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ABSTRACT
The process of periodic sampling is investigated for a class of nonlinear systems. The objective is to achieve
the longest sampling period that is compatible with a specified error bound. It is shown that there are
robust optimal controllers that achieve this objective. It is also shown that the performance of such optimal
controllers can be approximated by bang-bang controllers – controllers that are relatively easy to design
and implement.
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1. Introduction

Periodic sampling is among the most common operations per-
formed in modern control engineering. It underpins the func-
tionality of sampled-data control systems – systems that employ
digital controllers to control continuous-time systems. In many
applications, it is desirable to increase the sampling periodwith-
out increasing associated operating errors. Increasing the sam-
pling period allows more time to process control data between
successive data samples, making it possible to utilise more
sophisticated control algorithms. A longer sampling period
also reduces data load in feedback communication channels, a
central consideration in the design of networked control sys-
tems (Montestruque&Antsaklis, 2004;Nair, Fagnani, Zampieri,
& Evans, 2007; Zhivogyladov & Middleton, 2003). In addition,
longer sampling periods contribute to a system’s concealment
and stealth, a material advantage in certain applications.

There are many additional enterprises that may bene!t
from longer sampling periods. For example, consider a bio-
technology manufacturing facility. Here, workers must inspect
periodically the status of organisms used in the manufacture
of biological products. Maximizing the time interval between
these inspections may reduce manufacturing costs. Applica-
tions in medicine also abound. For instance, in the treatment
of diabetes, patients would bene!t from a longer time inter-
val between consecutive samplings of their blood glucose level.
Many other potential applications come to mind.

It goes without saying that, between samples, a sampled-data
control system operates without feedback. As classical control
theory reminds us, the lack of feedback may increase operating
errors. For a particular controlled system, themagnitude of such
operating errors depends on two main factors: (i) the length of
the time span between samples, namely, the length of the sam-
pling period; and (ii) the nature of the input signal the controlled
system receives between samples, namely, the nature of the con-
troller controlling the system. The present paper concentrates
on the existence, the design, and the implementation of robust
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optimal controllers that make it possible to utilise the maximal
sampling period, without violating speci!ed bounds on oper-
ating errors and other speci!cations. We show in Section 3 that
such optimal controllers do exist for a broad family of nonlinear
input-a"ne systems. The main requirement for the existence of
such optimal controllers is a certain controllability property the
controlled system must possess.

The design and construction of optimal controllers is often
an arduous engineering task. It may require the calculation and
the implementation of intricate vector-valued functions of time
– the signals an optimal controller must generate as input to the
controlled system. In Section 4, we show that the performance
of optimal controllers can be approximated by bang-bang con-
trollers, namely, by controllers that generate bang-bang signals
as input to the controlled system. Bang-bang controllers are rel-
atively easy to design and implement, since a bang-bang signal
is characterised by its switching times – a list of scalars.

The control con!gurationwe consider is depicted in Figure 1.
Here, the system! is controlled by the controller C, which gen-
erates the input signal u(t) of !. The state of ! at the time t
is x(t). As seen in the !gure, the controller’s feedback channel
closes momentarily every T seconds, delivering periodic sam-
ples of x(t)with a sampling period of T. These samples are used
by C to control !.

As mentioned earlier, the magnitude of inter-sample oper-
ating errors experienced by ! depends on the length of the
sampling period T and on the design of the controller C.
Our objective is to design the controller C so as to achieve
the longest possible sampling period T, without violating a
speci!ed operating error bound " > 0 and without overload-
ing the controlled system !. In Section 3, we characterise
the maximal sampling period T that is consistent with this
objective. We also show in that section that robust optimal
controllers C that achieve the maximal sampling period exist
under rather broad conditions. The main condition that the
controlled system ! must satisfy in order for such optimal
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Figure 1. The control configuration.

controllers to exist is a certain controllability condition. Later
on, in Section 4, we develop a relatively simple methodology for
practical design and implementation of controllers that approx-
imate optimal performance. We show that optimal perfor-
mance can be approximated as closely as desired by controllers
that generate bang-bang signals as input to the controlled
system !.

To make our discussion speci!c, we assume that the require-
ment is to keep the state of ! in the vicinity of a speci!ed
nominal target state xtarget. By appropriately shifting the state
coordinates of!, we can assume that the nominal target state is
the zero state x= 0. Due to errors and uncertainties a#ecting !

and its environment, it is not possible to guide! to stay exactly
at the zero state. Instead, a speci!edmaximal deviation of " > 0
from the zero state is acceptable. This deviation is speci!ed in
terms of the L2−normof the state; using" to indicate transpose,
the requirement is to control ! so that its state x(t) satis!es the
inequality

x"(t)x(t) ≤ " (1)

at all times t. We refer to " as the operating error bound.
To conform with structural limitations of the controlled sys-

tem ! and avoid overloading !, input signals to ! cannot
exceed a speci!ed amplitude bound ofK > 0. Our objectives can
now be summarised in the following form.

Problem 1.1: Let ! be a system with input amplitude bound
K > 0 and operating error bound " > 0.

(i) Find conditions under which there is a robust optimal
sampled-data controller C with periodic sampling period
T that controls ! so as to ful!l the following goals:
(a) The amplitude of the signal that C creates as input for

! does not exceed K.
(b) The state x(t) of ! satis!es x"(t)x(t) ≤ " at all times

t.
(c) The periodic sampling period T is the maximal one

consistent with (a) and (b).
(ii) Find controllers that approximate optimal performance

and are relatively easy to design and implement.

In this paper, Problem 1.1 is investigated for a class of non-
linear time-invariant and input-a"ne systems. In Section 3, we
show that robust optimal controllers C that ful!l the require-
ments of Problem 1.1(i) exist under rather broad conditions.
The main requirement for the existence of such controllers is
a certain controllability property the controlled system ! must

possess. This controllability property requires that it be possi-
ble to drive ! from a given initial state to the origin, without
violating speci!ed input signal amplitude bounds. In fact, it can
be seen from the statement of Problem 1.1(i) that such a con-
trollability property is also necessary for the existence of an
appropriate controller.

As mentioned earlier, the e#ort required to compute, design,
and implement optimal controllers is often considerable. To
overcome this potential hindrance and address Problem 1.1(ii),
we show in Section 4 that optimal performance can be approx-
imated by controllers that generate bang-bang signals as input
for the controlled system !. In our case, where input signals
to ! must be bounded by K, bang-bang signals are piecewise-
constant signals, whose components switch between the values
of +K and −K a !nite number of times during every !nite
time interval. As bang-bang signals are determined by their
switching times, they can often be derived by relatively simple
numerical search and optimisation algorithms (see Section 5).
Implementation of bang-bang signals is also relatively easy.
The observation of the current paragraph further establishes
a principle espoused in Chakraborty and Hammer (2009,
2010), Yu and Hammer (2016a), and Choi and Hammer (2017,
2018b), according to which bang-bang controllers can approx-
imate optimal performance in a wide range of optimisation
problems.

The most common technique currently utilised in sampled-
data control systems is the so-called sample-and-hold tech-
nique. In this technique, a constant input signal is delivered to
the controlled system ! between samples, instead of the opti-
mal input signal developed in the present paper. In Section 5,
we use an example of a single-link manipulator to compare the
outcome of the optimal input signal derived in this paper to
the outcome of the sample-and-hold technique. In this exam-
ple, optimal input signals permit a substantially longer sampling
period than the longest sampling period achievable via sample-
and-hold. Naturally, other examples may yield greater or lesser
improvements. In any case, by its nature of optimality, the opti-
mal technique developed in this paper always yields a maximal
sampling period.

The discussion of this paper relies on earlier work by the
authors (Chakraborty & Hammer, 2009, 2010; Choi & Ham-
mer, 2017, 2018b; Yu & Hammer, 2016a) as well as on the
foundations of the theory of constrained optimisation. The
latter include Kelendzheridze (1961), Pontryagin, Boltyansky,
Gamkrelidze, and Mishchenko (1962), Gamkrelidze (1965),
Neustadt (1966), Neustadt (1967), Luenberger (1969), Young
(1969), Warga (1972), the references cited in these studies, and
many others. It seems, however, that there are no earlier pub-
lished reports on the existence and the implementation of robust
optimal controllers that achieve maximal sampling periods,
while complying with speci!ed bounds on operating errors and
control signal amplitudes.

The paper is organised as follows. Section 2 formulates Prob-
lem 1.1 in more precise mathematical terms. Section 3 proves
the existence of robust optimal controllers that ful!l the objec-
tives of Problem 1.1(i). Problem 1.1(ii) is examined in Section 4,
where we show that, without signi!cantly degrading perfor-
mance, optimal controllers can be replaced by controllers that
generate bang-bang input signals for the controlled system !.
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Section 5 presents an example, and the paper concludes in
Section 6 with a brief summary.

2. Background and problem formulation

In this section, we introduce the mathematical background and
the notation underlying our discussion. We denote by R the
compacti!ed set of real numbers, namely, the set of all real num-
bers augmented by the points ±∞; by R+ we denote the set of
all non-negative real numbers. The set of all vectors with n real
components is denoted by Rn.

The L∞−norm is used in our discussion. For a real num-
ber r, the L∞−norm is simply the absolute value |r|; for an
n × m matrix V = (Vij), the L∞−norm is |V| := maxi,j |Vij|,
i.e. the largest absolute value of an entry. For a matrix-valued
function of time W : R+ → Rn×m : t '→ W(t), the L∞−norm
is |W|∞ := supt≥0 |W(t)| and is referred to as the amplitude
ofW.

2.1 System description

We consider nonlinear input-a"ne time-invariant systems
described by di#erential equations of the form

! : ẋ(t) = a(x(t)) + b(x(t))u(t), x(0) = x0, (2)

where x(t) ∈ Rn is the state of the system and u(t) ∈ Rm is the
input signal at the time t. The functions a : Rn → Rn and b :
Rn → Rn×m are continuous functions satisfying the Lipschitz
conditions

|a(x) − a(y)| ≤ α+|x − y|, |b(x) − b(y)| ≤ α+|x − y|,

for all x, y ∈ Rn; here α+ > 0 is a speci!ed real number.
To accommodate uncertainties and errors a#ecting the

model of the controlled system !, we split the functions a and
b of (2) into a sum

a(x) = a0(x) + aγ (x), b(x) = b0(x) + bγ (x), (3)

where a0 and b0 are speci!ed continuous functions, and
aγ and bγ are unspeci!ed continuous functions that repre-
sent uncertainties. All functions a0, aγ : Rn → Rn and b0, bγ :
Rn → Rn×m satisfy the Lipschitz conditions:

|a0(x) − a0(y)| ≤ α|x − y|, |b0(x) − b0(y)| ≤ α|x − y|,
a0(0) = 0, |b0(0)| ≤ α; (4)

|aγ (x) − aγ (y)| ≤ γ |x − y|, |bγ (x) − bγ (y)| ≤ γ |x − y|,
|aγ (0)| ≤ γ , |bγ (0)| ≤ γ , (5)

for all x, y ∈ Rn. Here, α, γ > 0 are speci!ed real numbers and
α+ = α + γ . The number γ represents uncertainty; it is usually
a small number. We refer to γ as the uncertainty parameter. The
nominal system is then

!0 : ẋ(t) = a0(x(t)) + b0(x(t))u(t), x(0) = x0. (6)

2.2 The sampling process

In the con!guration of Figure 1, the feedback channel closes
momentarily at the times . . . ,−T, 0,T, 2T, . . ., forming a
periodic sampling process with a period of T> 0 and sampling
intervals . . . , [−T, 0], [0,T], [T, 2T], . . . At a sampling time kT,
k = . . . ,−1, 0, 1, 2, . . ., the feedback channel delivers to the
controller C the sample x(kT) of the state of !. As t= 0 is one
of the sampling times, the state x(0) = x0 is available to C. We
refer to x0 as the initial state.

In our ensuing discussion, we concentrate on the sampling
interval [0,T], and develop a framework in which all other sam-
pling intervals are regarded as repeats of the sampling interval
[0,T]. In qualitative terms, this is accomplished by considering
x0 as a set of potential initial states S0, rather than as a single
speci!ed initial state. The set S0 includes the initial states of
all sampling intervals, namely, S0 includes all states x(kT), k =
. . . ,−1, 0, 1, 2, . . . The speci!cs of this technique are discussed
in Section 2.4.

2.3 Basics

Our discussion takes place in theHilbert space Lω,m
2 of Lebesgue

measurable functions f , g : R+ → Rm with the inner product

〈f , g〉 :=
∫ ∞

0
e−ωtf"(s)g(s) ds;

here, ω > 0 is a real number (Chakraborty & Hammer, 2009,
2010). Note that with this inner product, all bounded measur-
able functions produce a bounded inner product.

Many systems encountered in engineering practice impose a
bound on the maximal input amplitude they can tolerate. Cor-
respondingly, we enforce a maximal permissible input ampli-
tude on the controlled system !, allowing only input signals
bounded by a speci!ed bound K > 0. Then, the set of permis-
sible input signals of ! is

U(K) = {u ∈ Lω,m
2 : |u|∞ ≤ K}. (7)

Notation 2.1: The family of systemsFγ (!0) consists of all sys-
tems of the form (2), subject to (3), (4), and (5). All members
of Fγ (!0) share the same initial state x0 and accept only input
signals belonging toU(K). To indicate explicitly the initial state
x0 and the input signal u of a member ! ∈ Fγ (!0), we denote
the state at the time t by x(t) = !(x0, u, t).

The controlled system ! of Figure 1 is a member of
Fγ (!0). Due to the uncertainty about themodel of! expressed
by (3)–(5), it is not known speci!callywhichmember ofFγ (!0)
the system ! is. Notwithstanding, the initial state x0 of ! is
known, as it is communicated by the feedback channel. In addi-
tion to sharing the same initial state, all members of Fγ (!0)
also share the same input signal u, since, again, it is not known
which member of Fγ (!0) the controlled system ! is, so the
input signal u cannot be designed individually for eachmember
of Fγ (!0).
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Recalling the operating error bound " > 0 of (1), we
introduce the ball ρ(") := {x ∈ Rn : x"x ≤ "}. Then, require-
ment (1) can be restated in the form

x(t) ∈ ρ(") for all t, (8)

where x(t) is the state of ! at the time t. The controller C of
Figure 1 must guide ! so as to maintain (8) at all times.

2.4 A periodic framework

The periodic sampling process conducted by the feedback chan-
nel of Figure 1 has the sampling period T> 0. The initial state
x(0) = x0 serves as the starting state for the period [0,T]. For
the next period, i.e. the period [T, 2T], the starting state is
xT := x(T) – the terminal state of the period [0,T]. In gen-
eral, for an integer k = . . . ,−1, 0, 1, . . ., the starting state of the
period [kT, (k + 1)T] is the state xkT – the terminal state of the
preceding period.

To make things manageable, we concentrate on the single
sampling interval [0,T], and replace the initial state x0 by the set
of all possible starting states {xkT}k=...−1,0,1,2,.... As the system
! is time-invariant, an analysis of this single sampling inter-
val with the collection of all starting states will represent the
behaviour for all sampling intervals. To perform this analysis, we
must characterise all possible starting states {xkT}k=...−1,0,1,2,....

An exact characterisation of all possible states
{xkT}k=...−1,0,1,2,... would be unduly complex, since it must
account for the dynamic behaviour of the nonlinear system !

as well as for the uncertainty about!. Instead of engaging in an
accurate characterisation of these states, we select a real number
σ > 0 and design the controller C to guide every member ! ∈
Fγ (!0) from every state xkT ∈ ρ(σ ) to a state x(k+1)T ∈ ρ(σ ),
k = . . . − 1, 0, 1, 2, . . . In addition,Cmust complywith require-
ment (8) and assure that the state x(t) of ! satis!es x(t) ∈ ρ(")

at all times t ∈ [kT, (k + 1)T]. In particular, this implies that we
must have σ ≤ ". We refer to σ as the sample radius; it bounds
the state at the sampling times.

Consider now the sampling interval [0,T], and let C be
a time-invariant controller that guides every member ! ∈
Fγ (!0) from every initial state x0 ∈ ρ(σ ) to a state xT ∈ ρ(σ ),
while assuring that x(t) ∈ ρ(") for all t ∈ [0,T]. By the time-
invariance of C and !, the same controller action will guide
every member ! ∈ Fγ (!0) from every state xkT ∈ ρ(σ ) to
a state x(k+1)T ∈ ρ(σ ), while keeping x(t) ∈ ρ(") for all t ∈
[kT, (k + 1)T], k = . . . ,−1, 0, 1, . . .Wecan summarise our dis-
cussion as follows.

Conclusion 2.2: Let σ , " > 0 be real numbers, where σ ≤ ",
and refer to the control con!guration of Figure 1, where C
is a time-invariant controller, ! ∈ Fγ (!0), and the sampling
period is T> 0. Then, the next two statements are equivalent.

(i) The controller C guides every member ! ∈ Fγ (!0) from
every initial state x0 ∈ ρ(σ ) to a state xT ∈ ρ(σ ), while
keeping x(t) ∈ ρ(") for all t ∈ [0,T].

(ii) The controller C guides every member ! ∈ Fγ (!0) from
every state xkT ∈ ρ(σ ) to a state x(k+1)T ∈ ρ(σ ), while
keeping x(t) ∈ ρ(") for all t ∈ [kT, (k + 1)T], k = . . . −
1, 0, 1, 2, . . .

In view ofConclusion 2.2, it is su"cient to concentrate on the
sampling interval [0,T] and derive a controller C that ful!ls the
requirements of Conclusion 2.2(i). By the Conclusion, such a
controllerwill satisfy the objectives of Problem1.1(i) at all times.
This yields a substantial simpli!cation of Problem 1.1: it allows
us to concentrate on the !nite interval [0,T], instead of having
to work with the entire time axis.

In the sequel, we study sampling periods T> 0 for which
there is a controller C that ful!ls the requirements of Conclu-
sion 2.2(i). To make it easy to refer to such sampling periods,
we introduce the following term.

De!nition 2.3: A time T> 0 is a feasible sampling period if
there is a controller C that satis!es Conclusion 2.2(i) with the
period T.

We are interested in the existence of controllers C that facil-
itate the longest feasible sampling period T. In more speci!c
terms, our interest is focused on the following.

Problem 2.4: Let σ , " > 0 be real numbers, where σ ≤ ". Find
the longest time T> 0 for which the following holds for every
initial state x0 ∈ ρ(σ ): there is an input signal ux0 ∈ U(K) for
which every system ! ∈ Fγ (!0) satis!es

(i) !(x0, ux0 ,T) ∈ ρ(σ ), and
(ii) !(x0, ux0 , t) ∈ ρ(") for all t ∈ [0,T].

2.5 Formal statement of the problem

2.5.1 Input signals
In this subsection, we rephrase Problem 1.1 in formal terms,
using the framework of Conclusion 2.2. Let σ > 0 be a real
number, and consider a system! ∈ Fγ (!0)with an initial state
x0 ∈ ρ(σ ). In accordance with Conclusion 2.2, we con!ne our
attention to the time interval [0,T] and permit only input sig-
nals u ∈ U(K) that keep the state x(t) of ! within ρ(") during
all times t ∈ [0,T]. The latter restricts input signals to the set

U"(x0,K, ",!,T)

:=
{

u(t) ∈ U(K) : sup
t∈[0,T]

!"(x0, u, t)!(x0, u, t) ≤ "

}

.

(9)

As it is not known which member of Fγ (!0) the controlled
system ! is, (9) must hold for every member ! ∈ Fγ (!0).
Therefore, input signals must be con!ned to the set

U"(x0,K, ", γ ,T) :=
⋂

!∈Fγ (!0)

U"(x0,K, ",!,T). (10)

Equivalently, (10) can be rewritten in the form

U"(x0,K, ", γ ,T)

=





u ∈ U(K) : sup

t∈[0,T]
!∈Fγ (!0)

!"(x0, u, t)!(x0, u, t) ≤ "





.

(11)
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By Conclusion 2.2(i), the state of ! must be taken back into the
domain ρ(σ ) at the end of the time interval [0,T]. The set of
all input signals that take every member ! ∈ Fγ (!0) from the
initial state x0 into the domain ρ(σ ) at the time T is

Uσ (x0,K, σ , γ ,T)

=
{

u ∈ U(K) : sup
!∈Fγ (!0)

!"(x0, u,T)!(x0, u,T) ≤ σ

}

.

(12)

For a member ! ∈ Fγ (!0), de!ne the set

Uσ (x0,K, σ ,!,T)

= {u ∈ U(K) : !"(x0, u,T)!(x0, u,T) ≤ σ }; (13)

then, (12) can be rewritten in the form

Uσ (x0,K, σ , γ ,T) =
⋂

!∈Fγ (!0)

Uσ (x0,K, σ ,!,T). (14)

According to Conclusion 2.2, we must ful!l two require-
ments: (i) x(t) ∈ ρ(") for all t ∈ [0,T] and (ii) x(T) ∈ ρ(σ ).
This leads to the intersection of the two sets given by (10)
and (14), and yields the set of input signals

U ′(x0,K, ", σ , γ ,T) := U"(x0,K, ", γ ,T) ∩ Uσ (x0,K, σ , γ ,T).
(15)

This intersection describes the set of all input signals u that
bring every member ! ∈ Fγ (!0) from the initial state x0 to
a state x(T) ∈ ρ(σ ), while complying with the operating error
bound " along the way.

Next, by Conclusion 2.2, for T to be a feasible sampling
period, it must be possible to take all initial states x0 ∈ ρ(σ )

back into ρ(σ ) at the time T, without violating the operat-
ing error bound " along the way. Thus, sets of input signals
U ′(x0,K, ", σ , γ ,T) that are empty for some initial states x0 ∈
ρ(σ ) are of no use to us. Eliminating these sets yields the set

U(x0,K, ", σ , γ ,T)

:=






U ′(x0,K, ", σ , γ ,T) if U ′(x0,K, ", σ , γ ,T)

.= ∅ for all x0 ∈ ρ(σ ),
∅ otherwise.

(16)

We can summarise as follows.

Proposition 2.5: The following two statements are equivalent.

(i) A time T> 0 is a feasible sampling period for the family of
system Fγ (!0) with the sample radius σ > 0.

(ii) U(x0,K, ", σ , γ ,T) .= ∅, x0 ∈ ρ(σ ).

By Proposition 2.5, the set of all input signals that may be
employed in the process of taking ! from initial states x0 ∈
ρ(σ ) to states xT ∈ ρ(σ ), without violating the operating error
bound " along the way, is

U(K, ", σ , γ ,T) :=
⋃

x0∈ρ(σ )

U(x0,K, ", σ , γ ,T).

Note that this set of input signals is empty if there is an ini-
tial state x0 ∈ ρ(σ ) that cannot be taken to a state xT ∈ ρ(σ )

without violating the operating error bound " along the way.
Thus, for a given pair σ and ", a timeT> 0 is a feasible sampling
period if and only if U(K, ", σ , γ ,T) .= ∅.

The facts that σ ≤ " and x0 ∈ ρ(σ ) imply that

U(x0,K, ", σ , γ , 0) = U(K) for all x0 ∈ ρ(σ ). (17)

(Of course, T= 0 is not a valid sampling period.)

2.5.2 Feasible sampling periods
Having discussed potential input signals, we turn to the exam-
ination of feasible sampling periods. As seen in (16), poten-
tial input signals are all members of the set U(x0,K, ", σ , γ , t).
Assume that the controlled system ! is at an initial state x0 ∈
ρ(σ ) and is driven by an input signal u ∈ U(x0,K, ", σ , γ , t).
Then, the longest possible time lapse T(x0, ", σ ,!, u) after
which! returns to the ball ρ(σ )without violating the operating
error bound " is

T(x0, ", σ ,!, u) = {sup t ≥ 0 : !"(x0, u, t)!(x0, u, t)

≤ σ and u ∈ U(x0,K, ", σ , γ , t)}, (18)

where T(x0, ", σ ,!, u) := ∞ if the supremum does not exist.
By (17), it follows that T(x0, ", σ ,!, u) is de!ned for all sig-
nals u ∈ U(K) and for all systems ! ∈ Fγ (!0), and that
T(x0, ", σ ,!, u) ≥ 0.

Recall that the family of systems Fγ (!0) represents uncer-
tainty about the controlled system; it is not known which mem-
ber of Fγ (!0) the controlled system ! of Figure 1 actually
is. Consequently, the same input signal u must be used for
all members of Fγ (!0). For an initial state x0 ∈ ρ(σ ), the
longest possible duration T(x0, ", σ , γ , u) after which u guides
everymember! ∈ Fγ (!0) back to ρ(σ ) (without violating the
operating error bound " along the way) is

T(x0, ", σ , γ , u) =
{

sup t≥ 0 : sup
!∈Fγ (!0)

!"(x0, u, t)!(x0, u, t)

≤ σ and u ∈ U(x0,K, ", γ , t)

}

, (19)

where T(x0, ", γ , σ , u) := ∞ if the supremum does not exist.
Equivalently, we can rewrite (19) in the form

T(x0, ", σ , γ , u) = inf
!∈Fγ (!0)

T(x0, ", σ ,!, u). (20)

Clearly, di#erent input signals may yield di#erent times
T(x0, ", γ , σ , u). The longest time that can be achieved for the
initial state x0 by using an input signal u ∈ U(K) is

T(x0, ", γ , σ ) = sup
u∈U(K)

T(x0, ", γ , σ , u), (21)

where T(x0, ", γ , σ ) := ∞ if the supremum does not exist. In
view of the paragraph following (18), we have that T(x0, ", γ , σ )

is well de!ned for every x0 ∈ ρ(σ ).
If there is an input signal u′

x0 ∈ U(K) for which T(x0, ", γ , σ ,
u′
x0) = T(x0, ", γ , σ ), then u′

x0 is an optimal input signal that
achieves the maximal time for the initial state x0. We discuss
conditions for the existence of such optimal signals in Section 3.
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Now, according to Conclusion 2.2, the initial state x0 can be
anymember of the ballρ(σ ). The longest time that is compatible
with all initial states in ρ(σ ) is

T(", γ , σ ) = inf
x0∈ρ(σ )

T(x0, ", γ , σ ), (22)

where T(", γ , σ ) := ∞ if the in!mum does not exist. Note that,
by the observation of the paragraph following (21), the time
T(", γ , σ ) is well de!ned for all 0 ≤ σ ≤ ".

If, for every initial state x0 ∈ ρ(σ ), there is an input signal
u∗
x0 ∈ U(K) satisfying T(x0, ", γ , σ , u∗

x0) = T(", γ , σ ), then u∗
x0

is an optimal input signal that achieves for x0 the maximal time
lapse that is compatible with all initial states x0 ∈ ρ(σ ). Condi-
tions for the existence of such optimal signals are discussed in
Section 3.

Finally, the value of the sample radius σ ≥ 0 is not speci!ed;
the only requirement on σ is σ ≤ ", where " is the speci!ed
operating error bound. Utilizing this $exibility of σ , we obtain
the maximal sampling period

T∗(", γ ) := sup
0≤σ≤"

T(", γ , σ ), (23)

where T∗(", γ ) := ∞ if the supremum does not exist. Note also
that T∗(", γ ) is well de!ned and T∗(", γ ) ≥ 0 for all " and γ

(see the paragraph following (22)). If there is amaximising value
σ ∗ of σ satisfying T(", γ , σ ∗) = T∗(", γ ), then σ ∗ is an optimal
sampling radius. We discuss the existence of optimal sampling
radii in Section 3.

In the framework of Conclusion 2.2, the time T∗(", γ ) rep-
resents the supremal sampling period for periodic sampling,
given speci!ed operating error bound " and system uncertainty
parameter γ . We show in Section 3 that this supremal sam-
pling period can be achieved under rather broad conditions. In
Section 4we show that sampling periods very close to the supre-
mal sampling period can be achieved by bang-bang controllers
– controllers that are relatively easy to design and implement.
We can restate Problem 1.1 in the following form.

Problem 2.6: In the control con!guration of Figure 1, the
controlled system ! is an unspeci!ed member of the family
Fγ (!0).

(i) Find conditions under which there is an optimal sample
radius σ ∗ satisfying T(", γ , σ ∗) = T∗(", γ ).

(ii) Find conditions under which there is, for every initial
state x0 ∈ ρ(σ ∗), an optimal input signal u∗(x0, ", γ ) that
achieves the maximal sampling period T∗(", γ ).

(iii) If an optimal input signal u∗(x0, ", γ ) exists, !nd an easy-
to-calculate-and-implement signal u± that approximates
the optimal performance achieved by u∗(x0, ", γ ).

Remark 2.7: If T∗(", γ ) > 0 and if the optimal sample radius
σ ∗ of Problem 2.6 exists, then σ ∗ > 0. This is because the ter-
minal state of every sampling period belongs to ρ(σ ∗), and the
uncertainty about the controlled system! induces a dispersion
of these states. Therefore, σ ∗ = 0 is not possible.

2.6 Constrained controllability

Let ! be the controlled system of Figure 1, let σ be the sample
radius, and let " be the operating error bound. Then, accord-
ing to Conclusion 2.2, we must !nd input signals that take !

from any initial state x0 ∈ ρ(σ ) back to ρ(σ ) at some time t> 0,
without exceeding the operating error bound " along the way.
Whether this is possible or not forms the basis of the following
controllability notion (see Choi & Hammer, 2018a, 2018c for
related notions).

De!nition 2.8: Let K, ", σ > 0 be real numbers, where σ ≤
". A system ! ∈ Fγ (!0) is (K, ", σ )−controllable if there are
a !nite time t′ > 0 and a real number σ ′ < σ for which the
following is true: for every initial state x0 ∈ ρ(σ ), there is an
input signal ux0 ∈ U(K) satisfying !(x0, ux0 , t′) ∈ ρ(σ ′) and
!(x0, ux0 , t) ∈ ρ(") for all t ∈ [0, t′]. The family of systems
Fγ (!0) is (K, ", σ )-controllable if every member ! ∈ Fγ (!0)
is (K, ", σ )-controllable with the same σ ′.

Note that (K, ", σ )-controllability includes a contractive fea-
ture: the ball ρ(σ ) is taken into the smaller ball ρ(σ ′). This
contractive feature will help us handle the uncertainty about the
model of the controlled system ! of Figure 1.

When the contractive feature is removed fromDe!nition 2.8
by letting σ ′ = σ , the de!nition reduces to the following: there
is a time t′ > 0 such that, for every initial state x0 ∈ ρ(σ ), there
is an input signal that guides ! from x0 to reach ρ(σ ) at the
time t′, without violating the operating error bound " along the
way. By Conclusion 2.2, this requirement is a necessary condi-
tion for periodic sampling. Thus, (K, ", σ )-controllability is very
close to being a necessary condition for periodic sampling in the
framework of Conclusion 2.2.

A slight re$ection shows that, for uncertainty parameters
γ ′ ≤ γ , one hasFγ ′(!0) ⊆ Fγ (!0). This implies the following.

Proposition 2.9: Let γ ′, γ > 0 be two uncertainty parameters,
where γ ′ ≤ γ . If the family of systems Fγ (!0) is (K, ", σ )-
controllable, then so is the family of systems Fγ ′(!0).

To continue, we need to establish two facts aboutmembers of
the family of systems Fγ (!0): they have no !nite escape times,
and their responses are continuous, as follows.

Lemma 2.10: Let! be a system, let σ > 0 be a real number, and
let x0 be an initial state.

(i) For every time T ≥ 0, there is a real number M(T) ≥ 0 such
that |!(x0, u, t)| ≤ M(T) at all times t ∈ [0,T], for allmem-
bers! ∈ Fγ (!0), for all initial states x0 ∈ ρ(σ ), and for all
input signals u ∈ U(K).

(ii) For every real number ε > 0, there is a time tε > 0 such that
|!(x0, u, t) − x0| < ε at all times t ∈ [0, tε], for all mem-
bers! ∈ Fγ (!0), for all initial states x0 ∈ ρ(σ ), and for all
input signals u ∈ U(K).

Proof: (i) The proof of a similar statement appears in Yu
and Hammer (2016a).
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(ii) Applying (3)–(5), we can write

sup
s∈[0,t]

|x(s) − x0| =
∣∣∣∣

∫ t

0
[a(x(s)) + b(x(s))u(s)] ds

∣∣∣∣

≤ α+
(

sup
s∈[0,t]

|x(s)|
)

t(1 + K)

+ (γ + α+K)t.

Now, select a time T> 0, and let t ≤ T. Then, using the
boundM of part (i) of the lemma, we get

sup
t∈[0,µ]

|x(t) − x0| ≤ [α+M(1 + K) + (γ + α+K)]t.

Thus, for t < ε/[α+M(1 + K) + (γ + α+K)] we get sups∈[0,t]
|x(s) − x0| < ε, and our proof concludes. !

Needless to say, having to verify (K, ", σ )-controllability
individually for every member of the familyFγ (!0)would be a
tedious task. The next statement shows that, when the uncer-
tainty parameter γ is not excessively large, it is su"cient to
verify (K, ", σ )-controllability of the nominal system !0; this
would assure (K, ", σ )-controllable of all members of Fγ (!0),
as follows.

Proposition 2.11: Let K, "0, σ0 > 0 be real numbers, where
σ0 ≤ "0, and assume that the nominal system !0 is (K, "0, σ0)-
controllable. Then, for every real number " > "0, there is an
uncertainty parameter γ > 0 such that the family of systems
Fγ (!0) is (K, ", σ0)-controllable.

The proof of Proposition 2.11 depends on the following
auxiliary fact.

Lemma 2.12: Let !0 be the nominal system, let T> 0 be a
time, and let σ > 0 be a real number. Then, for every real num-
ber ε > 0, there is an uncertainty parameter γ > 0 such that
|!(x0, u, t) − !0(x0, u, t)| < ε for all times t ∈ [0,T], for all
members ! ∈ Fγ (!0), for all input signals u ∈ U(K), and for
all initial states x0 ∈ ρ(σ ).

Proof: Let γ > 0 be an uncertainty parameter, let! be a mem-
ber of Fγ (!0), and let x0 ∈ ρ(σ ) be an initial state. For a time
t ≥ 0 and an input signal u ∈ U(K), denote x(t) := !0(x0, u, t),
x′(t) := !(x0, u, t), and ξ(t) = x′(t) − x(t). As ! and !0 have
the same initial state x0, we get ξ(0) = x0 − x0 = 0. Now, !x
two times t1, t2 ∈ [0,T], t1 < t2, and consider a time t ∈ [t1, t2].
By (2)–(6), we can write

|ξ(t)| =
∣∣∣∣ξ(t1) +

∫ t

t1
[a(x′(s)) − a0(x(s))] ds

+
∫ t

t1
[b(x′(s)) − b0(x(s))]u(s) ds

∣∣∣∣

≤ |ξ(t1)| +
∫ t

t1
(α|ξ(s)| + γ |x′(s)| + γ ) ds

+
∫ t

t1
(α|ξ(s)| + γ |x′(s)| + γ )|u(s)| ds.

In view of Lemma 2.10(i), there is a real numberM> 0 such
that |x(t)| ≤ M and |x′(t)| ≤ M for all t ∈ [0,T], for all mem-
bers ! ∈ Fγ (!0), for all input signals u ∈ U(K), and for all
initial states x0 ∈ ρ(σ ). Inserting this bound and reordering
terms, we obtain

{1 − (α(K + 1))(t − t1)}
(

sup
t1≤θ≤t

|ξ(θ)|
)

≤ |ξ(t1)| + γ (M + 1)(K + 1)(t − t1).

Now, let µ > 0 be a real number such that (α(K + 1))µ ≤ 1/2
and p := T/µ is an integer. Setting t = t1 + µ, we get

sup
t1≤θ≤t1+µ

|ξ(θ)| ≤ 2|ξ(t1)| + 2γµ(M + 1)(K + 1). (24)

Create the partition [0,T] = {[0,µ], [µ, 2µ], . . . , [(p − 1)µ,
pµ]}, and set t1 := iµ for an integer i ∈ {0, 1, 2, . . . , p − 1}.
Then, (24) implies that

sup
iµ≤θ≤(i+1)µ

|ξ(θ)| ≤ 2|ξ(iµ)| + 2γµ(M + 1)(K + 1),

i = 0, 1, . . . , p − 1, ξ(0) = 0.

Invoking a linear iteration over i = 0, 1, . . . , p − 1 yields

sup
0≤θ≤T

|ξ(θ)| ≤ qp−1γµ(M + 1)(K + 1),

where qp−1 is the integer resulting from the recursion qk+1 =
2(qk + 1), with q0 = 0. Thus, the lemma is valid for any uncer-
tainty parameter γ > 0 satisfying

γ < ε/[qp−1µ(M + 1)(K + 1)]. (25)

This concludes our proof. !

We can state now the proof of Proposition 2.11.

Proof of Proposition 2.11: (K, "0, σ0)-controllability of the no-
minal system!0 implies, by De!nition 2.8, that there is a radius
σ < σ0 for which the following is true: there is a !nite time
t′ ≥ 0 such that, for every initial state x0 ∈ ρ(σ0), there is an
input signal ux0 ∈ U(K) for which !0(x0, ux0 , t′) ∈ ρ(σ ) and
!0(x0, ux0 , t) ∈ ρ("0) for all t ∈ [0, t′].

Now, consider the positive real number

ε := min{(σ0 − σ )/2, " − "0}. (26)

Then, according to Lemma 2.12 (see (25)), there is an uncer-
tainty parameter γ > 0 such that |!(x0, ux0 , t) − !0(x0, ux0 , t)|
< ε for all members ! ∈ Fγ (!0), for all times t ∈ [0, t′],
and for all initial states x0 ∈ ρ(σ0). For this value of γ , set
σ ′ := (σ0 + σ )/2; note that σ ′ < σ0 since σ < σ0. Then, we
obtain from (26) that !(x0, ux0 , t) ∈ ρ(") for all t ∈ [0, t′] and
!(x0, ux0 , t′) ∈ ρ(σ ′). As σ ′ < σ0, the proposition is valid for
this γ , and our proof concludes. !

Remark 2.13: Values of the uncertainty parameter γ that are
compatible with Proposition 2.11 are described by (26).
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When the nominal system !0 is (K, "0, σ )-controllable and
the uncertainty parameter γ is not excessively large, then,
according to Proposition 2.11, allmembers of the familyFγ (!0)
are (K, ", σ )-controllable for an operating error bound " slightly
bigger than "0. In such case, it follows from the discussion
leading to (16) that there is a time t′ > 0 at which the set
U(x0,K, ", σ , γ , t′) is not empty. This implies that the supremal
time T∗(", γ ) of (23) is not zero. We state this fact formally for
future reference.

Proposition 2.14: Let K, "0, σ , " > 0 be real numbers, where
" > "0. Assume that the nominal system !0 is (K, "0, σ )- con-
trollable, and let T∗(", γ ) be the supremal sampling period given
by (23). Then, there is an uncertainty parameter γ ′ > 0 for which
T∗(", γ ) > 0 for all 0 < γ ≤ γ ′.

Proposition 2.14 alludes to the fact that the notion of
(K, ", σ )-controllability plays a critical role in our discussion
and is related to the existence of solutions of Problem 2.6. This
point is discussed in the next section.

3. Existence of optimal solutions

In this section, we show that optimal solutions of Problem 2.6(i)
exist under rather broad conditions.

3.1 Main statements

The existence of optimal solutions of Problem 2.6(i) is the
focus of the following statements, whose proofs are built in
this section. The !rst statement a"rms that, for every ini-
tial state x0, there is an optimal input signal that achieves
the maximal sampling period possible for a particular sample
radius σ .

Theorem 3.1: Let σ , " > 0, σ ≤ ", be real numbers, and let
γ > 0 be an uncertainty parameter for which the family Fγ (!0)
is (K, ", σ )-controllable. For an initial state x0, let T(x0, ", γ , σ , u)
and T(x0, ", γ , σ ) be as given by (20) and (21), respectively.
Then, for every x0 ∈ ρ(σ ), there is an optimal input signal
u∗(x0, ", γ , σ ) ∈ U(K) satisfying T(x0, ", γ , σ , u∗(x0, ", γ , σ ))

= T(x0, ", γ , σ ).

Theorem 3.1 states that (K, ", σ )-controllability of the family
Fγ (!0) is a su"cient condition for the existence of an optimal
input signal that achieves maximal sampling period. Note that
this condition is very close to being a necessary condition for
the same. Indeed, in order for such an optimal input signal to
exist, it must be possible to take every member ! ∈ Fγ (!0)
from every initial state x0 ∈ ρ(σ ) back to a state in ρ(σ ) at a
time t> 0, without breaching the operating error bound " along
the way. The requirement of (K, ", σ )-controllability is slightly
stronger than that due to its contractive property: every state
x0 ∈ ρ(σ )must be brought into a slightly smaller ball ρ(σ ′) at a
time t> 0, without breaching the operating error bound " along
the way. The contractive property comes to help in the handling
of modelling uncertainties.

The next statement shows that there is an optimal sample
radius at which the maximal sampling period is achieved.

Theorem 3.2: Let " > 0 be the operating error bound, let σ ∈
[0, "], and let γ > 0 be an uncertainty parameter for which the
family of systems Fγ (!0) is (K, ", σ )-controllable. Then, in the
notation of (22) and (23), there is an optimal sample radius σ ∗ ∈
[0, "] that achieves the maximal sampling period T∗(", γ ) =
T(", γ , σ ∗).

Remark 3.3: By Proposition 2.11, the family Fγ (!0) is
(K, ", σ )-controllable if the nominal system !0 is (K, "′, σ )-
controllable for an operating error bound "′ < " (and the uncer-
tainty parameter γ is not excessively large). Thus, (K, ", σ )-
controllability of the family Fγ (!0) can be determined by
checking just one system – the nominal system !0. Therefore,
the process of testing for the existence of a maximal sampling
period is relatively simple; see Sections 4 and 5 for more details.

Values of the uncertainty parameter γ that satisfy the
requirements of Proposition 2.11 are discussed in Remark 2.13.
In view of Proposition 2.14, the supremal time is not zero and
thus forms a viable sampling period, as follows.

Corollary 3.4: If the family of systems Fγ (!0) is (K, ", σ )-
controllable, then the optimal time T∗(", γ ) of (23) is not zero.

The proofs of Theorems 3.1 and 3.2 depend on a number of
auxiliary results discussed in the next subsection.

3.2 Mathematical considerations

We start with a brief review of a few mathematical notions that
are important to our discussion (e.g. Lusternik & Sobolev, 1961;
Willard, 2004; Zeidler, 1985).

De!nition 3.5: Let H be a Hilbert space with inner product
〈·, ·〉.

(a) A sequence {xi}∞i=1 of members of H converges weakly to a
member x ∈ H if limi→∞〈xi, y〉 = 〈x, y〉 for every member
y ∈ H.

(b) A subset W of H is weakly compact if every sequence of
members ofW has a subsequence that converges weakly to
a member ofW.

Let S be a subset of H, and let z be a member of S.

(c) A functional F : S → R is weakly upper semi-continuous at
z if the following is true when F(z) is bounded: for every
sequence {zi}∞i=1 ⊆ S that converges weakly to z, and for
every real number ε > 0, there is an integerN > 0 such that
F(zi) − F(z) < ε for all integers i ≥ N.

(d) A function G : R+ × S → Rn : (t, s) '→ G(t, s) is weakly
continuous at z at a time t ≥ 0 if, for every sequence
{zi}∞i=1 ⊆ S that converges weakly to z and for every
real number ε > 0, there is an integer N > 0 such that
|G(zi, t) − G(z, t)| < ε for all integers i ≥ N.

The function G is uniformly weakly continuous over a time
interval [t1, t2], t2 > t1 ≥ 0, if, for every sequence {zi}∞i=1 ⊆ S
that converges weakly to z and for every real number ε > 0,
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there is an integerN > 0 such that |G(zi, t) − G(z, t)| < ε for all
integers i ≥ N and all t ∈ [t1, t2].

The following statement is reproduced here from Chakra-
borty and Hammer (2009).

Lemma 3.6: The set of input signals U(K) of (7) is weakly
compact in the topology of the Hilbert space Lω,m

2 .

The next statement indicates that the response !(x0, u, t)
is a weakly continuous function of the input signal u (see Yu
& Hammer, 2016a for proof).

Lemma 3.7: For a system ! ∈ Fγ (!0), the function !(x0) :
U(K) × R+ : (u, t) '→ !(x0, u, t) is uniformly weakly continu-
ous over every !nite interval of time.

To continue, we recount a few mathematical facts (e.g.
Willard, 2004; Zeidler, 1985).

Theorem 3.8: (i) A continuous function of a weakly continu-
ous function is weakly continuous.

(ii) A weakly continuous functional is weakly upper semi-
continuous.

(iii) A weakly upper semi-continuous functional of a weakly
continuous function forms a weakly upper semi-continuous
functional.

(iv) Let S and A be topological spaces and assume that, for every
member a ∈ A, there is a weakly upper semi-continuous
functional fa : S → R. If infa∈A fa(s) exists at each point s ∈
S, then the functional f (s) := infa∈A fa(s) is weakly upper
semi-continuous on S.

The following lists two forms of the generalised Weierstrass
Theorem (e.g. Zeidler, 1985).

Theorem 3.9: (i) An upper semi-continuous functional attains
a maximum in a compact set.

(ii) A weakly upper semi-continuous functional attains a maxi-
mum in a weakly compact set.

Next, we show that the supremal time is an upper semi-
continuous functional of the input signal.

Lemma3.10: Letσ , " > 0 be real numbers, whereσ ≤ ", and let
x0 ∈ ρ(σ ) be an initial state of a system ! ∈ Fγ (!0). Then, the
functional T(x0, ", σ ,!, ·) : U(K) → R : u '→ T(x0, ", σ ,!, u)
of (18) is weakly upper semi-continuous over U(K).

Proof: Consider a member ! ∈ Fγ (!0) with initial state
x0 ∈ ρ(σ ). Let t ≥ 0 be a time and let {ui}∞i=1 ⊆ U(K) be a
sequence of input signals that converges weakly to a mem-
ber u ∈ U(K). We have to show that, for every real number
ε > 0, there is an integer N > 0 such that T(x0, ", σ ,!, ui) −
T(x0, ", σ ,!, u) < ε for all integers i ≥ N. To this end, denote
by xi(t) := !(x0, ui, t) the response of! to ui, i = 1, 2, . . . , and
by x(t) := !(x0, u, t) the response of ! to u.

De!ne the class of functions

S := {z : R+ → Rn : z(t) = !(x0, v, t) for some v ∈ U(K)}.

Then, de!ne the functional+ : S → R given, for a function z ∈
S, by

+(z) = sup{t ≥ 0 : z"(t)z(t)

≤ σ and z"(s)z(s) ≤ " for all s ∈ [0, t]}. (27)

We intend to show that the functional +(z) is upper semi-
continuous on S. In view of Lemma 3.7, the sequence x1(t),
x2(t), . . . converges to x(t) at each time t ≥ 0. To show that
+(·) is upper semi-continuous on S, we have to show that,
for every real number ε > 0, there is an integer N > 0 such
that +(xi) − +(x) < ε for all integers i ≥ N. The proof can be
divided into two cases:

Case 1: There is an integer N ′ > 0 for which +(xi) ≤ +(x)
for all integers i ≥ N ′.

Case 2: Case 1 is not valid.
In Case 1, we clearly have +(xi) − +(x) ≤ 0 for all i ≥ N′,

so that +(xi) − +(x) < ε for every real number ε > 0. Hence,
upper semi-continuity holds in this case. This case includes the
case where +(x) = ∞.

In Case 2, we have +(x) < ∞ and there is a subsequence
{xik}∞k=1 and an integer N′′ > 0 such that +(xik) > +(x) for
all k ≥ N ′′. Recalling the set of input signals U"(x0,K, ", γ ,T)

of (11), this implies that uik ∈ U"(x0,K, ", γ ,T(x0, ", σ ,!, u))
for all k ≥ N ′′. Considering that {uik}∞k=N′′ convergesweakly tou
inU(K) and that u ∈ U"(x0,K, ", γ ,T(x0, ", σ ,!, u)), it follows
that {uik}∞k=N′′ converges weakly to u in U"(x0,K, ", γ ,T(x0, ",
σ ,!, u)).

Now, the supremum of (27) implies that one of the following
two options must be valid: (a) x"(t)x(t) > σ for all t > +(x);
or (b) there is a time t1 > +(x) such that x"(t1)x(t1) > " and
x"(t)x(t) > σ for all t ∈ (+(x), t1]. In either case, the follow-
ing must hold: for every real number ε > 0, there is a time
t′ ∈ (+(x),+(x) + ε) such that

x"(t′)x(t′) > σ . (28)

Further, according to Lemma 3.7, the sequence xik(t′), k =
1, 2, . . ., converges to x(t′); consequently, x"

ik (t
′)xik(t′) converges

to x"(t′)x(t′) as well. Thus, for every real number ε1 > 0, there
is an integer N1 > 0 such that

|x"
ik (t

′)xik(t
′) − x"(t′)x(t′)| < ε1 (29)

for all k ≥ N1. In view of (28), we can choose ε1 :=
[x"(t′)x(t′) − σ ]/2. Substituting this into (29) yields

|x"
ik (t

′)xik(t
′) − x"(t′)x(t′)| < [x"(t′)x(t′) − σ ]/2

for all k ≥ N1. The last inequality leads to the following
sequence of inequalities, where (28) is used again in the last step:

x"
ik (t

′)xik(t
′) = x"(t′)x(t′) + [x"

ik (t
′)xik(t

′) − x"(t′)x(t′)]

≥ x"(t′)x(t′) − |x"
ik (t

′)xik(t
′) − x"(t′)x(t′)|

> x"(t′)x(t′) − [x"(t′)x(t′) − σ ]/2 > σ

for all k ≥ N1; thus, x"
ik (t

′)xik(t′) > σ for all k ≥ N1. Combining
this with observations (a) and (b) above, we obtain by (27) that
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+(xik) < t′ for all k ≥ N1. But then, since t′ ∈ (+(x),+(x) +
ε), we conclude that +(xik) < +(x) + ε for all k ≥ N1. Conse-
quently,+(·) is upper semi-continuous on S in Case 2. Together
with our earlier discussion of Case 1, it follows that +(·) is an
upper semi-continuous functional on S.

Finally, recall that, by Lemma 3.7, the function !(x0, ·, t) :
U(K) → Rn is weakly continuous over U(K) at all times
t ≥ 0 and for all members ! ∈ Fγ (x0). As z"z : Rn → R is
a continuous functional of z, it follows by Theorem 3.8(i)
that !"(x0, ·, t)!(x0, ·, t) : U(K) → R is a weakly continuous
functional over U(K) at all times t ≥ 0 and for all mem-
bers ! ∈ Fγ (x0). Combining this with the conclusion of
the previous paragraph, it follows by Theorem 3.8(iii) that
+(!(x0, ·, t)) : U(K) → R : u '→ +(!(x0, u, t))) is a weakly
upper semi-continuous functional on U(K) at all times t ≥ 0
and for all members! ∈ Fγ (x0). The lemma then follows from
the fact that T(x0, ", σ ,!, u) = +(!(x0, u, t)). !

Combining Lemma 3.10 with Theorem 3.8(iv) and (20)
yields

Lemma 3.11: Let σ , ", γ > 0 be real numbers, where σ ≤ ",
and let x0 ∈ ρ(σ ) be an initial state of the family of sys-
tems Fγ (!0). Then, the functional T(x0, ", γ , σ , ·) : U(K) →
R : u '→ T(x0, ", γ , σ , u) of (19) is weakly upper semi-continuous
on U(K).

We can prove now the existence of optimal input signals.

Proof of Theorem 3.1: By Lemma 3.11, the functional T(x0, ",
γ , σ , ·) : U(K) → R is weakly upper semi-continuous over
U(K) and, by Lemma 3.6, U(K) is weakly compact. Thus,
Theorem3.9(ii) implies thatT(x0, ", γ , σ , u) attains amaximum
inU(K). Consequently, there is an input signal u∗(x0, ", γ , σ ) ∈
U(K) at which this maximum is attained. !

3.3 The sample radius

Our next objective is to examine features of the sample radius
σ , which characterises the domain within which the state of !

resides at sampling times.

Proposition 3.12: Let! be amember of the familyFγ (!0)with
an initial state x0. Let " > 0 be a real number, and let u ∈ U(K)

be the input signal of !. Then, the functional T(x0, ", ·,!, u) :
[0, "] → R : σ '→ T(x0, ", σ ,!, u) of (18) has the following fea-
tures:

(i) T(x0, ", σ ,!, u) is a monotone increasing function of the
sample radius σ .

(ii) T(x0, ", σ ,!, u) is almost everywhere continuous.
(iii) T(x0, ", σ ,!, u) is an upper semi-continuous functional of

the sample radius σ .

Proof: Denote by x(t) = !(x0, u, t) the response of !. By
Lemma 2.10(ii), the function x(t) is a continuous function of
time. Therefore, so is the function x"(t)x(t).

Case 1: Consider !rst a case where there is an interval of
time [t1, t2], 0 ≤ t1 < t2, on which the function x"(t)x(t) is

strictly increasing and the following conditions are satis!ed:
(a) the operating error bound " has not been reached by the
time t2, namely, x"(t)x(t) < " for all t ≤ t2; (b) x"(t)x(t) <

x"(t1)x(t1) for all t < t1; and (c) x"(t)x(t) > x"(t2)x(t2) for
all t > t2. Set σ1 := x"(t1)x(t1) and σ2 := x"(t2)x(t2); then,
σ1 < σ2. In view of the supremum in (18), the value of
T(x0, ", σ ,!, u) increases as σ increases. Therefore, the func-
tional T(x0, ", σ ,!, u) forms a continuous and monotone
increasing functional of σ on the interval (σ1, σ2).

Case 2: Assume next that (c) of Case 1 is not valid, and that
the function x"(t)x(t) reaches a local maximum at the time
t2. Then, x"(t)x(t) will decrease (or not increase) for some
time after the time t2, but assume it remains bigger than σ1.
Suppose that x"(t)x(t) later resumes its increase and starts to
exceed the value σ2 at a time t3 > t2. By the supremum in (18),
it follows that the value of T(x0, ", σ ,!, u) will jump from t2
to t3 at σ = σ2. Note that, due to the supremum in (18), we
have T(x0, ", σ2,!, u) = t3 in this case, so that T(x0, ", σ ,!, u)
takes the higher value at a jump. If there is no !nite time t >

t2 at which x"(t)x(t) > σ2, then T(x0, ", σ ,!, u) will jump to
∞ at σ2. Irrespective of the jump, T(x0, ", σ ,!, u) remains a
monotone increasing function of σ .

A slight re$ection shows that the discontinuity described in
the last paragraph is the only type of discontinuity experienced
byT(x0, ", σ ,!, u) as a function of σ . Thus,T(x0, ", σ ,!, u) is a
piecewise-continuous monotone increasing function of σ with
simple jump discontinuities. As seen before, T(x0, ", σ ,!, u)
takes the higher value at a jump. This proves Parts (i) and (ii)
of the lemma.

Next, since a continuous function is also upper semi-
continuous, it follows that T(x0, ", σ ,!, u) is upper semi-
continuous as a function of σ on intervals over which it is
continuous. Furthermore, since T(x0, ", σ ,!, u) always takes
the higher value at a jump point, it is upper semi-continuous
at jump points as well. Thus, T(x0, ", σ ,!, u) is an upper semi-
continuous functional of the sample radius σ , thus verifying
Part (iii) of the lemma. This concludes our proof. !

In view of Proposition 3.12(iii) and (20), it follows by
Theorem 3.8(iv) that the following is true.

Corollary 3.13: Let ", γ > 0 be real numbers, let x0 be the ini-
tial state of the family of systems Fγ (!0), and let u ∈ U(K) be
the input signal. Then, the functional T(x0, ", γ , ·, u) : [0, "] →
R : σ '→ T(x0, ", γ , σ , u) of (20) is an upper semi-continuous
functional of the sample radius σ .

Next, we show that the maximal time for a given initial
state also is an upper semi-continuous functional of the sample
radius.

Proposition 3.14: Let ", γ > 0 be real numbers, and let x0 be
the initial state of the family of systems Fγ (!0). Then, the func-
tional T(x0, ", γ , ·) : [0, "] → R : σ '→ T(x0, ", γ , σ ) of (21) is
an upper semi-continuous function of the sample radius σ .

Proof: For given initial state x0 and sample radius σ , let
u∗(x0, σ ) be an input signal that yields the maximal time
T(x0, ", γ , σ ) = T(x0, ", γ , σ ′

i , u∗(x0, σ ))described byTheorem
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3.1 (proved earlier). Let {σi}∞i=1 be a sequence of sample radii
converging to the sample radiusσ . Then, consider the di#erence

T(x0, ", γ , σi, u∗(x0, σi)) − T(x0, ", γ , σ , u∗(x0, σ ))

= [T(x0, ", γ , σi, u∗(x0, σi)) − T(x0, ", γ , σ , u∗(x0, σi))]

+ [T(x0, ", γ , σ , u∗(x0, σi)) − T(x0, ", γ , σ , u∗(x0, σ ))].
(30)

Now, since the function T(x0, ", γ , σ , u∗(x0, σi)) is upper
semi-continuous by Corollary 3.13, there is, for every ε >

0, an integer N > 0 such that T(x0, ", γ , σi, u∗(x0, σi)) −
T(x0, ", γ , σ , u∗(x0, σi)) < ε for all i ≥ N. Also, since u∗(x0, σ )

is a maximising input signal for the sample radius σ , it fol-
lows that T(x0, ", γ , σ , u∗(x0, σi)) − T(x0, ", γ , σ , u∗(x0, σ )) ≤
0. Substituting the last two inequalities into the last two rows
of (30), we obtain that T(x0, ", γ , σi, u∗(x0, σi)) − T(x0, ", γ , σ ,
u∗(x0, σ ′)) < ε for all integers i ≥ N. Hence, T(x0, ", γ , σ , u∗

(x0, σ )) is upper semi-continuous, and our proof concludes.
!

Further, from the combination of Theorem 3.8(iv) and
Proposition 3.14, it follows that the functional T(", γ , σ ) of (22)
is an upper semi-continuous functional of the sample radius σ ,
as follows.

Corollary 3.15: Let ", γ > 0 be real numbers. The functional
T(", γ , ·) : [0, "] → R : σ '→ T(", γ , σ ) of (22) is an upper semi-
continuous functional of the sample radius σ .

Now, we can state the proof of Theorem 3.2.

Proof of Theorem 3.2: Referring to (23), it follows by
Corollary 3.15 and the generalisedWeierstrass theorem cited as
Theorem 3.9(i), that there is a real number σ ∗ ≤ " satisfying
T∗(", γ ) = T(", γ , σ ∗). This completes our proof. !

In fact, an optimal sample radius σ ∗ of Theorem 3.2 is not
zero, when the family Fγ (!0) is (K, ", σ )-controllable. Indeed,
by Proposition 2.14, the optimal sampling period T∗(", γ )

of (23) is then strictly greater than zero. But then, the uncertain-
ties (3) present in the model of the controlled system ! cause a
dispersion among the states reached by members of Fγ (!0) at
the time T∗(", γ ) > 0. In formal terms, we have the following.

Proposition 3.16: Under the conditions of Proposition 2.14, an
optimal sample radius σ ∗ satis!es σ ∗ > 0.

Proof: Let ! ∈ Fγ (!0) be a system with initial state x0 and
input signal u ∈ U(K). By (2), the response x(t) = !(x0, u, t)
can be expressed in the form

x(t) = x0 +
∫ t

0
{[a0(x(s)) + aγ (x(s))]

+ [b0(x(s)) + bγ (x(s))]u(s)} ds. (31)

Recall that γ > 0, and choose a constant vector ζ ∈ Rn sat-
isfying |ζ | ≤ γ . Among all possible uncertainties aγ and bγ

allowed by (5), one option is the case where aγ (x) = ζ and

bγ (x) = 0. Substituting these values into (31), and setting the
time t = T∗(", γ ), we get

x(T∗(", γ )) = x0 +
∫ T∗(",γ )

0
{a0(x(s)) + ζ + b0(x(s))u(s)} ds,

which is a function of the entries of ζ . Di#erentiating with
respect to the entries of ζ , we get

∂xi(T∗(", γ ))

∂ζj
= T∗(", γ ) > 0, j = 1, 2, . . . , n,

where the last inequality is taken from Proposition 2.14. Con-
sequently, x(T∗(", γ )) .= 0 at least for some permissible model
uncertainties. As all potential values of x(T∗(", γ )) must be
included in the ball ρ(σ ∗), we conclude that σ ∗ > 0. !

Our discussion so far indicates the existence of robust opti-
mal controllers that facilitate the use of the maximal sampling
period in a periodic sampling application. Larger sampling peri-
ods carry many bene!ts; they o#er time for more sophisticated
control algorithms, thus improving performance and reducing
costs. Yet, the implementation of optimal controllers is, more
often than not, and unwieldy task. In the next section, we show
that optimal performance can be approximated by controllers
that are relatively easy to derive and implement – controllers that
generate bang-bang input signals for the controlled system! of
Figure 1.

4. Approximating an optimal response

An optimal input signal u∗(x0, ", γ , σ ) of Theorem 3.1, being
a general Lebesgue measurable vector-valued function of time,
may be di"cult to calculate and implement. In this section, we
show that the optimal response elicited by an optimal input sig-
nal u∗(x0, ", γ , σ ) can be approximated as closely as desired by
a bang-bang input signal. Bang-bang signals are relatively easy
to calculate and implement, since they are piecewise-constant
signals, whose values switch between the input signal bounds K
and−K. Bang-bang signals are determined by a string of scalars
– their switching times. To clarify what wemean by a bang-bang
signal, we provide a formal de!nition.

De!nition 4.1: A bang-bang signal u± ∈ U(K) is a piecewise-
constant signal, whose components switch between the values
of +K and −K a !nite number of times in every !nite interval
of time.

The next statement shows that the sampling period achieved
by a bang-bang input signal is not shorter than the maximal
sampling period, provided that the operating error bound is
slightly increased from " to "′; the uncertainty parameter γ may
have to be decreased somewhat, namely, modelling accuracy
of the controlled system may have to be improved. In precise
terms, the following is true.

Theorem 4.2: Let " > 0 be an operating error bound, and let
σ ∗ be an optimal sample radius of Theorem 3.2. Assume that
the nominal system !0 is (K, ", σ ∗)-controllable and that the
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maximal sampling period T∗(", γ ) is !nite. Then, for every oper-
ating error bound "′ > ", there is an uncertainty parameter γ >

0 for which the following is true. For each initial state x0 ∈
ρ(σ ∗), there is a bang-bang input signal u±

x0 ∈ U(K) satisfying
T(x0, "′, γ , σ ∗, u±

x0) ≥ T∗(", γ ).

The proof of Theorem 4.2 relies on the following statement,
reproduced here from Choi and Hammer (2018a) (see also
Chakraborty & Hammer, 2009, 2010; Choi & Hammer, 2018b;
Yu & Hammer, 2016a, 2016b).

Theorem4.3: Let! be amember of the family of systemFγ (!0)
with the initial state x0, let u ∈ U(K) be an input signal of
!, and let t′ > 0 be a !nite time. Then, for every real num-
ber ε > 0, there is a bang-bang input signal u± ∈ U(K) and
an uncertainty parameter γ > 0 for which the following is true.
The di"erence between the response x(t) := !(x0, u, t) of ! to
u and the response x±(t) := !(x0, u±, t) of ! to u± satis!es
|x(t) − x±(t)| < ε at all times 0 ≤ t ≤ t′ and for all members
! ∈ Fγ (!0).

Remark 4.4: There is a slight di#erence between the model
of the controlled system ! used in the present paper and the
model used inChoi andHammer (2018a): the reference requires
aγ (0) = 0, while (5) does not impose this requirement. The
proof of the reference can be modi!ed to accommodate the
current model.

Remark 4.5: One of the implications of Theorem 4.3 is that
(K, ", σ )-controllability of the nominal controlled system !0
can be veri!ed via a numerical search process performed over a
family of bang-bang input signals.We discuss this point inmore
detail in Section 5.

We turn now to the proof of the main result of this section.

Proof of Theorem 4.2: Referring to Theorem 3.2, let σ ∗ be
an optimal sample radius satisfying T∗(", γ ) = T(", γ , σ ∗),
where σ ∗ > 0 by Proposition 3.16. According to Theorem 3.1,
there is an optimal input signal u∗ satisfying T(x0, ", γ , σ ∗) =
T(x0, ", γ , σ ∗, u∗). De!ne "′′ := " + ("′ − ")/2; According to
Proposition 2.11, there is an uncertainty parameter γ ′ > 0 for
which the family of systemsFγ ′(!0) is (K, "′′, σ ∗)-controllable.

Further, let ε > 0 be a real number satisfying ε < ("′ −
"′′). For a member ! ∈ Fγ ′(!0), denote x∗(t) = !(x0, u∗, t).
According to Theorem 4.3, there is an uncertainty parameter
γε > 0 and a bang-bang input signal u± ∈ U(K) for which the
response x±(t) := !(x0, u±, t) satis!es |x∗(t) − x±(t)| < ε at
all times t ∈ [0,T∗(", γε)] and for all members ! ∈ Fγε (!0).

Now, set γ ′′ := min{γ ′, γε}. Then, since γ ′′ ≤ γ ′ and the
family Fγ ′(!0) is (K.", σ ∗)-controllable, it follows by Propo-
sition 2.9 that the family of systems Fγ ′′(!0) is also (K.", σ ∗)-
controllable. Therefore, by De!nition 2.8, there is a real num-
ber σ ∈ (0, σ ∗) satisfying !(x0, u∗,T∗(", γ )) ∈ ρ(σ ) for all
x0 ∈ ρ(σ ∗) and for all ! ∈ Fγ ′′(!0). Finally, choose ε > 0
to satisfy ε < min{"′ − "′′, σ ∗ − σ }; then, it follows that all
systems ! ∈ Fγ ′′(!0) satisfy !(x0, u±,T∗("0, γ0)) < σ ∗ and
!(x0, u±, t) ∈ ρ("′) for all t ∈ [0,T∗("0, γ0)]. This implies that
T(x0, "′, γ ′′, σ ∗, u±) ≥ T∗(", γ ′′).

We claim that the value of γ ′′ > 0 can be selected inde-
pendently of the initial state x0 ∈ ρ(σ ∗). Indeed, denote by
γ (x0) := γ ′′ the value of the uncertainty parameter obtained
in the previous paragraph. In view of Proposition 2.9, it is
enough to show that there is a value γ > 0 satisfying γ ≤ γ (x0)
for all x0 ∈ ρ(σ ∗). By contradiction, assume there is no such
γ . Then, there is a sequence of initial states x0i ∈ ρ(σ ∗), i =
1, 2, . . ., for which limi→∞ γ (x0i) = 0. But then, since ρ(σ ∗)
is a compact domain in Rn, there is convergent subsequence
{x0ik}∞k=1 and a state x′

0 ∈ ρ(σ ∗) satisfying x′
0 = limk→∞ x0ik .

At the state x′
0, we must then have γ (x′

0) = 0, contradicting the
results of the previous paragraph. Thus, the uncertainty param-
eter γ can be selected independently of x0 ∈ ρ(σ ∗), and our
proof concludes. !

5. Example

Consider a single-link manipulator described by the equation
(Kim, Kuc, Kim, & Lee, 2017)

! :
ẋ1 = x2,

ẋ2 = 0.5m0 + M0
J

gl sin x1 + 1
J
u.

(32)

Nominal values are: tip load m0 = 2 kg; length of the link
l= 0.5m; mass of the linkM0 = 4 kg; and gravitational acceler-
ation g= 9.8m/s2. The input bound isK = 20, and the operating
error bound is " = 3. There is an uncertainty of 5% about the
values ofm0 andM0, i.e.

1.9 ≤ m0 ≤ 2.1 and 3.8 ≤ M0 ≤ 4.2 (33)

5.1 Estimating the optimal sample radius

The optimal sample radius can be estimated through a numer-
ical search process. In this example, we employed a relatively
simple numerical search algorithm to !nd a bang-bang input
signal that approximates optimal response. To this end, select
a set of potential sample radii {σ1, σ2, . . . , σp} in the interval
[0, "] = [0, 3]. For instance, one could use

{σ1 = 0.5, σ2 = 1.0, σ3 = 1.5, σ4 = 2.0, σ5 = 2.5, σ6 = 3.0},

where p= 6.
Within each one of the domainsρ(σi), i = 1, 2, . . . , p, select a

family of q states {x0ik} ⊆ ρ(σi), k = 1, 2, . . . , q, i = 1, 2, . . . , p,
to serve as initial states for testing the response. Finally, select r
representative samples !1,!2, . . . ,!r of the family of systems
induced by (33). For instance, we selected r= 3 members with
parameter values

!1 : m0 = 1.9,M0 = 3.8;

!2 : m0 = 2,M0 = 4;

!3 : m0 = 2.1,M0 = 4.2.

The above selections lead to a search process over pqr cases:
p sample radii, q initial states, and r system models. From
Theorem4.2, we know that optimal performance can be approx-
imated as closely as desired by bang-bang input signals. In line
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with this statement, we perform, for each combination of initial
state and sample radius, a search over bang-bang input signals to
achieve the largest sampling period possible for all systemmod-
els. The process of searching for such an input signal is described
in more detail in Choi and Hammer (2018b).

Figure 2. Estimated period for each sample radius σ .

The results of this numerical search process are summarised
in Figure 2, which shows the maximal sampling period as a
function of the sample radius σ . As can be seen from the !gure,
the longest sampling period is obtained at the sampling radius

σ ∗ = 1.5; (34)

the corresponding estimated maximal sampling period T∗ is
approximately

T∗ ≈ 0.585 seconds, (35)
as see in Figure 3(a). The same numerical search process also
shows that the family of systems described by (32) and (33) is
(20, 3, 1.5)-controllable (see Remark 4.5).

5.2 Comparison to the sample-and-hold approach

The most common methodology used in the control of
sampled-data systems is the sample-and-hold technique. In this
technique, a constant input signal is applied to the controlled
system during each sampling period; this constant value may
vary from one sampling period to another. Here, we compare
the longest sampling period achievable by the sample-and-hold
technique to the sampling period achievable by the optimal
approach presented in this paper. The results are shown in Fig-
ures 3 and 4; we use the sample radius σ ∗ = 1.5 of (34). (Due to

Figure 3. Optimal control approach. (a) State trajectories: optimisation approach and (b) Control input signal: optimisation approach.

Figure 4. Sample-and-hold approach. (a) State trajectories for sample-and-hold and (b) Control input for sample-and-hold.
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space limitations, the results are shown only for the initial state
x0 = [π/6, 1.1]T .)

For the sample-and-hold technique, the maximal sampling
period is 0.406 seconds under the current input amplitude con-
straints and model uncertainty (see Figure 4(a)). On the other
hand, the sampling period achieved by the optimal approach
presented in the current paper is 0.585 seconds, as shown
in (35). Thus, the current approach o#ers an improvement of
44% over the best possible outcome of the sample-and-hold
technique. Note that this improvement is obtained with the
relatively simple input signal of Figure 3(b). Of course, other
examples may yield larger or smaller improvements of the sam-
pling period. In any case, by virtue of its optimality, the approach
of this paper always yields the longest possible sampling period.

6. Conclusion

In this paper, we presented a methodology for achieving the
longest possible sampling period for sampled-data control sys-
tems.We have shown that a maximal sampling period is achiev-
able for a broad family of nonlinear systems.Wehave also shown
that a sampling period that is as close as desired to the maxi-
mal one can be achieved by controllers that are relatively easy
to design and implement – controllers that generate bang-bang
signals as input for the controlled system. Achieving a longer
sampling period is a desirable objective in many applications,
since it allows more time for the processing of control data
between samples. This facilitates more sophisticated control
algorithms and reduces data load in feedback communication
channels.

Future research e#orts may focus on extending the results
of the current paper to families of nonlinear systems that are
broader than the family of nonlinear input-a"ne systems con-
sidered here. The theory of fraction representations of nonlinear
systems may be instrumental in these e#orts.
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