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Abstract 
The paper deals with the control of a nonlinear system 
whose output is subject to an additive disturbance. The 
main result is a simple parametrization of the set of 
all system responses that can be obtained through in-
ternally stable control of the given system. An inter-
nally stable implementation scheme is provided for 
each possible response. 

The class of achievable responses is determined by the 
'numerator' of a right coprime fraction representation 
of the system being controlled. 

1. Introduction 
We consider the control of a nonlinear system :E 
whose output signal is corrupted by an additive distur-
bance d. The control scheme can always be repre-
sented in the equivalent form 

V. 
C 

( 1.1) 

Here, C is an equivalent controller that incorporates 
all the control elements used. The external input sig-
nal is v, and the output signal is z. The disturbance d 
is regarded as an external signal over which only 
limited data is provided. The composite system (1.1) is 
required to be internally stable, and all implementa-
tions discussed below satisfy this requirement. 
Internal stability signifies that the configuration can 
tolerate small disturbances on its external and inter-
nal ports (including ports within the equivalent con-
troller C), without loosing stability. Formally, we can 
write 
( 1.2) z = :E/v ,d), 

where :Ee is an equivalent system that depends on the 
controller C and on :r.. 
The main result of the paper depends on basic concepts 
from the theory of fraction representations. A right 

fraction representation of a nonlinear system r is a 
factorization of :E into a composition :E = PQ·1, where 
P and Q are stable systems and Q is invertible. The 
fraction representation r = PQ·1 is coprime when P 
and Q are right coprime (see HAMMER (1985 and 
1987] for coprimeness). Recall that a system is bi-
causal if it is causal and possesses a causal inverse. 
The main result can be summarized as follows. Let L 
be a strictly causal and stabilizable system, and let L 
= PQ·1 be a right coprime fraction representation ·with 
a bicausal 'denominator' Q (such fraction represen-
tations were derived in HAMMER [1989c]). Then, 
(i) For every causal equivalent controller C for which 
(1.1) is internally stable, there is a stable and causal 
system <j>(v,d) such that 
(1.3) :E/v,d) = d + P<j>(v,d) = [I+ P<j>(v,·)]d. 

Here, P is the 'numerator' of the right coprime frac-
tion representation of :E, and I is the identity system. 
(ii) Conversely, for every stable and causal system 
<j>(v,d), there is an internally stable control configura-
tion around the system :r. (with an equivalent con-
troller denoted by C) such r/v,d) = [I + P<j>(v,·)]d. The 
implementation of such a configuration is discussed 
in section 3. 
Thus, (1.3) provides a complete parametrization of the 
class of all systems that can be obtained by internally 
stable control of :r.. The stable and causal system <I> 

serves as the sole parameter. Every equivalent con-
troller C that internally stabilizes :E induces a cer-
tain <I>, and, conversely, for every <I> there is an equiv-
alent controller C that internally stabilizes :r. and 
yields the response (1.3). 

Using this parametrization, the design process can be 
dissolved in two steps: 
(i) Specification of the desired response via the selec-
tion of <I>, and 
(ii) Implementation of a controller that internally sta-
bilizes the system and yields the response :r.c(v,d) = [I+ 
P<j>(v,)Jd. 

Once <I> has been selected, a procedure for obtaining a 
suitable controller is outlined in section 3. The selec-
tion of <I> depends, of course, on the design at hand. In 
many cases, an important consideration for the selec-
tion of <I> is the desire to achieve maximal attenuation 
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of the effects of the disturbance d on the output z. In 
such case, <I> is derived through an optimization proce-
dure. The selection of <I> is not discussed in the present 
note. Rather, we concentrate on the derivation of (1.3) 
and on the internally stable implementation of L 

C 

once <I> has been selected. 

As (1.3) indicates, the basic limitation on the perfor-
mance that can be achieved by internally stable con-
trol of L is imposed by the 'numerator' system P of a 
right coprime fraction representation of L. Indeed, 
apart from the identity, P the only fixed quantity in 
(1.3). 

The present situation is closely analogous to the well 
known linear theory. In fact, the linear counterpart of 
(1.3) played an important role in the formulation of the 
linear theory of optimal disturbance attenuation 
(ZAMES (1981]). 

This note is an abridged version of HAMMER (1992], 
where detailed proofs of all the statements mentioned 
below are provided. It depends on various results on 
fraction representations of nonlinear systems, pre-
sented in HAMMER (1984, 1985, 1987, 1988, 1989a, and 
1989c], DESOER and KABUL! (1988], TAY and 
MOORE (1988], VERMA (1988], SONTAG (1989], 
CHEN and de FIGUEIREDO (1990], PAICE and 
MOORE (1990], VERMA and HUNT (1991], the refer-
ences cited in these works, and others. 

The presentation here is for discrete-time systems. 

2, Backeround and refinements 
As usual, Rm is the set of all m-dimensional real 
vectors. Let S(Rm) be the set of all sequences llo, u 1, ~' 

... of m-dimensional real vectors ll_j e Rm, j = 0, 1, 2, 

Adopting the input/output point of view, a system I: is 
simply a map :E : S(Rm) S(RP), transforming input 
sequences of m-dimensional vectors into output se-
quences of p-dimensional vectors. The image of a 
subset S c S(Rm) through I: is denoted by :E[S], and 
Im L := :E[S(Rm)] is the entire image of the system I:. 

The i-the element of a sequence u e S(Rm) is denoted 
by 14; the list of elements 14, .14+l' ... , U-_j, where j i 0 
are integers, is denoted by u1. Le~ting y := :Eu, the nota-
tion Lu] refers to the elements :fi. 
A system :E : S(Rm) S(RP) is causal (respectively, 
strictly causal) if the following holds. For every pair 
Of input sequences U, V E S(~m) . and for every integef 
j 0 for which the equality = y10 holds, one has :Euf0 
= Lvf0 (respectively, :Eu:r;1 = :EvY;1). Only causal sys-
tems can be implemented in a real-time environ-
ment. Many systems encountered in practice are in 

fact strictly causal. For instance, every system L : 
S(Rm) S(RP) that can be represented in the form 

xk+l = f(xk,uk), 
Yk = h(xk), k = 0, 1, 2, ... , (2.1) 

is strictly causal. When the functions f : Rn xR m --? R0 

and h : Rn RP are continuous, (2.1) constitutes a 
continuous realization of L. The system represented 
by the recursion xk+l = f(xk, uk) is called the input I state 
part of L, and is denoted by L6 • 

A system M : S(Rm) S(Rm) is bicausal if it is 
causal, and if it possesses a causal inverse M-1. We 
shall need the following (see HAMMER (1992] for de-
tails). 

(2.2) LEMMA. Let M : S(RP) S(RP) be a bicausal 
system. Then, for every strictly causal system r : 
S(RP) S(RP), the sum (M - n : S(RP)--? S(RP) is a bi-
causal system.• 

We continue now with review of notation. Let 9 > 0 be 
a real number, and denote by (-9,e]m the set of vectors 
in Rm having all their components in the interval 
(-9,9]. Let seem) be the set of all sequences u E S(Rm) 
satisfying E [-e,e]m for all integers i 0. Then, 
S(em) is the set of all sequences "'bounded' by 9. A 
system :E : S(Rm) --? S(RP) is BIBO (Bounded-Input 
Bounded-Output)-stable whenever there is, for every 
real 9 > 0, a real M > 0 satisfying L[S(9m)] c S(MP). 

For our discussion of stability, two norms are used: the 
!.°°-norm and a weighted !.°°-norm. The !.°°-norm is de-
noted by 1 · I ; for a vector a = (a 1, ... , am) e Rm, it is 
simply I a I := max ( I a 1 I, ... , I am I}. For a sequence u 
e S(Rm), it is given by I u I := sup~ 0 I~ I . The weighted 
t'°-norm is denoted by p, and is given by 
(2.3) p(u) := sup~ 0 2-i I 14 I 

for all u E S(Rm). 

(2.4) DEFINITION. A system :E : S(Rm) S(RP) is 
stable (with respect to the norm p) if it is BIBO-stable, 
and if the restriction :E: scam)~ S(RP) is continuous 
(with respect to p) for every real number a> 0. + 

Another notion that is important to us is (HAMMER 
(1986]). 

(2.5) DEFINITION. A stable system L : S(Rm) --? S(RP) 
is differentially bounded if there is a pair of real 
numbers e, 0 > 0 such that, for every pair of sequences 
u E S(Rm) and '\) E seem), one has I :E(u+u) - :E(u) I $ 9 .• 

The notion of differential boundedness is a weak form 
of uniform continuity with respect to the .f.°°-norm. It 
guaranties that a deviation of less than e in the input 
sequence always causes a deviation of less than 9 in 
the output sequence. 

When several individual systems are combined in to 
a composite system, one has to consider the notion of 
internal stability. A typical composite system 1:(s) 



consists of s individual systems, labeled L1, ... , L8, 
where Li: S(Rm(i)) S(RP<n), i = 1, ... , s. Let u E S(Rm) 
be the external input sequence of the composite system, 
and let y e S(RP) be its output sequence. Let uj e 
smm(j)) be the input sequence of the component :Ei, and 
let yi e S(RP<D) be its output sequence. We introduce s 
signals Ei e S(RmCi>), i = 1, ... , s, with ei being added to 
the input ui as a disturbance. The disturbances are all 
bounded by o > 0, so that in fact Ei e S(om(i)), i = 1, ... , s. 
Let L*s* : S(Rm)xS(omCl))x ··· xS(om<s)) 
S(RP)xS(RP(l))x ··· xS(RP(s)) : (u, E1, ... , E8 ) L*s*(u, E1, 

... , E8
) denote the system induced by the intercon-

nected system L(s) and the disturbances, having the 
input signals u, E1, ... , E8 and the output signals y, y1, 
... , y8, respectively. 
(2.6) DEFINITION. The composite system 1:<s) is 
internally stable if the system 1:*s* is stable. The com-
posite system 1:<s) is strictly internally stable if the 
system 1:*s* is stable and differentially bounded.• 
Internal stability requires boundedness of all inter-
nal signals under noisy conditions, along with conti-
nuity of all internal and external outputs with respect 
to outside inputs and disturbances. 
We turn now to fraction representations. A right frac-
tion representation of a system L : S(Rm) S(RP) is 
determined by three quantities: a subset Sc S(Rq), q > 
0, called the factorization space; and two stable sys-
tems P : S S(RP) and Q : S S(Rm), with Q being a 
set isomorphism, such that L = PQ-1. The fraction rep-
resentation is coprime whenever the stable systems P 
and Q are right coprime (see HAMMER [1985, 1987] 
for coprimeness). 

We shall need some results on right coprime fraction 
representations in which the 'denominator' system is 
bicausal. This depends on the theory of reversible state 
feedback developed in HAMMER [1989b and c]. We 
review now the basic facts, referring to (2.1) and the 
terminology introduced with it. Let L: S(Rm) S(RP) 
be a system having a continuous realization, with in-
put/state part 1: and state dimension q. Close a static s 
state feedback loop around :E to obtain s 

u X. (J' 

Here, cr : RqxRm Rm : (x,v) cr(x,v) is a continuous 
function, serving as state feedback. The state feed-
back function cr is reversible if it is injective in v for 
every state x. The system 1:8 is stabilizable by state 
feedback if there is a reversible state feedback func-
tion cr for which (2. 7) is internally stable. A verifi-
able characterization of stabilizability by state feed-
back is provided in HAMMER [1989b]. It basically 

amounts to a certain nonlinear analog of the linear 
reachability requirement. Stabilizability by state 
feedback is related to the existence of right coprime 
fraction representations with bicausal denominators, 
as follows (HAMMER [1989c]). 
(2.8) THEOREM. Let 1: : S(am) S(RP) be a system 
with the bounded input space S(am), a > 0. Assume I 
has a continuous realization with an input/state part 
that is stabilizable by state feedback. Then, I has a 
right coprime fraction representation L = PQ·1, with Q 
being a bicausal system.• 
An important property of right coprime fraction repre-
sentations is the fact that the denominator system 
contains all the information about instabilities of the 
system, as follows (HAMMER [1985], [1987], [1992]). 
(2.9) PROPOSITION. Let L : S(Rm) S(RP) be a 
system having a right coprime fraction representation 
L = PQ-1, where P : S S(RP), Q : S S(Rm), and Q is 
bicausal. Let D : S(Rr) S(Rm) be any stable and 
causal system for which the composition LD: S(Rr) 
S(RP) is stable. Then, there is a stable and causal 
system <I> : S(Rr) S such that D = Q<j>. • 
Finally, a left fraction representation of a nonlinear 
system 1: : S(Rm) S(RP) is determined by three 
quantities: a subset SL c S(Rr), r > 0, called the factor-
ization space; and a pair of two stable systems T : 
S(Rm) SL and G : Im L SL, where G is a set iso-
morphism, and L = a-1T. 

3 The parametrization 
We refer to (1.1). Let 1: : S(Rm) S(RP) be a strictly 
causal system, and let C : S(Rm)xS(RP) S(Rm) : (v,z) 

C(v,z) represent a causal equivalent controller. 
(Implementations of C are discussed later in this 
section). The output sequence is z = 1:/v,d). 
The present section is divided into two main parts. In 
the first part, we show that when (1.1) is internally sta-
ble, :Ee can be represented in the form (1.3). The second 
part deals with the converse direction; given a repre-
sentation of the form (1.3), we provide a scheme for an 
internally stable configuration that implements it. 
The combination of both parts shows that (1.3) is a 
complete parametrization of all internally stable 
control configurations around the disturbed system I. 

3, 1 Implications of internal stability. 
Assume that the (equivalent) controller C renders 
(1.1) internally stable. We show that then (1.3) is 
valid. It will be convenient to use the notation 

w(v)z := C(v,z); 



Here, 'lf(v) : S(RP) S(Rm) : z H 'lf(v)z = u is simply 
the partial function C(v,). The notation 'If(·) is used 
for the function S(Rm)xS(RP) S(Rm) : (v,z) 'lf(v)z, 
which is identical to C. With this notation, (1.1) can be 
re-drawn in the following alternative form, where v 
is formally regarded as an implicit variable, and d 
as an external input. 

z 

'I' (v) 

The equations that describe (3.1.1) (and whence also 
(1.1)) become 

(3.1.2) z = d + y, 
y = I:'lf( v )z. 

This yields z = d + I:'lf(v)z, or 
(3.1.3) [I - l:'lf(v)]z = d. 

Now, since I: is strictly causal, so is I:'lf(v) : S(RP) 
S(RP) : z L'lf(v)z. Therefore, by Lemma (2.2), [I -
L'lf(v)] is bicausal, and has a causal inverse [I -
I:'lf(v)l 1 : S(RP) S(RP). Thus, (3.1.3) yields 
(3.1.4) z = [I - I:'lf(v)J-1d, 

or I:c = [I - L'Jl(·)l 1. Internal stability of (1.1) includes 
stability of I:c, and whence [I - I:'lf(·)J1 is stable. 

From (1.1) u = C(v,z) = 'lf(v)z, and, by (3.1.4), 
(3.1.5) u = 'Jf(v)[I - L'lf(v)l 1d. 

Define now the system 
(3.1.6) wa(v) := \jl(v)[I - l:'Jf(v)J-1, 

so that d 'l'iv)d = u. Since 'Jl(v) and [I - L'Jf(v)J1 are 
causal, so is v/v). Whence, :Ewa(v) is strictly causal 
by the strict causality of :E. Lemma (2.2) then implies 
that [I + :Ewiv)] is bicausal, and consequently has a 
causal inverse [I+ :E\jla(v)]"1. We claim that 
(3.1. 7) [I + :E\jfiv)J 1 = [I - :E'lf(v)]. 

Indeed, by direct calculation, 
[I+ :E\jl/v)][I - :E'Jf(v)] = I - :E\jl(v) + I:'Jf/v)[I - :E'Jl(v)] 

= I - :E\jl(v) + L'Jf(V) = I, 

where (3.1.6) was used. 

When (3.1.7) is substituted into w(v) = 'l'iv)[I - :E\jl(v)] 
(see (3.1.6)), one obtains 
(3.1.8) 'Jf(V) = wiv)[I + L\jliv)J- 1. 

Since [I - :E'Jf( · )]"1 is stable, (3.1. 7) implies that [I + 
I:\jl/·)] is also stable. Then, I:\jl/v)d = [I + :Ew/v)]d - Id 
is the difference of two stable systems, and whence is 
itself stable. Using (3.1.4) and (3.1.7), one can write 
(3.1.9) z = [I+ I:'Jfiv)]d, 

or :Ec(v,d) = [I+ I:'lf a(v)]d. 

Combining (3.1.5) with (3.1.6) yields 
(3.1.10) u = 'l'/v)d. 

By internal stability of the composite system, the 
transmission from (v,d) to u must be stable. 
Whence, (3.1.10) implies that 'Vi·) : S(Rm)xS(RP) 
S(Rm) is stable. 

Assume next that the given system has a right coprime 
fraction representation I:= PQ· 1 with a bicausal de-
nominator Q : S(Rm) S(Rm). In view of Theorem 
(2.8), this is basically a stabilizability assumption on 
I:. Now, we have noted earlier that I:\jli·) and 'If/) 
are stable. Invoking Proposition (2.9), we conclude 
that there is a stable and causal system <!>( ·) : 
S(Rm)xS(RP) S(Rm) satisfying 
(3.1.11) 'If iv)d = Q<j>(v)d 

for all v e S(Rm) and all d e S(RP). Inserting this into 
(3.1.9), and using I:= PQ·1, we obtain z = [I + P<j>(v)]d. 
This validates the following statement (HAMMER 
[1992]). 

(3.1.12) PROPOSITION. Let I:: S(Rm) S(RP) be a 
strictly causal system having a right coprime fraction 
representation I: = PQ· 1, where the denominator 
system Q : S(Rm) S(Rm) is bi causal. Let C : 
S(Rm)xS(RP) S(Rm) be any causal equivalent con-
troller for which (1.1) is internally stable. Then, there 
is a stable and causal system <I> : S(Rm )xS (RP) 
S(Rm) such that z =[I+ P<j>(v)]d.+ 

Furthermore, the equivalent controller C can be di-
rectly recovered from <j>. Indeed, using (3.1.11) and 
(3.1.8), we have C(v,z) = \jl(v)z = Q<j>(v)[I + I:Q<j>(v)]"1z, 
or 
(3.1.13) C(v,z) = Q<j>(v)[I + P<j>(v)l1z. 

Note that (3.1.13) cannot be implemented as is, since 
this would require an exact model of the denominator 
system Q of I:, and will not be internally stable when 
:E is unstable. 

3.2 Internally stable implementations. 

We discuss now an internally stable implementation 
of the equivalent controller C of (3.1.13). To this end, 
we decompose (1.1) into two nested loops, as below. 



(3.2.1) 

The inner loop controller Ci will internally stabilize 
1:, and the outer loop controller C will complement the 

0 

inner loop to yield an overall equivalent controller 
equal to C, while preserving internal stability. This 
can be viewed as a 'separation method', whereby the 
system L is first stabilized (by the inner loop), and 
then 'tweaked' (by the outer loop) to achieve desired 
performance. 

The inner loop controller Ci needs to satisfy two basic 
requirements: (i) Provide internal stabilization of the 
system I.; and (ii) Facilitate the computation of an 
outer loop controller C0 that leaves the configuration 
internally stable, while complementing Ci to yield the 
equivalent controller C of (3.1.13). These objectives 
are particularly easy to achieve when the controller Ci 
has a left fraction representation of the form 
(3.2.2) Ci(s,z) = G-1(z)[s + Tz] = u, 

where T : S(RP) S(Rm) and G : S(Rm)xS(RP) 
S(Rm) : (u,z) G(z)u are causal and stable systems, 
and the partial system G(z) : S(Rm) S(Rm) : u 
G(z)u is invertible for all z e S(RP). As it turns out, 
many configurations that are used to stabilize nonlin-
ear systems do possess controllers of the form (3.2.2). 
One such configuration is the example below, and oth-
ers are discussed in HAMMER [1992]. 

(3.2.3) EXAMPLE. Consider the loop 

(3.2.4) 

s 
7t u 

cp 

Choose the compensators 1t : S(Rm) S(Rm) 
S(RP) S(Rm) in the special form 

cp = A, 
1t = B-1, (3.2.5) 

d 

and cp: 

where A : S(RP) S(Rm) and B : S(Rm) S(Rm) are 
stable, A is causal, and B is bicausal. Letting Cc1t,<1>) : 
S(Rm)xS(RP) S(Rm) : (s,z) c(7t,q>is,z) = u denote the 

equivalent controller induced by 1t, cp, and the sum-
mer, we obtain 
(3.2.6) Cc1ro1P)(s,z) = 1t[s - cpz] = B-1[s - Az], 

which is of the form (3.2.2) with G(z) := B and T := 
-A. Thus, when 7t and cp internally stabilize (3.2.4), 
we can take Ci:= CC1t,q>) in (3.2.1), and (3.2.2) is satis-
fied. (See HAMMER [1987] for details.)• 

Throughout the remaining part of this paper, we re-
strict ourselves to inner loop controllers Ci of the form 
(3.2.2). 

As discussed earlier, a right coprime fraction repre-
sentation L = PQ·1 with a bicausal denominator Q : 
S(Rm) S(Rm) is available. Given any stable and 
causal system <)>(-) : S(Rm)xS(RP) S(Rm), the con-
struction of controllers C. and C that internally sta-

1 0 

bilize the system and yield the response z = [I + P<)>(v)]d 
proceeds as follows. 

Step 1. Design any strictly internally stable closed 
loop around the system L (see Definition (2.6)), with a 
controller Ci of the form (3.2.2). Then, Ci(s,z) = 
G-1(z)[s + Tz]. 

Note that this step of the design process is concerned 
only with internal stabilization of 1:, and is indepen-
dent of <)>. The same Ci can be used for all q>. 

filell..2.Set 
(3.2. 7) C/v,z) = G(z)C(v,z) - Tz, 

where G and T are from Step 1, and 

(3.2.8) C(v,z) := Qq>(v)[I + P<)>(v)]·1z. + 
It is quite easy to verify that these controllers yield the 
desired response. Reading from (3.2.1), we have 

(3.2.9) 
s = C/v,z), 
u = C/s,z), 

so that u= qcco(v,z),z). 

Using (3.2.2) for Ci we obtain u = G-1(z)[C/v,z) + Tz] = 
G-1(z)[G(z)C(v,z) - Tz + Tz] = C(v,z), and, by (3.2.8), u 
= Q<j>(v)[I + P<j>(v)J-1z. But then, 

z=y+d=Lu+d 
= PQ-1u + d 
= PQ-1(Q<j>(v)[I + P<j>(v)l1z} + d 
= P<j>(v)[I + P<j>(v)J-1z + d 
= (I + P<j>(v)}[I + P<j>(v)l1z - [I + P<j>(v)r1z + Id 
= Iz - [I+ P<j>(v)l1z + d = z - [I+ P<j>(v)l1z + d; 

Canceling the z term on both sides and rearranging, 
we obtain [I + P<j>(v)l1z = d, or z = [I + P<j>(v)]d, as re-
quired. Thus, the proposed configuration achieves the 
desired response. It is in fact also internally stable, as 
follows (HAMMER [1992]). 

(3.2.10) PROPOSITION. Let L : S(Rm) S(RP) be a 
strictly causal system having a right coprime fraction 
representation I, = PQ- 1, with Q : S(Rm) S(Rm) 



bicausal. Let <I> : S(Rm)xS(RP) S(Rm) : (v,d) <j>(v)d 
be any stable and causal system. Let Ci and C0 be 
controllers derived in Steps 1 and 2. Then, Ci and C0 

render (3.2.1) internally stable, and assign to it the 
response z = [I+ Pcp(v)]d. + 

Thus, any response of the form z =[I+ P<j>(v,·)]d can be 
assigned to the system l: by an internally stable con-
trol configuration. Combining this with Proposition 
(3.1.12), we obtain (HAMMER [1992]) 
(3.2.ll)THEOREM. Let l: : S(Rm) S(RP) be a 
strictly causal system having a right coprime fraction 
representation l: = PQ-1 with a bicausal denominator 
Q : S(Rm) S(Rm). Assume that l: can be strictly in-
ternally stabilized by a controller of the form (3.2.2). 
Then, referring to (1.1), the following is true. The 
class of all l:c that can be achieved through internally 
stable control of l: is given by 
(l:c(v,d) = [I+ P<f>(v)]d, <f>(·) is stable and causal}.+ 

Theorem (3.2.11) provides a parametrization of the 
class of all systems that can be obtained from a given 
system l: by internally stable control. An interesting 
consequence of the design procedure of Steps 1 and 2 is 
a 

Separation Principle. Stabilization can be separated 
from performance in the design process. 

Indeed, Step 1 deals exclusively with stabilization, 
whereas Step 2 deals exclusively with performance as-
signment. 
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