursively according to

xkþ1 ¼ fðxk, uk,wkÞ,
yk ¼ hðxkÞ, k ¼ 0, 1, 2, . . . :

ð1Þ

C Σ yuv

w

Figure 1. A closed loop configuration.

International Journal of Control 1911

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Here, u0, u1, u2, . . . is the control input sequence, while
w0,w1,w2, . . . is the adversarial input sequence;
x0, x1, x2, . . . is the sequence of the states through
which the machine passes, and y0, y1, y2, . . . is the
sequence of output values. The integer k represents
the step counter; it advances by one upon any change of
the machine’s inputs or state. Having selected the
Moore representation for !, the output function h
does not depend on the input variables u and w; see
Kohavi (1970).

Example 1: The following represents an asynchro-
nous machine ! with adversarial input. Here, the
control input alphabet is A¼ {a, b}; the adversarial
input alphabet is B¼ {!,"}; the state set is
X¼ {x1, x2, x3}. We assume that the state of the
machine is also its output, so that the output function
h is the identity function. The recursion function f of !
is described by Figure 2. Alternatively, the transition
function f can be characterised by Table 1.

A triplet (x, u,w) is a valid combination of ! if it is
included in the domain of the function f. Occasionally,
we use a single character for the two inputs, as in
!k¼ (uk,wk), k¼ 0, 1, 2, . . . The input sequence
!0,!1,!2, . . . is permissible if all pairs
(x0,!0), (x1,!1), (x2,!2), . . . are valid.

Consider an input string with repeated characters,
say aaabbcccc. In compressed notation, the repetitions
are omitted, so our string becomes simply abc. This
notation conforms to the way the string is applied in
practice – the first input character is kept constant for
the first three steps, then the second character is kept

constant for two steps, and, finally, the last input
character is kept constant for four steps.

The machine ! is an input/state machine when its
output is the state, namely, when Y¼X and h(x)¼ x
for all x2X. Then, yk¼ xk for all k¼ 0, 1, 2, . . . , and
the machine is described by the recursion

! : xkþ1 ¼ fðxk, uk,wkÞ: ð2Þ

An input/state machine is represented by a quadruple
!¼ (A'B,X, x0, f). The present paper deals with the
control of asynchronous input/state machines.

A valid triplet (x, u,w) is a stable combination if
x¼ f(x, u,w), namely, if the state x is a fixed point of
the recursion function f. An asynchronous machine
lingers at a stable combination until a change occurs at
one of its inputs. A triplet (x, u,w) that is not a stable
combination is a transient combination.

A transient triplet (x, u,w) initiates a chain of
transitions x1¼ f(x, u,w), x2¼ f(x1, u,w), . . . , where the
input characters u and w are kept fixed while the states
change. This chain of transitions may or may not
terminate. If it terminates, then there is an integer q(1
for which xq¼ f(xq, u,w), i.e., (xq, u,w) is a stable
combination. Then, xq is the next stable state of x with
the input pair (u,w). If the chain of transitions does not
terminate, then the triplet (x, u,w) is part of an infinite
cycle. In this paper, we restrict our attention to
machines that have no infinite cycles. Thus, in our
case, every valid triple (x, u,w) has a next stable state.
For future reference, it is convenient to record this fact.

Lemma 1: In an asynchronous machine without infinite
cycles, every valid combination has a next stable state.

When operating an asynchronous machine, one has to
be careful to prevent situations where two or more
variables change value at the same time. A simulta-
neous change of two or more variables may cause
an asynchronous machine to become unpredictable,
e.g., Kohavi (1970). Thus, it is common to enforce a
policy where only one variable is allowed to change
value at any instant of time. When this policy is
enforced, the machine ! operates in fundamental mode.
In practice, almost all asynchronous machines are
operated in fundamental mode.

The asynchronous machine ! of (2) involves three
variables: the state x and the input variables u and w.
In fundamental mode operation, not more than one of
these variables can change value at any instant of time.
This leads to the following.

Definition 1: Let !¼ (A'B,X, f) be an asynchro-
nous input/state machine with the two input variables
u and w. The machine ! operates in fundamental mode
if u and w change values only when ! is in a stable
combination, and then at most one at a time.

(a,a)
(a,b)
(b,a)

(b,a)

x1

x2 x3

(a,a)
(a,b)

(a,b)

(b,a)
(b,b)

(b,b)

(a,a)

(b,b)

Figure 2. A transition diagram.

Table 1. A transition table.

(a,!) (a,") (b,!) (b,")

x1 x1 x1 x1 x2

x2 x3 x1 x2 x2

x3 x3 x3 x1 x2

1912 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

All the machines discussed in this paper operate in
fundamental mode. Note that fundamental mode
operation is not an overly restrictive requirement.
An asynchronous machine reaches its next stable
combination very quickly – ideally, in zero time;
thus, it is rather unlikely that changes in u or in w
will occur while ! is in transition. Similarly, the
probability that the two independent variables u and w
will change values simultaneously is zero, since the two
are not synchronised. Fundamental mode operation is
most common in practice, and we adopt it as our mode
of operation.

Transitions from one stable combination of ! to
another are governed by its stable recursion function
s, which is defined as follows. For a valid triplet
(x, u,w) of the machine !, let x0 be the next stable
state; the stable recursion function s:X'A'B!X is
defined by the assignment s(x, u,w) :¼x0. As ! has no
infinite cycles, every valid triplet has a next stable
state, and hence s is defined on all valid triplets. The
stable recursion function s induces the stable state
machine !js of !, which is an asynchronous input/
state machine given by (A'B,X, s). Here, the stable
recursion function s replaces the recursion function f
of !.

Consider an input string ! :¼ !0!1 . . .!m–1,
where !i2A'B. Writing in terms of components,
we have that !i¼ (ui,wi), with ui2A and
wi2B, i¼ 0, . . . ,m) 1. Assume that ! is in a stable
combination at the initial state x0, when the input
string ! is applied. In fundamental mode operation,
the first input value !0 must remain fixed until !
reaches its next stable state x1 :¼ s(x0,!0) (ideally,
this transition is completed in zero time). Anytime
thereafter, one of the input variables u or w can
change, providing the next input pair !1. These input
values remain fixed until the next stable state
x2 :¼ s(s(x0,!0),!1) is reached. This process continues
until the last stable state xm :¼s(. . . s(s(s
(x0,!0), !1), !2) . . . ,!m)1) is reached. It is convenient
to use the shorthand notation

sðx0,!Þ ¼ sð. . . sðsðsðx0,!0Þ,!1Þ,!2Þ . . . ,!m)1Þ, ! 2 ðA'BÞþ:
ð3Þ

When the machine !¼ (A'B,X, f) is connected in the
closed loop of Figure 1, the output of the controller C
serves as the control input of !. We therefore use A as
the output alphabet of C. Also, the input variable v of
the controller C in the figure is really intended to
control the operation of !, so we use A as the alphabet
of v as well. In addition to v, the controller C accepts
the state X of ! as another input, so the input set of C
is A'X. Letting " be the state set, # the recursion
function, and $ the output function of the controller,

we can write C¼ (A'X,A,", %0,#, $), where %0 is the
initial state of C.

In fundamental mode operation of Figure 1, only
one of the asynchronous machines ! and C can
undergo transitions at any instant of time. Adapting
Geng and Hammer (2005, Proposition 1.4) to our
present case, we obtain the following.

Proposition 1: Let !¼ (A'B,X, f) and C¼
(A'X,A,", %0,#, $) be asynchronous machines inter-
connected in the configuration of Figure 1. The
configuration operates in fundamental mode if and
only if all the following hold.

(i) C is in a stable combination while ! under-
goes transitions, and ! is in a stable combina-
tion while C undergoes transitions.

(ii) The inputs u,w and v change only while ! and
C are in a stable combination, and then only
one at a time.

Thus, the controller C must be designed so that it
commences transitions only after verifying that ! has
reached a stable combination. Similarly, C must
adopt a stable combination immediately prior to
inducing a change at the input of !. The controller
C designed in x8 below satisfies these requirements.
Fundamental mode operation assures that all
transitions of the composite system are unambiguous
and deterministic.

3. Adversarial inputs and model matching

Our next objective is to discuss the implications of the
adversarial input on the machine !¼ (A'B,X, f)
of (2). The critical issue is, of course, the fact that the
adversarial input character wk is, in general, not
specified. The only a priori information available
about wk is that it belongs to a specified subset &*B
called the adversarial uncertainty. Adding the adver-
sarial uncertainty & to the description of !, we obtain
the quintuple !¼ (A'B,X, x0, f, &).

When the adversarial uncertainty & includes more
than one character, the precise value of the adversarial
input is not specified; this entails that the state of the
machine ! may not be known. Indeed, starting from
the initial state x0 and applying the initial control input
value u0, the state of ! after the first step can be any
member of the set

f½x0 ' u0 ' &, :¼ [w2& fðx0, u0,wÞ * X:

When this set contains more than one state, one cannot
predict the precise state of ! after the first step. In such
case, we are faced with the control of an asynchronous
machine in the presence of uncertainty.

International Journal of Control 1913

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Recall that two asynchronous machines !1 and !2

are stably equivalent if the stable state machines !1js
and !2js are equivalent; see Geng and Hammer (2004,
2005) for more details. Stably equivalent machines
have equivalent functionality and are identical from a
user’s point of view. We are now ready to formally
formulate the main topic of our discussion.

Problem 1: The perturbed model matching problem.

Let !¼ (A'B,X, f, &) be an input/state asynchronous
machine with an adversarial input, and let
!0¼ (A,X, s0) be a stable-state input/state machine
with no adversarial input. Find necessary and suffi-
cient conditions for the existence of a controller C for
which the closed loop machine !c(v,w) is stably
equivalent to !0(v) for all w2 & and all v2A. If such
a controller exists, derive an algorithm for its design.

Example 2: A model machine !0. This input/state
machine has the control input alphabet A¼ {a, b} and
the state set X¼ {x1,x2, x3}. It is a stable state machine
with the stable transition function s0 given by the
transition diagram in Figure 3; the model has no
adversarial input. Alternatively, the stable transition
function s0 of !0 can be described by Table 2.

Now, let s be the stable recursion function of the
asynchronous machine !¼ (A'B,X, f, &). Assume
that ! is in a stable combination with the state x
when the control input takes the value u. As ! has no
infinite cycles, it follows by Lemma 1 that there is a
next stable state x0 of !. The exact value of x0 is usually

impossible to predict, since the value w of the
adversarial input is not known. All possible values of
x0 are given by the set

s&ðx, uÞ :¼ s½x, u, &, ¼ fsðx, u,wÞ : w 2 &g * X: ð4Þ

Letting P(X) be the family of all subsets of the state set
X of !, we thus obtain the function s&:X'A!P(X)
called the perturbed stable recursion function of !.

4. Detectability and reachability

4.1 Detectability

As we have seen in Proposition 1, fundamental mode
operation of the closed loop of Figure 1 requires the
controller C to remain in a stable combination until the
machine ! has reached its next stable state.
Consequently, it must be possible for C to determine
whether or not ! has reached its next stable state. We
examine now the conditions under which the latter is
possible.

To this end, let & be the adversarial uncertainty of
the machine !, and let w2 & be the adversarial input
character. Assume that ! is in a stable combination
with the state x, when the control input variable takes
the value u. The machine ! embarks then on a chain of
state transitions given by

'ðx, u,wÞ :¼ fx1 :¼ fðx, u,wÞ,
x2 :¼ fðx1, u,wÞ, . . . ,xiðu,wÞ :¼ fðxiðu,wÞ)1, u,wÞg,

ð5Þ

where xi(u,w) is the stable state reached at the end.
Clearly, the number of steps i(u,w) and the state xi(u,w)
depend on the adversarial input character w2 &.
According to (4), we must have xi(u,w)2 s& (x, u). The set

'½x, u, &, :¼ f'ðx, u,wÞ : w 2 &g ð6Þ

includes all state strings that form chains of transitions
consistent with the adversarial uncertainty &, given that
! starts from the state x with the control input
character u. The following statement shows that a
string in '[x, u, &] includes no repeating states.

Lemma 2: Let !¼ (A'B,X, f, &) be an asynchronous
machine with no infinite cycles. Let x be a state of ! and
let u be a control input value. Then, a string ' 2 '[x, u, &]
includes no repeating states.

Proof: Consider a string '¼ {x1, x2, . . . , xi(u,w)}2
'[x, u, &]. First, if i(u,w)¼ 1, then ' includes only one
state, and clearly has no repeating states. Consider
then the case where i(u,w)41. Assume, by contra-
diction, that xi¼ xj for some integers 1- i5j- i(u,w).
Now, if j¼ i(u,w), then the triple (xi, u,w)¼ (xj, u,w)¼
(xi(u,w), u,w) is a stable combination. If view of (5), this

a,b

b

x1

x2 x3

a
a

b

Figure 3. The model’s transition diagram.

Table 2. The model’s table of transitions.

a b

x1 x1 x1

x2 x1 x2

x3 x3 x1

1914 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

implies that ' terminates at step i, so that i¼ j¼ i(u,w),
a contradiction. Next, consider the case where
j5i(u,w). Using the recursion function of !, we
get that xiþ1¼ f(xi, u,w)¼ f(xj, u,w)¼ xjþ1, xiþ2¼
f(xiþ1, u,w)¼ f(xjþ1, u,w)¼ xjþ2, . . . , which implies
that the machine ! has an infinite cycle xi, xiþ1,
xiþ2, . . . , xj, xiþ1,xiþ2, . . ., contradicting our assump-
tion. This concludes our proof. g

The following notion underlies the controller’s ability
to determine whether or not the controlled machine !
has reached its next stable state.

Definition 2: Let !¼ (A'B,X, f, &) be an input/state
asynchronous machine, let x2X be a state of !, and let
u2A be a control input character. Assume that ! is in
a stable combination with the state x, when the control
input character changes to u. Then, the pair (x, u) is
detectable if it is possible to determine from the state of
! whether or not ! has reached its next stable
combination.

The following is a test that allows us to ascertain
whether a given pair (x, u) is detectable.

Theorem 1: Let !¼ (A'B,X, f) be an input/state
asynchronous machine with an adversarial input, and let
" be the adversarial uncertainty. Let x2X be a state of
!, let u2A be a control input character, and assume that
! is in a stable combination with the state x when the
control input character changes to u. Then, in the
notation of (4) and (6), the following two statements are
equivalent:

(i) the pair (x, u) is detectable;
(ii) states of the set s"(x, u) appear only at the end

of strings belonging to '[x, u, "];

Proof: We use the notation of (5). Let w2 " be the
active adversarial input character, and let
'(x, u,w)¼ {x0, x1, x2, . . . ,xi(u,w)} be the string of tran-
sitions initiated when the control input character
switches to u. Assume that there is an integer
0- j5i(u,w) for which xj2 s"(x, u). Since j5i(u,w), it
follows that (xj, u,w) is a transient combination, as the
chain of transitions continues after j. By the definition
of the set s"(x, u), the inclusion xj2 s"(x, u) implies that
there is an adversarial input character w0 2 " such that
the triple (xj, u,w

0) is a stable combination.
Summarising, the state xj forms a transient combina-
tion in the triple (xj, u,w) while forming a stable
combination in the triple (xj, u,w

0). Consequently,
when ! is in the state xj, one cannot tell whether !
is in a stable combination or not. In other words, when
(ii) is invalid, so is (i).

Conversely, assume that a state x0 2 s"(x, u) can
appear only at the end of a string belonging to '(x, u, ").

Then, by the definition of '(x, u, "), the machine ! is in a
stable combination if and only if it is in a state
x0 2 s"(x, u). In other words, one can determine from
the state of ! whether or not it has reached its next
stable combination, and (x, u) is detectable. Thus, (ii)
implies (i), and our proof concludes. œ

Thus, for a detectable pair (x, u), a state feedback
controller can determine whether or not ! has
reached its next stable state simply by checking
whether the current state of ! is a member of
s"(x, u). If it is, then ! has reached its next stable
state; if it is not, then ! has not yet reached
its next stable state. For pairs that are not
detectable, it is not possible to determine from the
current state whether ! has reached its next stable
combination.

Remark 1: Here, we assume that the state feedback
controller provides information only about the
current state of the machine !, and does not keep
track of the entire trajectory of states traversed by
! on its way to the current state. Controllers that
keep track of the entire trajectory of ! (i.e.,
controllers that record the ‘burst’ of !) have a
more complex structure and will be discussed in
a separate report.

4.2 Reachability

We turn now to an examination of the reachability
features of asynchronous machines with adversarial
input. First, we adapt to our present setting the
following notion from Murphy et al. (2002, 2003).

Definition 3: Let !¼ (A'B,X, f, &) be an input/state
asynchronous machine with adversarial input, having
the state set X¼ {x1, x2, . . . , xn}. Let s be the stable
transition function of !, let u2A be a control input
character, and let w2B be an adversarial input
character.

(i) The one-step sample control transition matrix
((!,w) of ! is an n' n matrix whose (i, j)
entry (ij(!,w) consists of all control input
characters u2A for which xj¼ s(xi, u,w); if
there are no such control input characters,
then (ij(!,w) :¼N, where N is a character not
in A or in B.

(ii) The one-step sample adversarial transition
matrix)(!, u) of ! is an n' n matrix whose
(i, j) entry)ij(!, u) consists of all adversarial
input characters w2B for which xj¼ s(xi, u,w);
if there are no such adversarial input
characters, then)ij (!, u) :¼N, where N is
a character not in A or in B.

International Journal of Control 1915

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

In order to keep an explicit record of the adversarial
input character, we introduce the one-step matrix of
stable transitions *(!,w), where we add the prefix wj to
all entries of ((!,w), namely,

*ijð!,wÞ :¼ fwjv : v 2 (ijð!,wÞg, i, j ¼ 1, 2, . . . , n:

Example 3: Consider the machine ! of Example 1.
The one-step matrices of stable transitions of ! are

*ð!,!Þ ¼
f!ja, !jbg f!jNg f!jNg
f!jNg f!jbg f!jag
f!jbg f!jNg f!jag

Þ

0

B@

1

CA,

*ð!,"Þ ¼
f"jag f"jbg f"jNg
f"jag f"jbg f"jNg
f"jNg f"jbg f"jag

0

B@

1

CA:

To work with the entries of *(!,w), we define the
projections #a:Bj(Aþ[N)!B (projection onto the
adversarial input value) and #c: Bj(Aþ[N)! (Aþ[N)
(projection onto the control input value) by setting

#awju :¼
w if u 6¼ N,

1 else,

!

and

#cwju :¼ u for all wju 2 BjðAþ [NÞ:

Next, given two sets of strings s1, s2*Bj(Aþ[N),
we define an operation s1_ s2 that is akin to the union
of the two sets, with N being handled like the empty set
it represents. Specifically, we delete from the union all
elements wjN for which w also appears with a

nonempty control input string. Using \ to denote the
difference set, we have

s1 _ s2 :¼ ½s1 [s2, nsN,

where sN consists of all elements wjN2 s1[s2 for which
[wjAþ]\ [s1[s2] 6¼1.

Recall that concatenation is an operation
that combines two strings into one longer string.
When dealing with pairs of strings of the form

wju2Bj(Aþ[N), concatenation operates only on
strings with the same adversarial input character,
concatenating the control inputs and leaving the
adversarial input character unchanged. Explicitly,
given two strings w1ju1,w2ju22Bj(Aþ[N), set

concðw1ju1,w2ju2Þ

:¼
w1ju1u2 if w1 ¼ w2 and both u1, u2 6¼ N,

w1jN,w2jN otherwise:

!

For two subsets of strings +1, +2*Bj(Aþ[N), the
concatenation is defined by

concð+1, +2Þ :¼ _s12+1, s22+2concðs1, s2Þ:

Further, we define an operation that resembles matrix
multiplication. Let P and Q be two n' n matrices with
entries in the set Bj(Aþ[N). The combination PQ is an
n' n matrix with the entries

ðPQÞij :¼ _k¼1,..., n concðPik,QkjÞ, i, j ¼ 1, 2, . . . , n:

Using this operation, we raise the one step matrix of
stable transitions to the power of k, to get the matrix

*kð!,wÞ ¼ *k)1ð!,wÞ*ð!,wÞ, k ¼ 1, 2, . . . :

By construction, the i, j entry of *k(!,w) consists of all
strings of the form wju that take the machine ! from a
stable combination with the state xi to a stable
combination with the state xj in exactly k steps; if no
such transition is possible, then u¼N.

Example 4: Continuing from Example 3, we obtain
(omitting repeated characters)

The matrix

Rðm,!,wÞ :¼ _i¼1,...,m *ið!,wÞ ð7Þ
is the matrix of m stable transitions of !. It
characterises all the transitions of ! that can be
accomplished in m or fewer stable steps. When we
allow m to grow indefinitely, we obtain the extended
matrix of stable transitions

R&ð!,wÞ :¼ _i(1 *ið!,wÞ,

*4ð!,!Þ ¼

f!ja,!jaba,!jbaba,!jba,!jabab,!jab,!jbab,!jbg f!jNg f!jNg

f!jaba,!jbaba,!jabab,!jbab,!jabg f!jbg f!jba,!jag

f!jbaba,!jba,!jaba,!jabab,!jbab,!jb,!jabg f!jNg f!jag

0

BB@

1

CCA

*4ð!,"Þ ¼

f"ja,"jbaba,"jaba,"jbag f"jabab,"jbab,"jab,"jbg f"jNg

f"ja,"jbaba,"jaba,"jbag f"jabab,"jbab,"jab,"jbg f"jNg

f"jbaba,"jba,"jabag f"jabab,"jbab,"jb,"jab,"jag f"jag

0

BB@

1

CCA

1916 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

which characterises all stable transitions of the
machine !.

Using the fact that ! has only n states, an argument
similar to the one employed in Murphy et al. (2003,
Proposition 3.9), yields the following.

Lemma 3: Let !¼ (A'B,X, f) be an asynchronous
machine with n states and an adversarial input. Let w be
an adversarial input character of !, and let R(m,!,w)
be the matrix of m stable transitions of !. Then, the
following two statements are equivalent for all integers
m(n) 1 and all i, j¼ 1, 2, . . . , n.

(i) The entry Rij(m,!,w) includes a string wju with
u 6¼N.

(ii) The entry R&ij(!,w) includes a string wju with
u 6¼N.

In brief terms, Lemma 3 indicates that all stable
transitions of the machine ! with the adversarial input
character w are characterised by the matrix R(m,!,w),
as long as m(n) 1.

Of course, the adversarial input character is usually
not known. To accommodate this fact, we introduce
the following notion.

Definition 4: Let ! be an asynchronous machine with
the adversarial input uncertainty &. The one-step stable
transitions matrix *(!, &) of ! consists of the entries

*ijð!, &Þ :¼ _w2& *ijð!,wÞ, i, j ¼ 1, 2, . . . , n:

The matrix *(!, &) simply includes all one-step stable
transitions that are compatible with the adversarial
uncertainty of !.

4.3 State feedback

Recall that our objective is to build a state feedback
controller C that turns the closed loop machine !c of
Figure 1 into a deterministic machine not affected by
the adversarial input. The following notion forms the
basis of our forthcoming discussion; compare to
Venkatraman and Hammer (2006b,c).

Definition 5: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine with an adversarial input, and let
xi, xj2X be two states of !. We say that there is a
feedback path from xi to xj if there is a state feedback
controller that takes ! from a stable combination with
xi to a stable combination with xj in fundamental
mode, given only that the adversarial input is within
the uncertainty set &.

In these terms, our objective is to find pairs of states of
the machine ! that can be connected by a feedback
path. Note that, due to fundamental mode operation,

the adversarial input character does not change along
a feedback path, but its value is not, in general,
known. The following is a simple property of
feedback paths.

Lemma 4: Let !¼ (A'B,X, f) be an asynchronous
machine with the matrix of stable transitions R(m,!, &).
Let xi, xj2X be two states of !, and assume that there is
a feedback path from xi to xj. If w is a possible
adversarial input value along this path, then
w2#aRij(m,!, &) for some m(1.

Proof: If there is a feedback path from xi to xj with
the adversarial input value w, then there is a control
input string that takes ! from xi to xj through a string
of stable transitions, while the adversarial input
character is w. Thus, w2#aRij(m,!, &), and the proof
concludes. œ

Lemma 4 provides a simple necessary condition for the
existence of a feedback path. We derive a sufficient
condition for the existence of feedback paths in the
next section.

5. Complete sets of strings

Let !¼ (A'B,X, f, &) be an asynchronous machine
with an adversarial input, and let xi and xj be two
states of !. In this section, we develop a test to
determine whether there is a feedback path from xi

to xj. Critical to this development is the uncertainty
about the adversarial input value. This uncertainty
may vary along a feedback path due to the fact that
the controller accumulates information about
the adversarial input value.

As an example, assume that & consists of two
characters, say &¼ {w1,w2}. Then, initially, it is known
only that the adversarial input value is one of the
characters w1 or w2. Now, assume that the control
input value is changed to the character u0. Letting s be
the stable recursion function of !, we have two options
for the next stable state:

(i) x0 :¼ s(x, u0,w1) when the adversarial input
character is w1; and

(ii) x00 :¼ s(x, u0,w2) when the adversarial input
character is w2.

Clearly, if x0 6¼x00, then we can determine the value of
the adversarial input character from the next stable
state, thus resolving the uncertainty. On the
other hand, if x0¼x00, then the outcome of this
step does not reduce the uncertainty about
the adversarial input.

In summary, the uncertainty about the adversarial
input value may be reduced as we progress along a
feedback path. Of course, only the uncertainty

International Journal of Control 1917

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

changes—the adversarial input value itself is constant
along a feedback path in fundamental mode operation.

The adversarial uncertainty affects the selection of
the next control input character, as we now discuss.
Consider the case where the machine ! is at a stable
combination with the state x and the control input
value u0, while being driven along a feedback path
toward a stable combination with the state x0. Let
&0* & be the current uncertainty about the value of the
adversarial input, and let A be the control input
alphabet. Let S be the set of all strings that take !
from its current state x to a stable combination with
the state x0, i.e., all strings wju¼wju0u1 . . . 2 &0jAþ for
which s(x, u,w)¼ x0. Letting u1 be the next control
input character, denote by S(a) the subset of all strings
of S for which u1¼ a, where a2A is a character of the
control input alphabet. Then, the set of adversarial
input characters that are compatible with the control
input character a at step 1 is given by #a S(a).

Now, if &0*=#a S(a), then the character a cannot be
used as the control input at step 1, since it is not
compatible with some adversarial input values that
may presently be active. On the other hand, if &0*#a

S(a), then a can be applied as the next control input
character, since it is compatible with the information
currently available about the adversarial input value.
To conclude, the current level of adversarial uncer-
tainty &0 impacts the selection of the next control input
character.

For a member +¼wju0u1 . . . uk of S and an integer
q(0, it is convenient to define the truncated string

+jq :¼ wju0u1 . . . uq if q - k,
wju0u1 . . . uk if q4 k:

!

The set of all truncated members of S is denoted by

Sjq :¼ f+jq : + 2 Sg, q ¼ 1, 2, . . . :

Recall that S includes all strings that take ! from a
stable combination with the state x to a stable
combination with the state x0. Then, the string +jq
takes ! to a stable combination with the state

xq :¼ sðx, +jqÞ :¼ sðx, u0u1 . . . uq,wÞ, q ¼ 1, 2, . . . :

The stable states that ! passes while being driven by
the string + are given by the list

x0ð+Þ :¼ sðx,+j0Þ,x1ð+Þ :¼ sðx,+j1Þ, . . . ,xkð+Þ :¼ sðx,+jkÞ,

where x0(+)¼ x and xk(+)¼ x0.
For a string +¼wju0u1 . . . uk2S, we define the

projection #p:S!A which extracts the pth control
input character of +, i.e.,

#p+ :¼ up for p ¼ 0, 1, . . . , k,
uk for all p4 k:

!

Next, assume that the machine ! is operated by a state
feedback controller C that uses strings from the set S to
drive !, while the adversarial input value w is kept
constant. As usual, there is no direct information
about the value of w. However, the control input
values of ! and the states through which ! passes are
known to the controller, as the controller generates the
input values and reads the states of !. This data can be
used to reduce the uncertainty about the adversarial
input value w, as follows.

Let x and x0 be two states of !, let u be a control
input string of !, and let s be the stable recursion
function of !. Assume that ! is in a stable combina-
tion with the state x when the control input value
changes to u, and let x00 be the next stable state of !.
Define the adversarial inverse function sa by setting

saðx, u, x00Þ :¼ fw 2 B : sðx, u,wÞ ¼ x00g, ð8Þ

so that sa(x, u, x00) is the set of all adversarial input
values w2 & that are compatible with the stable
transition s(x, u,w)¼x00. In particular, when ! is at a
stable combination with the initial state x0 and the
control input value u0, it follows from (8) that the
adversarial input character w must satisfy

w 2 &ðx0, u0Þ :¼ saðx0, u0, x0Þ \ &: ð9Þ

Thus, the initial uncertainty about the adversarial
input value may, in fact, be smaller than &.

Recall that S is the set of all strings that take !
from a stable combination with the state x0 :¼x to
a stable combination with the state x0. At the initial
step, the set of all possible adversarial input values is
given by (9). Consequently, the set S must contain a
path for each adversarial input character w2 & (x0, u0),
namely, we must have & (x0, u0)*#a S. Otherwise, the
set S would be incompatible with some of the potential
adversarial input values.

Further, let u1 be a control input character, and let
S(x0, u0u1) be the set of all strings of S whose control
input starts with u0u1, i.e.,

Sðx0, u0u1Þ ¼ f+ 2 S : +j1 ¼ wju0u1 for some w 2 Bg:

Clearly, the character u1 can be used as the next control
input only if it is compatible with all possible
adversarial input values, i.e., only if

&ðx0, u0Þ * #aSðx0, u0u1Þ:

As the control input string is generated by the
controller C, the pair (x0, u1) must be detectable to
facilitate fundamental mode operation of the closed
loop machine.

Now, let x1 be the next stable state of ! reached
with the control input character u1. The fact that ! has

1918 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

reached the state x1 implies that the adversarial input
value w must have been within the set

&ðx0x1, u0u1Þ :¼ saðx0, u1, x1Þ \ &ðx0, u0Þ:

Continuing in this way, suppose that we are at step p of
the path. Let u0u1 . . . up be the control input characters
applied so far to ! along this path by the controller,
and let x0x1 . . . xp be the string of stable states through
which ! has passed as a result. Let &(x0x1 . . . xp,
u0u1 . . . up)*B be the current uncertainty about the
adversarial input value. By iterating the earlier step, we
obtain the following conclusion.

Lemma 5: Let w be the adversarial input character of
the asynchronous machine ! and let p(1 be an integer.
Assume that the control input string u0u1 . . . up2Aþ
drives ! through the states x0x1 . . . xp, where
(xi, ui,w), i¼ 0, 1, 2, . . . , p, are all stable combinations.
Then,w2 &(x0x1 . . . xp, u0u1 . . . up), where

&ðx0x1 . . .xp,u0u1 . . .upÞ :¼ saðxp)1,up,xpÞ
\ &ðx0x1 . . .xp)1,u0u1 . . .up)1Þ:

Referring to Lemma 5, it follows from (9) that
&(x0x1 . . . xp, u0u1 . . . up)* &. We call &(x0x1 . . . xp,
u0u1 . . . up) the residual adversarial uncertainty at step p.

Let us return now to our set of strings S that take
the machine ! from the state x0 :¼ x to the state x0.
Denote by S(x0x1 . . . xp, u0u1 . . . up) the set of all
elements + 2S that satisfy the following conditions:

(i) the control input values are u0u1 . . . up; and
(ii) the machine ! passes through the states

x0, x1, . . . , xp.

For a control input character d2A, denote by
S(x0x1 . . . xp, u0u1 . . . upd) the set of all strings
+ 2S(x0x1 . . . xp, u0u1 . . . up) that have the character d
in position pþ 1 of their control input string. Applying
Lemma 5 to step p of the machine !, it follows that the
adversarial input value must be within the set
&(x0x1 . . . xp, u0u1 . . . up). Also, the set of all adversarial
input characters that appear with the next control
input character d is #aS(x0x1 . . . xp, u0u1 . . . upd).
Combining the last two facts, we obtain the following.

Lemma 6: The character d2A can be used as the next
control input character of the machine ! only if
&(x0x1 . . . xp, u0u1 . . . up)*#a S(x0x1 . . . xp, u0u1 . . . upd).

The condition of Lemma 6 is critical to the construc-
tion of a feedback controller that automatically takes a
machine ! with an adversarial input from one specified
state to another. In fact, we show later that this
condition guaranties the existence of such a controller,
if it is valid at every stable transition along the way

from x0 to x0. These considerations lead us to the
following.

Definition 6: Let S*BjAþ be a set of strings taking
the asynchronous machine ! from a stable combina-
tion with the state x0 to a stable combination with the
state x0. The set S is complete if the following two
conditions hold for all integers p¼ 0, 1, 2, . . . and for
every control input character d2#pþ1S(x0x1 . . . xp,
u0u1 . . . up):

(i) &(x0x1 . . . xp, u0u1 . . . up)*#a S(x0x1 . . .xp,
u0u1 . . . upd), and

(ii) The pair (xp, d) is detectable with respect to
the residual adversarial uncertainty
&(x0x1 . . . xp, u0u1 . . . up).

Our next objective is to show that the existence of a
complete set of strings is equivalent to the existence of
a state feedback controller. Shortly thereafter, we
present an algorithm for the derivation of complete
sets of strings. First, we show that a complete set of
strings can be replaced by a complete set of strings of
bounded length. For a set of strings S*BjAþ, denote
by jSj the maximal length of a control input string in S,
i.e., the maximal length of a string of the set #cS. For a
finite set Z, denote by #Z the number of elements of Z.

Lemma 7: Let !¼ (A'B,X, f, &) be an asynchronous
machine with n states, and let x0 and x0 be two states of
!. Assume that ! is in a stable combination at the
state x0 with the control input value u0. If there is a
complete set of strings from x0 to x0, then there also is
such a complete set of strings S satisfying
jSj- [#&(x0, u0)](n) 1).

Proof: Consider a string + 2S. Let u¼ u0u1 . . . uk¼
#c+ be the control input values of this string and let
x0x1 . . . xk be the string of stable states through which
! passes as a result of receiving the control input string
u. The residual adversarial uncertainty at the start of
the path is &0 :¼ &(x0, u0). Let &i be the residual
uncertainty at step i of the path, and note that, by
definition, &i is a monotone declining function of i, and
its minimal value cannot be less than 1. Divide the
interval [0, k] into segments of constant residual
uncertainty. This results in the set of mþ 1 subintervals
I¼ {[0, i1], [i1þ 1, i2], . . . , [imþ 1, k]}, where &i is
constant over each one of these intervals. Since &i is
a monotone declining function and its minimum
cannot be less than 1, we get mþ 1-#&(x0, u0), or
m-#&(x0, u0)) 1.

Now, if any of the subintervals [i, i0]2 I has length
‘(n, then the string of states xixiþ1 . . . xi0 must contain
a repeating state, say x :¼ xp¼ xr, where i- p5r- iþ ‘.
Since &p¼ &r by construction, the control input value
up can be replaced by the control value ur without

International Journal of Control 1919

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

disturbing the stable combination at step p (recall that
the adversarial input value is constant during the entire
path). Then, steps pþ 1, pþ 2, . . . , r can be eliminated
from the string, resulting in a new segment with the
length of ‘) (r) p). This process can be repeated again
and again, until the length of the resulting segment is
less than n. Applying the same procedure to each one of
the segments in I, we obtain a new path of length not
exceeding (mþ 1)(n) 1)- [#&(x0, u0)](n) 1). As this
bound is valid for every segment in I, our proof
concludes. œ

We have reached the main result of this section.

Theorem 2: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine and let x and x0 be two states of !. Then,
the following two statements are equivalent.

(i) There is a state feedback controller C that
drives ! from a stable combination with x to a
stable combination with x0 in fundamental mode
operation.

(ii) There is a complete set of strings S*BjAþ
taking ! from a stable combination with x to a
stable combination with x0.

Proof: Assume first that (ii) is valid. We build a state
feedback controller F(x, x0, v) which, upon receiving
the input character v2A, generates a string of control
input characters that takes ! from a stable combina-
tion with x0 :¼ x to a stable combination with x0 in
fundamental mode operation. To this end, assume that
! is in a stable combination with the state x0, and pick
a control input character u12#1 S. Due to the fact that
S is a complete set of strings, the pair (x0, u1) is
detectable with respect to the adversarial uncertainty
&(x0, u0). In addition, &(x0, u0)*#a S(x0, u0u1), so that
the input character u1 is compatible with every possible
adversarial input value.

Now, let " be the state set of the controller
F(x, x0, v). The recursion function # of F(x, x0, v) has
three variables: the state of F(x, x0, v), the state of !,
and the external control input, i.e., #:"'X'A!".
Denote by $:"'X'A!A the output function of
F(x, x0, v), and let %0 be the initial state of F(x, x0, v). We
construct next the functions # and $.

Upon encountering a detectable transition of ! to
the state x0 with the control input value u0, the
controller moves to a stable combination with the state
%1. This transition prepares the controller to generate
the input string that will take ! to the state x0, when
commanded to do so; it is accomplished by setting

#ð%0, ðz, tÞÞ :¼ %0 for all ðz, tÞ 6¼ ðx0, u0Þ,
#ð%0, ðx0, u0ÞÞ :¼ %1,
#ð%1, ðx0, u0ÞÞ :¼ %1:

While in its initial state %0 or in the state %1, the
controller applies to the control input of ! the external
input character it receives, making F(x, x0, v) transpar-
ent in these states:

$ð%0, ðz, tÞÞ :¼ t for all ðz, tÞ 2 X' A,

$ð%1, ðz, tÞÞ :¼ t for all ðz, tÞ 2 X' A:

Suppose now that, while F(x,x0, v) is in the state %1, it
receives the external input character v2A. This is the
command for the controller to start a string of
transitions taking ! from its current stable combina-
tion with the state x0 to a stable combination with the
state x0. Upon receiving the external input value v, the
controller F(x, x0, v) moves to a stable combination
with the state %2, namely,

#ð%1, ðz, tÞÞ :¼ %1 for all ðz, tÞ 6¼ ðx0, vÞ,
#ð%1, ðx0, vÞÞ :¼ %2,
#ð%2, ðx0, vÞÞ :¼ %2:

When reaching the state %2, the controller applies to the
control input of ! the first character of the control
input string u1u2 . . . uk2#c S that ultimately takes ! to
the state x0; to this end, set

$ð%2, ðx0, tÞÞ :¼ u1 for all t 2 A:

The control input character u1 causes ! to move to the
state x1 through a detectable transition.

Continuing in this manner, assume that the
controller F(x, x0, v) has generated so far the control
input string u0u1 . . . up, taking ! through the states
x0x1 . . . xp; here, p is an integer between 1 and k. Since
S was a complete set of strings, the transition to the
state xp was a detectable transition; consequently, ! is
in a stable combination when it reaches the state xp.
Upon detecting the state xp, the controller F(x, x0, v)
moves to a stable combination with the state %pþ2,
namely,

#ð%pþ1, ðz, tÞÞ :¼ %pþ1 for all ðz, tÞ 6¼ ðxp,_Þ,
#ð%pþ1, ðxp, vÞÞ :¼ %pþ2,
#ð%pþ2, ðxp, vÞÞ :¼ %pþ2:

Now, select any control input value upþ12
#pþ1 S(x0x1 . . . xp, u0u1 . . . up). Due to the fact that S is
a complete set of strings, the pair (xp, upþ1) is
detectable with respect to the adversarial uncertainty
&(x0x1 . . . xp, u0u1 . . . up). Also, &(x0x1 . . . xp, u0
u1 . . . up)*#a S(x0x1 . . . xp, u0u1 . . . upupþ1), so that the
input character upþ1 is compatible with any adversar-
ial character in &(x0x1 . . . xp, u0u1 . . . up). Upon reach-
ing the state %pþ2, the controller applies to ! the
control input character upþ1, namely,

$ð%pþ2, ðxp; tÞÞ :¼ upþ1 for all t 2 A:

1920 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

This construction is repeated for p¼ 1, 2, . . . , until the
machine ! reaches the state x0. In view of our
construction, the resulting controller F(x, x0, v)
satisfies condition (i) of the Theorem. Note that, by
Lemma 7, the state x0 can be reached at a step
k- (n) 1)[#&(x0, u0)], where n is the number of states
of the machine !.

Conversely, assume that condition (i) is valid. Let
F(x, x0, v) be a controller which, upon receiving the
external input character v2A, takes ! from a stable
combination with the state x0 :¼ x to a stable
combination with the state x0. Assume that ! is in a
stable combination with the state x0 and the control
input value u0, when the external input changes to the
character v. The initial uncertainty about the adver-
sarial input character of ! is then &(x0, u0). Let
S*BjAþ be the set of all strings the controller
F(x, x0, v) can generate. To prove that (i) implies (ii),
we need to show that S is a complete set of strings.

To show that S is a complete set of strings, consider
step p(0 of a string of control input characters
u0u1 . . . up applied by F(x, x0, v) to !. Denote by
x0x1 . . . xp the stable states through which ! has
passed as a result of this string. By Lemma 5, the
residual adversarial uncertainty at this point is
&(x0x1 . . . xp, u0u1 . . . up). Let d2A be the next control
input character that F generates for !. Then, by
fundamental mode operation of the closed loop
machine, the pair (xp, d) is detectable with respect to
the residual uncertainty &(x0x1 . . . xp, u0u1 . . . up). Also,
in view of Lemma 6, we have &(x0x1 . . . xp,
u0u1 . . . up)*#aS(x0x1 . . . xp, u0u1 . . . upd). As this is
true for all p(0, the requirements of Definition 6 are
met, and S is a complete set of strings. Thus, (i) implies
(ii), and our proof concludes. œ

In view of Theorem 2, finding a complete set of
strings is the critical step in the process of designing
a controller for an asynchronous machine with
adversarial input. The following algorithm derives
such a set of strings.

Algorithm 1: Derivation of a complete set of strings.
Let !¼ (A'B,X, f, &) be an asynchronous machine
with adversarial input. Let S*BjAþ be a set of strings
that take ! from a stable combination with the state x0
and the control input value u0 to a stable combination
with the state x0. Consider the case where ! is at step j
of an input string from S, having received the control
inputs u0u1 . . . uj and having passed through the stable
states x0x1 . . . xj. The residual adversarial uncertainty is
&(x0x1 . . . xj, u0u1 . . . uj).

Step 0: Set j :¼ 0.

Step 1: If &(x0x1 . . . xj, u0u1 . . . uj)*=#aS(x0x1 . . . xj,
u0u1 . . . uj), then S does not include a complete set

of strings. Set $:¼1 and terminate the algorithm.
Otherwise, continue to Step 2.

Step 2: Let S1 be the set of all strings + 2
S(x0x1 . . .xj, u0u1 . . . uj) for which #a+ =2 &(x0x1 . . . xj,
u0u1 . . . uj). If S1 6¼1, then replace S by the difference
set S\S1 and go to Step 0. If S1¼1, continue to Step 3.

Step 3: Let S2 be the set of all strings + 2
S(x0x1 . . .xj, u0u1 . . . uj) for which the pair (xj,#

jþ1 +)
is not detectable with respect to the residual uncer-
tainty &(x0x1 . . . xj, u0u1 . . .uj). If S2 6¼1, then replace S
by the difference set S\S2 and go to Step 0. If S2¼1,
continue to Step 4.

Step 4: Let S3 be the set of all strings + 2
S(x0x1 . . . xj, u0u1 . . . uj) for which &(x0x1 . . . xj,
u0u1 . . . uj)*=#a S(x0x1 . . . xj, u0u1 . . . u#jþ1+). If S3 6¼1,
then replace S by the difference set S\S3 and go to Step 0.
If S3¼1, continue to Step 5.

Step 5: Let q be the length of the longest string in S.
If j¼ q, then set $:¼S and terminate the algorithm.
Otherwise, replace j by jþ 1 and go to Step 1.

The outcome of the Algorithm 1 is a set of strings
$*BjAþ. If $ is not the empty set, then, according to
the next statement, it forms a complete set of strings.

Theorem 3: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine with adversarial input, let S*BjAþ be a
set of strings all having the same initial control input
character, and let $ be the outcome of Algorithm 1.
Then,

(i) $ is not empty if and only if S contains a
complete set of strings, and

(ii) If $ is not empty, then it forms a complete set
of strings included in S.

Proof: Assume that $ is not empty. Then,
an examination of Step 3 of Algorithm 1 shows that
$ satisfies condition (i) of Definition 6, while an
examination of Step 4 of the algorithm shows that
$ satisfies condition (ii) of Definition 6. A slight
reflection on the flow of Algorithm 1 leads then to the
conclusion that $ is a subset of S, and that it is
not empty if and only if S contains a complete set
of strings. œ

6. Skeleton matrices

We turn now to the definition of one of the main
notions of our present discussion. Let
!¼ (A'B,X, f, &) be an input/state asynchronous
sequential machine with adversarial input, having the
state set X¼ {x1, . . . ,xn} with n states. In view of (9),
the initial adversarial uncertainty always satisfies

International Journal of Control 1921

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

&(x0, u0)* &, so we always have #&(x0, u0)-#&.
Invoking Lemma 7, we conclude that a complete set
of strings S for the machine ! can always be selected so
that its length satisfies

jSj - ðn) 1Þð#vÞ: ð10Þ
Recall that, by (7), the i, j entry of the matrix
R(m,!,w) includes all the control input strings that
take ! from a stable combination with the state xi to a
stable combination with the state xj through a string of
m or fewer stable transitions, while the adversarial
input character is w. At this point, it is convenient to
introduce the matrix

Rð!, &Þ :¼ _w2&Rððn) 1Þð#&Þ;!,wÞ: ð11Þ
Definition 7: The matrix R(!, &) is the combined
matrix of stable transitions of the asynchronous
machine ! with the adversarial uncertainty &.

Example 5: Continuing with our analysis of
the machine ! of Example 1, let the adversarial
uncertainty be &¼ {!,"}, so that #&¼ 2. As we have
three states in this case, n¼ 3, and (n) 1)(#&)¼ 4.

Considering (10), Lemma 7, and Theorem 2, we reach
the following conclusion.

Corollary 1: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine with adversarial input, having the state set
X¼ {x1, . . . , xn} and the combined matrix of stable
transitions R(!, &). Then, the following two statements
are equivalent for all i, j¼ 1, 2, . . . , n.

(i) There is a state feedback controller that takes !
from a stable combination with xi to a stable
combination with xj in fundamental mode
operation.

(ii) The i, j entry of R(!, &) includes a complete set
of strings.

In view of Corollary 1, it is easy to determine
whether or not there is a state feedback controller
that takes the machine ! from a stable combination
with the state xi to a stable combination with the
state xj in fundamental mode operation: all we have
to do is apply Algorithm 1 to the entry Rij(!, &).
Then, such a controller exists if and only if the
outcome of Algorithm 1 is a non empty set. This
set can then be used to construct an appropriate

controller by following the proof of Theorem 2.
In this way, we arrive at the following notion.

Definition 8: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine with adversarial input, having n states
and the combined matrix of stable transitions R(!, &).
The complete matrix of stable transitions R(!, &) of !
is an n' n matrix defined as follows for each
i, j 2 {1, 2 . . . , n}: the entry Rij(!, &) is a complete set
of strings included in the entry Rij(!, &); if there is no
such complete set, then Rij(!, &) :¼N.

Example 6: Applying Algorithm 1 on the entries of
the matrix of stable transitions derived in Example 5,
we obtain

<ð!,&Þ

¼

f!ja,"jag N N

f!jab,"ja,"jbag f!jb,"jab,"jbg N

f!jab,!jba,!jb,"jbag N f!ja,"jag

0

BB@

1

CCA:

In view of Theorem 2, the following is true.

Corollary 2: Let ! be an asynchronous sequential
machine with the state set {x1, . . . , xn} and
the adversarial uncertainty &. Let R(!, &) be the
complete matrix of stable transitions of !. Then,
the following two statements are equivalent for all
i, j2 {1, . . . , n}:

(i) There is a state feedback controller that takes !
from a stable combination with the state xi to a
stable combination with the state xj in funda-
mental mode operation.

(ii) Rij(!, &) 6¼N.

We can now generalise the notion of the skeleton
matrix (Murphy et al. 2002, 2003) to asynchronous
machines with adversarial inputs.

Definition 9: Let !¼ (A'B,X, f, &) be an input/state
asynchronous sequential machine with adversarial
input, having the state set X¼ {x1, . . . , xn} and the
complete matrix of stable transitions R(!, &). The
control skeleton matrix K(!, &) of ! is an n' n matrix
of zeros and ones, whose entries are defined as
follows for each i, j 2 {1, 2, . . . , n}: Kij(!, &) :¼ 1 if
Rij(!, &) 6¼N, and Kij (!, &):¼ 0 if Rij(!, &)¼N.

Rð!,&Þ ¼ *ð!,!Þ_ *ð!,"Þ _ *2ð!,!Þ _ *2ð!,"Þ _ *3ð!,!Þ _ *3ð!,"Þ _ *4ð!,!Þ _ *4ð!,"Þ

¼
f!ja,!jaba,!jbaba,!jba,!jabab,!jab,!jbab,!jb,"ja,"jbaba,"jaba,"jbag f"jabab,"jbab,"jab,"jbg f!jN,"jNg

f!jbaba,!jaba,!jabab,!jbab,!jab,"ja,"jbaba,"jbag f!jb,"jabab,"jbab,"jab,"jbg f!jba,!jag
f!jbaba,!jba,!jaba,!jabab,!jbab,!jb,!jab,"jbaba,"jba,"jabag f"jabab,"jbab,"jb,"jab,"jag f!ja,"jag

0

B@

1

CA

1922 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Example 7: Using the result of Example 6, we obtain
the control skeleton matrix

Kð!, &Þ ¼
1 0 0

1 1 0

1 0 1

0

B@

1

CA:

In these terms, a state feedback controller can take !
from a stable combination with the state xi to a stable
combination with the state xj in fundamental mode
operation if and only if Kij(!, &)¼ 1.

6.1 Latent adversarial switches

We turn our attention now to a restricted version of the
model matching problem with adversarial inputs.
The solution of this problem forms a step stone
along our way toward the solution of the full model
matching problem with adversarial inputs.

Consider an asynchronous machine ! with adver-
sarial input uncertainty &. Note that changes in the
adversarial input value do not always cause a state
transition of !. Indeed, assume that ! is at a stable
combination with the state x and the control input
character u0, and consider the set of adversarial input
characters sa(x, u0, x) of (8). Clearly, if this set consists
of more than one character, then a switch of the
adversarial input from one character to another in this
set does not change the stable state of !, and hence is
not noticeable by a state feedback controller. This
leads to the following.

Definition 10: A latent adversarial switch is a change
of the adversarial input value that does not result in a
change of the stable state of the machine.

The next statement provides a solution of the model
matching problem for the case when all adversarial
input changes are latent.

Theorem 4: Let !¼ (A'B,X, f, &) be an input/state
machine with adversarial input, and assume that the
adversarial input is restricted to latent switches. Let
K(!, &) be the control skeleton matrix of !, and let
!0¼ (A,X, s0) be a stable-state input/state machine with
no adversarial input, having the skeleton matrix K(!0).
Then, the following two statements are equivalent.

(i) There exists a state feedback controller C for
which !cjs¼!0, where the closed loop machine
!c is well posed and operates in fundamental
mode.

(ii) K(!, &)(K(!0).

Example 8: Consider the problem of building amodel
matching controller for the machine ! of Example 1
so as to match the model !0 of Example 2.
Using the procedure described in Murphy et al.

(2002, 2003), the skeleton matrix of the model !0 is
calculated as

Kð!0Þ ¼
1 0 0

1 1 0

1 0 1

0

B@

1

CA:

The control skeleton matrix K(!, &) was calculated in
Example 7. Comparing the two matrices, we obtain
that K(!, &)(K(!0), so that a model matching con-
troller exists by Theorem 4. We will construct the
controller in x9 below.

Proof of Theorem 4: Assume first that (i) is valid,
and consider a particular stable transition of the
model !0, say a transition from a stable combination
with the state xi to a stable combination with the state
xj. Then, by definition of the skeleton matrix,
Kij(!

0)¼ 1. As (i) is valid, the stable state machine
!cjs must also have a transition from a stable
combination with the state xi to a stable combination
with xj. In view of the fact that !c is the machine !
controlled by the controller C, it follows by Corollary
2 and Definition 9 that Kij(!, &)¼ 1 as well. Thus,
Kij(!, &)¼ 1 if Kij(!

0)¼ 1, i, j¼ 1, 2, . . . , n. Considering
that K(!, &) and K(!0) are both matrices of zeros
and ones, the latter implies that K(!, &)(K(!0), and
(i) implies (ii).

Conversely, assume that (ii) is valid. Let K1(!0) be
the one-step skeleton matrix of the model !0; see
Murphy et al. (2003). Then, K(!0)(K1(!0), and it
follows by (ii) that

Kð!, &Þ (K1ð!0Þ: ð12Þ
Now, let i, j2 {1, 2, . . . , n} be a pair of integers for
which K1

ij(!
0)¼ 1. Let s0 be the stable recursion

function of the model !0, and denote by V(i, j) the set
of all control input characters v2A for which
s0(xi, v)¼ xj. Note that, for all i,

Vði, jÞ \ Vði, j 0Þ ¼1 if j 6¼ j 0, ð13Þ

since different target states require different inputs. As
K1

ij(!
0)¼ 1, it follows by (12) that also Kij(!, &)¼ 1. By

Corollary 2, there is then a complete set of strings from
the state xi to the state xj. Select a character v2V(i, j).
In view of Theorem 2, there is controller F(xi, xj, v) that
takes the machine ! from a stable combination with xi

to a stable combination with xj; here, the character v
activates the controller. Extend the activation of this
controller to all characters v2V(i, j), so that any
character v2V(i, j) can be used to start the (same)
controller action. Denote the resulting controller by
F(xi, xj,V(i, j)).

Next, we define the following operation of join for
combining two controllers (see also Venkatraman and

International Journal of Control 1923

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Hammer (2006c)). Given two controllers
F(xi,xj,V(i, j)) and F(x i 0, x j 0,V(i0, j0)), the join

C :¼ Fðxi, xj,Vði, jÞÞ _ Fðxi0 , xj 0 ,Vði0, j 0ÞÞ

is constructed as follows

(i) When xi¼x i 0 and the external input character
is v, then

C :¼
Fðxi, xj,Vði, jÞÞ if v 2 Vði, jÞ,
Fðxi0 , xj 0 ,Vði0, j 0ÞÞ if v 2 Vði0, j 0Þ:

!

(ii) If (xi, xj) 6¼ (x i 0,x j 0), let the machine ! be in a
stable combination with the state xi, when the
controller C receives the input character v.
Then,

C :¼ Fðxi, xj,Vði, jÞÞ:

This construction of C is consistent by (13); see
Venkatraman and Hammer (2006c) for more details.

Now, let T* {1, 2, . . . , n}' {1, 2, . . . , n} be the set
of all pairs of integers for which K1

ij(!
0)¼ 1. Then, a

slight reflection shows that the joined controller

F :¼ _i, j2TFðxi, xj,Vði, jÞÞ

makes themachine! match themodel!0. By Theorem2,
the closed loop machine is well defined and operates in
fundamental mode. This concludes our proof. œ

7. General model matching

7.1 Adversarial detectability

Let !¼ (A'B,X, f, &) be an asynchronous machine
with adversarial input. Assume that ! is at a stable
combination (x, u,w), when the adversarial input value
changes to w0. This change may or may not cause ! to
experience a transition to a new stable state. Presently,
consider the case when the change in the adversarial
input from w to w0 causes ! to move to a new state
x0 6¼ x. We refer to such a transition as an adversarial
transition. In this section, we discuss the existence and
the design of a state feedback controller Ca that
automatically counteracts adversarial transitions of !.

A basic requirement is, of course, that the controller
Ca operate in fundamental mode to guarantee determi-
nistic behaviour of the closed loop machine. Being a
state feedback controller, Ca has access to the current
state of !, and it generates the control input of !. To
obtain fundamental mode operation of the closed loop
machine with the controller Ca, it must be possible to
determine from the state of ! whether or not ! has
reached its next stable combination. This leads us to the
following, which is closely analogous to Definition 2.

Definition 11: Let !¼ (A'B,X, f) be an input/state
asynchronous machine with adversarial uncertainty ".
Assume that ! is in a stable combination at the state x
with the control input character u, when a change in
the adversarial input causes ! to move to the state x0.
Then, the pair (x, u) is adversarially detectable with
respect to the adversarial uncertainty " if it can be
determined from the current state of ! whether or not
! has reached its next stable combination.

Without adversarial detectability, it is not possible to
guarantee fundamental mode operation of a closed
loop machine controlled by a state feedback con-
troller. In other words, operation must be restricted
to adversarially detectable pairs of the controlled
machine !.

Assume then that the machine ! is at a stable
combination (x, u,w), when the adversarial input
character changes to w0, causing ! to transition to
a stable combination with the state x0 6¼ x. This
transition may, of course, consist of a number of
intermediate steps, say x0 :¼ x, x1 :¼f(x0, u,w0),
x2¼ f(x1, u,w

0), . . . , xq :¼ f(xq–1, u,w
0)¼ x0, xq¼ f(xq,

u,w0). Similarly to (5) and (6), we denote

'ðx, u,w0Þ :¼ x1 . . . xq,

'½x, u, ", :¼ f'ðx, u,w0Þ : w0 2 "g:

!
ð14Þ

The following statement is closely analogous to
Theorem 1 and has a similar proof.

Theorem 5: Let !¼ (A'B,X, f, &) be an input/state
asynchronous machine with adversarial input. Assume
that ! is in a stable combination with the state x and the
control input value u. In the notation of (4) and (14), the
following two statements are equivalent.

(i) The pair (x, u) is adversarially detectable with
respect to the adversarial uncertainty &.

(ii) States of the set s&(x, u) appear only at the end
of strings belonging to '[x, u, &].

As indicated earlier, to guarantee fundamental mode
operation of the closed loop machine, the use of the
machine ! must be restricted to adversarially detect-
able pairs. This leads us to the following notion. (For a
string +¼wju1u2 . . . uq2B'Aþ, denote by #þc + :¼ uq
the last control input character of the string.)

Definition 12: Let !¼ (A'B,X, f, &) be an asynchro-
nous machine having adversarial uncertainty &, n
states, and the combined matrix of stable transitions
R(!, &). The reduced matrix of stable transitions
Rr(!, &) of ! is obtained by removing from each
column j¼ 1, 2, . . . , n of R(!, &) all strings + for which
the pair (xj,#þc +) is not adversarially detectable with
respect to the uncertainty &.

1924 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Example 9: We calculate now the reduced matrix of
stable transitions for the matrix R(!, &) of Example 5.
Considering the transition table of the machine ! as
provided in Example 1, note that there is only one
transition that can be caused by the adversarial input,
namely, the transition initiated by a switch of the
adversarial input from the character ! to the character
", while ! is at the state x1 and the control input is b.
Symbolically, the transition can be represented by
(x1, b,!)! (x1, b,")! (x2, b,"). For this transition,
recalling that s is the stable recursion function of !,
we have s(x1, b,")¼ x2. Hence, '[x1, b,!]¼x1 and
'[x1, b,"]¼x2, so that

'½x1, b, &, ¼ fx1, x2g:

In this case, we have

s&ðx1, bÞ ¼ fx1, x2g:

As we can see, the states x1, x2 appear only at the end
of strings belonging to '[x1, b, &]. Therefore, by
Theorem 5, the pair (x1, b) is adversarially detectable,
and we have Rr(!, &)¼R(!, &) in this case.

The reduced matrix of stable transitions charac-
terises all transitions of the machine ! that end at
adversarially detectable pairs. This matrix forms the
basis for designing controllers that can counteract
adversarial transitions.

7.2 Reversing adversarial transitions

Assume that the machine ! is at an adversarially
detectable stable combination with the pair
(xs, u)2X'A, when a change in the adversarial input
causes ! to move to a stable combination with the
state xt; of course, by fundamental mode operation, the
control input value u is kept constant during this
process. As this transition started from an adversa-
rially detectable pair, a state feedback controller can
determine from the current state of ! whether or not !
has reached its next stable combination. Having been
caused by the adversarial input, this transition is
undesirable; our objective is to design a state feedback
controller Ca that automatically reverses this transi-
tion. In this way, Ca will counteract the effects of the
adversarial input.

Consider then an adversarial transition from a
stable combination with the pair (xs, u) to a stable
combination with the pair (xt, u). Letting & be the
adversarial uncertainty, the set of adversarial input
characters that can give rise to such a transition is

&ðxs, xt, uÞ :¼ saðxs, u,xtÞ \ &: ð15Þ

Clearly, this transition is possible if and only if
&(xs, xt, u) 6¼1, and we reach the following.

Definition 13: Let ! be an asynchronous machine
with the state set X¼ {x1, x2, . . . , xn} and the adver-
sarial uncertainty &, and assume that ! is in a stable
combination with the control input character u. Then,
for a pair of integers s, t2 {1, 2, . . . , n}, the adversarial
transition indicator is

Kðxs, xt, uÞ :¼
1 if &ðxs, xt, uÞ 6¼1,

0 otherwise:

!
ð16Þ

The discussion leading to Definition 13 implies the next
statement.

Lemma 8: Assume that the closed loop machine !c is in
a stable combination at the state xs with the control input
character u. Then, the following two statements are
equivalent.

(i) There is an adversarial transition to a stable
combination with the state xt.

(ii) K(xs, xt, u)¼ 1.

To address the question of whether an adversarial
transition is reversible or not, it is convenient to
introduce the following.

Definition 14: Let ! be an asynchronous machine
with adversarial input. An adversarial transition from
a stable combination with the state xs to a stable
combination with the state xt is reversible if there is a
state feedback controller that drives ! back to a stable
combination with the state xs, without specific
information about the adversarial character that
caused the transition.

To examine reversible transitions, assume that the
machine ! is in a stable combination with the state xs

and the control input character u, when an adversarial
transition to the state xt occurs. In view of (15), the
adversarial uncertainty immediately after the transition
is &(xs, xt, u). Using the reduced matrix of stable
transitions Rr(!, &), we construct the scalar function

Krðxs, xt, uÞ

:¼

1 if Rr
tsð!, &Þ includes a complete set of

strings with respect to the adversarial

uncertainty &ðxs, xt, uÞ,
0 otherwise:

8
>>><

>>>:

ð17Þ

A slight reflection indicates that the following is true.

Lemma 9: In the above notation, an adversarial
transition from xs to xt is reversible if and only if
Kr(xs, xt, u)¼ 1.

Next, let U(xs)*A be the set of all control input
characters of the machine ! that may appear in stable

International Journal of Control 1925

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

combinations with the state xs. For various practical
considerations, the designer of the state feedback
controller C may choose to avoid using some of
these control input characters. The set of active control
input characters of ! at the state xs is the subset
S(xs)*U(xs) of all control input characters that may
be applied by the controller C, while the closed loop
machine !c is in a stable combination at the state xs of
!. If xs does not appear as part of a stable state of the
closed loop machine, then S(xs) :¼1. When all states
of ! appear as stable states of the closed loop machine
!c and all possible control input characters of ! are
utilised, we have

SðxsÞ ¼ UðxsÞ, s ¼ 1, 2, . . . , n: ð18Þ

Equality (18) describes the most common situation.
When it is valid, we say that there are no idle control
input characters.

Definition 15: Let ! be an asynchronous machine
with adversarial input having the n states x1, . . . , xn.
Let S(xs) be the set of active control input characters at
the state xs. The reversal matrix A(S,!) is an n' n
numerical matrix with the entries

AstðS,!Þ

:¼
minfKrðxs,xt,uÞ)Kðxs,xt,uÞ : u2SðxsÞg ifSðxsÞ 6¼1,

0 ifSðxsÞ ¼1,

!

s, t¼ 1, 2, . . . , n.

For a numerical matrix D, the inequality D(0 means
that D has no negative entries.

Example 10: We continue our examination of the
machine ! of Example 9. In view of Example 9, there is
only one adversarial transition we have to consider,
namely, the transition x2¼ s(x1, b,"). Assume that the
controller is implemented with no idle control input
characters, so that S(x1)¼U(x1). From (15), we have

&ðx1, x2, bÞ ¼ saðx1, b, x2Þ \ & ¼ f"g \ fa,"g ¼ f"g:

From (16), we get that K(x1,x2, b)¼ 1. In Example 9,
we have seen that Rr(!, &)¼R(!, &). Also, from
Example 6, we have the complete set of strings
R21(!, &)¼ {!jab,"ja,"jba}. Consequently, Rr

21ð!, &Þ
includes a complete set of strings with respect to the
adversarial uncertainty &(x1,x2 ,b)¼ {"}. Substituting
into (17), we obtain that Kr(x1, x2, b)¼ 1, so that
A12(U,!)¼ 0. As there are no adversarial transitions
other than the transition from x1 to x2, we have that
K(xs, xt, u)¼ 0 for all (s, t) 6¼ (1, 2). Whence,
A(U,!)(0 in this case.

We can characterise now the conditions under which a
transition caused by the adversarial input can be
counteracted by a state feedback controller.

Theorem 6: Let ! be an asynchronous machine with
adversarial input, and let X¼ {x1, . . . , xn} be the state
set of !. Assume that ! is operated by a state feedback
controller using the active control input character sets
S(xs), s¼ 1, 2, . . . , n, and let A(S,!) be the correspond-
ing reversal matrix. Then, the following two statements
are equivalent.

(i) All adversarial transitions of the closed loop
machine can be automatically reversed in
fundamental mode operation.

(ii) A(S,!)(0.

Proof: Consider an adversarial transition from a
stable combination with the state xs to a stable
combination with the state xt. We have two cases
here, depending on the set S(xs) of active control input
characters.

Case 1: S(xs)¼1: then, the state xs does not
appear in a stable combination of the closed loop
machine, and hence no adversarial transitions can
start at the state xs. Then, Ast(S,!)¼ 0 by
Definition 15.

Case 2: S(xs) 6¼1: By Lemma 8, an adversarial
transition from xs to xt is possible if and only if
K(xs, xt, u)¼ 1 for a control input value u2S(xs). By
Lemma 9, this transition can be reversed if and only if
Kr(xs, xt, u)¼ 1. As K(xs, xt, u) and Kr(xs, xt, u) can only
take the values 0 or 1, we conclude that the adversarial
transition from xs to xt is reversible if and only if
Kr(xs, xt, u))K(xs, xt, u)(0. Since this is true for all
states xs and xt and for all input values u2S(xs), it
follows that (i) and (ii) are equivalent. This concludes
our proof. œ

Most often, a state feedback controller employs every
control input character of the set U(xs). In such case,
the combination of Theorems 4 and 6 yields the
following statement, which is the main result of this
section.

Theorem 7: Let !¼ (A'B,X, f, &) be an input/state
machine with adversarial input, and assume that ! has
no idle control input characters. Let U(x) be the set of
control input characters that appear in stable combina-
tions with the state x, let A(U,!) be the corresponding
reversal matrix, and let K(!, &) be the control skeleton
matrix of !. Let !0¼ (A,X, s0) be a stable-state input/
state machine with no adversarial input, having the
skeleton matrix K(!0). Then, the following two state-
ments are equivalent:

(i) There is a controller C for which !cjs¼!0,
where !c is well posed and operates in
fundamental mode.

(ii) K(!, &)(K(!0) and A(U,!)(0.

1926 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

Theorem 7 provides a comprehensive solution to
the model matching problem for asynchronous
machines with adversarial inputs. As we can see,
the solution is entirely characterised by two
numerical matrix inequalities. As the model machine
!0 has no adversarial input, the controller C, when
it exists, counteracts any effects of adversarial
activity.

Example 11: Combining the results of Examples 8
and 10, we conclude that condition (ii) of Theorem 7 is
valid for the machine ! of Example 1 and the model !0

of Example 2. Therefore, Theorem 7 assures us that
there is a controller C that controls ! so that the closed
loop machine !c is stably equivalent to the model !0,
thus solving the perturbed model matching problem in
this case. The construction of the controller C is
described in x9 below.

8. Controller structure

We summarise now the structure of a controller that
solves the model matching problem with adversarial
inputs. In general terms, the controller consists of two
components: a component that achieves model match-
ing and a component that reverses adversarial
transitions.

Consider the problem of controlling the machine
! to match the model !0. The construction of the
model matching component of the controller is
described in the proof of Theorem 4. Regarding
adversarial transitions – these, by their nature, occur
while the model !0 remains in a stable combination,
since the model has no adversarial input. An
adversarial transition can be characterised as follows
(see Figure 4): it is a departure from a stable
combination of the closed loop !c that is not
preceded by a change of the external command

input v. We describe next the controller in
brief terms.

(i) The state feedback controller F controls the
machine ! to achieve model matching in
response to the external command input v.
The controller F is built following the proce-
dure described in the proof of Theorem 4.

(ii) The comparator detects stable states of !c that
differ from stable states of !0. When such a
difference is detected, the comparator activates
the state feedback controller F to drive ! back
to a stable combination with the correct state.

An example of the construction of the controller C is
provided in the next section.

9. Example

In this section, we construct a controller C that solves
the model matching problem for the machine ! of
Example 1 and the model !0 of Example 2; the
adversarial uncertainty is &¼ {!,"}. It can be shown
that condition (ii) of Theorem 7 is satisfied in this case.
Below, we demonstrate the construction of a model
matching controller. Recall that s is the
stable transition function of ! and s0 is the stable
transition function of !0. An examination of the
transition tables of the machines ! and !0 shows
that only the following three transitions of ! are
different from corresponding transitions of !0:

sðx1, b,"Þ ¼ x2 :: s0ðx1, bÞ ¼ x1;

sðx2, a,!Þ ¼ x3 :: s0ðx2, aÞ ¼ x1;

sðx3, b,"Þ ¼ x2 :: s0ðx3, bÞ ¼ x1:

Using the procedure described in the proof of
Theorem 4, we build three state feedback controllers

Σ

F

Comparator

Model Σ′
C

w

x
v u

Figure 4. Controller structure.

International Journal of Control 1927

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

F(x1, x1, b),F(x2, x1, a), and F(x3, x1, b), each of which
respectively ‘corrects’ one of these transitions.

(i) Construction of the controller F(x1, x1, b):

We use the state set {%0, %1, %2, %3} for F(x1, x1, b). Note
that (x1, a) is a detectable pair. Upon detecting a
detectable transition of ! to the state x1 with the
control input value a, the controller F(x1,x1, b) moves
to a stable combination with its state %1, while
continuing to apply to ! the input character it receives:

#ð%0, ðz, tÞÞ :¼ %0 for all ðz, tÞ 6¼ ðx1, aÞ,
#ð%0, ðx1, aÞÞ :¼ %1,
#ð%1, ðx1, aÞÞ :¼ %1:
$ð%0, ðz, tÞÞ :¼ t for all ðz, tÞ 2 X' A,

$ð%1, ðz, tÞÞ :¼ t for all ðz, tÞ 2 X' A:

Next, upon receiving the external input character b, the
controller F(x1, x1, b) moves to a stable combination
with its state %2, namely

#ð%1, ðz, tÞÞ :¼ %1 for all ðz, tÞ 6¼ ðx1, bÞ,
#ð%1, ðx1, bÞÞ :¼ %2,
#ð%2, ðx1, bÞÞ :¼ %2:

At this point, the controller F(x1, x1, b) must start to
generate a string of control input characters to keep !
at the state x1. An examination of the entry R11(!, &)
in Example 6 shows that the single control input
character a satisfies this requirement. So we set the
output function of the controller F(x1, x1, b) as

$ð%2, ðx1, tÞÞ :¼ a for all t 2 A:

When the controller F(x1, x1, b) detects the state x1 of
!, it moves to a stable combination with the state %3,
namely,

#ð%2, ðz, tÞÞ :¼ %2 for all ðz, tÞ 6¼ ðx1, aÞ,
#ð%2, ðx1, bÞÞ :¼ %3,
#ð%3, ðx1, bÞÞ :¼ %3,

and continues to generate the control input character a

$ð%3, ðx1, tÞÞ :¼ a for all t 2 A:

Finally, upon a change of the external input character,
F(x1, x1, b) resets to its initial state %0:

#ð%3, ðz, tÞÞ :¼ %0 for all ðz, tÞ 6¼ ðx1, bÞ:

(ii) The construction of the controllers F(x2, x1, a)
and F(x3, x1, b) is similar to the construction of
F(x1, x1, b).

(iii) Counteracting adversarial transitions:

Recall from Example 10 that the machine ! has only
one transition that can be caused by the adversarial
input – the transition x2¼ s(x1, b,") when the

adversarial input character changes from ! to ".
Assume then that the machine ! is at a stable
combination with the pair (x1, b), when the state of
! switches to x2. By Example 10, the adversarial
uncertainty is then &(x1, x2, b)¼ {"}. We build now a
controller Fa(x2,x1) that counteracts this action of
the adversarial input, and returns ! to the
state x1 immediately after the comparator detects the
transition to x2. The output d of the comparator can
take two values: d :¼ 1 when the stable state of !c is
different from the stable state of !0, and d :¼ 0 when
the two stable states are equal.

Referring to Examples 6, 9, and 10, we have that
the complete set of strings {!jab,"ja,"jba} is included
in the entry R21(!, &); that Rr(!, &)¼R(!, &); and that
&(x1, x2, b)¼ {"}. Consequently, the single character a
forms a control input string that takes ! back to the
state x1. The construction of the controller Fa(x2, x1) is
reminiscent of the construction of the controller
F(x1,x1, b) we have described earlier, and is as follows.
Let ’ be the recursion function of Fa(x2, x1), let , be
its output function, and let {-0, -1, -2} be its state set.
Starting at a stable combination with the pair
(x2, b), set

’ð-0, ðz, t, 0ÞÞ :¼ -0 for all ðz, tÞ 6¼ ðx2, bÞ;

,ð-0, ðz, tÞÞ :¼ t for all ðz, tÞ 2 X' A;

’ð-0, ðx2, b, 1ÞÞ :¼ -1;

’ð-1, ðx2, b, dÞÞ :¼ -1, d 2 f0, 1g;

,ð-1, ðz, tÞÞ :¼ a for all ðz, tÞ 2 X' A;

’ð-1, ðx1, b, dÞÞ :¼ -2, d 2 f0, 1g;

’ð-2, ðx1, b, dÞÞ :¼ -2, d 2 f0, 1g;

,ð-2, ðz, tÞÞ :¼ a for all ðz, tÞ 2 X' A;

’ð-2, ðz, t, dÞÞ :¼ -0 for all ðz, tÞ 6¼ ðx1, bÞ:

Finally, we assemble the combined state feedback
controller F by using the join operation employed in
the proof of Theorem 4:

F ¼ Fðx1, x1, bÞ _ Fðx2, x1, aÞ _ Fðx3, x1, bÞ _ Faðx2, x1Þ:

When this controller is inserted into Figure 4, it
eliminates the effects of the adversarial input and
makes ! behave like the deterministic and unperturbed
model !0 of Example 2.

Acknowledgements

The work of Yang was supported by the Research Grants of
the Catholic University of Daegu, while that of Hammer was
supported in part by the US Air Force, through grant
number FA8750-06-1-0175.

1928 J.-M. Yang and J. Hammer

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

References

Barrett, G., and Lafortune, S. (1998), ‘Bisimulation, the
Supervisory Control Problem, and Strong Model
Matching for Finite State Machines’, Discrete Event
Dynamic Systems: Theory and Application, 8, 377–429.

Dibenedetto, M.D., Saaldanha, A., and Sangiovanni–
Vincentelli, A. (1994), ‘Model Matching for Finite State
Machines’, Proceedings of the IEEE Conference on Decision
and Control, 3, 3117–3124.

Eilenberg, S. (1974), Automata, Languages and Machines,
New York: Academic Press.

Geng, X.J., and Hammer, J. (2004), ‘Asynchronous
Sequential Machines: Input/Output Control’, Proceedings
of the 12th Mediterranean Conference on Control and
Automation, Kusadasi, Turkey, June.

Geng, X.J., and Hammer, J. (2005), ‘Input/output Control of
Asynchronous Sequential Machines’, IEEE Transactions
on Automatic Control, 50, 1956–1970.

Hammer, J. (1994), ‘On Some Control Problems in
Molecular Biology’, Proceedings of the IEEE Conference
on Proceedings and Control, December.

Hammer, J. (1995), ‘On the Modeling and Control of
Biological Signal Chains’, Proceedings of the IEEE
conference on Decision and Control, December.

Hammer, J. (1996a), ‘On the Corrective Control of
Sequential Machines’, International Journal of Control,
65, 249–276.

Hammer, J. (1996b), ‘On the Control of Incompletely
Described Sequential Machines’, International Journal of
Control, 63, 1005–1028.

Hammer, J. (1997), ‘On the Control of Sequential Machines
with Disturbances’, International Journal of Control, 67,
307–331.

Kohavi, Z. (1970), Switching and Finite Automata Theory,
New York: McGraw-Hill Book Company.

Murphy, T.E. Geng, X.J., and Hammer, J. (2002),
‘Controlling Races in Asynchronous Sequential
Machines’, Proceedings of the IFAC World Congress,
Barcelona, July.

Murphy, T.E. Geng, X.J., and Hammer, J. (2003),
‘On the Control of Asynchronous Machines with
Races’, IEEE Transactions on Automatic Control, 48,
1073–1081.

Ramadge, P.J.G., and Wonham, W.M. (1987), ‘Supervisory
Control of a Class of Discrete Event Processes’, SIAM
Journal of Control and Optimization, 25, 206–230.

Thistle, J.G., and Wonham, W.M. (1994), ‘Control of
Infinite Behavior of Finite Automata’, SIAM Journal on
Control and Optimization, 32, 1075–1097.

Venkatraman, N., and Hammer, J. (2006a), ‘Stable
Realizations of Asynchronous Sequential Machines with
Infinite Cycles’, Proceedings of the 2006 Asian Control
Conference, Bali, Indonesia.

Venkatraman, N., and Hammer, J. (2006b), ‘Controllers
for Asynchronous Machines with Infinite Cycles’,
Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems, Kyoto,
Japan.

Venkatraman, N., and Hammer, J. (2006c), ‘On the Control
of Asynchronous Sequential Machines with Infinite
Cycles’, International Journal of Control, 79, 764–785.

International Journal of Control 1929

D
o
w
n
l
o
a
d
e
d

B
y
:

[
H
a
m
m
e
r
,

J
.
]

A
t
:

1
4
:
4
9

1
1

O
c
t
o
b
e
r

2
0
0
8

