

Abstract—A control theoretic framework is developed for

the representation of asynchronous sequential machines af-

flicted by infinite cycles. The framework includes a realization

theory, and it lays a foundation for the derivation of state-

feedback controllers that eliminate the effects of infinite cycles.

I. INTRODUCTION

SYNCHRONOUS sequential machines form the

building blocks of some of the fastest computing

machines available. An infinite cycle is a common

defect of an asynchronous machine, causing the machine

to loop indefinitely among several of its states. Infinite

cycles can occur as a result of malfunctions, design

flaws, component failures, or implementation flaws. The

present note develops a realization theory for asynchro-

nous machines with infinite cycles. The resulting state

representation expresses in a convenient and clear form

the functional implications of infinite cycles. It lays the

groundwork for the development of a general methodol-

ogy for the design of feedback compensators that elimi-

nate the effects of infinite cycles ([17]).

The process of developing a realization theory for asyn-

chronous machines with infinite cycles involves a gener-

alization of the concept of state. Recall that, in qualita-

tive terms, an asynchronous machine has two kinds of

states: stable (or persistent) states, i.e., states in which

the machine can linger indefinitely, and unstable states -

transient states through which the machine passes in

quick succession. An infinite cycle represents a situation

where the machine cycles quickly among several tran-

sient states. However, since the machine can linger in-

definitely in an infinite cycle, consistency requires us to

interpret an infinite cycle as a persistent, or "stable"

state. This observation leads to the notion of a "general-

ized state", which is fundamental to the development of

feedback controllers that eliminate the effects of infinite

cycles ([17]). The mathematical description of the per-

sistent features of an asynchronous machine's behavior is

referred to as a "stable realization". In this note, we build

a stable realization with "generalized states", where a

generalized state represents either a stable state of the

Niranjan Venkatraman is with the Department of Electrical Engi-

neering, Northern Arizona University, Flagstaff, AZ 86011, USA

(phone: 928-523-0373; e-mail: v.niranjan@ieee.org).

Jacob Hammer is with the Department of Electrical and Computer

Engineering, University of Florida, Gainesville, FL 32611, USA

(phone: 352-392-4934; e-mail: hammer@mst.ufl.edu).

machine or an infinite cycle. Stable realizations underlie

the design of controllers for asynchronous machines with

infinite cycles.

The discussion of this paper is based on [17], and is a

continuation of [6], [7], [8], [9], [10], [12], [13], [4], and

[5]. It seems that the literature contains no reports re-

garding the use of control techniques to eliminate the

effects of infinite cycles in an existing asynchronous

sequential machine.

Studies dealing with other aspects of the control of dis-

crete event systems can be found in [14], [2], [15], [1],

[3], and others.

II. TERMINOLOGY AND BACKGROUND

For a finite non-empty alphabet A, let A* be the set of

all finite strings of characters of A, and let A
+
 be the

set of all non-empty strings in A*. The concatenation of

two strings w1, w2 ∈ A* is the string w := w2w1, ob-

tained by appending w1 to the end of w2 (in reverse

order). A partial function f : S1 → S2 is a function

whose domain is a subset of S1.

An asynchronous machine is a sextuple Σ =

(A,Y,X,x0,f,h), where A, Y, and X are nonempty finite

sets, x0 is the initial state, and f : X×A→X and h :

X×A→Y are partial functions. Here, A is the input al-

phabet, Y is the output alphabet, and X is the set of

states; f is the recursion function and h is the output

function. A valid pair (x,u) ∈ X×A is a point at which

the partial functions f and h are both defined.

The machine Σ starts from the initial state x0 and ac-

cepts input strings of the form u := u0 u1 ... ∈ A*. In

response, it generates a string of states x0x1x2 … ∈ X*

and a string of output values y0y1y2 ... ∈ Y* according

to

xk+1 = f(xk,uk)‚

yk = h(xk,uk)‚ k = 0‚ 1‚ 2‚ …

The step counter k is incremented by one at every

change of the input value or of the state value. The ma-

chine Σ is an input/state machine if yk = xk, k = 0, 1, 2,

… An input/state machine Σ is represented by the triple

(A,X,f), allowing for an arbitrary initial state.

A stable combination is a valid pair (x,u) ∈ X×A at

which f(x,u) = x, i.e., the state x is a fixed point of f.

An asynchronous machine lingers at a stable combina-

tion until an input change occurs. A pair (x,u) that is

Stable Realizations of Asynchronous Sequential

Machines with Infinite Cycles

Niranjan Venkatraman and Jacob Hammer

A

Proceedings of the 2006 Asian Control Conference, Bali, Indonesia

not a stable combination is called a transient pair.

A transient pair (x,u) initiates a chain of transitions x1

= f(x,u), x2 = f(x1,u), ..., where the input character u is

kept fixed. This chain of transitions may or may not end.

If it ends, then there is an integer q ≥ 1 such that the

state x′ := f(xq,u) satisfies x′ = f(x′,u), i.e., (x′,u) is a

stable combination. In such case, x′ is called the next

stable state of x with the input value u. If this chain of

transitions does not terminate, then (x,u) is part of an

infinite cycle.

The notion of next stable state leads to the stable recur-

sion function s : X×A → X of Σ, defined as follows.

For a valid pair (x,u) of Σ that has a next stable state

x′, set s(x,u) := x′; leave s otherwise undefined. The

stable state machine Σ|s induced by Σ is then the sex-

tuple (A,X,Y,x0,s,h), where s serves as the recursion

function. The machine Σ|s describes the behavior of Σ

as observed by a user: it ignores transients (which, ide-

ally, occur in zero time).

If the input value of an asynchronous machine changes

while the machine is undergoing transitions, then the

response may become unpredictable, since the state of

the machine at the time of the change is unpredictable.

To avoid this uncertainty, asynchronous machines are

normally operated in fundamental mode, where only one

variable of the machine is allowed to change at a time. In

fundamental mode, a change of the input value is al-

lowed only while the machine is in a stable combination

(e.g., [11]).

Fundamental mode operation is impossible when a ma-

chine is in an infinite cycle, since the machine never

reaches a stable combination with its active input value.

To take a machine out of an infinite cycle, the input

value of the machine must be changed during the cycle.

As it is not possible to predict at which state the machine

is when such an input change is applied, the outcome of

such an input change may be unpredictable.

For an integer i ≥ 1 and a valid pair (x,u), the i-th con-

stant input iteration f oi of f (with the input character u

is defined by

 f o1(x,u) := f(x,u), f o2(x,u) := f(f(x,u),u), ...,

 f oi(x,u) := f(f oi–1
(x,u),u), i = 2, 3, ...

III. INFINITE CYCLES

In an infinite cycle, an asynchronous machine moves

indefinitely from one transient combination to another,

while the input character is kept constant. Consider a

machine Σ with the state set X = {x
1
, x

2
, ..., x

n
} and

the input alphabet A. Assume that Σ has an infinite

cycle χ that involves p states, say the states xj1, xj2, ...,

xjp ∈ X, and the input character a ∈ A. The infinite cy-

cle then functions according to the recursion

xjk+1 = f(xjk,a)‚ k = 1‚ ...‚ p–1‚

xj1 = f(xjp‚a).
 (1)

We denote this infinite cycle by

 χ = {xj1, xj2, ..., xjp; a}.

The input character of χ is a, and the state set of χ is

X(χ) := {xj1, ..., xjp} = {xj1, f(xj1,a), ..., f o(p–1)
(xj1,a)}. (2)

The length l of the infinite cycle χ is the number of

distinct states it contains, i.e., l = p in this case.

An infinite cycle χ = {x; a} of length 1 satisfies x =

f(x,a), i.e., it forms a stable combination. Unless specifi-

cally stated otherwise, the term "infinite cycle" is used

exclusively for infinite cycles of length greater than 1.

Different infinite cycles associated with the same input

character must have disjoint sets of states, as follows.

(3) LEMMA. A valid pair (x,a) of an asynchronous

machine is a member of at most one infinite cycle.

Proof. According to (2), all states of an infinite cycle are

generated from any pair (x,a) of the cycle by the list x,

f(x,a), f o2(x,a), ... Thus, infinite cycles that include a

common pair have identical states and input character,

and whence form the same infinite cycle. ♦

A critical race describes a situation where the next state

of an asynchronous machine is not unique ([16]). For-

mally, a critical race pair (x,u) of a machine Σ =

(A,Y,X,x0,f,h) is a valid pair of Σ for which f(x,u) is a

subset of states, rather than a single state.

A. Finding all infinite cycles of a machine

The following matrix helps characterize all infinite cy-

cles of an asynchronous machine ([17]).

(4) DEFINITION. Let Σ = (A,X,x0,Y,f,h) be an asyn-

chronous machine with the state set X = {x
1
, ..., x

n
}, and

let ε be a character not in A. Let Uij be the set of input

characters taking Σ in one step from x
j
 to x

i
, i.e., Uij =

{u ∈ A : x
i
 ∈ f(x

j
,u)}. The one-step transition matrix

τ(f) of Σ is an n×n matrix, whose (i,j) entry is

τij(f) :=

Uij if Uij ≠ ∅‚

ε if Uij = ∅‚ i‚ j = 1‚ ...‚ n.
 ♦

The matrix τ(f) helps visualize features of Σ.

(5) LEMMA. If Σ has no critical races, then no input

character appears more than once in a column of τ(f).

Proof. Assume that an input character u appears in rows

p ≠ q of column j of τ(f). Then x
p
 ∈ f(x

j
,u) and x

q
 ∈

f(x
j
,u), so that (x

j
,u) is a critical race pair. ♦

We assume from now on that the machine Σ has no

critical races. Still, critical races play an important role

in our discussion, as they are often created when Σ is

taken out of an infinite cycle. To examine the response

of Σ over several steps, we define two operations on the

one-step transition matrix. First, define a 'union' of

characters:

ε U ε := ε‚

u U ε := u for all u ∈ A.

Note that ε behaves similarly to a 'zero' under this op-

eration. Next, define an operation of multiplication over

the set A′ := A U ε:

uou := u‚

uou′ := ε for all elements u ≠ u′ ∈ A′. (6)

For subsets {a1, a2, ..., aq}, {b1, b2, ..., br} ⊂ A′, the mul-

tiplication is defined pairwise over all combinations

{a1, a2, ..., aq}o{b1, b2, ..., br} = {aiobj}i=1, ..., q, j=1, ..., r (7)

Let C and D be n×n matrices whose entries are sub-

sets of A′. Their union is defined entrywise by

 (C U D)ij := Cij U Dij, i, j = 1, ..., n,

reminiscent of the addition of numerical matrices. The

next operation is reminiscent of numerical matrix multi-

plication.

 (CoD)ij := Uk=1, ..., n CikoDkj for all i, j = 1, ..., n. (8)

(9) EXAMPLE.

C =

a {a‚b}

{b‚c} b
; D =

b c

a a
, CoD =

a a

b c
. ♦

Multiplication is equivalent to constant input iteration:

(10) LEMMA. Let f : X×A → X be a recursion func-

tion with the one-step transition matrix τ(f), and let

τ(f or) be the one-step transition matrix of the constant

input iteration f or, r = 2, 3, ... Then, τ(f or) = τ(f o(r–

1)
)oτ(f).

Before stating the proof, we provide an example.

(11) EXAMPLE. Consider a machine Σ with the input

set A = {a, b, c}, the state set X = {x
1
, x

2
, x

3
}, and the

transition function f. The state transition table of Σ is

 a b c

x
1
 x

1
 x

3
 x

1

x
2
 x

2
 x

3
 x

3

x
3
 x

2
 x

2
 x

3

From the table, the one-step transition matrix of Σ is

 τ(f) =

{a‚c} ε ε
ε a {a‚b}

b {b‚c} c

. (12)

A direct calculation yields

 τ(f o2) = τ(f)oτ(f) =

{a‚c} ε ε

b {a‚b} a

ε c {b‚c}
. ♦

 (13)

Proof (Lemma 10). We demonstrate the case r = 2. Let

x
1
, ..., x

n
 be the states of Σ. By (8), (7), and (6), the

following two statements are equivalent for all u ∈ A.

(i) The (i,j) entry of τ(f)oτ(f) includes u.

(ii) There is an integer k ∈ {1, ..., n} for which u ∈

τik(f) and u ∈ τkj(f).

When (ii) holds, x
i
 = f(x

k
,u) and x

k
 = f(x

j
,u), so that x

i

= f(f(x
j
,u),u) = fof(x

j
,u) = f o2(x

j
,u); whence, (ii) implies

that

(iii) u ∈ τij(f
o2).

Conversely, if (iii) holds, it follows from the definition

of τ(f o2) that x
i
 = f o2(x

j
,u) = f(f(x

j
,u),u). Setting x

k
 :=

f(x
j
,u), we have x

i
 = f(x

k
,u), which implies (ii). Thus, (ii)

and (iii) are equivalent. Consequently, (i) and (iii) are

equivalent, and whence τ(f o2) and τ(f)oτ(f) have the

same entries. ♦

Denoting τop(f) := τ(f)oτ(f)o ... oτ(f) for an integer p ≥

1, we obtain from Lemma 10

(14) COROLLARY. τ(f op) = τop(f) for all integers p ≥ 1.

♦

The following statement includes infinite cycles of

length 1 (i.e., stable combinations).

(15) PROPOSITION. Let Σ be an asynchronous ma-

chine with the recursion function f, the state set X =

{x
1
, ..., x

n
}, and the input alphabet A. The following

three statements are equivalent for every valid pair (x
i
,u)

∈ X×A.

(a) There is an integer q ≥ 1 for which u is included in

the (i,i) entry of the matrix τoq(f).

(b) (x
i
,u) is part of an infinite cycle, whose length l is

an integer divisor of q.

(c) x
i
 = f oq(x

i
,u).

Proof. By (a) and Corollary 14

 x
i
 = f oq(x

i
,u). (16)

Hence, the set E of integers p ≥ 1 for which x
i
 =

f op(x
i
,u) is not empty. Let l be the smallest integer in

E. Then, x
i
 = f ol(x

i
,u). Using the integer division algo-

rithm, write q = al + r, where 0 ≤ r < l. Substituting

into (16) yields x
i
 = f oq(x

i
,u) = f or(f oal(x

i
,u),u) = f or(x

i
,u),

so that r ∈ E. Considering that r < l and that l is the

smallest member of E, we conclude that r = 0; whence,

(a) implies (b).

 If (b) is valid, then q = al for an integer a ≥ 1. Thus,

x
i
 = f ol(x

i
,u) = [f ol]o

a
(x

i
,u) = f oal(x

i
,u) = f oq(x

i
,u), imply-

ing (c).

Finally, assume that (c) is valid, so that x
i
 = f oq(x

i
,u) for

some integer q ≥ 1. Then, u ∈ τii(f
oq) by Definition 4,

and whence u ∈ (τoq(f))ii by Corollary 14, implying (a).

♦

We find now all states of an infinite cycle from one

state.

(17) PROPOSITION. Assume that Σ has an infinite

cycle χ of length l > 1 with the input character u, and

let x
j0 be a state of χ. The other states x

j1, x
j2, ..., x

jl–1 of

χ can be found recursively as follows: having found the

state x
ji, the index ji+1 of the next state x

ji+1 is the num-

ber of the row in which the character u appears in col-

umn ji of τ(f), i = 0, ..., l–2.

Proof. Let f be the recursion function of Σ. By (1), we

have x
ji+1 = f(x

ji,u), i = 0, ..., l–2. Hence, by Definition 4,

the character u appears in position (ji+1, ji) of τ(f). ♦

The next algorithm finds all infinite cycles of a machine

Σ. (#S is the number of elements of a set S.)

(18) ALGORITHM. Let τ(f) be the one step transition

matrix of a machine Σ. The steps below are performed

individually for each input character u ∈ A.

Step 1: Let Δ1(u) be the set of all states of Σ corre-

sponding to diagonal entries of τ(f) that include u. Set

δ1(u) := Δ1(u).

Step 2: For i ≥ 2, let Δi(u) be the set of all states of Σ

corresponding to diagonal entries of τoi(f) that include

u. Define the difference set

 δi(u) := Δi(u) \ U1 ≤ j ≤ i–1 Δj(u). (19)

Step 3: Recall that n is the number of states of Σ. If

 i+1 > n – Σi
j=1

 #δj(u), (20)

then the algorithm terminates for the character u. Oth-

erwise, repeat from Step 2, using i+1 for i. ♦

As indicated in Theorem 22 below, the set δi(u) of Al-

gorithm 18 consists of all states of Σ that are included

in infinite cycles of length i with the input character u.

(21) EXAMPLE. We demonstrate Algorithm 18 on the

machine Σ of Example 11, using the input character b.

The one-step transition matrix τ(f) of Σ is given by

(12).

Step 1. In view of (12), the character b does not appear

on the main diagonal of τ(f), so Δ1(b) = δ1(b) = ∅.

Step 2. Since i < 2, skip to Step 3.

Step 3. Inequality (20) becomes 2 > 3 – 0, which is

false; consequently, go to Step 2 with i := 2.

Step 2. In view of (13), there are two occurrences of the

input character b on the main diagonal entry of τ(fo2):
in positions (2,2) and (3,3). Consequently, Δ2(b) = {x

2
,

x
3
}.

Step 2. δ2(b) = Δ2(b) \ Δ1(b) = {x
2
, x

3
}.

Step 3. Inequality (20) becomes here 3 > 3 – 2 = 1,

which is true. This terminates the algorithm for b.

Repeating Algorithm 18 for the other input characters,

one obtains δ1(a) = {x
1
, x

2
}, δ1(b) = ∅, δ2(b) = {x

2
, x

3
},

and δ1(c) = {x
1
, x

3
}. By Theorem 21, the states x

1
 and

x
2
 form cycles of length 1 (i.e., stable combinations)

with the input character a; the states x
2
 and x

3
 form a

cycle of length 2 with the input character b; and the

states x
1

 and x
3
 form stable combinations with the

input character c. ♦

(22) THEOREM. Let i ≥ 1 be an integer. In the notation

of Algorithm 18, the following are true.

(a) The set δi(u) consists of all states that are members

of infinite cycles of length i with the input character u.

(b) The machine Σ has exactly #δi(u)/i infinite cycles

of length i with the input character u.

Proof (by induction). Induction assumption: (a) is valid

for i = 1, ..., k. Note that (19) can be rewritten as

 δk+1(u) := Δk+1(u) \ U1 ≤ j ≤ k δj(u), k = 1, 2, ... (23)

Now, by Proposition 15, the set Δk+1(u) consists of all

states of Σ that are included in infinite cycles with the

input character u, whose length is an integer divisor of

k+1. Applying the induction assumption, we conclude

that the states in δk+1(u) have the following properties:

(i) As members of Δk+1(u), they are states of infinite

cycles with the input character u, and the length of these

infinite cycles is an integer divisor of k+1.

(ii) They are not involved in cycles whose length is k or

less, since the states U1 ≤ j ≤ k δj(u) are excluded.

Thus, (a) is valid for i = k+1, proving (a) by induction.

When (20) is satisfied, there are not enough states left

for a new infinite cycle of length i+1; hence Step 3 of

Algorithm 18. Finally, (b) is implied by (a) and Lemma

3. ♦

The following finds all infinite cycles of a machine.

(24) ALGORITHM. In the notation of Algorithm 18, all

infinite cycles of length i with the input character u

are found as follows.

Step 0. If δi(u) = ∅, then Σ has no infinite cycles of

length i with the input character u, and the algorithm

terminates. Otherwise, set d0 := δi(u) and j := 0.

 Step 1. Pick a state x
j0 from dj. Using the procedure

of Proposition 17, find the remaining states x
j1, x

j2, ...,

x
ji–1 of the infinite cycle. Define dj+1 := dj \ {x

j0, x
j1, x

j2,

..., x
ji–1}.

Step 2: If dj+1 = ∅, the algorithm terminates. Otherwise,

repeat from Step 1, replacing j by j+1. ♦

(25) EXAMPLE. We demonstrate Algorithm 24 on the

machine Σ of Example 21 for the input character b.

Step 0. δ1(b) = ∅, so there are no stable combinations

with the input character b.

Step 0. δ2(b) = {x
2
, x

3
}, so there are infinite cycles of

length 2 with the input character b. Set d0 := δ2(b) and

j := 0.

Step 1. Pick the state x
2
 from d0. By Proposition 17,

the state x
3
 belongs to the same infinite cycle, yielding

the infinite cycle {x
2
,x

3
; b}. As d1 := d0 \ {x

2
, x

3
} = ∅,

the algorithm terminates for the input character b. ♦

IV. STABLE-STATE REPRESENTATIONS

Consider an asynchronous machine Σ = (A,X,Y,x0,f,h)

that has no infinite cycles. Then, every valid pair (x,u)

of Σ has a next stable state x′, and we define a partial

function s : X×A→X by setting s(x,u) := x′ for every

valid pair (x,u). The function s is the stable recursion

function of Σ. When s is used as a recursion function, it

induces the stable-state machine Σ|s = (A,X,Y,x0,s,h).

The stable-state machine describes the persistent states

of Σ, and hence describes the behavior of Σ as experi-

enced by a user.

When Σ has infinite cycles, being in an infinite cycle is

clearly a persistent status of the machine, and this status

is definitely experienced by the user. Thus, if the notion

of stable-state machine is to remain true to its goal of

representing the persistent features of Σ, it must include

a representation of infinite cycles. This leads to the fol-

lowing generalization of the notion of a stable-state ma-

chine, which is critical to the development of control

strategies.

(26) DEFINITION. Let Σ be an asynchronous machine

with the state set X = {x
1
, ..., x

n
}, the input alphabet A,

and t > 0 infinite cycles χ1, ..., χt of length greater than

1. With each infinite cycle χi, associate a new state x
n+i

,

called a cycle state. The set X̃ := {x
1
, ..., x

n
, x

n+1
, ...,

x
n+t

} is the augmented state set of Σ. The elements of

X̃ are the generalized states of Σ.

A pair (x,u) ∈ X̃×A is a generalized valid pair of Σ if

one of the following holds: (i) x ∈ X and (x,u) is a

valid pair of Σ; or (ii) x = x
n+i

 for an integer i ∈ {1, ...,

t} and u forms a valid pair with each state of the infi-

nite cycle χi.

A pair (x,u) ∈ X̃×A is a generalized stable combination

if (i) x ∈ X and (x,u) is a stable combination of Σ; or

if (ii) x = x
n+i

 for an integer i ∈ {1, ..., t} and u is the

input character of the infinite cycle χi. ♦

Thus, a generalized stable combination includes every

persistent status: a stable state or an infinite cycle.

(27) EXAMPLE. For the machine Σ of Example 25, we

associate the cycle state x
4
 with the (only) infinite cycle

χ1
 := {x

2
, x

3
; b}. The augmented state set is then X̃ =

{x
1
, x

2
, x

3
, x

4
}. The generalized stable combinations are

(x
4
,b), (x

1
,a), (x

2
,a), (x

1
,c), and (x

3
,c). ♦

 We introduce now a new recursion function for Σ =

(A,Y,X,x0,f,h). Let χ1, ..., χt be the infinite cycles of Σ,

and let X̃ = {x
1
, ..., x

n+t
} be its generalized state set.

Using the stable recursion function s, define a partial

function s
e
 : X×A → X̃ over all valid pairs (x,u) ∈

X×A of Σ:

s
e
(x,u) =

s(x,u) if (x,u) has a next stable state‚

x
n+i

 if (f(x,u),u) is a pair of the infinite cycle χi.

Recall that X(χ) is the set of states included in an infi-

nite cycle χ, and let u be an input character that forms

valid pairs with all states of χ. Denote by s
e
[X(χ),u]

the image of the set X(χ)×u through s
e
, namely,

 s
e
[X(χ),u] := {x′ ∈ X̃ : x′ = s

e
(x,u) and x ∈ X(χ)}.

Note that s
e
[X(χ),u] can be one or more states, depend-

ing on χ and on u. The next notion is critical to our

discussion. It describes a function whose values are sub-

sets of X̃. When a value is a single element x, we ig-

nore the distinction between the element x ∈ X̃ and the

subset {x} ⊂ X̃.

(28) DEFINITION. In the notation of the earlier para-

graph, the generalized stable recursion function s of Σ

is defined over all generalized valid pairs (x,u) ∈ X̃×A

by

 s(x,u) :=

s

e
(x‚u) if x ∈ X‚

s
e
[X(χi)‚u] if x = x

n+i
‚ i = 1‚ ...‚ t.

The generalized stable-state machine Σ|s = (A,X̃,s) in-

duced by Σ is an input/state machine with the state set

X̃ and the recursion function s.

 A state x′ ∈ X̃ is stably reachable from a state x ∈ X̃

if there is a input string u ∈ A
+
 for which x′ ∈ s(x,u).

♦

The generalized stable transition function describes the

behavior of Σ as experienced by a user, i.e., the persis-

tent aspects of the machine's response.

(29) EXAMPLE. For the machine Σ of Example 27,

the generalized stable state machine is described by

 a b c

x
1
 x

1
 x

4
 x

1

x
2
 x

2
 x

4
 x

3

x
3
 x

2
 x

4
 x

3

x
4
 x

2
 x

4
 x

3

The state x
4
 represents the infinite cycle. ♦

A. Fundamental mode and stable reachability

As discussed earlier, fundamental mode operation is

impossible for machines with infinite cycles, since exit-

ing an infinite cycle requires an input change while the

cycle is in progress. The following is the closest alterna-

tive.

(30) DEFINITION. An asynchronous machine Σ is

operating in semi-fundamental mode if it operates in

fundamental mode when not in an infinite cycle. ♦

In the generalized stable state machine Σ|s, an infinite

cycle χ of Σ is represented by a stable combination

(x,u), where x is the cycle state corresponding to χ

and u is the input value of χ. Accordingly, the follow-

ing is valid.

(31) THEOREM. Semi-fundamental mode operation of a

machine Σ is equivalent to fundamental mode operation

of its generalized stable state machine Σ|s. ♦

 Thus, working with generalized stable state machines

assures semi-fundamental mode operation, and stable

reachability characterizes the possibilities of moving

from one persistent state to another in semi-fundamental

mode. This observation brings to light the practical sig-

nificance of generalized stable realizations. To perform

computations related to stable reachability, we use the

following matrix.

(32) DEFINITION. Let Σ be an asynchronous machine

with the generalized stable state machine Σ|s = (A,X̃,s),

where X̃ = {x
1
, ..., x

n+t
}. Denote by s*(x

i
,x

j
) the set of

all input characters u ∈ A for which x
i
 ∈ s(x

j
,u), and

let N be a character not included in the alphabet A.

Then, the matrix of one-step generalized stable transi-

tions R(Σ|s) is an (n+t)×(n+t) matrix whose (i,j) entry

is given by

 Rij(Σ|s) =

s*(x

i
,x

j
) if s*(x

i
,x

j
) ≠ ∅‚

N otherwise‚ i‚ j = 1‚ ...‚ n+t.
 ♦

In R(Σ|s), the (i,j) entry, if not N, consists of all (sin-

gle) input characters that take Σ|s from x
j
 ∈ X̃ to a gen-

eralized stable combination with x
i
 ∈ X̃. An (i,j) entry

of N indicates that Σ|s cannot be driven from x
j
 to a

generalized stable combination with x
i
 by applying a

single input character.

(33) EXAMPLE. For the machine of Example 29,

 R(Σ|s) =

{a‚c} N N N

N a a a

N c c c

b b b b

. ♦ (34)

To determine the reachability properties of Σ in semi-

fundamental mode, we need to introduce special opera-

tions on the matrix R(Σ|s) (compare to [12] and [13]).

Let wi be a subset of the set of strings A* or be the

character N, i = 1, 2. The operation U⁄ of unison is

 w1 U⁄ w2 :=

w1 U w2 if w1 ⊂ A* and w2 ⊂ A*‚

w1 if w1 ⊂ A* and w2 = N‚

w2 if w1 = N and w2 ⊂ A*‚

N if w1 = w2 = N.

Here, N is treated like the empty set it represents. The

unison C := A U⁄ B of two n×n matrices A and B is

defined entrywise by Cij := Aij U⁄ Bij, i, j = 1, ..., n.

Concatenation of strings w1, w2 ∈ A* U N is defined

by

 conc(w1,w2) :=

w2w1 if w1‚ w2 ∈ A*‚

N if w1 = N or w2 = N.

For subsets W = {w1, w2, …, wq} and V = {v1, v2, …,

vr}, whose elements are either words of A* or the char-

acter N,

 conc(W,V):= U⁄ i=1‚...‚q
j=1‚...‚r

 conc(wi,vj);

the result is either a subset of A* or the character N.

Next, we define an operation reminiscent of matrix mul-

tiplication. Let C and D to be two n×n matrices whose

entries are either subsets of A* or the character N. The

product Z := CD is an n×n matrix with the entries

 Zij := U⁄
n
k=1

 conc(Cik,Dkj), i,j = 1, …, n.

Using this product, define the powers

 R
q
(Σ|s) := R

q–1
(Σ|s)R(Σ|s), q = 2, 3, ...

If not N, the (i,j) entry of R
q
(Σ|s) is the set of all input

strings that may take x
j
 to a generalized stable combina-

tion with x
i
 in exactly q generalized stable transitions

(the outcome of these transitions may not be determinis-

tic). If the (i,j) entry is N, then it is not possible to

reach from x
j
 to a generalized stable combination with

x
i
 in exactly q generalized stable transitions. Define

 R
(q)

(Σ|s) := U⁄

p=1...q

 R
p
(Σ|s), q = 2, 3, ... (35)

By construction, if not N, the (i,j) entry of R
(q)

(Σ|s)

consists of all strings that may take the machine Σ|s

from x
j
 to a generalized stable combination with x

i
 in

q or fewer generalized stable transitions (the outcome of

these transitions may not be deterministic). Stable reach-

ability is then characterized as follows (the proof of the

next statement is similar to that of [13, Lemma 3.9]).

(36) THEOREM. The following two statements are

equivalent for an asynchronous machine Σ.

(i) The generalized state x
i
 is stably reachable from the

generalized state x
j
.

(ii) The (i,j) entry of R
(n+t–1)

(Σ|s) is not N. ♦

Thus, the matrix R
(n+t–1)

(Σ|s) characterizes all transitions

between persistent states of Σ, namely, it characterizes

all options of controlling the machine in semi-

fundamental mode operation. It plays a critical role in

the control of asynchronous machines with infinite cy-

cles ([17] and [18]). The following statement follows

from Theorem 36 and Lemma 5.

(37) PROPOSITION. Let Σ be an asynchronous ma-

chine with n states and t infinite cycles, and let R(Σ|s)

be its one-step matrix of stable transitions. Then, the

following are equivalent for all input strings u ∈ A
+
 and

for all j = 1, ..., n+t.

(i) Applying u at the generalized state x
j
 results in a

critical race.

(ii) The string u appears in more than one entry of col-

umn j of the matrix R
(n+t–1)

(Σ|s). ♦

V. CONCLUSION

A framework for the construction of stable realizations

of asynchronous sequential machines was developed. In

this framework, a "state" represents a persistent status of

the machine; in particular, a state may represent a (tradi-

tional) stable state of the machine or an infinite cycle.

This framework is essential for the design of state feed-

back controllers that eliminate the effects of infinite cy-

cles on asynchronous sequential machines, as discussed

in [17] and [18]).

VI. REFERENCES

[1] G. Barrett and S. Lafortune, "Bisimulation, the Supervisory Con-

trol Problem, and Strong Model Matching for Finite State Ma-

chines," Journal of Discrete Event Dynamic Systems, vol. 8, no.

4, 1998, pp. 377–429.

[2] M. D. Dibenedetto, A. Saldanha, and A. Sangiovanni–

Vincentelli, "Model matching for finite state machines," Proc. of

the IEEE Conf. on Decision and Control, vol. 3, 1994, pp. 3117–

3124.

[3] M. D. Dibenedetto, A. Sangiovanni–Vincentelli, and T. Villa,

″Model matching for finite–state machines,″ IEEE Trans. on

Automatic Control, vol. 46, no. 11, 2001, pp. 1726–1743.

[4] X. J. Geng and J. Hammer, "Input/output control of asynchronous

sequential machines," IEEE Trans. Automatic Control (to ap-

pear).

[5] X. J. Geng and J. Hammer, "Asynchronous sequential machines:

input/output control," Proc. of the 12th Mediterranean Conf. on

Control and Automation, Kusadasi, Turkey, June 2004.

[6] J. Hammer, "On some control problems in molecular biology,"

Proc. of the IEEE Conference on Proceedings and Control, De-

cember 1994.

[7] J. Hammer, "On the modeling and control of biological signal

chains," Proc. IEEE Conference on Decision and Control, De-

cember 1995.

[8] J. Hammer, "On the corrective control of sequential machines,"

International J. of Control, vol. 65, 1996, pp. 249-276.

[9] J. Hammer, "On the control of incompletely described sequential

machines," International J. of Control, vol. 63, no. 6, 1996, pp.

1005-1028.

[10] J. Hammer, "On the control of sequential machines with distur-

bances," International J. of Control, vol. 67, no. 3, 1997, pp. 307-

331.

[11] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill

Book Company, New York, 1970.

[12] T. E. Murphy, X. J. Geng, and J. Hammer, "Controlling races in

asynchronous sequential machines", Proc. of the IFAC World

Congress, Barcelona, July 2002.

[13] T. E. Murphy, X. J. Geng, and J. Hammer, "On the control of

asynchronous machines with races", IEEE Trans. on Automatic

Control, vol. 48, no. 6, 2003, pp. 1073-1081.

[14] P. J. G. Ramadge and W. M. Wonham, "Supervisory control of a

class of discrete event processes," SIAM J. Control and Optimiza-

tion, vol. 25, no. 1, 1987, pp. 206-230.

[15] J. G. Thistle and W. M. Wonham, "Control of infinite behavior of

finite automata," SIAM J. on Control and Optimization, vol. 32,

no. 4, 1994, pp. 1075-1097.

[16] S. H. Unger "Hazards, critical races, and metastability," IEEE

Trans. on Computers, vol. 44, no. 6, 1995, pp. 754-768.

[17] N. Venkatraman and J. Hammer, "On the control of asynchro-

nous sequential machines with infinite cycles," International

Journal of Control (to appear).

[18] N. Venkatraman and J. Hammer, "Controllers for asynchronous

sequential machines with infinite cycles," Proceedings of the

2006 International Symposium on the Mathematical Theory of

Networks and Systems (to appear).

