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Robust optimal control: low-error operation for the longest time
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The problem of maximising the time during which an open-loop system can operate without exceeding a specified
error bound is considered for linear systems that are subject to uncertainties about their parameters and their initial
conditions, and whose operation is hampered by disturbance signals. The objective is to characterise an optimal
input signal that keeps performance errors within specified bounds for the longest time. It is shown that such an
input signal exists, and that it can be approximated by a bang-bang input signal without significantly affecting
performance.
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1. Introduction

High-accuracy control systems employ feedback to help
reduce the effects of uncertainties and disturbances on
system performance. However, disruptions of feedback
channels, and the increased performance errors caused
by such disruptions, cannot be completely avoided.
In fact, feedback disruptions are part of the routine
operating conditions in a number of applications,
including digital control of continuous time systems,
where feedback is obtained only at sampling times;
networked control systems, where feedback channels
are disrupted intermittently to reduce network traffic
(e.g. Zhivogyladov and Middleton 2003; Montestruque
and Antsaklis 2004); and medical applications, such as
glucose control in diabetics, where feedback requires
irksome biological testing and is obtained relatively
infrequently (e.g. Jaremko and Rorstad 1998; Bellazzi,
Nucci, and Cobelli 2001; Parker, Doyle, and Peppas
2001). To address the demands of such applications,
we develop in this article an open-loop controller that
maximises the duration of time during which a system
can operate without feedback and not exceed acceptable
error bounds.

The information available about the controlled
system is often incomplete: there may be uncertain-
ties about parameter values; the system’s state may
not be precisely known and external disturbances
may interfere with performance. The situation is
depicted in Figure 1, where v(t) denotes a distur-
bance signal.

In technical terms, we consider a linear time-
invariant system ! whose output is its state:

! : _xðtÞ ¼ A0xðtÞ þ B0uðtÞ þ G0vðtÞ, xð0Þ ¼ x0: ð1Þ
Here, A0 is an n% nmatrix, B0 is an n%mmatrix and G0

is an n% p matrix. Using R to denote the real numbers,
the control input of the system is u(t)2Rm, while
v(t)2Rp is an unspecified disturbance signal. Feedback
is completely lost at the time t¼ 0, and the system
operates in an open loop according to (1) for all times
t40. The initial condition x02Rn and the entries of the
matrices A0, B0 and G0 are not accurately specified. The
only information available is the nominal version !0 of
the system ! is characterised by: (i) the nominal
matrices A0¼A, B0¼B, and G0¼G, where A, B and G
are specified; (ii) the nominal initial condition x0 ¼ x00,
where x00 is specified and (iii) the nominal disturbance
input signal v(t)¼ 0. After possibly having applied an
appropriate shift transformation on the signals, we
assume that the desired state trajectory is the zero signal
x(t)¼ 0 for all t& 0. Correspondingly, our objective
during open-loop operation is to ensure that the state
trajectory of (1) remains close to 0 for all t& 0 despite
the presence of uncertainties and disturbances.

We denote by !x0,A
0,B0,G0,v the system (1) with an

initial condition x0, matrices A0, B0, G0, and a distur-
bance signal v(t). For an input signal u(t), the response
of the system is x(t) :¼!x0,A

0,B0,G0,vu(t). As the nominal
output signal of the system is the zero signal x(t)¼ 0
for all t& 0, we define the performance error

eðtÞ ¼ xTðtÞxðtÞ: ð2Þ
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Our objective is to select the input signal u(t) so as to
keep the error e(t) below a specified bound M40 for
the longest time. If the error does not exceed the bound
M during the time interval [0, tf], we can write

eðtÞ 'M for all 0 ' t ' tf: ð3Þ
Then, the objective is to maximise tf. This maximisa-
tion must be performed while taking into consideration
all uncertainties about the system !, namely, uncer-
tainties about the matrices A0, B0, G0 of (1), uncertain-
ties about the initial state x0 and uncertainties about
the disturbance signal v(t). In view of (3), we must have
the requirement

xT0 x0 'M, ð4Þ
otherwise the initial error is already in excess of the
permissible error.

The problem of deriving an input signal that
maximises the time tf was introduced in Chakraborty
(2007) and Chakraborty and Hammer (2008, 2009),
where the problem was considered in the absence of a
disturbance signal v(t) and under the assumption that
the initial condition x0 is accurately specified. The
present article extends these results to a more distur-
bance rich environment. Specifically, we show in
Section 2 that the problem of calculating an optimal
signal u(t) is a max–min optimisation problem. In
Section 3 we prove that this problem has a solution, and
in Section 4 we show that an optimal signal u(t) can be
replaced by a bang-bang signal with only a negligible
effect on system performance (a bang-bang signal is a
signal that switches between its extremal values).

Replacement of optimal input signals by bang-bang
signals leads to substantial simplifications in the
computation and the implementation of the optimal
solution, since bang-bang signals are completely deter-
mined by their switching times. In effect, the use of
bang-bang signals amounts to transforming our
dynamic optimisation problem into a much simpler
problem of optimisation over a finite number of scalars
– the switching times.

2. Notation and problem formulation

We start by introducing a weighted inner product over
m-dimensional vector valued functions, given by

a, bh i ¼
Z 1

0
e(!taðtÞTbðtÞdt, ð5Þ

where a(t) and b(t) are m-dimensional vectors, ! is a
positive real number and the integral is taken in the
Lebesgue sense. The weight function e(!t makes it
possible to include all bounded functions in the domain
over which this inner product is defined. We denote by
L!,m2 the Hilbert space of all m-dimensional Lebesgue
measurable functions with the inner product (5). All
our considerations are within this space.

To describe deviations from nominality, we use the
‘1-norm k.k given for an n-dimensional vector
(c1, . . . , cn) by kck :¼maxi¼1,. . .,njcij, and for an n%m
real matrix C by kCk :¼maxi¼1,. . .,n;j¼1,. . .,mjcijj; here cij
is the (i, j) entry of C. The uncertainty about the initial
state x0 is characterised by a maximal deviation "40
from the nominal initial state x00, so that the set of all
possible initial states is

X0 :¼
!
x0 2 Rn :

""x0 ( x00
"" ' "

#
: ð6Þ

The uncertainties about the entries of the matrices A0,
B0 and C0 of (1) are characterised similarly in terms of
the nominal matrices A, B, G and a real number d40:

kA0 ( Ak ' d, kB0 ( Bk ' d, and kG0 ( Gk ' d:

It is convenient to denote by DA the set of all n% n
matrices with entries in the interval [(d, d ].
Analogously, DB (respectively, DG) is the set of all
n%m (respectively, all n% p) matrices with entries in
the interval [(d, d ]. Then, we can represent the
perturbed matrices of (1) by

A0 ¼ AþDA, B0 ¼ BþDB, G0 ¼ GþDG, ð7Þ

where DA2DA,DB2DB, and DG2DG. In short, denote

D :¼ ðDA,DB,DGÞ and D :¼ DA % DB % DG, ð8Þ

so that D2D. We denote by !x0,D,v the system (1) with
an initial state x02X0, matrices given by (7) and (8),
and a disturbance signal v(t).

In addition to the integral norm induced by (5),
we use the point-wise ‘1-norm, which, for a function
f (t)¼ ( f1(t), . . . , fm(t)), is given at each time t by

k f ðtÞk :¼ max
i¼1,...,m

j fiðtÞj:

Practical systems are often subject to input amplitude
restrictions determined by the largest signal amplitude
a system’s components can tolerate. Let K40 be the
input amplitude bound of our system !. Then, the set
of all permissible input functions of ! is

U :¼
!
u 2 L!,m2 : kuðtÞk ' K for all t & 0

#
: ð9Þ

Similarly, let L40 be the bound on the amplitude of
the disturbance v(t) of (1). Then, the set of all possible

disrupted feedback

x(t)u(t)
C Σ

v(t)

Figure 1. Basic configuration.
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disturbance signals is

V :¼
!
v 2 L!,p2 : kvðtÞk ' L for all t & 0

#
: ð10Þ

In these terms, our objective is to find an input
function u(t)2U that drives ! so as to satisfy the error
bound (3) for the longest possible time tf, irrespective
of uncertainties and disturbances.

The state trajectory x(t) of the system ! of (1)
depends, of course, on the initial condition x0, on the
perturbation matrix D¼ (DA,DB,DG) of (8), on the
disturbance signal v(t), and on the control input signal
u(t). To make these dependencies explicit, we write
x(t, x0,D, v, u) instead of x(t). Then, (3) takes the form

eðt, x0,D, v, uÞ :¼ xTðt, x0,D, v, uÞxðt, x0,D, v, uÞ 'M,

0 ' t ' tf: ð11Þ

The time during which the error e(t, x0,D, v, u) does not
exceed its bound M is then

TðM,x0,D,v,uÞ :¼ infft& 0 : eðt,x0,D,v,uÞ4Mg, ð12Þ

where T(M, x0,D, v, u) :¼1 if e(t, x0,D, v, u)'M for
all t& 0. We have T(M, x0,D, v, u)& 0, since the initial
state satisfies xT0 x0 'M. We aim to select the input
function u so as to obtain the longest possible duration
T(M, x0,D, v, u), considering the uncertainties about
the initial conditions, about the matrices A0, B0, G0 and
about the disturbance signal v.

As ! operates without feedback, the only informa-
tion available about x0, D and v is the a priori
information x02X0, D2D and v2V. Therefore, for a
given input function u, the longest time during which
the error does not exceed M is given by the lowest
value of T(M, x0,D, v, u) over all possible perturba-
tions, namely, by the quantity

T)ðM, uÞ :¼ inf
ðx0,D, vÞ2X0%D%V

TðM,x0,D, v, uÞ: ð13Þ

For a particular input function u(t), inequality (11) is
valid for all t2 [0,T )(M, u)], irrespective of x0, D or
v(t), as long as these are within their permissible
domains.

A best input function u(t) is, of course, one that
maximises the value of T )(M, u). If such an input
function exists, it yields the maximal time

t)f :¼ sup
u2U

T)ðM, uÞ ð14Þ

during which the error remains within specified
bounds, irrespective of which permissible combination
of perturbations and disturbances is active. Assuming,
for a moment, that such an input function exists,
denote it by u). Then, t)f ¼ T)ðM, u)Þ, and our
objectives can be phrased as follows.

Problem 2.1: Determine whether an optimal input
function u)2U exists; if such a function exists, describe
a method for its computation.

In view of (13) and (14), the calculation of an
optimal input function u) involves the solution of a
max–min optimisation problem. In the next section,
we show that u) exists.

3. Existence of an optimal solution

The existence of an optimal solution of Problem 2.1
follows from a generalised version of the Weierstrass
Theorem, which, in crude terms, states that a contin-
uous functional over a compact set achieves its
maximum within the set. We start with some basic
terminology (e.g. Liusternik and Sobolev 1961).

Definition 3.1: LetH be a Hilbert space with the inner
product h., .i.

(i) A sequence {xn} in H converges weakly to an
element x2H if limn!1hxn, yi¼ hx, yi for every ele-
ment y2H.

(ii) A subset W of H is weakly compact if every
sequence of elements of W has a subsequence that
converges weakly to an element of W.

(iii) A sequence {zn}*H is strongly convergent
if there is an element z2H such that limn!1hzn( z,
zn( zi¼ 0.

(iv) A set S*H is strongly closed if every strongly
convergent sequence of elements of S has its limit in S.

To show the existence of an optimal input
function for Problem 2.1, we show first that the set
U of (9) has a certain compactness feature; next, we
show that the function T )(M, u) of (13) has an
appropriate continuity property; then, the existence of
the supremal time t)f of (14) follows from a general-
ised version of the Weierstrass Theorem. We start
with the following fact from Chakraborty and
Hammer (2009, Lemma 3.2).

Lemma 3.2: The set U of (9) is weakly compact in the
topology of the Hilbert space L!,m2 .

The system ! of (1) is nominally unstable if the
nominal matrix A has an eigenvalue with strictly
positive real part. The state trajectory of a nominally
unstable system cannot be bounded for all distur-
bances and uncertainties, as follows.

Lemma 3.3: Assume that the system ! of (1)
is nominally unstable and recall the notation of (6), (8)
and (12). Then, for each input function u(t)2U,
there is a triplet (x0,D, v)2X0%D%V for which
T(M,x0,D, v, u)51.
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Proof: Note that the set of initial conditions X0

includes a non-zero initial state x0. Then, Lemma 3.3
of Chakraborty and Hammer (2009) shows that our
present lemma is valid for the zero disturbance signal
v(t)¼ 0 for all t& 0, and this completes our proof. œ

Lemma 3.3 leads to the following corollary.

Corollary 3.4: If the system ! of (1) is nominally
unstable, then T )(M, u)51 for every input function
u(t)2U and for every disturbance range X0%D%V.

Having seen in Lemma 3.2 that the set U of input
functions has a compactness feature, we turn next to
continuity properties of the functional T )(M, u). We
start by reviewing a notion from mathematical
analysis.

Definition 3.5: A functional F is weakly upper semi-
continuous when the following is true for every weakly
convergent sequence {zn}: if F(limn!1zn) is bounded,
then, for every #40, there is an integer N40 such that
F(zn)(F(limn!1zn)5# for all integers n&N.

The next two statements show that T )(M, u) is
weakly upper semi-continuous. When combined with
Lemma 3.2, this property will allow us to prove the
existence of an optimal input function for Problem 2.1.

Lemma 3.6: For fixed (x0,D, v)2X0%D%V and
M40, the functional T(M, x0,D, v, u) of (12) is weakly
upper semi-continuous in u.

Proof: Let x(t, u) be the solution of the differential
equation (1) for given selections of x0, D, v, M and
input function u. Using the well-known solution of (1),
we can write

xðt,uÞ ¼ eA
0t x0þ

Z t

0
e(A

0$B0uð$Þd$þ
Z t

0
e(A

0$G0vð$Þd$
$ %

:

ð15Þ

Consequently, at each time t& 0, the functional

%ðt, uÞ :¼ xðt, uÞ ( eA
0t x0 þ

Z t

0
e(A

0$G0vð$Þd$
$ %

¼ eA
0t

Z t

0
e(A

0$B0uð$Þd$

is linear in u.
Now, let u1, u2, . . .2U be a weakly convergent

sequence of input functions with the limit u0. Weak
convergence of a sequence implies the convergence of
any bounded linear functional of that sequence;
consequently, the sequence of vectors {%(t, un)} is
convergent and limn!1%(t, un)¼ %(t, u0). But then,
since

xðt, uÞ ¼ %ðt, uÞ þ eA
0tx0 þ

Z t

0
eA
0ðt($ÞG0vð$Þd$,

where x0 and v(t) are fixed, it follows that
limn!1x(t, un)¼ x(t, u0). Thus, we conclude that
limn!1x

T(t, un)x(t, un)¼ xT(t, u0)x(t, u0) for all t& 0.
Denoting by e(t, u) :¼xT(t, u)x(t, u) the value of our
error criterion at the time t for the input function u,
we can rewrite the last equation as limn!1e(t, un)¼
e(t, u0) for all t& 0.

Next, for a function e(t), define the functional

"ðeÞ ¼ infft & 0 : eðtÞ4Mg, ð16Þ
where "(e) :¼1 if e(t)'M for all t& 0. Let e1(t),
e2(t), . . . be a sequence of functions that converges to
the function e0(t) at each t& 0. Assume that there is a
real number && 0 such that "(e0)' &. Then, we show
that, for every #40, there is an integer N40 such that
"(en)("(e0)5# for all integers n4N. To this end,
we can distinguish between two cases.

Case 1: There is an integer N40 for which
"(en)'"(e0) for all n4N. Then, "(en)("(e0)5#
for any #40, and our claim is true.

Case 2: There is no N that satisfies Case 1. Then, there
is a subsequence n1, n2, . . . of integers such that
"(enk)4"(e0) for all integers k40. Also, by (16) there
is, for every real number #40, a time
t0 2 ["(e0),"(e0)þ #) such that e0(t

0)4M. Now, as the
sequence {en(t)} converges to e0(t) at every t& 0, we
have en(t

0)! e0(t
0). Choosing # :¼ [e0(t

0)(M]/2, it
follows that there is an integer N40 such that
je0(t0)( en(t

0)j5[e0(t
0)(M]/2 for all n4N. For such n,

we have

enðt0Þ ¼ e0ðt0Þ ( ½e0ðt0Þ ( enðt0Þ, & e0ðt0Þ ( e0ðt0Þ ( enðt0Þ
&& &&

& e0ðt0Þ ( ½e0ðt0Þ (M,=2 & e0ðt0Þ=2þM=24M:

Thus, en(t
0)4M, which implies that "(en)' t0 for all

integers n4N. By the selection of t0, this yields
"(en)5"(e0)þ #, or "(en)("(e0)5# for all n4N.
Combining the outcomes of Case 1 and Case 2,
we conclude that "(e) is an upper semi-continuous
functional of e.

Returning now to the functional T(M, x0,D, v, u)
of (12), note the composition T(M, x0,D, v, u)¼
"(e(t; x0,D, v, u)). As shown in the first part of the
proof, the weakly convergent sequence of input func-
tions {un} yields the sequence of error functions
{e(t; x0,D, v, un)} that is convergent at every t& 0.
Combining this with the upper semi-continuity of
" just shown, it follows that T(M, x0,D, v, u) is
weakly upper semi-continuous in u, and our proof
concludes. œ

We will also need the following fact.

Lemma 3.7: For a nominally unstable system !, the
function T )(M, u) of (13) is weakly upper semi-
continuous in u.
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Proof: The proof is based on the following fact (e.g.
Willard 1970): Let S and A be two topological spaces,
and, for each element !2A, let f! be a weakly upper
semi-continuous real valued function over S.
If inf!2A f!(s) exists at each point s2S, then the function
f (s) :¼ inf!2A f!(s) is weakly upper semi-continuous in s.

By Lemma 3.6, the function T(M, x0,D, v, u) is
weakly upper semi-continuous on U at each point
(x0,D, v)2X0%D%V. Furthermore, it follows by
Lemma 3.3 that inf(x0,D,v)2X0%D%VT(M, x0,D, v, u)
exists for every u2U. Thus, the fact quoted at the
beginning of this proof implies that T )(M, u)¼
inf(x0,D,v)2X0%D%VT(M, x0,D, v, u) is weakly upper semi-
continuous in u. œ

We are ready now to state the main result of this
section: there is an optimal input function u)(t) that
maximises the time during which a perturbed system
remains within specified error bounds.

Theorem 3.8: Assume that the system ! of (1) is
nominally unstable, and let U be given by (9). Then,
using the notation of (14), the following are true.

(i) There is a finite maximal time
t)f :¼ supu2U T)ðM, uÞ and

(ii) There is an input function u)2U satisfying
t)f ¼ T)ðM, u)Þ.

Proof: We use the Generalised Weierstrass Theorem,
which, in our current terminology, states the following:
A weakly upper semi-continuous functional attains a
maximum in a weakly compact set (e.g. Zeidler 1985).
Presently, the set of input functions U of (9) is weakly
compact by Lemma 3.2, and the functional T )(M, u) is
weakly upper semi-continuous in u over U by Lemma
3.7. Consequently, the Generalised Weierstrass
Theorem implies that T )(M, u) attains a maximum
over U, and our proof concludes. œ

To summarise, we have shown in this section that
after a feedback failure occurs, there is an optimal
input function u)(t) that keeps the open loop response
below a specified error bound for a duration of at least
t)f , irrespective of uncertainties about the initial condi-
tion and the system’s parameters or the presence of a
disturbance signal. While driven by an optimal input
function u)(t), the actual duration of time tf during
which the system’s response remains below the
specified error bound depends, of course, on the
actual initial condition x0, the particular perturbation
matrix D, and the disturbance signal v(t) active in the
system. However, for any permissible selection of these
quantities, the duration of time tf during which the
system error remains within specified bounds satisfies
tf & t)f , and t)f is the maximal duration that satisfies
this inequality.

4. Bang-bang approximation

Optimal input functions u)(t) of Theorem 3.8 are often
hard to calculate and implement in practice. In the
present section, we show that u)(t) can always be
replaced by a bang-bang function without causing
significant performance deterioration. Recalling that
K40 is the input amplitude bound of the controlled
system !, a bang-bang input function of ! consists of
component functions whose values switch between K
and (K as necessitated by control action. Bang-bang
functions, being completely determined by their
switching times, are relatively easy to calculate and
implement and are therefore preferable in applications.
In general, a bang-bang function may not yield exactly
the same performance as an optimal input function
u)(t). However, as the next statement indicates, optimal
performance can be approximated as closely as desired
by bang-bang input functions (compare to
Chakraborty and Hammer (2008), where a related
result is derived under more restrictive conditions).

Theorem 4.1: Let ! be a nominally unstable system
described by (1), let U be the set of input signals (9) and
let x(t, x0,D, v, u) be the state trajectory of ! induced by
an input function u. Let t)f be the optimal time and let u)

be an optimal input function of Theorem 3.8. Then, for
every #40, there is a bang-bang input function u-2U
for which the following are true:

(i) u- has only a finite number of switches, and
(ii) the discrepancy between the state trajectories

satisfies kx(t, x0,D, v, u))( x(t, x0,D, v, u-)k5# for all
t 2 ½0, t)f , and for all (x0,D, v)2X0%D%V.

Proof: We use the notation of (8), (3) and (9). As !
is nominally unstable, it follows by Theorem 3.8 that
the optimal time t)f is finite. Now, let #, '40 be two real
numbers. Considering that the exponential function is
uniformly continuous over any finite interval of time,
there is a real number ((')40 such that the function

)ðt0, tÞ :¼ e(A
0t0 ( e(A

0t

satisfies k)(t0, t)k' ' whenever jt0( tj5((') and
t0, t 2 ½0, t)f ,. Denote * :¼ sup{kBþDBk :DB2DB} and
N :¼ supfkeA0tk : DA 2 DA, t 2 ½0, t)f ,g; here, * and N
exist due the fact that all involved quantities are
bounded.

Next, let 05+ ' ((') be any number for which the
ratio t)f =+ is an integer. We build a partition of
the interval ½0, t)f , into segments of length +, namely,
the partition determined by the intervals [q+, (qþ 1)+],
q ¼ 0, 1, 2, . . . , ðt)f =+Þ ( 1. Recalling that input
functions of ! are m-dimensional column vectors
bounded by K40, we build a bang-bang input
function u-ðtÞ ¼ ðu-1 ðtÞ, u-2 ðtÞ, . . . , u-mðtÞÞ

T, 0 ' t ' t)f ,
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as follows: for the component u-i ðtÞ, select in each
interval [q+, (qþ 1)+] a switching time &qi and set

u-i ðtÞ :¼
K for t 2 ½q+, &qiÞ,
(K for t 2 ½&qi, ðqþ 1Þ+Þ,

q ¼ 0, 1, 2, . . . , ðt)f =+Þ ( 1,

8
><

>:
ð17Þ

i¼ 1, 2, . . . ,m. Then, for each such component function,
we have

R ðqþ1Þ+
q+ u-i ð$Þd$ ¼ K

R &qi
q+ d$ ( K

R ðqþ1Þ+
&qi

d$ ¼
K½2ð&qi ( q+Þ ( +,. Now, select &qi to satisfy the equality

K½2ð&qi ( q+Þ ( +, ¼
Z ðqþ1Þ+

q+
u)i ð$Þd$:

Note that &qi exists due to the fact that ju)i ðtÞj ' K for
all t& 0. For this value of &qi, we obtain the equality

Z ðqþ1Þ+

q+
½u)i ð$Þ ( u-i ð$Þ,d$ ¼ 0 ð18Þ

for all i¼ 1, 2, . . . ,m and all q ¼ 0, 1, 2, . . . , ðt)f =+Þ ( 1.
Further, let x-(t) be the state trajectory of ! for the

input function u-(t), and let x)(t) be the state trajectory
induced by the optimal input function u)(t). Noting
that the initial condition x0, the perturbation matrix D
and the disturbance input v(t) are all the same in both
cases (we are considering the performance of the same
system sample) we obtain from (15) and (18) that

kx)ðtÞ ( x-ðtÞk

¼
""""e

A0t x0 þ
Z t

0
e(A

0$B0u)ð$Þd$
$ %

( eA
0t x0 þ

Z t

0
e(A

0$B0u-ð$Þd$
$ %""""

¼ eA
0t

Z t

0
e(A

0$B0½u)ð$Þ ( u-ð$Þ,d$
""""

""""

' N

Z t

0
e(A

0$B0 u)ð$Þ ( u-ð$Þ
' (

d$

""""

""""

¼ N

""""

$Xq(1

r¼0

Z ðrþ1Þ+

r+
e(A

0$B0 u)ð$Þ ( u-ð$Þ
' (

d$

%

þ
Z t

q+
e(A

0$B0 u)ð$Þ ( u-ð$Þ
' (

d$

""""

' N

""""
Xq(1

r¼0
e(A

0r+B0
Z ðrþ1Þ+

r+

$
u)ð$Þ ( u-ð$Þ
' (

d$

þ
Z ðrþ1Þ+

r+
)ð$, r+ÞB0 u)ð$Þ ( u-ð$Þ

' (
d$

%""""

þN

""""

Z t

q+
e(A

0$B0 u)ð$Þ ( u-ð$Þ
' (

d$

""""

' N
Xq(1

r¼0

Z ðrþ1Þ+

r+

"")ð$, r+Þ
""""B0

"" ku)ð$Þkþ ku-ð$Þk
' (

d$

þN

Z t

q+

""e(A0$
""kB0k ku)ð$Þkþ ku-ð$Þk

' (
d$

' 2KN*ð't)f þN+Þ

for all t 2 ½0, t)f ,. Finally, choose the value of ' so that
2KN*'t)f 5 #=2. Then, choose + so that

05 + ' minf(ð'Þ, #=ð4KN2*Þg and t)f =+ is an integer.

ð19Þ

For these selections, we obtain kx)(t)( x-(t)k5# for
all t 2 ½0, t)f ,, and our proof concludes. œ

The bang-bang input signal u-(t) of Theorem 4.1
approximates optimal performance for all permissible
perturbations of the initial conditions and the system
matrices, as well as for all permissible disturbance
signals.

Remark 1: In Theorem 4.1, the cost of making the
error # smaller is a possible increase in the number of
switches of the bang-bang function u-(t). This can be
seen by examining the proof of the theorem. Indeed,
from (19) we see that, in order to maintain the
inequality, + must be decreased as # is decreased.
According to (17), there may be up to t)f =+ switches, so
that a decrease of + may lead to an increase in the
number of switches. œ

4.1 Design considerations

According to Equations (13) and (14), the calculation
an optimal input function u)(t) involves finding the
‘worst’ selections of the initial condition x0, of the
deviation matrix D, and of the disturbance signal v,
namely, the selections that create an infimum of
T(M,x0,D, v, u) for a fixed input function u. Finding a
worst case of the disturbance signal requires further
consideration, since the disturbance signal v(t) is a
member of the infinite-dimensional topological space V
of (10). To simplify the selection of a worst disturbance
signal, we show that it can be approximated by a bang-
bang function in close analogy to the way an optimal
input function u) can be approximated by the bang-
bang function u-(t) of Theorem 4.1. This leads us to a
situation where approximations of both signals – an
optimal input signal and a worst disturbance signal –
can be found by solving a finite-dimensional optimisa-
tion problem. The formal statement is as follows.

Theorem 4.2: Let ! be a nominally unstable system
given by (1), let U be the set of input signals (9), and
let V be the set of disturbance signals (10). Let
x(t, x0,D, v, u) be the state trajectory induced by the
input function u in the presence of the disturbance
function v. Finally, let t)f be the optimal time and u) be an
optimal input function of Theorem 3.8. Then, for every
#40 and for every disturbance signal v2V, there is
a bang-bang input function u-2U and a bang-bang
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disturbance function v-2V for which the following
hold true:

(i) u- and v- have a finite number of switches and
(ii) the state trajectory x(t, x0,D, v-, u-) created

by u- and v- satisfies kx(t, x0,D, v, u))(
x(t, x0,D, v-, u-)k5# for all t 2 ½0, t)f , and all
(x0,D)2X0%D.

Proof: We use the notation of the proof of Theorem
4.1. As in that proof, the fact that ! is nominally
unstable implies, by Theorem 3.8, that the optimal
time t)f is finite. Fix a disturbance signal v(t)2V.
We build a bang-bang disturbance signal v-ðtÞ ¼
ðv-1 ðtÞ, v-2 ðtÞ, . . . , v-p ðtÞÞ

T, 0 ' t ' t)f , that approximates
the effects of v(t): for the component v-i ðtÞ, select
in each interval [q+, (qþ 1)+] a switching time  qi

and set

v-i ðtÞ :¼
L for t 2 ½q+, qiÞ,
(L for t 2 ½ qi, ðqþ 1Þ+Þ,

q ¼ 0, 1, 2, . . . , ðt)f =+Þ ( 1,

8
<

:

i¼ 1, 2, . . . , p. Then, we have
Z ðqþ1Þ+

q+
við$Þd$ ¼ L

Z  qi

q+
d$ ( L

Z ðqþ1Þ+

 qi

d$

¼ L½2ð qi ( q+Þ ( +,:

Select  qi to satisfy the equality

L½2ð qi ( q+Þ ( +, ¼
Z ðqþ1Þ+

q+
við$Þd$:

Note that  qi exists due to the fact that jvi(t)j'L for all
t& 0. For this value of  qi, we obtain

Z ðqþ1Þ+

q+
½við$Þ ( v-i ð$Þ,d$ ¼ 0 ð20Þ

for all i¼ 1, 2, . . . , p and all q ¼ 0, 1, 2, . . . , ðt)f =+Þ ( 1.
Further, let x-(t) be the state trajectory generated

by the system ! when driven by the bang-bang input
function u-(t) of Theorem 4.1 in the presence of the
bang-bang disturbance signal v-(t), and let x)(t) be the
state trajectory induced by the optimal input function
u)(t) in the presence of a worst disturbance signal v(t).
Noting that the initial condition x0 and the perturba-
tion matrix D are the same in both cases (we are
considering the performance of the same system
sample), we obtain from (15), (18) and (20) that

kx)ðtÞ(x-ðtÞk

¼
""""e

A0t x0þ
Z t

0
e(A

0$B0u)ð$Þd$þ
Z t

0
e(A

0$G0vð$Þd$
$ %

( eA
0t x0þ

Z t

0
e(A

0$B0u-ð$Þd$þ
Z t

0
e(A

0$G0v-ð$Þd$
$ %""""

¼
""""e

A0t

Z t

0
e(A

0$B0½u)ð$Þ(u-ð$Þ,d$

þ eA
0t

Z t

0
e(A

0$G0½vð$Þ(v-ð$Þ,d$
""""

'N

Z t

0
e(A

0$B0 u)ð$Þ(u-ð$Þ
' (

d$

""""

""""

þN

Z t

0
e(A

0$G0 vð$Þ( v-ð$Þ
' (

d$

""""

"""" ð21Þ

Now, according to the proof of Theorem 4.1, we have

N

""""
Z t

0
e(A

0$B0 u)ð$Þ ( u-ð$Þ
' (

d$

"""" ' 2KN*ð't)f þN+Þ:

ð22Þ

Further, using the quantity g :¼ sup{kGþDGk :
DG2DG}, an argument similar to the one used in the
proof of Theorem 4.1 yields the inequality

N

Z t

0
e(A

0$G0 vð$Þ ( v-ð$Þ
' (

d$

""""

"""" ' 2LNgð't)f þN+Þ:

ð23Þ

Combining (22) and (23), we obtain from (21) that

kx)ðtÞ ( x-ðtÞk ' 2NðK*þ LgÞð't)f þN+Þ:

Finally, choose the value of ' so that
2NðK*þ LgÞ't)f 5 #=2. Then, choose + so that
05+ 'min{(('), #/[4N2(K*þLg)]} and t)f =+ is an
integer. For these selections, we obtain
kx)(t)(x-(t)k5# for all t 2 ½0, t)f ,, and our proof
concludes. œ

The accuracy of the approximation provided by the
bang-bang functions u-2U and v-2V of Theorem 4.2
can be improved by increasing the number of switches
(Remark 1).

Using Theorem 4.2, we can calculate an approxi-
mate solution to Problem 2.1 by using finite-dimen-
sional optimisation techniques. The following outline
describes in general terms a computational process for
deriving bang-bang approximants of the control input
signal and of the disturbance signal in the spirit of
Theorem 4.2. These approximants yield a trajectory
x-(t) that stays within the error bound M of (3) for a
time of at least t-f , where t-f approximates the optimal
time t)f of Theorem 3.8. In fact, the trajectory x-(t)
approximates the optimal trajectory x)(t) at all times
0 ' t ' t-f .

Outline 4.3: Calculating a bang-bang approximant
of an optimal input function: Let u-ðtÞ ¼
½u-1 ðtÞ, u-2 ðtÞ, . . . , u-mðtÞ,

T be a bang-bang approximant
of an optimal input function u)(t), let
v-ðtÞ ¼ ½v-1 ðtÞ, v-2 ðtÞ, . . . :, v-p ðtÞ,

T be a bang-bang
approximant of a ‘worst’ disturbance function v)(t)
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and let x-(t) be the state trajectory of the system (1)
induced by u- and v-. Denote by t-f the time at which
x- is about to exceed the specified error bound,
i.e. t-f :¼ infft & 0 : ½x-ðtÞ,Tx-ðtÞ4Mg. Let ) be the
largest permissible deviation between t-f and the opti-
mal time t)f , so that jt)f ( t-f j ' ). Finally, assume that
a bound tf of t)f is available, so that t)f ' tf: Let k
denote the number of switches of each component of
u-(t) and v-(t).

Step 1. Set t0f :¼ 0 and k :¼ 1.
Step 2. Partition the interval [0, tf] into Q. k equal
segments. On this partition, create two families of
bang-bang functions whose switching times are com-
patible with the partition: the family U-(k,Q)*U of
all bang-bang functions u(t)¼ [u1(t), u2(t), . . . , um(t)]

T

that have at most k switches in each component; and
the family V-(k,Q)*V of all bang-bang functions
v(t)¼ [v1(t), v2(t), . . . , vp(t)]

T that have at most k
switches in each component. Both families are, of
course, finite.
Step 3. For each u(t) created in Step 2, calculate
the quantity T(u, k) :¼min(x0,D,v)2X0%D%V-(k,Q)T(M,
x0,D, v, u). This is a finite-dimensional minimisation
process.
Step 4. Let tkf :¼ maxu2U-ðk,QÞ Tðu, kÞ and denote by uk

2U-(k,Q) a function that achieves this maximum.
(Then, tkf is the longest duration that can be achieved
by using bang-bang approximants with at most k
switches.)
Step 5. If one of the following two conditions is
satisfied, then replace k by kþ 1 and return to Step 2:
(i) k¼ 1, or (ii) k41 and tkf 4 tk(1f þ ).
Step 6. Otherwise, terminate the computation. The
approximants are t)f / tk(1f and u-(t)/ uk(1. œ

Outline 4.3 shows that an approximate solution
of the dynamic optimisation problem described in
Problem 2.1 can be obtained by solving a finite-
dimensional min–max problem. A wide range of
numerical optimisation techniques for solving the
latter are available in the literature (e.g. Polyak
(1988), Sheu and Lin (2004), the references mentioned
in these papers and others). The computational com-
plexity of deriving the approximate solution will
depend, of course, on the particular numerical algo-
rithm employed. Still, manifestly, it will be substan-
tially lower than the computational complexity of
numerically solving Problem 2.1 through a search over
non-bang-bang signals.

Example 4.4: Consider a single state system described
by the equation _xðtÞ ¼ axðtÞ þ uðtÞ þ vðtÞ with the
initial condition x(0)¼ x0, the control input u(t) and
the disturbance signal v(t). The uncertainties are
described by x02 [0.9, 1.1], a2 [1.2, 1.4] and jv(t)j' 0.2

for all t& 0 (so that L¼ 0.2 in (10)). The input function
amplitude bound is K¼ 2 in (9), i.e. u(t)2 [(2, 2] for all
t& 0. We use the bound M :¼ 25 in (3). Considering
Problem 2.1, our objective is to calculate an optimal
input function u)(t) that produces the maximal time t)f ,
irrespective of perturbations and disturbances. In the
process, we also find worst instances of the parameters
a and x0 and of the disturbance signal v(t). Specialising
(14) to our present situation, we seek an input function
u)(t) that solves the max–min problem

t)f ¼ sup
fuðtÞ:juðtÞj'2,t&0g

inf
0:9'x0'1:1
½1:2'a'1:4,

fvðtÞ:jvðtÞj'0:2, t&0g

Tð25, a, x0, vðtÞ, uðtÞÞ

8
><

>:

9
>=

>;
:

By Theorem 4.2, an approximation of the optimal time
t)f and of the optimal input signal u) can be obtained by
using bang-bang approximants for the input signal and
for the disturbance signal. Referring to Outline 4.3,
we use an error bound of )¼ 0.01 s on the estimated
terminal time. To process Step 3 of Outline 4.3, we
consider a bang-bang input signal u(t) and, for this
signal, find the lowest value T(u,k) of T(25, a, x0, v(t),
u(t)) as a function of the switching times of u(t). We
implemented the latter by using a global optimisation
process based on multilevel coordinate search to
optimise over all permissible values of a, of x0, and
of the disturbance function v(t)’s switching times
(Huyer and Neumaier 1999). In Step 4 of Outline 4.3,
we search for a maximum tkf of T(u, k) over the
switching times of the bang-bang input signal u(t) to
find a ‘best’ bang-bang approximant uk(t). This process
is then repeated for increasing values of k until the
improvement in the terminal time tkf is smaller than the
prescribed error bound ).

For the present example, the process of Outline 4.3
ends at k¼ 2, resulting in an approximate optimal
terminal time of t)f / t2(1f ¼ t1f ¼ 2:18 s and a bang-
bang approximate optimal input signal

u-ðtÞ ¼ (2 for t ' 1:248,
þ2 for t4 1:248:

)
ð24Þ

As we can see, this approximant has a single switch at
t¼ 1.248 s. In this case, there are two combinations of
parameter values and disturbance signals that yield the
lowest terminal time for the input signal u-(t):

fa¼ 1:4,x0¼ 1:1, and v-ðtÞ¼ 0:2 for all t& 0g, ð25Þ

and

fa¼ 1:4,x0¼ 0:9, and v-ðtÞ¼(0:2 for all t& 0g: ð26Þ

As we can see, the approximant v-(t) of a ‘worst’
disturbance signal is just a constant function in both
cases here. Figure 2 illustrates the state trajectory x-(t),
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the bang-bang input function u-(t), and the bang-bang
disturbance signal v-(t) obtained under the conditions
of (25). From the figure, we can see that indeed
t)f / 2:18 s.

Similarly, Figure 3 displays the response under
the conditions of (26); again, we can see that t)f / 2:18 s,
as before.

Note that, in general, when using bang-bang
signals to approximate optimal performance, it is
only guaranteed that the terminal time t-f is close to
the optimal terminal time t)f and that the state
trajectory x-(t) is close to an optimal state trajectory
x)(t). However, the bang-bang input signal u-(t) may
be entirely different from an optimal input signal
u)(t), when the latter is not a bang-bang signal (see
Chakraborty and Hammer (2009) for some conditions

under which the optimal input is a bang-bang signal).
In general terms, bang-bang approximants approxi-
mate optimal performance, not optimal signals.

5. Conclusion

To summarise, this article presents a methodology for
finding optimal input signals that keep performance
errors below specified bounds for the longest time
under a broad range of uncertainties and disturbances.
The use of bang-bang functions to approximate
optimal solutions provides an effective approach for
finding and implementing solutions of this optimisa-
tion problem.

Future directions of research include interlacing
the open loop control methodology presented in this
article with bursts of feedback control to maintain low-
error performance over the long term with restricted
feedback use. Another direction in which the current
research can be extended is output control, where the
objective is to keep the output error (rather than the
state error considered here) below a specified bound
for the longest time. These issues will be addressed in
subsequent reports.
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