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·Abstract 
Sequential machines are proposed as mathematical mod-
els for biological signaling chains, a class of critical bio-
chemical reactions that affect all live organisms. The 
problem of correcting malfunctions in such models is 
then addressed in the context of a model matching con-
trol problem. A solution is provided to the problem of 
model matching by static controllers. This note is a 
summary of HAMMER [1995]. 

1. Introduction 
The development of biochemical techniques for the cor-
rection of malfunctioning biological processes in vivo 
has been an important theme in modern medical research. 
Such techniques could provide inroads into the allevia-
tion or the cure of numerous impairments, including ge-
netic defects, debilitative geriatric processes, effects of 
certain viral infections, and pre-cancerous or cancerous 
transformations of cells. Interventive biochemical tech-
niques have achieved a number of successes over the 
years; Still, in many ways, the development of tech-
niques to correct malfunctions of biological processes in 
vivo is largely in its infancy. 
As is well known, biological cells are complex dynami-
cal systems, driven by numerous inter-dependent bio-
chemical processes that operate in a delicate balance. It 
is therefore natural to expect that corrections of cellular 
malfunctions would, in many cases, have to be performed 
in a dynamical manner: An orderly sequence of corrective 
actions would need to be applied, with each corrective 
action depending upon the conditions within the affected 
cells at that time. In other words, the correction would 
need to be executed by an artificial system, commonly 
called a controller. 
In the present context, the controller will execute correc-
tive actions so as to drive the malfunctioning cell toward 
desirable behavior; It will monitor the conditions within 
the cell, and provide a temporally variant supplementary 
population of molecules to correct deficiencies. 
The application of control techniques to the study and 
correction of biochemical processes depends on a two-
way interaction between the areas of control theory and 
molecular biology: First, data from molecular biology is 
used to construct a mathematical model of the relevant 
biochemical processes; then, based on the model, control 
theoretic techniques are used to derive a mathematical 

model of a controller that corrects the impairments; and, 
finally, tools of molecular biology are used to implement 
the corrective controller as a biochemical entity. 
The present paper concentrates on some aspects of the 
application of control theory to biology. First, we dis-
cuss the mathematical modeling of biological signaling 
chains, which are critical biological processes that seem 
to be involved in a substantial class of adverse impair-
ments of cell function. Then, we concentrate on the struc-
ture of static corrective controllers, since static con-
trollers are among the simplest. 
In basic terms, a biological signaling chain is a sequence 
of biochemical events that starts with the appearance of a 
signaling molecule, proceeds through several biochemical 
stages that involve the creation of other molecules, and 
ends with the creation of an operational molecule that af-
fects the function of a gene, or of another entity within a 
cell. A signaling chain can be modeled as a sequential 
machine (see Section 2 for details). 
An important concern in the development of control al-
gorithms for biological systems is the fact that biological 
data is, to a substantial degree, incomplete and inaccurate. 
Our discussion concentrates therefore on the derivation 
of controllers for cases where there is a substantial uncer-
tainty about the exact mathematical model of the con-
trolled system. 
Since an accurate model of the biological system is not 
available, we consider instead a family M of q poten-
tial models l:1, ... , l:q of the system. Each one of the 
potential models is a sequential machine. The actual 
model of the system, which we call the active model, is 
one of Ll, ... , Lq, but it is not known apriori which one. 
The controller is designed so as to achieve the desired 
objective irrespective of which one of the potential mod-
els is the active model. 
Each sequential machine model L accepts a multivari-
able input sequence u, and generates two multivariable 
sequences: an output sequence y that constitutes the re-
sponse of the system; and a monitoring sequence µ that 
consists of quantities that are· continuously monitored 
and measured, and can be used for feedback purposes. 
The monitoring sequence serves as the input of a sequen-
tial controller C which, in turn, generates the input se-
quence of l:. 
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The controller C employs no external prompting or ref-
erence, creating the necessary input sequence for L all 
automatically. For this reason, we call C an au-
tonomous controller. The closed loop system depicted in 
the diagram is denoted by :Ee. Since :Ee has no external 
inputs, we refer to it as an autonomous system. 
The purpose of the controller C is to drive the system 
:E so that the resulting behavior of the closed loop sys-
tem :Ee is desirable. We concentrate on the following. 
(1.2) The Model Matching Problem. Let L be a system 
having the family M = {LI, ... , Lq} of potential mod-
els. With each potential model Li, associate an au-
tonomous system -1i called the desired model. Denote 
by Lie the system obtained by closing the loop around 
Li through a controller C. 
(i) Determine whether or not there is a controller C that 
satisfies the conditions 
(1.3) Lie= .1i, i = 1, ... , q, 
i.e., whether or not there is a (single) controller C that 
transforms each one of the potential models into its cor-
responding desired model; and 
(ii) Design a controller C that satisfies condition (1.3), 
if one exists. • 
A solution to the model matching problem is provided in 
Section 3. 
Sequential machines have been used for quite some time 
to model various biological entities (e.g., RASHEVSKY 
[1948], M. SUGITA [1963], von NEUMANN [1966], 
LINDENMAYER [1968], KAUFFMAN [1969], 
ROSENBERG and SALOMAA [1975], IEEE [1974], 
HAMMER [ 1993, 1994a and b], the references cited in 
these works, and many others). The material in the paper 
relates to the theory of sequential machines and discrete 
event systems, and thus relates to GINSBURG [1962] 
and [1966], EILENBERG [1974], HOARE [1976], 
MILNER [1980], ARNOLD and NIV AT [1980], 
RAMADGE and WONHAM [1987], the references 
listed in these papers, and many other excellent sources. 

2. Basic Models 
2.1. Signaling chains in biology. 
Many critical processes in cell biology seem to involve 
signaling chains (e.g., ALBERTS, BRAY, LEWIS, 
RAFF, ROBERTS, and WATSON [1994, Ch. 9]). In 
general terms, a signaling chain is a cascade of biochemi-

cal events. It proceeds from the appearance of an activat-
ing molecule - through the generation of a number of in-
termediary molecules - to the creation of a final product. 
Signaling chains transfer biochemical information from 
one part of the cell (or of the organism) to another. Here 
is an outline of a signaling chain. 
The signaling chain starts when a molecule of a signal-
ing ligand becomes attached to a receptor protein and ac-
tivates it. The activated receptor protein performs an en-
zymatic function, which leads to the activation of a num-
ber of G protein molecules. Each activated G protein 
molecule releases one of its subunits, which, upon en-
countering an adenylyl cyclase enzyme molecule, acti-
vates it Each activated adenylyl cyclase molecule cataly-
ses then the generation of a large number of cAMP 
molecules. In the next step, each cAMP molecule acti-
vates an A-kinase enzyme molecule upon encounter. The 
activated A-kinase enzyme molecule catalyzes the activa-
tion of a large number of molecules of another enzyme. 
Finally, each molecule of the last enzyme catalyzes the 
creation of a number of product molecules as the final 
step of the signaling chain. In brief, a signaling chain is 
an orderly sequence of biochemical events, proceeding in 
discrete well defined steps. 
Signaling chains are at the heart of numerous biological 
functions, including muscle activation, vision, smell, 
wound healing, the cell growth and division cycle, and 
others. Impairments in the function of signaling chains 
are believed to cause many disorders, including pre-can-
cerous and cancerous transformations of cells (e.g., 
ALBERTS, BRAY, LEWIS, RAFF, ROBERTS, and 
WATSON [1994, Ch. 24]). The understanding of signal-
ing chains is critical to the study and the potential cure 
of numerous disorders. 
In many cases, the final product of a signaling chain is a 
gene regulatory protein -- a gene activator, a gene repres-
sor, or a gene enhancer. These proteins regulate the func-
tion of genes by turning gene transcription on or off, or 
by affecting the rate of gene transcription. The regulation 
of gene transcription js done through the gene promoter, 
which is a segment of DNA near the gene to which regu-
latory proteins can bind. A gene promoter turns on the 
transcription of its gene at a certain rate when all appro-
priate gene activator and gene enhancer protein molecules 
become bound to it, while all relevant gene repressor pro-
tein molecules are not bound to it. In other words, the 
gene promoter activates gene transcription at a certain 
rate when a specific combinatorial condition is met, and 
whence the function of a gene promoter can be modeled 
by a combinatorial logic circuit (e.g., ALBERTS, 
BRAY, LEWIS, RAFF, ROBERTS, and WATSON 
[1994, Ch. 9]). 
In some cases, the number of regulatory proteins that af-
fect a gene is quite large, and some regulatory proteins 
are products of signaling chains. Thus, the expression of 



a mammal gene may depend on a large number of signal-
ing chains, the final products of which all converge onto 
the same gene promoter. Furthennore, sometimes the acti-
vation of a gene forms a link within a larger signaling 
chain. In such case, a ligand molecule leads to the activa-
tion of the first part of a signaling chain, which leads to 
the activation of the gene; the gene product initiates then 
the continuation of the signaling chain, which may ulti-
mately lead to the acti".'ation of a second gene, and so on. 
Thus, it is possible for an important biological function 
to be regulated through an interaction between a number 
of signaling chains and gene promoters (ALBERTS, 
BRAY, LEWIS, RAFF, ROBERTS, and WATSON 
[1994] and the references listed there). 

2.2. Mathematical models. 
Signaling chains and combinations of signaling chains 
are natural candidates for modeling by sequential ma-
chines. Consider a biochemical system l: that operates 
within a medium. Let al, ... , am denote the species of 
molecules that may appear within the medium, and that 
significantly affect the operation of the system l:. Then, 
the state of the molecular population at an insuyit of 
time can be characterized bl a vector 7tk = (7tk, 7tk, ... , 
1tf) of integers, where 7tk is the population (or is 
nearly proportional to the population) of molecules of 
the species cri present within the medium at the instant 
k. We write 1tk E zm, where zm is the set of all m-
dimensional vectors with integer components. 
In addition to the molecular species present within the 
medium, the state of the biochemical system l: may also 
be affected by other quantities, including the temperature 
of the medium, or the irradiation intensity within a speci-
fied narrow spectral range. Usually, discretized measures 
of these quantities can be used to describe their level. 
For instance, consider the temperature. In biochemical 
experiments, the temperature is usually varied only be-
tween two discrete levels, a 'high' temperature and a 
'nonnal' temperature; this is done to activate markers, or 
to elicit a desired selection process. 
Let 'ti, ... , 'ti be integers that represent discretized mea-
sures (at the time k) of quantities other than molecular 
populations that affect the biochemical syst9.m l:. We 
then create the augmented vector Sk := (7tk, 'tk, ... , 't~ E 
zn, where n := m + d; This vector represents all the 
significant information pertaining to the state of the bio-
chemical system l: at the time k. In this way, the 
(discretized) state of the biochemical system at the time 
k becomes represented by a vector of integers. 
Consider now the case where l: is a biochemical signal-
ing chain, i.e., a sequential biochemical process that pro-
ceeds in discrete steps. As before, the state of the signal-
ing chain at a step k is represented by a vector of inte-
gers Sk E zn. At each step, the biochemical conditions 
within the reaction system can be altered by externally 

injecting into its medium additional molecules, or by 
changing the temperature or the irradiation level. These 
alterations in the biochemical conditions can be repre-
sented by an additive input vector Uk e zn; each com-
ponent of Uk represents the number of molecl,lles of the 
respective species that were injected into the medium, or 
the increment in temperature, or the increment in irradia-
tion intensity, or the increment in another additive vari-
able. After the alteration process, the state of the bio-
chemical system becomes (sk + uk). 
Thus, immediately preceding step k+ 1 of the signaling 
chain, the state of the biochemical system is given by 
(Sk + uk). This state determines the outcome of reaction 
step k+l, which is described by the state Sk+l· 
Consequently, there is a function f : zn zn such 
that 
(2.2.1) Sk+l = f(Sk+Uk), k = 0, 1, 2, ... 
The initial condition so of the reaction system at the 
start of the signaling chain has to be provided. The func-
tion f is called the recursion function of the reaction, 
and it is determined from empirical data. 
Of course, to be precise, one needs to use probabilistic 
models to describe the results of a reaction step. The de-
terministic model (2.2.1) may be regarded as the average 
outcome of a reaction step. 
Under normal conditions, only certain combinations of 
state values can arise in a biochemical reaction system. 
Let D be the subset of zn that corresponds to all pos-
sible state values that can appear in the reaction system 
being considered. Then, the recursion function f has to 
satisfy the requirement f: D D, i.e., the function f 
must map each state in D into a state in D. We refer to 
D as the state domain of the system. Similarly, there are 
restrictions on the external inputs that can be applied to 
the system. To represent such restrictions, we let Din c 
zn be the set of all permissible input vectors. We im-
pose the requirement Uk e Din, k = 0, 1, 2, ... The set 
Din is called the input domain. 
A comment on negative input values is in order now. For 
components of the input vector Uk that represent tem-
perature or irradiation intensity, negative values simply 
indicate a reduction of the temperature or of the irradia-
tion intensity, as the case may be. For a component of 
Uk that corresponds to a molecular species, negative val-
ues represent the injection of molecules that destroy the 
activity of that molecular species. For instance, for re-
gions of RNA or DNA molecules, activity can be de-
stroyed by the injection of anti-sense molecules. For 
components of the input vector Uk or of the state vector 
Sk that are prohibited from attaining negative values, the 
appropriate components of the input domain Din or of 
the state domain D, respectively, _ are restricted to non-
negative integers. 
In order to create a feedback controller for the biochemi-
cal system l:, it is necessary to monitor the state of l:. 



Let µk be the result returned by the monitoring equip-
ment at step k. Then, since µk is determined by the 
state Sk of .E, we write 
(2.2.2) µk = v(sk), k = 0, 1, 2, ... 
Here, 'V is called the monitoring function; It describes 
the data provided by the measuring equipment. For the 
sake of uniformity, we shall also represent the outcome 
of the monitoring function as a vector of integers, so that 
v: D-> zr; The integer r indicates the number of val-
ues returned by the monitoring process at each step. In 
case the monitoring equipment measures the actual state 
of the system, v becomes the identity function and µk 
= Sk. The monitoring function 'V is designed as part of 
the control design process, to provide an adequate feed-
back signal that facilitates the operation of the controller. 
The system .E also generates an output signal y that 
serves to activate or influence other reaction systems 
within the cell, within the organism, or within the envi-
ronment. The value Yk of the output signal at the step 
k is determined, again, by the state Sk, and is given by 
(2.2.3) Yk = h(sk), k = 0, 1, 2, ... , 
where h is called the output function. To summarize, 
our biochemical system .E is described by a sequential 
machine over the integers, given by (2.2.1), (2.2.2), and 
(2.2.3). 

2.3. Static Controllers. 
A controller is a device that guides the controlled system 
toward the achievement of a prescribed objective. 
Referring to (1.1), a static controller is described by 
(2.3.1) Uk= he(µk), k = 0, 1, 2, ... 
where he is a function called a static output feedback 
function; Denoting by Dµ c zr the domain of monitor-
ing values for the system I:, we require that he : Dµ -> 
Din. 
Considering the system I: of (2.2.1) and (2.2.2), we ob-
tain 
(2.3.2) Uk= he'V(Sk), k = 0, 1, 2, ... , 
where 'V : D -> Dµ is the monitoring function of I:. In 
particular, when the entire state Sk of .E is measured, 'I' 
is the identity function, and (2.3.2) takes the form Uk= 
he(Sk), k = 0, 1, 2, ... This case represents a static state 
feedback controller. 
The basic objective of the present paper is to derive the 
set of all pairs of functions (V,he) for which the closed 
loop system (1.1) has prescribed characteristics. The 
function 'V represents then the necessary measurements 
that need to be taken in real time, whereas the function 
he represents the controller. 
Current recombinant DNA technology provides a founda-
tion for the implementation of biochemical intracellular 
controllers. Since static controllers represent combinato-
rial logic circuits, they can, in principle, be implemented 
by mimicking the natural mechanisms of gene promoters. 

3. Model Matching and Static Controllers 
We start with the case where the model of the system is 
known. 

3.1. Model matching for a known system. 
Consider a system .E whose model is known precisely, 
so that the family of potential models of I: consists of a 
single member. Let 
(3.1.1) Sk+l = f(Sk+Uk), k = 0, 1, 2, ... , 
be the recursive representation of the model, let 
(3.1.2) µk = 'lf(Sk) 
be its monitoring sequence, let Din be its input domain, 
and let D be its state domain. A static controller for I: 
is given by 
(3.1.3) Uk= he(µIc) = he'V(Sk), 
where he is the controller function. Referring to the 
model matching problem (1.2), let tl be the au-
tonomous model that needs to be matched, and let 
(3.1.4) Sk+l = g(sk), k = 0, 1, 2, ... , 
be a recursive representation of tl. In this subsection we 
assume that I: and tl have the same state dimension 
and the same state domain. The recursive representation 
of the closed loop system Le of (1.1) is then given by 
(3.1.5) Sk+l = f(sk + he'lf(Sic}), k = 0, I, 2, ... 
Allowing the input domain Din of the controlled sys-
tem I: to equal its state domain D, we obtain the fol-
lowing simple necessary and sufficient condition for 
model matching by a static controller. 
(3.1.6) THEOREM. Let I: and tl be recursive systems 
described by (3.1.1) and (3.1.4), with the recursion func-
tions f and g, respectively. Assume I: and tl have 
the same state domain D, and that the input domain Din 
of I: equals D. Then, (i) and (ii) are equivalent 
(i) There are a monitoring function 'I' and a static con-
troller C that transform I: into tl via the closed loop 
(1.1). 
(ii) Im g c Im f. 
As we can see from the Theorem, the solution to the pre-
sent model matching problem is quite simple. One has to 
compare the set of all possible values of the recursion 
function f of I: with the set of all possible values of 
the recursion function g of tl. A static controller that 
achieves the required model matching exists then if and 
only if the former contains the Jatter. Furthermore, when 
condition (ii) of the Theorem holds, there is a function 
4> satisfying g = f4>; Then, for each choice of <I>, one 
can obtain a controller by setting 

(3.1.7) { 'I' :::_ 4> - I, 
he.- I. 

(see HAMMER [1995]) for details). 



3.2. Model matching in different dimensions. 
We consider now the case where the state space dimen-
sion of the model 6. that needs to be matched is differ-
ent from the state space dimension of the system I: be-
ing controlled. Let the recursive representation of 6. be 
(3.2.1) Xk+l = g(xk), k = 0, 1, 2, ... , 
where Xk e Z'Y for all integers k 0, and 'Y is the 
number of components of the state of 6.. As before, n 
denotes the number of. components of the state vector s 
of l:. We distinguish between two cases: 'Y < n and 'Y 
> n (the case 'Y = n was discussed earlier). 
First, the case 'Y < n. Recall that our models were built 
so that each component of the state vector represents a 
concrete physical quantity, like the population of acer-
tain molecular species, or the temperature or irradiation 
intensity. This physical interpretation of the state com-
ponents has to be preserved, of course, when comparing 
the state components of the system l: to the state com-
ponents of d. Each component of the state x of 6. 
corresponds to a specific component of the state s of l:. 
For the sake of notational simplicity, assume that com-
ponent i of x corresponds to component i of s, i = 
1, ... , "(< n. 
Now, augment the vector x to obtain a vector of dimen-
sion n by adding components xY+l, ... , xn, and create 
the augmented system da 

(3.2.2) 

Xk+l g(Xk) 

y+l 
xk+l 

= 
0 

0 

k = 0, 1, 2, ... 

The new components xY+l, ... , xn correspond to the 
physical quantities represented by the components s"f+ 1, 
... , sn of the state vector s of I:. The initial conditions 
for the new components are zero, i.e., ~+ 1 = 0, ... , xg = 
0, so that, in view of the recursion (3.1.2), xJ+l = O, ... , 
x~ = 0 for all integers k 0. Consequently, the system 
da of (3 .2.2) is physically the same as the system d 
represented by (3.2.1); The added components xY+l, ... , 
xn of the sate vector are not populated at any step. 
Now, 6.a and I: have the same number of state compo-
nents, and whence Theorem (3.1.6) directly applies. In 
this way, the case 'Y < n is reduced to the case dis-
cussed in Subsection 3.1. 
Consider next the case 'Y > n. Here, we augment the state 
vector of I: so as to increase the dimension from n to 
"(. To simplify the notation, assume that the first n 
components of the state vector x of d represent the 
same biochemical quantities as the components of the 
state vector s of the system l:; The ('Y - n) compo-
nents by which the state vector of l: is augmented rep-
resent the same quantities as the last ('Y - n) compo-
nents of the state vector x of d. We use an augmenting 

system cl> to augment the system I:. Let cl> be a sys-
tem with the recursive representation 
(3.2.3) Olc+l = <p(C1k+Vk), k = 0, 1, 2, ... , 
where cr e zy-n is the state vector and v e Z(-n is the 
input vector. In a biological context, cl> represents a new 
biochemical reaction system that is injected into the same 
medium within which l: operates. Of course, the two 
systems may interact, and the recursive representation of 
the augmented system takes the form 

(3_2.4) (Sk+l) = (f(sk+X(<1k)+uk)) k = O, l, 2, ... 
<1k+l <p(C1k+~(Sk)+vk) 

Here, the functions X : zy-n zn and : zn zy-n 
represent the interactions between the two systems. The 
interactions are additive, since they represent changes in 
molecular populations. The combined system has the in-
put vector (uk, vk). Let (I:,cl>) be the augmented sys-
tem of (3.2.4), and denote 

(3.2.5) fe(s,a,u,v) := (
f(s+x(cr)+u)) 
cp(a+~(s)+v) 

For the sake of simplicity, we assume that there are no 
restrictions on the selection of the recursion function cp : 
zy-n Z'(-n of <I>, and that the input domain of <I> is 
equal to its state domain. 
Let 'I' : Zf Z'Y : (s,a) H 'lf(s,cr) =: µ be a monitor-
ing function for the system (3.2.4), and let he : Z'Y 
Z'Y: µ H (h~(µ),h~(µ)) = (u,v) be a static controller 
function. When the static controller is combined with the 
system (3.2.4) through the monitoring function 'I', we 
obtain the autonomous system 

(
Sk+ 1 J = (f(sk+X( ak)+h~v'l'(Sk,<1k))) 

(3.2.6) 
ak+l <p(ak+~(sk)+he 'lf(Sk,<1k)) 

k = 0, 1, 2, ... In order to match the model 6., it is then 
necessary to find a recursion function cp, a static con-
troller function he, and a monitoring function 'I', so that 
the recursion function of (3.2.6) becomes identical to the 
recursion function g of d. To this end, let 1tn: Zf 
zn : (z1, ... , zy) H (zr, ... , zn) be the standard projection 
onto the first n coordinates. Then, the following is true. 
(3.2.7) THEOREM. Let l: and 6. be the recursive sys-
tems of (3.1.1) and (3.2.1), having the recursion func-
tions f and g, respectively, where the state dimension 
of 6. exceeds that of l:. Assume that the input domain 
Din of l: equals D, and that there are no restrictions 
on the selection of the augmenting system cl> of (3.2.3). 
Then the following are equivale 'nt. 
(i) There are an augmenting system <I>, a monitoring 
function 'I', and a static controller C for which the 
augmented closed loop system (l:,<I>)c is equal to d. 
(ii) Im 1tng c Im f. 
We comment that the combination of an augmenting sys-
tem and a static controller is equivalent to the use of a 



dynamic controller. Thus, the results of the present sub-
section extend our discussion to the general case of dy-
namic controllers. 

3.3. Model matching for families of systems. 
We consider now the case where an exact model of the 
system r. is not known, and r. is represented by a fam-
ily M = (l:1, ... , Lq} of potential models. Each model 
Li, i = 1, ... , q, has a recursive representation of the form 
(3.3.1) Sk+l = fi(Sk+Uk), k = 0, 1, 2, 3, ... 
with the initial condition so. Referring to the model 
matching problem (1.2), we denote by .1i the desired 
model corresponding to Li, i = 1, ... , q. The model L'.li 
has the recursive representation 
(3.3.2) Sk+l = gi(Sk), k = 0, 1, 2, ... ; 
we assume at first that the state components of L'.li cor-
respond exactly to the state components of Li. The ob-
jective is to find a monitoring function \Jf and a static 
controller C so that the condition Lie = .1i holds for 
all i = 1, ... , q. Recall that only one monitoring function 
and a single controller are used for all members of the 
family M, since it is not known in advance which mem-
ber is active. 
The case of multiple potential models can be reduced to 
the single model problem discussed in Subsections 3.1 
and 3.2. To this end, use the recursion functions f1, ... , 
fq of l:1, ... , Lq, and the recursion functions g1, ... , gq 
of .11, ... , L'.lq to define the two vector functions 

(3.3.3) f == lcD g == (;:) 
Then, the following analog of Theorem (3.1.6) is true. 
(3.3.4) THEOREM. Let M = (.I:1, ... , :Eq} be the family 
of potential models of :E, and let .1i be the desired 
model associated with the potential model Li, i = 1, ... , 
q. Assume that all the systems :E1, ... , :Eq, .11, ... , L'.lq 
have the same state set D, and that 1:1, ... , :Eq have an 
input set equal to their state set. Then, the following are 
equivalent 
(i) There are a monitoring function \Jf and a static con-
troller C that solve the model matching problem for the 
family M of potential models of :E. 
(ii) Im g c Im f, where f and g are given by (3.3.3). 
Thus, we see that the solution of the model matching 
problem for a family of potential models is similar to the 
solution for a single model. 
The case where Li and .1i differ in their state dimen-
sions can be treated by applying the discussion of 
Subsection 3.3 to the vectors f and g of (3.3.3). For 
further details see HAMMER [1995]. 
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