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Abstract—A linear time invariant system with uncertain initial

conditions, perturbed parameters, and active disturbance sig-

nals operates in open loop as a result of feedback failure or

interruption. The objective is to find an optimal input signal

that drives the system for the longest time without exceeding

specified error bounds, to allow maximal time for feedback

reactivation. It is shown that such a signal exists, and that it can

be replaced by a bang-bang signal without significantly affecting

performance. The use of bang-bang signals simplifies calculation

and implementation.

I. INTRODUCTION
Needless to say, feedback is an essential tool for reducing

operating errors in control systems. However, disruptions in
feedback service cannot be completely avoided, as tempo-
rary loss of feedback may originate from technical failure.
Furthermore, suspension of feedback can be part of routine
operating conditions in certain applications, such as guidance
and control of space vehicles, where feedback communication
links may be disrupted by the loss of line-of-sight; digital
control of continuous time systems, where feedback is ob-
tained only at sampling intervals; networked control systems,
where feedback channels are closed intermittently to reduce
network traffic (e.g., [6], [3]); and medical applications, such
as glucose control in diabetics, where feedback requires irk-
some biological testing and is obtained relatively infrequently
(e.g. [11], [13] and [14]). Although an increase of performance
errors is often unavoidable while feedback is halted, it would
be desirable to develop an operating policy that keeps open-
loop performance errors below specified bounds for the longest
possible time. This will provide the best opportunity to restore
feedback before unacceptable degradation of performance oc-
curs.

The present paper derives an open loop controller that
maximizes the duration of time during which a system can
operate without feedback and not exceed acceptable error
bounds. Additionally, issues related to the calculation and the
implementation of such a controller are also examined. In
particular, we show that the optimal input signal generated
by the controller can be replaced by a bang-bang signal
without significantly degrading system performance. Bang-
bang signals, i.e. signals that switch between their maximal
values, are relatively easy to compute and implement, as they
are completely determined by their switching times.

The control diagram is presented in Figure 1. Here, S is
a linear time invariant system whose parameters and initial
conditions are not precisely known, and whose operation is
affected by an unspecified disturbance signal v(t).

Figure 1. Basic Configuration

The controlled system is described by

S : ẋ(t) = A0x(t)+B0u(t)+G0v(t), x(0) = x0, (1)

where x(t) 2 Rn is the state of the system, u(t) 2 Rm is the
control input, v(t) 2 Rp is a disturbance signal, A0 is an n⇥n
matrix, B0 is an n⇥m matrix, and G0 is an n⇥ p matrix.
The initial condition x0 2 Rn of S, the entries of the matrices
A0,B0, and G0, and the disturbance signal v(t) are not accurately
specified. As the feedback signal is lost at the time t = 0,
the system S operates in open loop for all times t > 0. After
possibly having applied an appropriate shift transformation on
the signals, we assume that the desired state trajectory of S is
the zero signal x(t) = 0 for all t � 0. Our objective during the
open loop operation is to ensure that x(t) remains close to 0
for as long as possible, despite uncertainties and disturbances.

To describe the extent of uncertainty, we use the `•-
norm k • k given, for an n-dimensional vector (c1, ...,cn),
by kck := maxi=1,...,n |ci|, and for an n ⇥ m matrix C by
kCk := maxi=1,...,n; j=1,...,m |ci j|; here ci j is the (i, j) entry of
C. The information available about the system S consists of
the nominal initial condition x0

0 and the nominal matrices A,B,
and G of (1). The nominal disturbance signal is the zero signal.

To describe the uncertainty about the initial state x0, we use
a specified bound c > 0 to characterize the maximal deviation
from the nominal initial state, so that the set of all possible
initial states is

X0 := {x0 2 Rn : kx0� x0
0k  c}. (2)

The uncertainties about the entries of the matrices A0, B0, and
G0 of (1) are characterized similarly in terms of the nominal
matrices A,B,G and a real number d > 0 by the inequalities

kA0 �Ak  d,kB0 �Bk  d, and kG0 �Gk  d.

Denoting by DA (respectively, DB, DG) the set of all n⇥ n
(respectively, all n⇥m, all n⇥ p) matrices with entries in the
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interval [�d,d], we can represent the perturbed matrices of (1)
in the form

A0 = A+DA, B0 = B+DB, G0 = G+DG, (3)

where DA 2 DA,DB 2 DB, and DG 2 DG. In shorthand, denote

D := (DA,DB,DG) and D := DA⇥DB⇥DG, (4)

so that D 2 D. For a particular selection of matrices given by
(3), an initial condition x0 2 X0, and a disturbance signal v(t),
we denote the system of (1) by Sx0,D,v. The response to an
input signal u(t) is then x(t) = Sx0,D,vu(t).

As the desired output signal of the system is the zero signal
x(t) = 0 for all t � 0, we define the performance error as
e(t) = xT (t)x(t). Our objective is to select the input signal u(t)
so as to keep the error e(t) below a specified bound M > 0
for the longest possible time. If the error does not exceed the
bound M during the time interval [0, t f ], we can write

e(t)M for all 0 t  t f . (5)

The optimal choice of u(t) would maximize the value of t f ,
taking into consideration the uncertainties and disturbances
that affect S. In view of (5), we require xT

0 x0 M, as otherwise
the initial error would exceed the allowed error.

A restricted version of this problem was introduced in
[9],[7], and [8], where the noise signal v(t) was not included
and the initial condition x0 was assumed to be accurately speci-
fied. The present paper extends these results to systems that are
subject to disturbances and have unspecified initial conditions.
We show in section II that the problem of calculating an
optimal input signal u(t) is a max-min optimization problem.
In section III we prove that this problem has a solution, and
in section IV we show that an optimal input signal u(t) can be
replaced by a bang-bang signal, with only a negligible effect
on system performance. This fact simplifies the process of
calculating and implementing an optimal solution, as bang-
bang signals are completely determined by their switching
times.

II. A MAX-MIN FORMULATION

To formalize our objective, we use the weighted inner
product ha,bi =

´ •
0 e�ata(t)T b(t)dt, where a(t) and b(t) are

m-dimensional vector valued Lebesgue measurable functions,
a is a positive real number, and the integral is taken in
the Lebesgue sense. The weight function e�at makes this
inner product well-defined for all uniformly bounded func-
tions. Denote by La,m

2 the Hilbert space of all m-dimensional
Lebesgue measurable functions with the inner product h·, ·i. In
addition, we use the point-wise `•-norm, which, for a function
f (t) = ( f1(t), ..., fm(t)), is given by k f (t)k := maxi=1,...,m| fi(t)|
at each time t.

The physical characteristics of systems often impose strict
bounds on the allowable input amplitude. We denote by K > 0
the input amplitude bound of the system S of (1); then, set of
all permissible input functions of S is

U := {u 2 La,m
2 : ku(t)k  K for all t � 0}. (6)

Similarly, the disturbance signal v(t) of (1) must also be
bounded. Denoting by L > 0 the bound on the disturbance
amplitude, the set of all permissible disturbance signals is

V := {v 2 La,p
2 : kv(t)k  L for all t � 0}. (7)

While the arguments in this paper require the bounds L
and K to be finite, no special relationship is assumed about
their magnitudes. In practice, disturbance signals often orig-
inate from environmental noises and interferences, and have
amplitudes that are much smaller than the amplitude of the
control input signal u(t), i.e., often L⌧M.

To highlight the dependence of the state trajectory x(t) of (1)
on the quantities x0,D,v, and u, we usually write x(t,x0,D,v,u)
instead of x(t). Then (5) takes the form

e(t,x0,D,v,u) := xT (t,x0,D,v,u)x(t,x0,D,v,u)M,

0 t  t f (8)

The time during which the error e(t,x0,D,v,u) does not exceed
its bound M is given by

T (M,x0,D,v,u) := inf{t � 0 : e(t,x0,D,v,u) > M}, (9)

where T (M,x0,D,v,u) := • if e(t,x0,D,v,u)  M for all
t � 0. As the initial state satisfies xT

0 x0  M, we have
T (M,x0,D,v,u) � 0. Recall that our objective is to find an
input function u(t) 2 U that drives S so as to satisfy the
error bound (8) for the longest possible time t f , irrespective
of uncertainties and disturbances. In our current notation,
we need to select the input function u so as to obtain the
largest possible duration T (M,x0,D,v,u), irrespective of the
uncertainties about the initial conditions, about the matrices
A0,B0,G0, and about the disturbance signal v.

Consider now a fixed input signal u. Taking into account
the perturbed values x0 2 X0, D 2 D, and v 2 V , the longest
time T ⇤(M,u) during which the error does not exceed M
for any perturbation or disturbance is the lowest value of
T (M,x0,D,v,u) over all such perturbations and disturbances,
i.e.,

T ⇤(M,u) = inf
(x0,D,v)2X0⇥D⇥V

T (M,x0,D,v,u). (10)

Thus, to maximize the duration t f in (5), the best input
signal u(t) would be one that maximizes T ⇤(M,u). If such an
input signal exists in U , it yields the maximal time

t⇤f := sup
u2U

T ⇤(M,u) (11)

during which the error remains within desirable bounds, ir-
respective of which permissible combination of perturbations
and disturbances is active. Denoting such an optimal function
by u⇤(t), we obtain t⇤f = T ⇤(M,u⇤), and our objective can
formally be phrased as follows.

Problem 1. Determine whether an optimal input signal u⇤ 2
U exists; if such a signal exists, describe a method for its
computation. ⇤

From (10) and (11), it is follows that the calculation of
an optimal input signal u⇤ involves the solution of a max-min



optimization problem. We proceed next to show that a solution
to this problem does exist.

III. EXISTENCE OF AN OPTIMAL SOLUTION
In this section, we show that Problem 1 does have a

solution. In broad terms, this is accomplished by showing that
the set U of (6) has a certain compactness feature and that
the function T ⇤(M,u) of (10) has an appropriate continuity
property. The existence of the supremal time t⇤f of (11) follows
then by a generalized version of the Weierstrass Theorem. The
compactness feature of the set U is described in the following
statement, which generalizes a result of [7], [8]; a proof is
provided in [10].

Lemma 2. The set U of (6) is weakly compact in the topology
of the Hilbert space La,m

2 .

We say that the system S of (1) is nominally unstable if
the nominal matrix A has at least one eigenvalue with strictly
positive real part. Nominal instability of S implies that the
state trajectory x(t) must escape the bound M; this, in turn,
implies that the optimal time t⇤f must be finite (see [10] for a
proof):

Lemma 3. Assume that the system S of (1) is nominally unsta-
ble and adopt the notation of (2), (4), and (9). Then, for each
input function u(t)2U, there is a triplet (x0,D,v)2X0⇥D⇥V
for which T (M,x0,D,v,u) < •.

Regarding the continuity of T ⇤(M,u), it is sufficient for our
purpose to show weak upper semi-continuity, as follows (see
[10] for a proof).

Lemma 4. When the system S of (1) is nominally unstable.
the function T ⇤(M,u) of (10) is weakly upper semi-continuous
in u.

Finally, employing the generalized Weierstrass Theorem (e.g.,
[5]), we conclude from Lemmas 2 and 4 that Problem 1 has
a solution (see [10] for details):

Theorem 5. Assume that the system S of (1) is nominally
unstable, and let U be given by (6). Then, using the notation
of (11), the following are true.

(i) There is a finite maximal time t⇤f := supu2U T ⇤(M,u), and
(ii) There is an input function u⇤ 2 U satisfying t⇤f =

T ⇤(M,u⇤).

The longest duration of time t f during which the system’s
response can be kept below the specified error bound M
may vary depending on the values of the initial condition
x0, the perturbation matrix D, and the disturbance signal v(t).
However, this duration of time always satisfies t f � t⇤f , and t⇤f
is the maximal time that satisfies this inequality.

IV. BANG-BANG APPROXIMATION
We turn now to the consideration of issues related to the

computation and the implementation of optimal input signals
u⇤(t) that solve Problem 1; recall that such functions are
guaranteed to exist by Theorem 5. Broadly speaking, the

computation and the implementation of optimal signals is
never an easy task. This is even more so in the present case,
due to the complex nature of the conditions that characterize
the optimal solution. The current section points to a simple
way out of this complexity: we show that an optimal signal
u⇤(t) can be replaced by a bang-bang signal without causing
significant performance deterioration. A bang-bang input sig-
nal of S consists of component functions whose values switch
between K and �K as necessitated by control action, where K
is the input bound of S. Bang-bang functions are completely
determined by their switching times, and hence are relatively
easy to calculate and implement.

Bang-bang input signals may not yield exactly the same
performance as an optimal input signal. However, as the next
statement indicates, optimal performance can be approximated
as closely as desired by bang-bang input signals (compare to
[7], where a related result is derived under more restrictive
conditions).

Theorem 6. Let S be a nominally unstable system given by
(1), let U be the set of input signals (6), and let x(t,x0,D,v,u)
be the state trajectory of S induced by an input function u. Let
t⇤f be the optimal time and let u⇤ be an optimal input function
of Theorem 5. Then, for every e > 0, there is a bang-bang
input function u± 2U for which the following are true.

(i) u± has only a finite number of switches, and
(ii) The discrepancy between the state trajectories satisfies

kx(t,x0,D,v,u⇤)� x(t,x0,D,v,u±)k < e for all t 2 [0, t⇤f ] and
for all (x0,D,v) 2 X0⇥D⇥V .

Proof: We use the notation of (4), (5), and (6). As
S is nominally unstable, it follows by Theorem 5 that the
optimal time t⇤f is finite. Now, let e,h > 0 be two real
numbers. In view of the fact that the exponential function is
uniformly continuous over any finite interval of time, there
is a real number d (h) > 0 such that the function µ(t 0, t) :=
e�A0t 0 � e�A0t satisfies kµ(t 0, t)k  h whenever |t 0 � t| < d (h)
and t 0, t 2 [0, t⇤f ]. Denote b := sup{kB + DBk : DB 2 DB} and

N := sup
n

�

�

�

eA0t
�

�

�

: DA 2 DA, t 2 [0, t⇤f ]
o

; here, b and N exist
due the fact that all involved quantities are bounded.

Next, let 0 < g  d (h) be any number for which the ratio
t⇤f /g is an integer. We build a partition of the interval [0, t⇤f ]
into segments of length g , namely, the partition determined by
the intervals [qg,(q+1)g], q = 0,1,2, ...,(t⇤f /g)�1. Recalling
that input functions of S are m-dimensional column vectors
bounded by K > 0, we build a bang-bang input function
u±(t) = (u±

1 (t),u±
2 (t), ...,u±

m(t))T ,0  t  t⇤f , as follows: for
the component u±

i (t), select in each interval [qg,(q + 1)g] a
switching time qqi and set

u±
i (t) :=

(

K for t 2 [qg,qqi),
�K for t 2 [qqi,(q+1)g),q = 0,1,2, ...,(t⇤f /g)�1,

(12)
i = 1,2, ...m. For each such component function, we have´ (q+1)g

qg u±
i (t)dt = K

´ qqi
qg dt �K

´ (q+1)g
qqi

dt = K[2(qqi�qg)�
g]. Now, select qqi to satisfy the equality K[2(qqi�qg)� g] =



´ (q+1)g
qg u⇤i (t)dt. Note that qqi exists due to the fact that
|u⇤i (t)|  K for all t � 0. For this value of qqi, we obtain the
equality ˆ (q+1)g

qg
[u⇤i (t)�u±

i (t)]dt = 0 (13)

for all i = 1,2, ...,m and all q = 0,1,2, ...,(t⇤f /g)�1.
Recall that the solution of (1) for particular values

(A0,B0,G0) of the system parameters, for an input signal u(t)
and for a disturbance function v(t), is given by

x(t;u,v) = eA0t


x0 +
ˆ t

0
e�A0t B0u(t)dt +

ˆ t

0
e�A0t G0v(t)dt

�

(14)
Further, let x±(t) be the state trajectory generated by the
system S when driven by the input function u±(t), and let x⇤(t)
be the state trajectory induced by the optimal input function
u⇤(t). Noting that the initial condition x0, the perturbation
matrix D, and the disturbance input v(t) are all the same in
both cases (we are considering the performance of the same
system sample), we obtain from (14) and (13) that

kx⇤(t)� x±(t)k

=keA0t


x0 +
ˆ t

0
e�A0t B0u⇤(t)dt

�

� eA0t


x0 +
ˆ t

0
e�A0t B0u±(t)dt

�

=
�

�

�

�

eA0t
ˆ t

0
e�A0t B0[u⇤(t)�u±(t)]dt

�

�

�

�

 N
�

�

�

�

ˆ t

0
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

�

�

�

=N
�

�

�

�

q�1

Â
r=0

ˆ (r+1)g

rg
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

+
ˆ t

qg
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

�

�

�

N

�

�

�

�

�

q�1

Â
r=0

"

e�A0rg B0
ˆ (r+1)g

rg

⇥

u⇤(t)�u±(t)
⇤

dt

+
ˆ (r+1)g

rg
µ(t,rg)B0

⇥

u⇤(t)�u±(t)
⇤

dt

#

�

�

�

�

�

+N
�

�

�

�

ˆ t

qg
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

�

�

�

N
q�1

Â
r=0

ˆ (r+1)g

rg
kµ(t,rg)k

�

�B0
�

�

⇥

ku⇤(t)k+ku±(t)k
⇤

dt

+N
ˆ t

qg

�

�

�

e�A0t
�

�

�

kB0k
⇥

ku⇤(t)k+ku±(t)k
⇤

dt

2KNb (ht⇤f +Ng)

for all t 2 [0, t⇤f ]. Finally, choose the value of h so that
2KNbht⇤f < e/2. Then, choose g so that

0 < g min{d (h),e/(4KN2b )} and t⇤f /g is an integer.
(15)

For these selections, we obtain kx⇤(t)�x±(t)k< e for all t 2
[0, t⇤f ], and our proof concludes.

We emphasize that the bang-bang input signal u±(t) of The-
orem 6 approximates optimal performance for all permissible
perturbations and disturbance signals of the system S (see [10]
for further details).

Remark 7. In Theorem 6, the cost of making the error e
smaller is an increase in the number of switches of the bang-
bang function u±(t). This can be seen by examining inequality
(15): to maintain the inequality, g must be decreased as e is
decreased. According to (12), the number of switches is (in
general) t⇤f /g , so that a decrease of g leads to an increase in
the number of switches. ⇤

A. Design considerations

In view of (10) and (11), the calculation of an optimal input
function involves finding the ’worst’ disturbance signal v(t).
In analogy to Theorem 6, the next statement shows that the
worst disturbance signal can also be replaced by a bang-bang
signal, without significantly affecting system output. Thus,
both signals - optimal input and worst disturbance - can be
replaced by bang-bang signals without significantly affecting
performance. This is important, since the replacement of
general signals by bang-bang signals turns the original infinite-
dimensional optimization problem into a finite dimensional
one.

Theorem 8. Let S be a nominally unstable system given by
(1), let U be the set of input signals (6), and let V be the
set of disturbance signals (7). Let x(t,x0,D,v,u) be the state
trajectory induced by the input signal u in the presence of
the disturbance signal v. Finally, let t⇤f be the optimal time
and let u⇤ be an optimal input signal of Theorem 5. Then, for
every e > 0 and for every disturbance signal v2V , there are a
bang-bang input signal u± 2U and a bang-bang disturbance
signal v± 2V for which the following hold true.

(i) u± and v± have a finite number of switches, and
(ii) The state trajectory x(t,x0,D,v±,u±) created by u± and

v± satisfies kx(t,x0,D,v,u⇤)� x(t,x0,D,v±,u±)k < e for all
t 2 [0, t⇤f ] and all (x0,D) 2 X0⇥D.

Proof: We use the notation of the proof of Theorem 6.
As in that proof, the fact that S is nominally unstable implies,
by Theorem 5, that the optimal time t⇤f is finite. The set
of permissible disturbance signals is given by the set V of
(7). A disturbance signal of S is a p-dimensional column
vector with entry functions bounded by L > 0. Now, fix a
disturbance signal v(t)2V . We build a bang-bang disturbance
signal v±(t) = (v±1 (t),v±2 (t), ...,v±p (t))T ,0  t  t⇤f , that ’ap-
proximates’ the effects of v(t) as follows: for the component
v±i (t), select in each interval [qg,(q + 1)g] a switching time
yqi and set

v±i (t) :=

(

L for t 2 [qg,yqi),
�L for t 2 [yqi,(q+1)g),q = 0,1,2, ...,(t⇤f /g)�1,



i = 1,2, ..., p. Then, we have
´ (q+1)g

qg vi(t)dt = L
´ yqi

qg dt �
L
´ (q+1)g

yqi
dt = L[2(yqi � qg)� g]. Select yqi to satisfy the

equality

L[2(yqi�qg)� g] =
ˆ (q+1)g

qg
vi(t)dt.

Note that yqi exists due to the fact that |vi(t)| L for all t � 0.
For this value of yqi, we obtain

ˆ (q+1)g

qg
[vi(t)� v±i (t)]dt = 0 (16)

for all i = 1,2, ..., p and all q = 0,1,2, ...,(t⇤f /g)�1.
Further, let x±(t) be the state trajectory generated by the

system S when driven by the bang-bang input function u±(t)
of Theorem 6 in the presence of the bang-bang disturbance
signal v±(t), and let x⇤(t) be the state trajectory induced by
the optimal input function u⇤(t) in the presence of the actual
disturbance signal v(t). Noting that the initial condition x0 and
the perturbation matrix D are the same in both cases (we are
considering the performance of the same system sample), we
obtain from (14), (13), and (16) that

kx⇤(t)� x±(t)k

=
�

�

�

�

eA0t


x0 +
ˆ t

0
e�A0t B0u⇤(t)dt +

ˆ t

0
e�A0t G0v(t)dt

�

+

� eA0t


x0 +
ˆ t

0
e�A0t B0u±(t)dt +

ˆ t

0
e�A0t G0v±(t)dt

�

�

�

�

�

=
�

�

�

�

eA0t
ˆ t

0
e�A0t B0[u⇤(t)�u±(t)]dt

+ eA0t
ˆ t

0
e�A0t G0[v(t)� v±(t)]dt

�

�

�

�

N
�

�

�

�

ˆ t

0
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

�

�

�

+N
�

�

�

�

ˆ t

0
e�A0t G0 ⇥v(t)� v±(t)

⇤

dt
�

�

�

�

(17)

Now, according to the proof of Theorem 6, we have

N
�

�

�

�

ˆ t

0
e�A0t B0

⇥

u⇤(t)�u±(t)
⇤

dt
�

�

�

�

 2KNb (ht⇤f +Ng).

(18)
Further, using the quantity g := sup{kG+DGk : DG 2 DG}, an
argument similar to the one used in the proof of Theorem 6
yields the inequality

N
�

�

�

�

ˆ t

0
e�A0t G0 ⇥v(t)� v±(t)

⇤

dt
�

�

�

�

 2LNg(ht⇤f +Ng). (19)

Combining (18) and (19), we obtain from (17) that

kx⇤(t)� x±(t)k  2N(Kb +Lg)(ht⇤f +Ng).

Finally, choose the value of h so that 2N(Kb +Lg)ht⇤f < e/2.
Then, choose g so that 0 < g min{d (h),e/[4N2(Kb +Lg)]}
and t⇤f /g is an integer. For these selections, we obtain kx⇤(t)�
x±(t)k< e for all t 2 [0, t⇤f ], and our proof concludes.

As in Remark 7, the accuracy of the approximation provided
by the bang-bang functions u± 2U and v± 2V of Theorem 8
can be improved by increasing the number of switches.

The following algorithm uses Theorem 8 and a finite
dimensional optimization process to obtain a bang-bang input
signal for S that approximates the performance of an optimal
solution of Problem 1.

B. Algorithm

Algorithm 9. Calculating a bang-bang approximant of an

optimal input function:

Let u±(t) = [u±
1 (t),u±

2 (t), ...,u±
m(t)]T be a bang-bang ap-

proximant of an optimal input function u⇤(t), let v±(t) =
[v±1 (t),v±2 (t), ....,v±p (t)]T be a bang-bang approximant of the
’worst’ disturbance function, and let x±(t) be the state trajec-
tory induced by u± and v±. Denote by t±f the time at which
x± exceeds the specified error bound, i.e., t±f := inf{t � 0 :
[x±(t)]T x±(t) > M}. Let µ be the largest permissible deviation
between t±f and the optimal time t⇤f , so that t⇤f �t±f  µ . Finally,
assume that a bound t f of t⇤f is provided, so that t⇤f  t f . Let
k denote the number of switches of each component of u±(t)
and v±(t).

Step 1. Set t0
f := 0 and k := 1.

Step 2. Partition the interval [0, t f ] into Q � k equal
segments. On this partition, create two families of bang-
bang functions whose switching times are compatible with the
partition: the family U±(k,Q)⇢U of all bang-bang functions
u(t) = [u1(t),u2(t), ...,um(t)]T that have at most k switches
in each component; and the family V±(k,Q)⇢V of all bang-
bang functions v(t) = [v1(t),v2(t), ...,vp(t)]T that have at most
k switches in each component. Both of families are, of course,
finite.

Step 3. For each u(t) created in Step 2, calculate the quan-
tity T (u,k) := inf(x0,D,v)2X0⇥D⇥V±(k,Q) T (M,x0,D,v,u). This is
a finite dimensional minimization process.

Step 4. Let tk
f := supu2U±(k,Q) T (u,k), and denote by uk 2

U±(k,Q) a function that achieves this maximum. Then, tk
f is

the best duration that can be achieved when using bang-bang
approximants with at most k switches.

If k = 1, or if k > 1 and tk
f > tk�1

f + µ , then replace k by
k +1 and return to Step 2.

Otherwise, i.e., if k > 1 and tk
f < tk�1

f + µ , then stop the
algorithm. Use t⇤f ⇡ tk�1

f and u±(t)⇡ uk�1. ⇤
Algorithm 9 transforms our dynamic optimization problem

into a finite dimensional optimization problem that can be
solved numerically by a wide range of available optimization
techniques (see, e.g., [16], [17], the references cited in these
papers, and others).

Example 10. Consider a single state system described by the
equation ẋ(t) = ax(t) + u(t) + v(t) with the initial condition
x(0) = x0, the control input u(t), and the disturbance signal
v(t). The uncertainties are described by x0 2 [0.9,1.1], a 2
[1.2,1.4], and |v(t)|  0.2 for all t > 0; the input function
amplitude bound is 2, i.e., |u(t)|2 [�2,2] for all t � 0. Taking



M = 25, we need to calculate an optimal input function u⇤(t)
that produces the maximal time t⇤f , irrespective of perturbations
and disturbances. In the process, we also find worst instances
of the parameters a and x0, and of the disturbance signal v(t).
Specializing (11) to our present data, we seek an input function
u⇤(t) that solves the max-min problem

t⇤f = sup
{u(t):|u(t)|2,t�0}

8

>

>

>

<

>

>

>

:

inf
0.9x01.1
[1.2a1.4]

{v(t):|v(t)|0.2,t�0}

T (25,a,x0,v(t),u(t))

9

>

>

>

=

>

>

>

;

.

To find a solution to this problem, we use Algorithm 9 to
search over bang-bang approximants of optimal input signals
u⇤(t) and worst disturbance signals v(t).

In Step 3 of Algorithm 9, we find for each bang-bang input
function u±(t), the values of a, of x0, and the switching times
of a disturbance signal v±(t) that yield the lowest value of
T (25,a,x0,v(t),u(t)). This search is implemented by using a
global optimization algorithm based on multilevel coordinate
search ([15]).

Using µ = 0.01, the present calculation stops at k = 2 in
Step 4 of Algorithm 9, yielding the approximation t⇤f ⇡ t2�1

f =
t1

f = 2.18 seconds; the approximate input solution u±(t) is
given by

u±(t) =

(

�2 for t  1.248,

+2 for t > 1.248.
(20)

With this input function, there are two sets of parameters and
disturbance combinations that yield the worst terminal time
t⇤f ⇡ 2.18, as follows:

{a = 1.4,x0 = 1.1, and v(t) = 0.2 for all t � 0.} (21)
{a = 1.4,x0 = 0.9, and v(t) =�0.2 for all t � 0.} (22)

In this approximation, the ’worst’ disturbance signal v±(t)
turns out to be constant in both cases. Figure 2 illustrates
the result under the conditions of (21).
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Figure 2. Disturbance set (21)

Similarly, Figure 3 displays the response under the condi-
tions of (22).
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Figure 3. Disturbance set (22)

In conclusion, the paper presents a general theory for finding
optimal input signals that keep performance errors below
specified bounds for the longest possible time under a broad
range of uncertainties and disturbances. The use of bang-
bang signals to approximate optimal performance provides an
effective approach to finding and implementing solutions of
this optimization problem.
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