ROBUST OPTIMAL CONTROL: MAXIMUM TIME OF LOW-ERROR OPERATION

DEBRAJ CHAKRABORTY AND JACOB HAMMER

The problem of maximizing the time during which a system operates below a specified error bound is considered for systems subject to perturbations and disturbances. It is shown that there is an optimal input function that keeps the response error below a specified magnitude for the longest period of time. The problem is formulated as a Max-Min optimization problem.

Specifically, consider a system $\Sigma(u, D, v, x_0, t)$ that has the input function u(t); depends on parameters D; is affected by a disturbance signal v(t); and has the initial condition x_0 . Here, $D \in \Delta, v \in V$, and $x_0 \in \Xi$, where Δ, V , and Ξ are specified compact sets, and the input function u is taken from a set U of bounded Lebesgue measurable functions. Letting $\Sigma_0(t)$ be the desired nominal output signal, the response error is $\epsilon(u, D, v, x_0, t) := |\Sigma(u, D, v, x_0, t) - \Sigma_0(t)|$. The objective is to find an input function u(t) that keeps the error $\epsilon(u, D, v, x_0, t)$ below a specified magnitude M for the longest time.

For given u, D, v, and x_0 , the response error is acceptable up to the time $T(u, D, v, x_0) := \inf \{t \ge 0 : \epsilon(u, D, v, x_0, t) > M\}$. An optimal input function u^* maximizes this time for the worst perturbations and disturbances, yielding the overall best time

 $T^*(u^*) := \sup_{u \in U} \inf_{D \in \Delta, v \in V, x_0 \in \Xi} T(u, D, v, x_0).$

It is shown that $u^*(t)$ exists under common conditions and that, without significantly affecting performance, u^* can be replaced by a bangbang input function for easy calculation and implementation.

DEPARTMENT OF ELECTRICAL ENGINEERING, INDIAN INSTITUTE OF TECH-NOLOGY BOMBAY, POWAI, MUMBAI 400076, INDIA

E-mail address: dc@ee.iitb.ac.in

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UNIVERSITY OF FLORIDA, GAINESVILLE, FL 32611, USA

E-mail address: hammer@mst.ufl.edu

¹⁹⁹¹ Mathematics Subject Classification. 49K35, 93C35.

Key words and phrases. Optimal Control, Max-Min Optimization, Bang-Bang Control.