
 

 

 

  

Abstract—A control theoretic framework is developed for 

the representation of asynchronous sequential machines af-

flicted by infinite cycles. The framework includes a realization 

theory, and it lays a foundation for the derivation of state-

feedback controllers that eliminate the effects of infinite cycles. 

I. INTRODUCTION 

SYNCHRONOUS sequential machines form the 

building blocks of some of the fastest computing 

machines available. An infinite cycle is a common 

defect of an asynchronous machine, causing the machine 

to loop indefinitely among several of its states. Infinite 

cycles can occur as a result of malfunctions, design 

flaws, component failures, or implementation flaws. The 

present note develops a realization theory for asynchro-

nous machines with infinite cycles. The resulting state 

representation expresses in a convenient and clear form 

the functional implications of infinite cycles. It lays the 

groundwork for the development of a general methodol-

ogy for the design of feedback compensators that elimi-

nate the effects of infinite cycles ([17]). 

The process of developing a realization theory for asyn-

chronous machines with infinite cycles involves a gener-

alization of the concept of state. Recall that, in qualita-

tive terms, an asynchronous machine has two kinds of 

states: stable (or persistent) states, i.e., states in which 

the machine can linger indefinitely, and unstable states - 

transient states through which the machine passes in 

quick succession. An infinite cycle represents a situation 

where the machine cycles quickly among several tran-

sient states. However, since the machine can linger in-

definitely in an infinite cycle, consistency requires us to 

interpret an infinite cycle as a persistent, or "stable" 

state. This observation leads to the notion of a "general-

ized state", which is fundamental to the development of 

feedback controllers that eliminate the effects of infinite 

cycles ([17]). The mathematical description of the per-

sistent features of an asynchronous machine's behavior is 

referred to as a "stable realization". In this note, we build 

a stable realization with "generalized states", where a 

generalized state represents either a stable state of the 
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machine or an infinite cycle. Stable realizations underlie 

the design of controllers for asynchronous machines with 

infinite cycles. 

The discussion of this paper is based on [17], and is a 

continuation of [6], [7], [8], [9], [10], [12], [13], [4], and 

[5]. It seems that the literature contains no reports re-

garding the use of control techniques to eliminate the 

effects of infinite cycles in an existing asynchronous 

sequential machine. 

Studies dealing with other aspects of the control of dis-

crete event systems can be found in [14], [2], [15], [1], 

[3], and others. 

II. TERMINOLOGY AND BACKGROUND 

For a finite non-empty alphabet  A, let  A*  be the set of 

all finite strings of characters of  A, and let  A
+
  be the 

set of all non-empty strings in  A*. The concatenation of 

two strings  w1, w2 ∈ A*  is the string  w := w2w1, ob-

tained by appending  w1  to the end of  w2  (in reverse 

order). A partial function  f : S1 → S2  is a function 

whose domain is a subset of  S1. 

An asynchronous machine is a sextuple  Σ = 

(A,Y,X,x0,f,h), where  A, Y, and  X  are nonempty finite 

sets, x0  is the initial state, and  f : X×A→X  and  h : 

X×A→Y are partial functions. Here, A  is the input al-

phabet, Y  is the output alphabet, and  X is the set of 

states; f  is the recursion function and  h  is the output 

function. A valid pair  (x,u) ∈ X×A  is a point at which 

the partial functions  f  and  h  are both defined. 

The machine  Σ  starts from the initial state  x0  and ac-

cepts input strings of the form  u := u0 u1 ... ∈ A*. In 

response, it generates a string of states  x0x1x2 … ∈ X*  

and a string of output values  y0y1y2 ... ∈ Y*  according 

to 

 
xk+1 = f(xk,uk)‚

yk = h(xk,uk)‚   k = 0‚ 1‚ 2‚ …
 

The step counter  k  is incremented by one at every 

change of the input value or of the state value. The ma-

chine  Σ  is an input/state machine if  yk = xk, k = 0, 1, 2, 

… An input/state machine  Σ  is represented by the triple  

(A,X,f), allowing for an arbitrary initial state. 

A stable combination is a valid pair  (x,u) ∈ X×A  at 

which  f(x,u) = x, i.e., the state  x  is a fixed point of  f. 

An asynchronous machine lingers at a stable combina-

tion until an input change occurs. A pair  (x,u)  that is 
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not a stable combination is called a transient pair. 

A transient pair  (x,u)  initiates a chain of transitions  x1 

= f(x,u), x2 = f(x1,u), ..., where the input character  u  is 

kept fixed. This chain of transitions may or may not end. 

If it ends, then there is an integer  q ≥ 1  such that the 

state  x′ := f(xq,u)  satisfies  x′ = f(x′,u), i.e., (x′,u)  is a 

stable combination. In such case, x′  is called the next 

stable state of  x  with the input value  u. If this chain of 

transitions does not terminate, then  (x,u)  is part of an 

infinite cycle. 

The notion of next stable state leads to the stable recur-

sion function  s : X×A → X  of  Σ, defined as follows. 

For a valid pair  (x,u)  of  Σ  that has a next stable state  

x′, set  s(x,u) := x′; leave  s  otherwise undefined. The 

stable state machine  Σ|s  induced by  Σ  is then the sex-

tuple  (A,X,Y,x0,s,h), where  s  serves as the recursion 

function. The machine  Σ|s  describes the behavior of  Σ  

as observed by a user: it ignores transients (which, ide-

ally, occur in zero time). 

If the input value of an asynchronous machine changes 

while the machine is undergoing transitions, then the 

response may become unpredictable, since the state of 

the machine at the time of the change is unpredictable. 

To avoid this uncertainty, asynchronous machines are 

normally operated in fundamental mode, where only one 

variable of the machine is allowed to change at a time. In 

fundamental mode, a change of the input value is al-

lowed only while the machine is in a stable combination 

(e.g., [11]). 

Fundamental mode operation is impossible when a ma-

chine is in an infinite cycle, since the machine never 

reaches a stable combination with its active input value. 

To take a machine out of an infinite cycle, the input 

value of the machine must be changed during the cycle. 

As it is not possible to predict at which state the machine 

is when such an input change is applied, the outcome of 

such an input change may be unpredictable. 

For an integer  i ≥ 1  and a valid pair  (x,u), the  i-th con-

stant input iteration  f oi  of  f (with the input character  u  

is defined by 

 f o1(x,u) := f(x,u), f o2(x,u) := f(f(x,u),u), ..., 

 f oi(x,u) := f(f oi–1
(x,u),u), i = 2, 3, ... 

III. INFINITE CYCLES 

In an infinite cycle, an asynchronous machine moves 

indefinitely from one transient combination to another, 

while the input character is kept constant. Consider a 

machine  Σ  with the state set  X = {x
1
, x

2
, ..., x

n
}  and 

the input alphabet  A. Assume that  Σ  has an infinite 

cycle  χ  that involves  p  states, say the states  xj1, xj2, ..., 

xjp ∈ X, and the input character  a ∈ A. The infinite cy-

cle then functions according to the recursion 

 
xjk+1 = f(xjk,a)‚ k = 1‚ ...‚ p–1‚

xj1 = f(xjp‚a).
 (1) 

We denote this infinite cycle by 

 χ = {xj1, xj2, ..., xjp; a}. 

The input character of  χ  is  a, and the state set of  χ  is 

X(χ) := {xj1, ..., xjp} = {xj1, f(xj1,a), ..., f o(p–1)
(xj1,a)}. (2)

  

The length  l  of the infinite cycle  χ  is the number of 

distinct states it contains, i.e., l = p  in this case. 

An infinite cycle  χ = {x; a}  of length  1  satisfies  x = 

f(x,a), i.e., it forms a stable combination. Unless specifi-

cally stated otherwise, the term "infinite cycle" is used 

exclusively for infinite cycles of length greater than  1. 

Different infinite cycles associated with the same input 

character must have disjoint sets of states, as follows. 

(3) LEMMA. A valid pair  (x,a)  of an asynchronous 

machine is a member of at most one infinite cycle. 

Proof. According to (2), all states of an infinite cycle are 

generated from any pair  (x,a)  of the cycle by the list  x, 

f(x,a), f o2(x,a), ... Thus, infinite cycles that include a 

common pair have identical states and input character, 

and whence form the same infinite cycle. ♦  

A critical race describes a situation where the next state 

of an asynchronous machine is not unique ([16]). For-

mally, a critical race pair  (x,u)  of a machine  Σ = 

(A,Y,X,x0,f,h)  is a valid pair of  Σ  for which  f(x,u)  is a 

subset of states, rather than a single state. 

A. Finding all infinite cycles of a machine 

The following matrix helps characterize all infinite cy-

cles of an asynchronous machine ([17]). 

(4) DEFINITION. Let  Σ = (A,X,x0,Y,f,h)  be an asyn-

chronous machine with the state set  X = {x
1
, ..., x

n
}, and 

let  ε  be a character not in  A. Let  Uij  be the set of input 

characters taking  Σ  in one step from  x
j
  to  x

i
, i.e., Uij = 

{u ∈ A : x
i
 ∈ f(x

j
,u)}. The one-step transition matrix  

τ(f)  of  Σ  is an  n×n  matrix, whose  (i,j)  entry is 

τij(f) := 

Uij  if  Uij ≠ ∅‚

ε  if  Uij = ∅‚ i‚ j = 1‚ ...‚ n.
 ♦  

The matrix  τ(f)  helps visualize features of  Σ. 

(5) LEMMA. If  Σ  has no critical races, then no input 

character appears more than once in a column of  τ(f). 

Proof. Assume that an input character  u  appears in rows  

p ≠ q  of column  j  of  τ(f). Then  x
p
 ∈ f(x

j
,u)  and  x

q
 ∈ 

f(x
j
,u), so that  (x

j
,u)  is a critical race pair. ♦  

We assume from now on that the machine  Σ  has no 

critical races. Still, critical races play an important role 

in our discussion, as they are often created when  Σ  is 

taken out of an infinite cycle. To examine the response 

of  Σ  over several steps, we define two operations on the 

one-step transition matrix. First, define a 'union' of 

characters: 

 
ε U ε := ε‚

u U ε := u  for all  u ∈ A.
 

Note that  ε  behaves similarly to a 'zero' under this op-

eration. Next, define an operation of multiplication over 



 

 

 

the set  A′ := A U ε: 

 
uou := u‚

uou′ := ε  for all elements  u ≠ u′ ∈ A′. (6) 

For subsets  {a1, a2, ..., aq}, {b1, b2, ..., br} ⊂ A′, the mul-

tiplication is defined pairwise over all combinations 

{a1, a2, ..., aq}o{b1, b2, ..., br} = {aiobj}i=1, ..., q, j=1, ..., r (7) 

Let  C  and  D  be  n×n  matrices whose entries are sub-

sets of  A′. Their union is defined entrywise by 

 (C U D)ij := Cij U Dij, i, j = 1, ..., n, 

reminiscent of the addition of numerical matrices. The 

next operation is reminiscent of numerical matrix multi-

plication. 

 (CoD)ij := Uk=1, ..., n CikoDkj  for all  i, j = 1, ..., n. (8) 

(9) EXAMPLE. 

C = 



a {a‚b}

{b‚c} b
; D = 



b c

a a
, CoD = 



a a

b c
. ♦  

Multiplication is equivalent to constant input iteration: 

(10) LEMMA. Let  f : X×A → X  be a recursion func-

tion with the one-step transition matrix  τ(f), and let  

τ(f or)  be the one-step transition matrix of the constant 

input iteration  f or, r = 2, 3, ... Then, τ(f or) = τ(f o(r–

1)
)oτ(f). 

Before stating the proof, we provide an example. 

(11) EXAMPLE. Consider a machine  Σ  with the input 

set  A = {a, b, c}, the state set  X = {x
1
, x

2
, x

3
}, and the 

transition function  f. The state transition table of  Σ  is 

 a b c 

x
1
 x

1
 x

3
 x

1
 

x
2
 x

2
 x

3
 x

3
 

x
3
 x

2
 x

2
 x

3
 

From the table, the one-step transition matrix of  Σ  is 

 τ(f) = 








 

{a‚c} ε ε
ε a {a‚b}

b {b‚c} c

. (12) 

A direct calculation yields 

 τ(f o2) = τ(f)oτ(f) = 






{a‚c} ε ε

b {a‚b} a

ε c {b‚c}
.  ♦

 (13) 

Proof (Lemma 10). We demonstrate the case  r = 2. Let  

x
1
, ..., x

n
  be the states of  Σ. By (8), (7), and (6), the 

following two statements are equivalent for all  u ∈ A. 

(i) The  (i,j)  entry of  τ(f)oτ(f)  includes  u. 

(ii) There is an integer  k ∈ {1, ..., n}  for which  u ∈ 

τik(f)  and  u ∈ τkj(f). 

When (ii) holds, x
i
 = f(x

k
,u)  and  x

k
 = f(x

j
,u), so that  x

i
 

= f(f(x
j
,u),u) = fof(x

j
,u) = f o2(x

j
,u); whence, (ii) implies 

that 

(iii)  u ∈ τij(f
o2). 

Conversely, if (iii) holds, it follows from the definition 

of  τ(f o2)  that  x
i
 = f o2(x

j
,u) = f(f(x

j
,u),u). Setting  x

k
 := 

f(x
j
,u), we have  x

i
 = f(x

k
,u), which implies (ii). Thus, (ii) 

and (iii) are equivalent. Consequently, (i) and (iii) are 

equivalent, and whence  τ(f o2)  and  τ(f)oτ(f)  have the 

same entries. ♦  

Denoting  τop(f) := τ(f)oτ(f)o ... oτ(f)  for an integer  p ≥ 

1, we obtain from Lemma 10 

(14) COROLLARY. τ(f op) = τop(f)  for all integers  p ≥ 1. 

♦  

The following statement includes infinite cycles of 

length 1 (i.e., stable combinations). 

(15) PROPOSITION. Let  Σ  be an asynchronous ma-

chine with the recursion function  f, the state set  X = 

{x
1
, ..., x

n
}, and the input alphabet  A. The following 

three statements are equivalent for every valid pair  (x
i
,u) 

∈ X×A. 

(a)  There is an integer  q ≥ 1  for which  u  is included in 

the  (i,i)  entry of the matrix  τoq(f). 

(b)  (x
i
,u)  is part of an infinite cycle, whose length  l  is 

an integer divisor of  q. 

(c)  x
i
 = f oq(x

i
,u). 

Proof. By (a) and Corollary 14 

 x
i
 = f oq(x

i
,u). (16) 

Hence, the set  E  of integers  p ≥ 1  for which  x
i
 = 

f op(x
i
,u)  is not empty. Let  l  be the smallest integer in  

E. Then, x
i
 = f ol(x

i
,u). Using the integer division algo-

rithm, write  q = al + r, where  0 ≤ r < l. Substituting 

into (16) yields  x
i
 = f oq(x

i
,u) = f or(f oal(x

i
,u),u) = f or(x

i
,u), 

so that  r ∈ E. Considering that  r < l  and that  l  is the 

smallest member of  E, we conclude that  r = 0; whence, 

(a) implies (b). 

 If (b) is valid, then  q = al  for an integer  a ≥ 1. Thus, 

x
i
 = f ol(x

i
,u) = [f ol]o

a
(x

i
,u) = f oal(x

i
,u) = f oq(x

i
,u), imply-

ing (c). 

Finally, assume that (c) is valid, so that  x
i
 = f oq(x

i
,u)  for 

some integer  q ≥ 1. Then, u ∈ τii(f
oq)  by Definition 4, 

and whence  u ∈ (τoq(f))ii  by Corollary 14, implying (a). 

♦  

We find now all states of an infinite cycle from one 

state. 

(17) PROPOSITION. Assume that  Σ  has an infinite 

cycle  χ  of length  l > 1  with the input character  u, and 

let  x
j0  be a state of  χ. The other states  x

j1, x
j2, ..., x

jl–1  of  

χ  can be found recursively as follows: having found the 

state  x
ji, the index  ji+1  of the next state  x

ji+1  is the num-

ber of the row in which the character  u  appears in col-

umn  ji  of  τ(f), i = 0, ..., l–2. 

Proof. Let  f  be the recursion function of  Σ. By (1), we 

have  x
ji+1 = f(x

ji,u), i = 0, ..., l–2. Hence, by Definition 4, 

the character  u  appears in position  (ji+1, ji)  of  τ(f). ♦  

The next algorithm finds all infinite cycles of a machine  



 

 

 

Σ. (#S  is the number of elements of a set  S.) 

(18) ALGORITHM. Let  τ(f)  be the one step transition 

matrix of a machine  Σ. The steps below are performed 

individually for each input character  u ∈ A. 

Step 1: Let  Δ1(u)  be the set of all states of  Σ  corre-

sponding to diagonal entries of  τ(f)  that include  u. Set  

δ1(u) := Δ1(u). 

Step 2: For  i ≥ 2, let  Δi(u)  be the set of all states of  Σ  

corresponding to diagonal entries of  τoi(f)  that include  

u. Define the difference set 

 δi(u) := Δi(u) \ U1 ≤ j ≤ i–1 Δj(u). (19) 

Step 3: Recall that  n  is the number of states of  Σ. If 

 i+1 > n – Σi
j=1

 #δj(u), (20) 

then the algorithm terminates for the character  u. Oth-

erwise, repeat from Step 2, using  i+1  for  i. ♦  

As indicated in Theorem 22 below, the set  δi(u)  of Al-

gorithm 18 consists of all states of  Σ  that are included 

in infinite cycles of length  i  with the input character  u. 

(21) EXAMPLE. We demonstrate Algorithm 18 on the 

machine  Σ  of Example 11, using the input character  b. 

The one-step transition matrix  τ(f)  of  Σ  is given by 

(12). 

Step 1. In view of (12), the character  b  does not appear 

on the main diagonal of  τ(f), so  Δ1(b) = δ1(b) = ∅.  

Step 2. Since  i < 2, skip to Step 3. 

Step 3. Inequality (20) becomes  2 > 3 – 0, which is 

false; consequently, go to Step 2 with  i := 2. 

Step 2. In view of (13), there are two occurrences of the 

input character  b  on the main diagonal entry of  τ(fo2): 
in positions  (2,2)  and  (3,3). Consequently, Δ2(b) = {x

2
, 

x
3
}. 

Step 2. δ2(b) = Δ2(b) \ Δ1(b) = {x
2
, x

3
}. 

Step 3. Inequality (20) becomes here  3 > 3 – 2 = 1, 

which is true. This terminates the algorithm for  b. 

Repeating Algorithm 18 for the other input characters, 

one obtains  δ1(a) = {x
1
, x

2
}, δ1(b) = ∅, δ2(b) = {x

2
, x

3
}, 

and  δ1(c) = {x
1
, x

3
}. By Theorem 21, the states  x

1
  and  

x
2
  form cycles of length  1  (i.e., stable combinations) 

with the input character  a; the states  x
2
  and  x

3
  form a 

cycle of length  2  with the input character  b; and the 

states  x
1 

 and  x
3
  form stable combinations with the 

input character  c. ♦  

(22) THEOREM. Let  i ≥ 1  be an integer. In the notation 

of Algorithm 18, the following are true. 

(a) The set  δi(u)  consists of all states that are members 

of infinite cycles of length  i  with the input character  u. 

(b) The machine  Σ  has exactly  #δi(u)/i  infinite cycles 

of length  i  with the input character  u. 

Proof (by induction). Induction assumption: (a) is valid 

for  i = 1, ..., k. Note that (19) can be rewritten as 

 δk+1(u) := Δk+1(u) \ U1 ≤ j ≤ k δj(u), k = 1, 2, ... (23) 

Now, by Proposition 15, the set  Δk+1(u)  consists of all 

states of  Σ  that are included in infinite cycles with the 

input character  u, whose length is an integer divisor of  

k+1. Applying the induction assumption, we conclude 

that the states in  δk+1(u)  have the following properties: 

(i) As members of  Δk+1(u), they are states of infinite 

cycles with the input character  u, and the length of these 

infinite cycles is an integer divisor of  k+1. 

(ii) They are not involved in cycles whose length is  k  or 

less, since the states  U1 ≤ j ≤ k δj(u)  are excluded. 

Thus, (a) is valid for  i = k+1, proving (a) by induction. 

When (20) is satisfied, there are not enough states left 

for a new infinite cycle of length  i+1; hence Step 3 of 

Algorithm 18. Finally, (b) is implied by (a) and Lemma 

3. ♦  

The following finds all infinite cycles of a machine. 

(24) ALGORITHM. In the notation of Algorithm 18, all 

infinite cycles of length  i  with the input character  u  

are found as follows. 

Step 0. If  δi(u) = ∅, then  Σ  has no infinite cycles of 

length  i  with the input character  u, and the algorithm 

terminates. Otherwise, set  d0 := δi(u)  and  j := 0. 

 Step 1. Pick a state  x
j0  from  dj. Using the procedure 

of Proposition 17, find the remaining states  x
j1, x

j2, ..., 

x
ji–1  of the infinite cycle. Define  dj+1 := dj \ {x

j0, x
j1, x

j2, 

..., x
ji–1}. 

Step 2: If  dj+1 = ∅, the algorithm terminates. Otherwise, 

repeat from Step 1, replacing  j  by  j+1. ♦  

(25) EXAMPLE. We demonstrate Algorithm 24 on the 

machine  Σ  of Example 21 for the input character  b. 

Step 0. δ1(b) = ∅, so there are no stable combinations 

with the input character  b. 

Step 0. δ2(b) = {x
2
, x

3
}, so there are infinite cycles of 

length  2  with the input character  b. Set  d0 := δ2(b)  and  

j := 0. 

Step 1. Pick the state  x
2
  from  d0. By Proposition 17, 

the state  x
3
  belongs to the same infinite cycle, yielding 

the infinite cycle  {x
2
,x

3
; b}. As  d1 := d0 \ {x

2
, x

3
} = ∅, 

the algorithm terminates for the input character  b. ♦  

IV. STABLE-STATE REPRESENTATIONS 

Consider an asynchronous machine  Σ = (A,X,Y,x0,f,h)  

that has no infinite cycles. Then, every valid pair  (x,u)  

of  Σ  has a next stable state x′, and we define a partial 

function  s : X×A→X  by setting  s(x,u) := x′  for every 

valid pair  (x,u). The function  s  is the stable recursion 

function of  Σ. When  s  is used as a recursion function, it 

induces the stable-state machine  Σ|s = (A,X,Y,x0,s,h). 

The stable-state machine describes the persistent states 

of  Σ, and hence describes the behavior of  Σ  as experi-

enced by a user. 

When  Σ  has infinite cycles, being in an infinite cycle is 



 

 

 

clearly a persistent status of the machine, and this status 

is definitely experienced by the user. Thus, if the notion 

of stable-state machine is to remain true to its goal of 

representing the persistent features of  Σ, it must include 

a representation of infinite cycles. This leads to the fol-

lowing generalization of the notion of a stable-state ma-

chine, which is critical to the development of control 

strategies. 

(26) DEFINITION. Let  Σ  be an asynchronous machine 

with the state set  X = {x
1
, ..., x

n
}, the input alphabet  A,  

and  t > 0  infinite cycles  χ1, ..., χt  of length greater than  

1. With each infinite cycle  χi, associate a new state  x
n+i

, 

called a cycle state. The set  X̃ := {x
1
, ..., x

n
, x

n+1
, ..., 

x
n+t

}  is the augmented state set of  Σ. The elements of  

X̃  are the generalized states of  Σ. 

A pair  (x,u) ∈ X̃×A  is a generalized valid pair of  Σ  if 

one of the following holds: (i)  x ∈ X  and  (x,u)  is a 

valid pair of  Σ; or (ii) x = x
n+i

  for an integer  i ∈ {1, ..., 

t}  and  u  forms a valid pair with each state of the infi-

nite cycle  χi. 

A pair  (x,u) ∈ X̃×A  is a generalized stable combination 

if (i)  x ∈ X  and  (x,u)  is a stable combination of  Σ; or 

if (ii) x = x
n+i

  for an integer  i ∈ {1, ..., t}  and  u  is the 

input character of the infinite cycle  χi. ♦  

Thus, a generalized stable combination includes every 

persistent status: a stable state or an infinite cycle. 

(27) EXAMPLE. For the machine  Σ  of Example 25, we 

associate the cycle state  x
4
  with the (only) infinite cycle  

χ1
 := {x

2
, x

3
; b}. The augmented state set is then  X̃ = 

{x
1
, x

2
, x

3
, x

4
}. The generalized stable combinations are  

(x
4
,b), (x

1
,a), (x

2
,a), (x

1
,c), and  (x

3
,c). ♦  

 We introduce now a new recursion function for  Σ = 

(A,Y,X,x0,f,h). Let  χ1, ..., χt  be the infinite cycles of  Σ, 

and let  X̃ = {x
1
, ..., x

n+t
}  be its generalized state set. 

Using the stable recursion function  s, define a partial 

function  s
e
 : X×A → X̃  over all valid pairs  (x,u) ∈ 

X×A  of  Σ: 

s
e
(x,u) = 



s(x,u)  if  (x,u)  has a next stable state‚

x
n+i

  if  (f(x,u),u)  is a pair of the infinite cycle  χi.
 

Recall that  X(χ)  is the set of states included in an infi-

nite cycle  χ, and let  u  be an input character that forms 

valid pairs with all states of  χ. Denote by  s
e
[X(χ),u]  

the image of the set  X(χ)×u  through  s
e
, namely, 

 s
e
[X(χ),u] := {x′ ∈ X̃ : x′ = s

e
(x,u)  and  x ∈ X(χ)}. 

Note that  s
e
[X(χ),u]  can be one or more states, depend-

ing on  χ  and on  u. The next notion is critical to our 

discussion. It describes a function whose values are sub-

sets of  X̃. When a value is a single element  x, we ig-

nore the distinction between the element  x ∈ X̃  and the 

subset  {x} ⊂ X̃. 

(28) DEFINITION. In the notation of the earlier para-

graph, the generalized stable recursion function  s  of  Σ  

is defined over all generalized valid pairs  (x,u) ∈ X̃×A  

by 

 s(x,u) := 

s

e
(x‚u)  if  x ∈ X‚

s
e
[X(χi)‚u] if  x = x

n+i
‚ i = 1‚ ...‚ t.

 

The generalized stable-state machine  Σ|s = (A,X̃,s)  in-

duced by  Σ  is an input/state machine with the state set  

X̃  and the recursion function  s. 

 A state  x′ ∈ X̃ is stably reachable from a state  x ∈ X̃  

if there is a input string  u ∈ A
+
  for which  x′ ∈ s(x,u). 

♦  

The generalized stable transition function describes the 

behavior of  Σ  as experienced by a user, i.e., the persis-

tent aspects of the machine's response. 

(29) EXAMPLE.  For the machine  Σ  of Example 27, 

the generalized stable state machine is described by 

 a b c 

x
1
 x

1
 x

4
 x

1
 

x
2
 x

2
 x

4
 x

3
 

x
3
 x

2
 x

4
 x

3
 

x
4
 x

2
 x

4
 x

3
 

The state  x
4
  represents the infinite cycle. ♦  

A. Fundamental mode and stable reachability 

As discussed earlier, fundamental mode operation is 

impossible for machines with infinite cycles, since exit-

ing an infinite cycle requires an input change while the 

cycle is in progress. The following is the closest alterna-

tive. 

(30) DEFINITION. An asynchronous machine  Σ  is 

operating in semi-fundamental mode if it operates in 

fundamental mode when not in an infinite cycle. ♦  

In the generalized stable state machine  Σ|s, an infinite 

cycle  χ  of  Σ  is represented by a stable combination  

(x,u), where  x  is the cycle state corresponding to  χ  

and  u  is the input value of  χ. Accordingly, the follow-

ing is valid. 

(31) THEOREM. Semi-fundamental mode operation of a 

machine  Σ  is equivalent to fundamental mode operation 

of its generalized stable state machine  Σ|s. ♦  

 Thus, working with generalized stable state machines 

assures semi-fundamental mode operation, and stable 

reachability characterizes the possibilities of moving 

from one persistent state to another in semi-fundamental 

mode. This observation brings to light the practical sig-

nificance of generalized stable realizations. To perform 

computations related to stable reachability, we use the 

following matrix. 

(32) DEFINITION. Let  Σ  be an asynchronous machine 

with the generalized stable state machine  Σ|s = (A,X̃,s), 

where  X̃ = {x
1
, ..., x

n+t
}. Denote by  s*(x

i
,x

j
)  the set of 

all input characters  u ∈ A  for which  x
i
 ∈ s(x

j
,u), and 

let  N  be a character not included in the alphabet  A. 

Then, the matrix of one-step generalized stable transi-

tions  R(Σ|s)  is an  (n+t)×(n+t)  matrix whose  (i,j)  entry 

is given by 



 

 

 

 Rij(Σ|s) = 

s*(x

i
,x

j
)  if  s*(x

i
,x

j
) ≠ ∅‚

N  otherwise‚ i‚ j = 1‚ ...‚ n+t.
 ♦  

In  R(Σ|s), the  (i,j)  entry, if not  N, consists of all (sin-

gle) input characters that take  Σ|s  from  x
j
 ∈ X̃  to a gen-

eralized stable combination with  x
i
 ∈ X̃. An  (i,j)  entry 

of  N  indicates that  Σ|s  cannot be driven from  x
j
  to a 

generalized stable combination with  x
i
  by applying a 

single input character. 

(33) EXAMPLE.  For the machine of Example 29, 

 R(Σ|s) = 









{a‚c} N N N

N a a a

N c c c

b b b b

. ♦  (34) 

To determine the reachability properties of  Σ  in semi-

fundamental mode, we need to introduce special opera-

tions on the matrix  R(Σ|s)  (compare to [12] and [13]). 

Let  wi  be a subset of the set of strings  A*  or be the 

character  N, i = 1, 2. The operation  U⁄   of unison is 

 w1 U⁄  w2 := 





w1 U w2  if  w1 ⊂ A*  and  w2 ⊂ A*‚

w1  if  w1 ⊂ A*  and  w2 = N‚

w2  if  w1 = N  and  w2 ⊂ A*‚

N  if  w1 = w2 = N.

 

 

Here, N  is treated like the empty set it represents. The 

unison  C := A U⁄  B  of two  n×n  matrices  A  and  B  is 

defined entrywise by  Cij := Aij U⁄  Bij, i, j = 1, ..., n. 

Concatenation of strings  w1, w2 ∈ A* U N  is defined 

by 

 conc(w1,w2) := 

w2w1  if  w1‚ w2 ∈ A*‚

N  if  w1 = N  or  w2 = N.
 

For subsets  W = {w1, w2, …, wq}  and  V = {v1, v2, …, 

vr}, whose elements are either words of  A*  or the char-

acter  N, 

 conc(W,V):= U⁄ i=1‚...‚q
j=1‚...‚r

 conc(wi,vj); 

the result is either a subset of  A*  or the character  N. 

Next, we define an operation reminiscent of matrix mul-

tiplication. Let  C  and  D  to be two n×n matrices whose 

entries are either subsets of  A*  or the character  N. The 

product  Z := CD  is an  n×n  matrix with the entries 

 Zij := U⁄
n
k=1

 conc(Cik,Dkj), i,j = 1, …, n. 

Using this product, define the powers 

 R
q
(Σ|s) := R

q–1
(Σ|s)R(Σ|s), q = 2, 3, ... 

If not  N, the  (i,j)  entry of  R
q
(Σ|s)  is the set of all input 

strings that may take  x
j
  to a generalized stable combina-

tion with  x
i
  in exactly  q  generalized stable transitions  

(the outcome of these transitions may not be determinis-

tic). If the  (i,j)  entry is  N, then it is not possible to 

reach from  x
j
  to a generalized stable combination with  

x
i
  in exactly  q  generalized stable transitions. Define 

 R
(q)

(Σ|s) := U⁄
 
p=1...q

 R
p
(Σ|s), q = 2, 3, ... (35) 

By construction, if not  N, the  (i,j)  entry of  R
(q)

(Σ|s)  

consists of all strings that may take the machine  Σ|s  

from  x
j
  to a generalized stable combination with  x

i
  in  

q  or fewer generalized stable transitions (the outcome of 

these transitions may not be deterministic). Stable reach-

ability is then characterized as follows (the proof of the 

next statement is similar to that of [13, Lemma 3.9]). 

(36) THEOREM. The following two statements are 

equivalent for an asynchronous machine  Σ. 

(i) The generalized state  x
i
  is stably reachable from the 

generalized state  x
j
. 

(ii) The  (i,j)  entry of  R
(n+t–1)

(Σ|s)  is not  N. ♦  

Thus, the matrix  R
(n+t–1)

(Σ|s)  characterizes all transitions 

between persistent states of  Σ, namely, it characterizes 

all options of controlling the machine in semi-

fundamental mode operation. It plays a critical role in 

the control of asynchronous machines with infinite cy-

cles ([17] and [18]). The following statement follows 

from Theorem 36 and Lemma 5. 

(37) PROPOSITION. Let  Σ  be an asynchronous ma-

chine with  n  states and  t  infinite cycles, and let  R(Σ|s)  

be its one-step matrix of stable transitions. Then, the 

following are equivalent for all input strings  u ∈ A
+
  and 

for all  j = 1, ..., n+t. 

(i) Applying  u  at the generalized state  x
j
  results in a 

critical race. 

(ii) The string  u  appears in more than one entry of col-

umn  j  of the matrix  R
(n+t–1)

(Σ|s). ♦  

 

V. CONCLUSION 

A framework for the construction of stable realizations 

of asynchronous sequential machines was developed. In 

this framework, a "state" represents a persistent status of 

the machine; in particular, a state may represent a (tradi-

tional) stable state of the machine or an infinite cycle. 

This framework is essential for the design of state feed-

back controllers that eliminate the effects of infinite cy-

cles on asynchronous sequential machines, as discussed 

in [17] and [18]). 
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