
' C 

.j 

r 

INT.J. CONTROL, 1996, VOL. 65, NO. 2,249-276 

On the corrective control of sequential machines 

JACOB HAMMERt 

The paper deals with the design of controllers that correct faulty behaviour of 
sequential machines caused by corrupted inputs. Alternatively, the results can be 
interpreted as the design of controllers that steer a sequential machine from an 
unknown initial condition to a prescribed steady-state course. In these terms, the 
paper characterizes the uncertainties about the initial condition under which the 
prescribed steady-state course can be achieved. The paper is written within the 
input/ output framework of nonlinear control, and is motivated in part by potential 
applications to molecular biology. 

1. Introduction 

In essence, a sequential machine is an entity that operates in a stepwise fashion, 
progressing from one step to the next in response to a stimulus. The stimulus could be 
external (e.g., a change in an input variable), or internal (e.g., a change in an internal 
variable, or a clock tick). Sequential machines are widely used as models for 
computing machinery, manufacturing equipment, traffic control, and many other 
applications. Sequential machines can also be used to model sequences of chemical 
reactions that progress in a stepwise manner (e.g., chain reactions, catabolic pathways, 
etc.). An important application in this context is the modelling of (biological) cell 
function, using the principles of molecular biology. Many of the basic processes that 
govern the operation of cells have a natural sequential structure. Some examples are: 
the Krebs cycle, the transcription of DNA into RNA, the translation of RNA into 
protein, and others. The modelling of various biological phenomena within the 
general framework of automata and language theory has been documented in the 
literature for quite some time (Rashevsky 1948, Sugita 1963, von Neumann 1966, 
Lindenmayer 1968, Kauffman 1969, Rozenberg and Salomaa 1975, IEEE 1974, the 
references cited in these works, and many others). 

The present paper deals with the development of methods for the control of 
sequential machines. It provides techniques for the design of controllers that correct 
undesirable behaviour of sequential machines. The basic motivation is to formulate 
controllers that correct impaired function of biological cells. Control techniques have 
proven successful in a great variety of engineering, physical and physiological 
applications, and, in fact, are naturally invoked in various catabolic pathways (e.g. in 
the synthesis of the amino acids lysine, threonine and isoleucine in mammal cells). 
When combined with sequential models of cells, control techniques offer the prospect 
of providing new insight into the regulation of unacceptable behaviour of cells, such 
as the unrestrained division associated with pre-cancerous or cancerous trans
formations, or other malfunctions of the genetic system. By sequential models of cells 
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we mean empirical input/ output models of cell function. These may include discrete
event approximations of continuous models, which have been created to facilitate 
simulation or control via a digital computer. 

The discussion within the paper is independent of any specific application. We 
simply consider the control of a certain class of generalized sequential machines. 
Nonetheless, we often allude to potential applications to gain insight and motivation. 

The sequential machines that we consider are defined to be suitable for modelling 
chemical or biochemical reaction systems within a medium. Here, each reactant 
molecule ( or molecular complex) in the medium is regarded as a variable, called a 
word. The sequential machine implements the rules of chemistry that govern the 
reaction steps, changing the molecular population within the medium as the reaction 
evolves. Molecules that are externally injected into the medium are regarded as input 
words, whereas molecules (or complexes) present within the medium at the end of a 
reaction step are regarded as output words. The number of molecules within each 
category varies with reaction, step and circumstance, and may, of course, be quite 
large. However, in many systems of interest in molecular biology, the number of 
significant kinds of molecules seems manageable. For instance, the functioning of an 
E-coli bacterium probably involves no more than a few thousand different kinds of 
significant molecules; and the operation of a mammal cell probably involves no more 
than a few hundred thousands of different kinds of significant molecules (Alberts et al. 
1989). The computational complexity involved with the modelling and control of 
sequential machines with thousands or even hundreds of thousands of distinct 
variables is not likely to be much higher than that required, for instance, for detailed 
numerical studies of fluid dynamics. 

We shall regard a sequential machine as a nonlinear system, transforming input 
sequences (or words) into output sequences (or words). We concentrate on sequential 
machines which, due to some 'harmful' or' defective' input words, have embarked on 
an unacceptable course. Our principal objective is to study the existence and the design 
of controllers which, once combined with the system, stear it back to an acceptable 
course. The controllers are combined with the system while the system is operating 
along an undesirable course, and aim to correct the behaviour; Thereupon, we refer to 
this problem as corrective control. We note that the problem of corrective control is 
equivalent to the problem of designing a controller that drives the system from an 
unknown initial condition to a prescribed steady-state course. 

In very broad (and somewhat inaccurate) terms, necessary and sufficient conditions 
for the existence of a corrective controller are determined by an implication of the 
principle of causality. Qualitatively, and quite obviously, a corrective controller exists 
if and only if it is possible to detect a 'harmful' deviation in the behaviour of the system 
before it is too late to correct for it. Of course, this fundamental principle needs to be 
refined and presented in a computable form. In addition, effective techniques for the 
design of corrective controllers, whenever such controllers exist, need to be developed. 
These topics are discussed within the body of the paper. 

A critical factor in our discussion is the fact that the information available about 
the system that needs to be controlled is incomplete. The existence of a corrective 
controller, as well as its design, need to be determined based on this incomplete 
information. For cases where corrective control cannot be achieved due to the lack of 
sufficient data about the system, we consider the question of characterizing the 
'minimal' additional data that need to be provided in order to facilitate the existence 
of a corrective controller. As it turns out, in general, there is no unique answer to this 
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question; the available data can be refined in various 'minimal' ways to facilitate 
corrective control. The class of all data sets that are sufficient for corrective control 
forms a partially ordered set (a poset) which is usually not a lattice. In general, there 
is no data set that constitutes an absolute minimum among all data sets that are 
sufficient for corrective control. Still, local minima exist within the poset, and 
techniques for their computation are discussed in §5. Once the local minima are 
known, an economical data set most convenient for measurement can be selected. 

Although the present paper deals with objects within the general theory of 
automata and languages, the point of view adopted here is mostly within traditional 
control theory; we regard our systems as maps that transform sequences of (discrete) 
inputs into sequences of (discrete) outputs. Still, a background in the basic theory of 
automata, languages and discrete-event systems is helpful in the present context. It can 
be gained from Ginsburg (1962, 1966), Eilenberg (1974), Hoare (1976), Milner (1980), 
Arnold and Nivat (1980), and many other excellent sources. 

The current widely spread interest in discrete-event systems within the research 
literature on systems and control was sparked by a series of papers written by W. M. 
W onham and his coworkers during the early to mid-eighties (Ramadge and Wonham 
1987, Vaz and Wonham 1986, Lin and Wonham 1988, and others). In these papers, 
basic notions of control theory, like controllability and observability, were extended 
into the theories of automata and languages, and were applied to the design of 
supervisors for discrete-event systems. These efforts evolved into a mathematical 
framework based on the theory of formal languages, with co-languages playing an 
important role (Thistle and Wonham 1988, Kumar et al. 1992). The objective in this 
approach is to design a supervisor which, when combined with the system, produces 
a prescribed formal language. The existence of a supervisor depends on whether or not 
the prescribed language is contained within a certain maximal language, which is 
determined by the underlying system and the nature of the observations . These topics 
were further investigated by Cieslak et al. (1988), Cho and Marcus (1989), Ozveren 
and Willsky (1990), and the references cited in these papers. 

For systems with a large number of states, the computational burden required for 
the design of supervisors is rather substantial. Computational aspects of supervisor 
design are discussed by Ramadge (1989), Tsitsiklis (1989), and others. More recently, 
the calculus of predicates was found to provide an alternative framework for the study 
of supervisory control (Kumar et al. 1993). Problems in supervisory control were also 
studied within a Petri net framework (Holloway and Krogh 1990, Sreenivas and 
Krogh 1992). Lastly, various issues related to the problem of stabilization of discrete
event systems were considered by Ozveren et al. (1991). An important difference 
between these results and the corrective control problem discussed in the present paper 
is that here the system that needs to be controlled is uncertain in the sense that its 
history is only partly known. In other words, in the present case the controlled system 
needs to be driven to a desired steady-state response from an initial condition that is 
not precisely known. The main emphasis is on the characterization of the maximal 
uncertainty about the initial condition that still permits the achievement of the 
objective. 

To address the problem of corrective control, we adopt the classical input/output 
point of view of linear and nonlinear control theory. The basic formalism is 
introduced in §2. The remaining sections of the paper deal with the existence and the 
design of corrective controllers. Necessary and sufficient conditions for the existence 
of corrective controllers are derived in§ 3; § 4 deals with the construction of corrective 
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controllers and with a characterization of their capabilities; and § 5 provides a 
characterization of the minimal information that is needed about the system's history 
in order for a corrective controller to exist. 

Finally, to relate the present paper to the state space theory of discrete-event 
systems, we recall that the problem of corrective control is equivalent to the problem 
of designing a controller that drives the system from an unknown initial condition to 
a prescribed steady-state course. This specific problem has not been previously studied 
in the literature on discrete-event systems; but, in classical terms, the solution to the 
problem would depend on a complex interaction between the notions of controllability 
and observability, that would vary with the prescribed steady-state course. In the 
present paper we show that the problem can be treated in a relatively simple way 
through the input/ output theory of nonlinear control systems. The key notion 
required for the solution is the classical notion of causality, that can be conveniently 
handled only within an input/ output framework. Furthermore, input/ output theory 
directly yields the structure of all dynamic controllers that achieve the desired control 
objective. The main result of the paper is a characterization of the uncertainty about 
the initial condition that still permits the achievement of the prescribed steady-state 
course. The set of all possible controllers that achieve the desired objective is also 
provided. 

2. Words, sentences and interpreters 

Consider a finite non-empty alphabet A = {a1, •.. , an}. A word w over the alphabet 
A is a concatenation w = b1 b2 ... bm of a finite number of characters b1, ... , bm of A. In 
a word, the leftmost character is the first and the rightmost character is the last. Denote 
by A* the set of all words over A. The fact that A is non-empty implies that A* has 
infinitely many elements. The alphabet A could be a disjoint union of various 
alphabets. For instance, in biological applications it may represent the disjoint union 
of alphabets consisting of the DNA bases, the RNA bases and the protein bases, as 
well as other important ingredients. 

The term sentence refers to a finite collection of (not necessarily distinct) words. 
The empty set 0 is also regarded as a sentence. We emphasize that a sentence may 
include several copies of the same word. The class of all sentences of words over the 
alphabet A is denoted by SA. It contains infinitely many elements. The cardinality of 
a sentence s is equal to the total number of words within the sentence, counting each 
word according to its multiplicity in s; it is denoted by # s. 

When discussing the inclusion of two sentences s1 and s2 within each other, the 
multiplicity of each word in each sentence is taken into account; The relation s1 c s2 

indicates that all words of s1 are also words of s2 ; for words appearing in multiple 
copies, the number of copies in s1 does not exceed the number of copies in s2 . 

The present paper deals with systems that transform sequences of sentences into 
sequences of sentences. Formally, let S(SA) be the set of all sequences s0 , s1, s2 , ... of 
sentences, where si ES A for all i. The index i is regarded as a step counter; a step may 
or may not be linked to a specific time duration. A list of sentences is any finite or 
infinite set of indexed sentences si, si+l, ... For a sequence s ES( SA) and two integers 
j ~ i ~ 0, we denoted by si the ith sentence of the sequence, and by si the list of 
sentences si, sH1, ... , si; the infinite list si, si+l, si+2, ... is denoted by sf. If j < i, then si 
is the empty set. It is convenient to use the notation (S(SA)){ for the set of all lists 
{si, si+1, ... , sj},j ~ i. 
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In their most basic form, the systems we consider can be described by the following 
notion. A primitive interpreter is a map .E: D-+ S(SA), with a subset D c S(SA) as its 
domain, and S(SA) as its codomain (or range). It is a discrete system that accepts 
sequences of sentences as its input, and generates sequences of sentences as its output. 

It is common to distinguish between two kinds of sequences generated by a system: 
the output sequence, which describes the system's performance; and a monitored 
sequence, which describes measurable quantities generated by the system that are 
constantly monitored and can be used to control the system. In this spirit, we define 
an interpreter as a map .E:D-+S(SA) x S(SA):u1-+.Eu = (y,µ) that generates the two 
sequences y and µ, where y is the output sequence and µ is the monitored sequence of 
the interpreter. In qualitative terms, y describes the 'product' of the interpreter, 
whereasµ describes those parts of the product that are being continuously monitored. 
The monitored sequence contains all the data that are available about the response of 
.E. The pair (y,µ) is called the augmented output sequence of .E. We shall use the 
abbreviation SSA:= S(SA) x S(SA). 

For a subset Sc D and an interpreter .E:D-+SSA, denote by .E[S] the set of all 
augmented output sequences generated by input sequences from S. As usual, Im.E := 
.E[D] is the image of .E. For an input sequence uED and a pair of integers}~ i ~ 0, we 
denote by (.Eu){ the list of augmented output elements zi, ziw . .. , z1, where z:= 1:u is the 
augmented output sequence. 

An interpreter .E can be regarded as a pair .E = (I:
0

, .Em) of primitive interpreters 
I:

0
,.Em:D-+S(SA), where for every input sequence uED the output sequence of.Eis 

given by y = .E0 u, and the monitored sequence isµ= .Emu. The primitive interpreter 
.E

0 
is the output part of .E, and .Em is the monitored part of .E. 
The term autonomous interpreter refers to an interpreter that operates on its own 

with no external input sequence, i.e. an interpreter .E: 0-+ SSA. Autonomous 
interpreters are of particular interest to us, since they require no human operator to 
function correctly. Their output sequence is determined by their structure. 

Consider, for a moment, the case of molecular biology. Here, a word represents a 
molecule or a molecular complex, and a sentence represents a collection of molecules, 
molecular complexes, etc. The interpreter represents the biochemical mechanisms 
which, at each reaction step, transform one set of molecules and molecular complexes 
into another. An input sentence represents a collection of molecules externally added 
to the medium at a reaction step; an output sentence represents a collection of 
molecules left within the medium after a reaction step. A monitored sentence 
represents a collection of molecules or molecular complexes whose presence within the 
medium at a specified step has been ascertained. 

Clearly, a molecule or a molecular complex may be present in more than one copy 
within a collection, and the number of copies is chemically significant. Consequently, 
when sets of molecules and molecular complexes are combined, disjoint unions need 
to be used to preserve all duplicate copies. 

In formal terms, let a, b ES A be two sentences. Denote by a lJ b the disjoint union 
of a and b, i.e. the sentence that consists of the aggregate of all the words of a and of 
b, with all copies of duplicate words included. Similarly, the disjoint unions lJ u of two 
sequences of sentences s, uES(SA), is again a sequence ofsentencesyES(SA), given by 
Yk := sk 0 uk, k = 0, 1, 2, ... 

The notion of causality plays an important role in our discussion, since, for 
interpreters that evolve in time, only causal interpreters are possible. An interpreter 
.E: D-+ SSA is causal (respectively, strictly causal) if, for every pair of input sequences 
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u, v ED and for every integer k ~ 0, the equality u~ = v~ implies that (.Eu)~ = (.Ev)~ 
(respectively, (.Eu)~+i = (.Ev)~+1). These are, of course, the standard definitions. 

Let S c S(S A) be a family of sequences. The value set V of Sis the smallest set of 
sentences V c SA that satisfies skE Vfor all sequences sES and all integers k ~ 0. The 
value set consists of all sentences that may appear at a step of any sequence belonging 
to S. For an interpreter .E = (l:'0 ,.Em):D-+SSA, the value set of Dis called the input 
value set; the value set oflml:' 0 is the output value set; and the value set oflm.Em is 
the monitored value set. 

A set D c S(S A) is a uniform domain if it is entirely determined by its value set V, 
i.e. if it consists of all sequences uE S(SA) satisfying uk EV, k = 0, 1, 2, ... A uniform 
domain is said to be induced by its value set V. 

Let .E: D-+ SSA be an interpreter with the input value set J<0 • When the domain D 
of.Eis uniform, every sentence of J<0 may appear as an input sentence of.Eat any input 
step. When the domain Dis not uniform, some sentences within J<0 are permitted as 
input sentences of .E only at certain input steps. For example, in biochemical 
applications a uniform domain simply means that any combination of relevant 
molecules can be injected into the reaction system at any reaction step, as the case 
usually is. Of course, some of these molecules may create undesirable reactions; a 
control algorithm will determine which molecules are to be injected at each step in 
order to achieve desirable results. 

2.1. Recursive interpreters 

Of particular interest are interpreters that can be characterized through a finite 
recursive structure, as we now discuss. Let X be a finite non-empty set, let 

f:SA x X-+SA x X:(s,X)f--+(fh,x),f/s,x)) 

and h0 , hm: SA-+ SA be functions, and let (s0 , x0) ES A x X be a pair of elements. The list 
(X,f,h 0 ,hm,s 0,x 0) induces an interpreter E:D-+SSA in the following way. For every 
input sequence uED, the augmented output sequence (y,µ) = .Eu is obtained by the 
recursion 

(sk+1, xk+I) = f[(sk U uk), xk] I 
Yk = ho(sk U uk) 

µk = hm(sk U uk), k = 0, 1, 2, ... 

(1) 

The set Xis called the state set of the interpreter .E, and an element of Xis called 
a state. The pair (sk, xk) is called the status of Eat the step k, and (s0, x0) is the initial 
status. Note the distinction between 'state' and 'status'. The output sentence yk 
represents the significant products of the interpreter at the step k. The sentence µk 
represents the products whose presence has been ascertained at step k. 

We refer to (1) as a recursive representation of the interpreter .E; the function/ is 
called a recursion function of E. An interpreter that admits a recursive representation 
is called a recursive interpreter. Throughout our discussion, a recursive interpreter is 
always given together with its initial status (s0, x0), which is regarded as part of the 
description of the interpreter. This, however, does not imply that the status of the 
interpreter is precisely known at a later time when control is initiated. As discussed in 
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the next section, control of the interpreter starts at a step K ~ 0, and the exact status 
of the interpreter at that step may not be known. 

In a biochemical context, the input sentence uk represents the molecules that are 
externally injected into the medium at step k. The sentence sk represents the results of 
reaction step k- 1. The entire set of molecules or molecular complexes present within 
the medium at the step k consists of sk and of the molecules uk injected externally at the 
step, and is given by the disjoint union sk U uk; these determine the results of reaction 
step k, together, of course, with the state xk of the interpreter. The sequence 
s = {s0,s 1,s 2, ••• }ES(SA) is called the internal sequence of I:, and the sequences (Ju is 
called the medium sequence of I:. The internal value set of I: is the set Im};, which 
includes all sentences that may appear as elements of the internal sequences of I:, 
excluding possibly the initial one s0 • 

Finally, (1) represents a time-invariant system, since the step counter k does not 
appear as a separate argument in the recursion. In our biochemical context, this simply 
reflects the (common) assumption that the laws of chemistry do not change with time. 

Remark 1: A comment about compartmentalization. In molecular biology, it is 
known that the effects of certain molecules are restricted to single individual cell 
organelles, whereas other molecules have a broader influence, affecting entire cells, 
entire families of cells or the entire cell population. This situation is referred to as 
compartmentalization; the range of activity of each molecule is described by an 
appropriate compartment, which varies, of course, from molecule to molecule. 
Compartmentalization can be accommodated within the present mathematical 
framework through the use of an addressing scheme. Each word that represents a 
molecule is preceded by an address prefix code that indicates the compartment within 
which it is active. The interpreter I: decodes the address prefix, and restricts the effects 
of the word to the compartment corresponding to that address. In this way, 
compartmentalization becomes a modelling issue, and requires no separate attention 
within the general framework. 

We next discuss several qualitative issues that arise from the definition of a 
recursive interpreter. First, note that the number of words within each one of the 
sentences sk, uk, k = 0, 1, 2, ... , is unspecified and may vary with k. When each word is 
regarded as an input or an output variable, this indicates that the number of input or 
output variables of the interpreter is not fixed, and may vary from step to step. The 
number of characters may vary from word to word. 

The notion of an interpreter is a generalization of the notion of a sequential 
machine. For instance, a single-input single-output sequential machine is obtained 
from the definition of an interpreter by imposing the following four restrictions: 
restrict all words to one character length; fix the cardinalities# sk = 1 and# uk = 1 for 
all k; set µk = yk = sk for all k; and take a recursion function/that is independent of 
sk. Thus, a (standard) sequential machine is a particular case of an interpreter. 

Further, we comment that the definition of a recursive interpreter contains a 
redundancy in the sense that one of the quantities xk or sk can be eliminated. Indeed, 
the pair (xk, sk) can equivalently be regarded either as an internal variable or as a state, 
thus eliminating the need for two separate terms. Nevertheless, from a practical point 
of view, it is convenient to distinguish between the state set xk and the internal set sk, 
since they may represent physically distinct entities. For example, the internal set may 
represent molecules, whereas the state set may represent states of a computing 
machine that implements a control algorithm within the biochemical system. 
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As a final comment on the nature of the definition (1), consider the alternative 
formulation 

(2) 

which seems more general at first glance. Yet the use of an address prefix to distinguish 
between the elements of sk and those of uk in the disjoint union sk (J uk renders (2) 
equivalent to (1). For biochemical systems, (1) seems preferable, since the outcome of 
a reaction step is determined by the molecules present, regardless of whether their 
origin is sk or uk. 

2.2. Control of interpreters 

The basic objective of the present paper is to develop techniques for the control of 
recursive interpreters. Control is achieved by combining a given interpreter E with a 
controller C. The controller generates an input sequences for E, which, in turn, induces 
a desirable output sequence from E. The information available to the controller during 
its operation consists of the monitored sequences of E; in addition to that, the 
controller may be prompted by an external reference sequence v taken from a domain 
Dc c S(SA). Specifically, consider a recursive interpreter E = (Em,E 0 ):D-+SSA given 
by (1), where u is the input sequence and (y,µ) is the augmented output sequences of 
E. The input sequence u of Eis generated by a controller C: (Im Em) x Dc-+ D: (µ, v) 
1-+ C(µ, v) according to 

u= C(µ,v) (3) 

where v E Dc is the external reference sequence of C. (As seen in the next paragraph, the 
external reference sequence v serves as the input sequence of the composite system 
created by E and C.) The controller C is required to be causal. Also, since the 
monitored sentence µk = hm(sk (J uk) may depend on uk, we require C to be strictly 
causal in its first variable; This makes (1) into an explicit, rather than an implicit, 
expression for u, thus simplifying various statements. The input sentence uk+l of E is 
then determined by the sentences µ 0, µ 1 , •.. , µk and v0 , ••• , vk+1 · A controller C(µ, v) that 
is strictly causal in µ and causal in v is called a semistrictly causal controller. 

The combination of E with the controller C is denoted by Ec. It is an interpreter 
Ec:Dc-+SSA:vi-+Ecv = (y,µ) given by the equations 

(y,µ) = Eu 

u= C(µ,v) 

The first equation directly shows that every output sequence of Ec is also an output 
sequence of E, and we have 

(4) 

Note that the controller C needs to operate in synchronization with E (Hoare 
1976). At each step k of E, the controller C needs to inject the sentence uk into the 
medium. This requires coordination between the controller and the interpreter, and is 
an important implementation issue. Its resolution varies from one application to 
another, and is outside the scope of the present paper. 
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A controller C is autonomous if it has no external input sequence v. A semistrictly 
causal autonomous controller is, in fact, a strictly causal map C: Im Em----+ D :µf-+ C(µ) . 
The combination interpreter Ec is then an autonomous system, described by 

(y,µ) = Eu 

u = C(µ) 

Here, C determines the input sentence uk+l of E from the monitored sentences µ0 , µ 1, 

... , µk of E. An autonomous contoller automatically executes the various dynamical 
manipulations necessary to achieve desirable performance, and does not require the 
interference of a human operator. For this reason, it is of major practical interest. It 
is the subject of the next section. 

3. Autonomous corrective control of recursive interpreters 

This section deals with the basic aspects of corrective control of interpreters, using 
autonomous controllers. An important point is the fact that the information provided 
about the interpreters is incomplete. Let E: D----+ SSA be a recursive interpreter with the 
representation (1). Due to a faulty input at an unknown step, the interpreter E has 
embarked on an unacceptable course. Departure from acceptable behaviour has been 
detected, and an autonomous controller C is combined with E at the step K ~ 0 to 
provide correction. The controller C acts as a corrective controller. 

The input history of the interpreter Eup to the step Kat which control initiates may 
not be precisely known. The only information available is that the initial input list u0, 

u1, ... , uK of E belongs to a given subset J(K) c (Dn of possible initial input lists, called 
the initial input set of E. The initial input set J(K) contains all the data available at the 
step K about the input history of E. Clearly, the smaller the set J(K) is, the more 
accurate is the information. At the step K, the interpreter E is combined with the 
(strictly causal) autonomous controller C. The inputs of E from the step K + l and on 
are provided as outputs of the controller C, and are therefore known. 

The combination Ec of E and C sets out on a corrective course, and, assuming that 
correction is effective, acceptable behaviour will commence at a future step. The 
specific step at which acceptable behaviour commences is not specified; rather, 
acceptable behaviour is characterized by specifying a desirable tail for the output 
sequence. The objective is to devise, if possible, a controller C that steers the 
interpreter E from an unacceptable beginning to an acceptable tail of its output 
sequence. The notion of tail needs to be made more accurate. 

A tail of a sequence sf is any subsequence sf, where k ~ i is an integer. A tail set 
is a non-empty set of tails of sequences. A tail set is complete if it contains all the tails 
of each one of its elements. A complete tail set always contains infinitely many 
elements. 

Every tail set Eis associated with a complete tail set E, called the completion of E, 
that consists of all elements of E and all their tails. Clearly, when Eis itself a complete 
tail set, it is equal to its completion. 

As a simple example of completion, consider a single sequence s E S(S A). Then 

T(s):= LJ sf 
k~O 

is a complete tail set, called the complete tail set of the sequences. 
The following proposition is easy to verify. 
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Proposition 1: The intersection of two complete tail sets is a complete tail set, and so 
is the union of two complete tail sets. 

Returning now to corrective control, recall that the interpreter E = (E 0 , Em) 
operates without a controller up to the step x:, at which it is combined with the 
autonomous controller C. During operation, the controller has access only to the 
monitored sequence of E, i.e. to the output sequence of Em. Due to strict causality, 
the first output of the controller C occurs at the step x: + I, and, being autonomous, 
C:(lmEm):i--+(D):i+1· Consider a specific initial input list u0, ••• ,uK of E, and let 
y~ 1 denote the output list of the controller C when E is started from this initial 
input list. The entire input sequence v of E is then given by the concatenation 
v = (u0 , ••• , uK, yK+l' YK+2, ••• ). Clearly, for fixed E and C, the sequence y~ 1 generated 
by the controller can depend only on the initial input list u0 , ••• , uK of E. It will be 
convenient to use the notation 

C{u~} = Y~1 I 
Ec{u~}:= Ev 

Eco{ifo}::_ Eo V 

Ecm{ifo}.-Em V 

(5) 

to denote the response of the controller C and the interpreter-controller combination 
Ee for the initial input list u0 , ••• , uK. We can now formulate our main subject. 

The problem of autonomous corrective control: let E = (E 0 , Em): D--+ SSA be a 
recursive interpreter with an initial input set f (x:), and let T be a complete tail set. 
Devise, if possible, an autonomous controller C: (lmEm):i--+ (D)~ 1 that satisfies the 
following. For every initial input list u~ E f (x:), the complete tail set (T(Ec0{um of 
the output sequence of the interpreter-controller combination satisfies T(Ec0{ifo}) n 
T =i= 0. 

In the above problem the tail set Tis called the target tail set of E; it represents 
'acceptable' or' desirable' behaviour. The controller C is said to steer E from f (x:) to 
T. If a controller C that steers E from f (x:) to Texists, then Tand f (x:) are said to be 
compatible (for the interpreter I:). The issue of compatibility is, of course, of central 
interest to us. 

Remark 2: In essence, the problem of corrective control deals with the control of 
interpreters whose status is not exactly known at the step x: at which control is 
initiated. In our current presentation, the uncertainty about this status is represented 
through an uncertainty about the initial input list of the interpreter, expressed by the 
set f (x:). Alternatively, one could directly describe the indeterminacy of the status at 
the step x: as a set of possible stati. 

A notion analogous to the usual control theoretic notion of reachability is relevant 
in the present context. A complete tail Tis reachable from an initial input list ex E f (x:) 
if there is a sequence uE(D)~ 1 such that T(E 0 au) n T=t= 0. The following statement 
is a consequence of the definitions. 

Proposition 2: Let E = (E 0 ,Em):D--+SSA be an interpreter with the initial input set 
f (x:) and the target tail set T. If Tis compatible with f (x:), then Tis reachable from 
every element off (x:). 

However, it will become clear later that even if Tis reachable from every initial 
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input list e< E f (K), it may still be the case that Tis incompatible with f (K) (see Lemma 
1 below). 

An autonomous open loop controller C for the interpreter E: D-+ SSA is a 
controller that generates a fixed sequence, independent of the response of E, i.e. 
C: 0-+ (D): 1 . Information about E, the initial input set f(K), and the target tail 
set Tis incorporated into the design of C, but no updates about the response of E are 
provided during operation. 

From a practical perspective, open-loop autonomous controllers are quite 
attractive, since they do not require monitoring of the response of E. However, as one 
might expect, the capabilities of open-loop controllers are rather limited. The following 
necessary and sufficient condition for the existence of an open-loop controller is 
directly implied by the fact that such controller can generate only one fixed output 
sequence. 

Proposition 3: Let E = (E 0 ,Em):D-+SSA be an interpreter with the initial input set 
f(K) and the target tail set T. An open-loop autonomous controller that steers E from 
f (K) to T exists if and only if the following holds. There is a sequence w E (D): 1 such 
that,for every list e< E f(K), one has T(E

0 
aw) n T =t= 0. 

The question of whether an open-loop controller is feasible or not depends, among 
other factors, on the size of the initial input set f (K). Consider, for instance, the simple 
case where f(K) contains only one single list e< = ifo, i.e. when exact data about the 
input history of E are available. In this case, Proposition 3 reduces to the statement 
that an open-loop controller exists if and only if the target tail set Tis reachable from 
e<. Yet, in view of Proposition 2, the latter is a necessary condition for the existence of 
any controller that steers E from f (K) to T. Thus, if the input history of E is 
known precisely, an open-loop controller is feasible whenever any other controller 
is feasible. 

However, in most cases of practical interest, the initial input set f(K) contains 
more than just one list (i.e. exact information about the input history of E is not 
available). In many of these cases, different initial input lists require different 
continuations in order to steer E to the target trail set T. An open-loop controller, 
which is capable of generating only one predetermined continuation, would then be 
inadequate. Instead, one would resort to a feedback controller, i.e. to a usual 
autonomous controller C: (Im Em):'-+ (D): 1. We have here a demonstration of the 
well known principle that feedback controllers are necessitated by incomplete ( or 
uncertain) data about the system being controlled. 

Consider an autonomous controller C: (Im Em):'-+ (D): 1 combined at the step 
K ~ 0 with the interpreter E = (Em,E 0):D-+SSA. Let f(K) be the initial input set, 
and let Tbe the target tail set of E. As before, let y:1 = C{u~} be the output list of the 
controller C corresponding to the initial input list u~ E f(K) of E, and letµ:= Ecm {ifo} 
be the monitored sequence of the interpreter-controller combination. The entire input 
list of Eis then v = (u0, ... , uK, YK+I' YK+2, ... ). By the strict causality of C, the sentence 
Yi+1 is determined by the elements µK, µK+l' ... , µ1, for all j ~ K. This justifies the 
notation. 

(6) 

In particular, YK+1 = ( CµK)K+I" By the causality of E, the monitored listµ~ is determined 
by the input list v0 , v1, ..• , v1 of E, so we shall write 

(Em V0 V1 ... v1l:= µ~, j ~ K 
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For each list aE,/(K), let U1(a) be the set of all sequences wE(D)~ 1 satisfying 
T(E

0
aw) n T =I= 0. In other words, U1(a) consists of all continuations of the list a that 

lead E to T. Clearly, a necessary condition for the existence of a corrective controller is 
that U1(a) =I= 0 forall a E ,/(K), i.e. that Tbe reachable from every a E ,f (K). However, 
in general, this condition is not sufficient. The following necessary and sufficient 
condition for the existence of an autonomous feedback controller is basically a 
consequence of strict causality. We shall discuss computable forms of it in subsequent 
sections. 

Lemma 1: Let E = (E
0

, Em): D--+ SSA be a causal interpreter with the initial input set 
,f (K) and the target tail set T. For each a E ,/(K), let Ui(a) be the set of all sequences 
u E (D)~ 1 satisfying T(E

0 
au) n T =I= 0. Then, the following two statements are equivalent. 

(a) Tis compatible with ,f (K) for E. 
(b) There is a function F:,f(K)--+ UaefM U1(a):a1-+F(a) for which the following 

holds. For each pair a, a1 
E ,/(K) and for each integer k ~ K, one has (F(a))k+1 = 

(F(a 1))k+1 whenever (Em aF(a))! = (Em Cl.
1 F(a 1))!. 

Proof: We show first that (a) implies (b). Assume that Tis compatible with ,f (K); 
then, there is a strictly causal autonomous controller C: (Im Em)~--+ (D)~ 1 that steers E 
from ,f (K) to T. Using the notation of (5), the controller C generates, for each a E ,/(K), 
a list v(a):= C{a} E (D)~ 1 satisfying T(E 0 av(a)) n T =I= 0- Clearly, v(a) E Ui(a), and we 
obtain a function F:,f(K)--+ Uaef<K> Ui(a):a1-+F(a):= v(a). Now, let k ~ K be an 
integer, and let a, a1 E ,/(K) be two lists for which (Em aF(a))! =(Ema' F(a 1))!. Then, 
using the strict causality of C and (6), we have (F(a))k+l = (C(Em aF(a))!)k+l = 
(C(Em a1 F(a 1))!)k+l = (F(a 1))k+1' and the final part of the Lemma is necessary. 

To prove the converse direction, i.e. that (b) implies (a), assume that (b) holds. 
Using (b), we construct an autonomous strictly causal controller C that steers E from 
,f(K) to T as follows. First, some notation. Let Vm be the monitored value set of E. 
Given an integer j ~ K and a list of sentences PK, ... , P1 E Vm, let E(PD be the (possibly 
empty) class of all elements aE,/(K) satisfying (EmaF(a))~ = P{, where Fis the 
function of (b). By (b) one has (F(a))m = (F(a1

)) 1+1 for all pairs a, a1 E E(PD-This 
allows us to define a map C: (Im.Em)~--+ (D)~ 1 in the following way. For every integer 
j ~ Kand for every list PK, ... , P1 E Vm set ( CPD1+1 := 0 if E(PD = 0; otherwise, pick any 
element a E E(PD, and set 

(CP!\+1:= (F(a))1+1 

The map C is clearly strictly causal. Furthermore, in terms of the notation of (5), the 
combination Ee satisfies Ec{a} = EaF(a) for every a E ,/(K). Since F(a) E U1(a), it 
follows that T(Ec0{a}) n T =I= 0 for all a E ,/(K); whence, the controller C steers E from 
,f(K) to T. D 

We summarize separately the structure of the controller C derived in the above 
proof. 

Corollary 1: Let E = (E 0 ,Em):D--+SSA be a causal interpreter having the initial input 
set ,f (K) and the target tail set T. Let Vm be the monitored value set of .E. Assume that 
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the condition (b) of Lemma 1 holds. For every integer j ~ K, and for every list of elements 
A, ... ,PiE Vm, let E(/11,.) be the class of all elements r.1.E /(K) satisfying (Em r.1.F(a)t = g 
Then, the assignment 

(C/11,.) ·= {0 if E(PD = 0 
K i+l" (F(a))m' otherwise, where r.1.EE(PD 

induces a strictly causal controller C: (Im.Em):'-+ (D): 1 that steers E from /(K) to T. 

In subsequent sections we shall see that a computable and implementable 
construction can be directly derived from the Corollary in cases of practical interest, 
where appropriate finiteness requirements hold. 

4. Compatibility of target sets 

Up to this point, the discussion has been on a rather general level, without regard 
to whether the various quantities or computational procedures are finite or infinite. In 
this section, we focus our attention on cases of practical interest, which are inherently 
of a finite nature. This will allow us to develop implementable forms of corrective 
controllers. The following notion is instrumental. 

Definition 1: An interpreter E: D--+ SSA is bounded if it has a recursive representation 
of the form (1) with a finite state set, and if the following hold: the domain D is 
uniform; and the input, internal, monitored and output value sets of E are all finite. 

Our discussion of the corrective control of bounded interpreters depends on 
certain periodic properties, which we now examine. A sequence sES(SA) is ultimately 
periodic if there is a pair of integers rt ~ 0, r > 0 such that si+, = si for all i ~ rt. The 
smallest such integer r is called the ultimate period of the sequence; the first such 
integer rt indicates the step at which periodicity commences. If rt= 0 the sequence is 
periodic. The following simple conclusion is closely related to a well known property 
of finite automata. 

Proposition 4: The augmented output sequence of a bounded autonomous interpreter 
E: 0--+ SSA is ultimately periodic. Its period does not exceed n:= ( # Jt;) ( # X), where Jt; 
is the internal value set of E, and Xis its state set. Furthermore, periodicity commences 
within the first n steps . 

Proof: Being a bounded autonomous interpreter, E has a recursive representation 

(sk+1, xk+1) = f(sk, xk) I 
Yk = ho(sk) 

µk = hm(sk), k = 0, 1, 2, ... 

(7) 

Note that E has no input sequence, since it is autonomous. Now, let Jt; be the internal 
value set of E, and let Xbe its state set, both of which are finite sets by the boundedness 
of E. Then, the set 

{(s,x):sE Jt;,xEX} 

is clearly finite, containing only(# Jt;)(# X) points. This implies that the sequence of 
pairs (s0, x 0), (s1, x1), (s2, x2), ••• must have two identical elements in it, separated by at 
most ( # Jt;) ( # X) steps. In other words, there is a pair of integers m ~ 0, r > 0 satisfying 
(sm, xm) = (sm+,, xm+,), with m, r ~ ( # Jt;) ( # X). However, the recursion (7) implies that 
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(sm+i' Xm+j) = (Sm+,+1' Xm+Hj), Or (s(m+j)' Xcm+j)) = (s(m+j)+T' X(m+j)+,), for all integers j ~ 0. 
Thus, the sequence (s0 , x0), (s1 , x1), (s2, x 2), ••• is ultimately periodic with a period 
not exceeding r, and its periodicity commences at a step no later than m, where 
m, r ~ (# ~(# X). Since the augmented output sequence of Eis determined here 
bys through the equation (y, µ) = (h0 (s), hm(s)), the assertion follows. D 

Consider now a bounded interpreter E with a target tail set T that is compatible 
with the initial input set f (K) of E, and let C be a corrective controller that steers E 
from f (K) to T. The combination of C with E operates as an autonomous interpreter, 
and generates a tail tE T. Now from a practical perspective the only case of interest is 
the one where the interpreter-controller combination Ec constitutes a bounded 
interpreter; otherwise, the controller would not have a finite implementation. When Ec 
is bounded, Proposition 4 implies that t must be ultimately periodic; thus, we may 
restrict our attention to target tail sets that consist entirely of ultimately periodic 
sequences. Furthermore, ultimately periodic sequences always have periodic tails, and 
whence it suffices to consider target tail sets that consist of periodic tails only. This 
leads to the following definition. 

Definition 2: A bounded target tail set is a complete tail set that consists of all tails 
of a finite collection of periodic sequences. 

An autonomous controller that steers a bounded interpreter I towards a bounded 
target tail set has to generate an input sequence for I: that elicits from E an ultimately 
periodic output sequence. We examine next some simple properties of input sequences 
that generate ultimately periodic output sequences of (non-autonomous) bounded 
interpreters. 

It is quite easy to construct an example of a (non-injective) bounded interpreter 
E: D -+ SSA where an ultimately periodic output sequence is generated by an input 
sequence that is not ultimately periodic. For instance, consider a constant interpreter 
I:: D -+ SSA that produces the constant output sequence a, a, a, ... for every input 
sequence, and that has a uniform domain D whose value set contains at least two 
distinct sentences. Then the output sequence of E is clearly periodic for every input 
sequence; since D contains sequences that are not ultimately periodic, we see that an 
ultimately periodic output sequence can be generated by an input sequence that is not 
ultimately periodic. The next statement indicates, however, that, for a bounded 
interpreter, one can always find an ultimately periodic input sequence that generates 
any given ultimately periodic output sequence. 

Proposition 5: Let E = (E 0 ,Em):D-+SSA be a bounded interpreter. For every 
ultimately periodic output sequence wElmE 0 , there is an ultimately periodic input 
sequence v ED satisfying w = E 

O 
v. 

Proof: Let uED be an input sequence for which the output sequence w:= E 0 u is 
ultimately periodic. Since w is ultimately periodic, there is a pair of integers 17 ~ 0, 
r > 0 such that 

(8) 

for all integers i ~ 17. Let x be the sequence of states induced by u, and lets be the 
internal sequence. Since Eis recursive, we have 

(sk+l' xk+1) = f[(sk U uk), xk] 

wk = ho(sk LJ uk), k = 0, I, 2, ... (9) 



Corrective control of sequential machines 

Consider the sequence of triples 
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(10) 

Let Ji; be the internal value set, let X be the state set, and let ~n be the input value set 
of L. By the boundedness of L, the set Ji;, X, and ~n are finite. Consequently, the set 
of triples 

{(a, b, c) I aE Ji;, bEX, and CE ~n} 

has finite cardinality () ~ ( # Ji;) ( # X) ( # ~n). Applying this fact to the sequence (10), it 
follows that there is a pair of integers m > n ~ 0, where (m-n) ~()and n ~ e, such 
that 

(11) 

Since wi+r = wi for all integers i ~ r,, we also have 

(12) 

Define now the concatenated input sequence 

(13) 

which is clearly ultimately periodic. Since Dis a uniform domain, v ED. Apply v as an 
input sequence of L, denoting by a the resulting internal sequence; by<; the resulting 
sequence of states; and by OJ the resulting output sequence. Since a recursive 
interpreter is defined together with its initial status, we have 

(14) 

The recursive representation of L yields 

(ak~' <;k+l) ~ fl(ak U ~), <;k] } 
OJk - hoCak U vk), k- 0, 1,2, ... 

(15) 

From (13), we obtain that vz+mr-1:= u 6+mr-1, which, together with (14) and (15), yields 

c;z+mr = _xz+mr 

ai+mr = si+mr 
(16) 

and 
(17) 

Assume now for a moment that 

~+[n+(i+l) (m-n)]r = sJ.+mr 
11+[n+t(m-n)]r 11+nr (18) 

for all integers i ~ 0. Then, in view of (13), it follows that 

(a lJ v)ll+[n+\i+l)(m-n)]r-1 = (s lJ u)11+mr-l 
11+[n+i(m-n)]r 11+nr 

for all integers i ~ 0. Since OJk = hoCak (J vk) for all k ~ 0, we obtain that 

OJ,,+[n+(i+l)(m-n)]r-1 _ ~+mr-1 
11+[n+i(m-n)]r - 11+nr 

for all integers i ~ 0; in view of (8) and (17), this shows that OJ = w, and w can be 
generated by the ultimately periodic input sequence v. (Note, however, that the pair 
(a,<;) may not be identical to the pair (s, x)). Thus, our proof will conclude upon 
proving (18). 
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We prove (18) by induction. Simultaneously, it will be convenient to also show that 

c;,,+[n+(i+l) (m-n)]T = x,,+nr (19) 

for all integers i ~ 0. Consider first the case i = 0. By (16), we have, in particular, that 
d,(!:TT = s~!:: and that c;,,+mT = x,,+mT' When the latter is combined with (11), we obtain 
c;,,+mT = x,,+mT = x,,+nr· Whence, (18) and (19) hold for the case i = 0. 

In preparation for induction, assume that (18) and (19) hold for the case 
i = j. Then, a,,+[n+(j+l)(m-n)]T = s,,+nT and c;,,+[n+(j+l)(m - n)]r = x,,+nr; and, by (13), 
v11+[n+<~+2><m- n>Jr- 1 = u11+mr-1 This shows that the recursion (15) over the interval 11+[n+(J+l) (m- n)]T 11+nT · 

k = 17+[n+U+ l)(m-n)]r, ... ,17+[n+U+2)(m-n)]r-1 is identical to the 
recursion (9) over the interval k = 17 + nr, ... , 17 + mr-1. Thus, both recursions yield the 
same result, i.e. 

(20) 
and 

(21) 

However (20) is (18) for the case i = j+ l; and (21) together with (11) show that 
c;,,+[n+(j+2)(m - n)]r = x,,+mT = x,,+nT' which is (19) for the case i = j+ I. By induction, this 
corroborates the validity of (18) and (19) for all integers i ~ 0. In view of earlier 
remarks, the proof of the Proposition is now complete. D 

The proof contained the following bound on the period of the ultimately periodic 
input sequence of Proposition 5. 

Corollary 2: In Proposition 5 the period of the ultimately periodic input sequence v does 
not exceed r( # v;) ( # X) ( # T<n), and periodicity of v commences no later than step 
17 + r( # v;) ( # X) ( # T<n). Here, r is the period of the output sequence w, and the periodicity 
of w commences at the step 17; also, Xis the state set, Ji; is the internal value set, and T<n is 
the input value set of the bounded interpreter I. 

We next examine some basic properties of tail sets of periodic sequences. Let 
c:= {u0, u1 , ... , uT_1} be a list of sentences u1E SA,j = 0, 1, ... , r-1. Using concatenation, 
we create from the list c the periodic sequence x(c):= ccc ... A cycle of x(c) is any 
cyclic permutation of the list c, i.e. c itself or any list of the form {u1, ui+I• ... uT_1, 

u0 , u1 , •.• , ui_1},jE {1, ... , r-1}. Despite some abuse of notation, it will be convenient to 
denote every cycle of x( c) by the letter c. The length of the cycle c is r in the present case. 
Given several lists c1, c2, ••• , cm, we denote by 

i - 1, .. . , m 

the union of all respective periodic sequences. By definition, every bounded tail set is 
of the form X(C1 , C2 , .. . , Cm) for some cycles C1 , . .. , Cm. 

4.1 . Basic properties of corrective controllers 

Our next objective is to derive necessary and sufficient conditions for the 
compatibility of an initial input set f(K) with a bounded target tail set, namely, with 
a target tail set of the formx(c 1 , c2 , • • • , cm). We start with the case where m = 1, i.e. with 
the problem of steering r from f(K) towards one specific periodic tail x(c). 

When x(c) is compatible with f(K), there is, by definition, an autonomous 
controller that steers r from f(K) to x(c). The next statement shows that such a 
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controller can be constructed so that its own output sequence also is ultimately 
periodic. This basically guarantees that the controller is implementable. The 
implementation issue is discussed later in this section. 

Lemma 2: Let J;:D-+SSA be a bounded interpreter with initial input set f(K), input 
value set i,,;n, internal value set Ji';, and state set X. Assume that x(c) forms a target tail 
set that is compatible with f(K), and let r be the length of the cycle c. Then there is a 
strictly causal autonomous controller C0 that steers J;from f(K) to x(c) and satisfies the 
following conditions for every element a E f (K). 

The output sequence Co{a} of the controller is ultimately periodic. 
The period r 0 of Co{a} satisfies r 0 ~ r{(#v;}(#X)(#i,,;n) 2}<*.f(K)>, and periodicity of 

Co{a} commences by the step r;0 ~ K+ 1 +{(# ,:.,;)(# X)(# i,,;n)2}<*.f(K)>. 

Proof: Since x(c) is compatible with f (K) there is, by definition, a strictly causal 
autonomous controller C: (Im J;m):'-+ (D)~ 1 that steers J; from f (K) to x(c). Our 
objective is to show that in such case a controller C0 satisfying the Lemma also exists. 

For every a E f (K), denote by C{a} the sequence generated by the controller C for 
the initial input list a. (Recall that C{a} starts at the step K+ 1.) Let J;m be the 
monitored part of r. Then, by the strict causality of C, the following holds. For every 
pair a, a' E f(K) and for every integer k ~ K, one has 

(C{a})!!i = (C{a'})!!i whenever (J;m aC{a})! = (J;m a'C{a'})! (22) 

The interpreter r, being bounded, has a recursive representation (1), with internal 
sequences, state sequence x, monitored sequenceµ, and output sequence y. For every 
aEf(K), let s(a), x(a), µ(a) and y(a) be the respective sequences generated by the 
recursive representation of J; when J; is driven by the concatenation aC{a}. Since C 
steers J; to the periodic tail x(c), the sequence y(a) is ultimately periodic with cycle c. 

Let i,,;n be the input value set, let Ji'; be the internal value set, and let X be the state 
set of r. By the boundedness of r, these sets are all finite. Consider the quintuple 

q(a)k:= (s(a)k, x(a)k, µ(a)k,y(a)k, (C{a})k+1) 

for fixed a E f(K) and k ~ K. Note that (C{a})k+l E i,,;n, and that, according to (1), µ(a)k 
and y(a)k are both determined by s(a)kE Ji'; and by uk = (C{a})kE i,,;n. Thus, the total 
number of possible distinct quintuples q(a)k cannot exceed 

p:= (# Ji';)(# X)(# i,,;n)2 (23) 

The cardinality n of the initial input value set f (K) must clearly satisfy n ~ 
(# i,,;ny+i. Let a 1 , ... ,an be the elements of f(K). For every integer k = K,K+ 1, ... , 
define the list of n quintuples 

L1k:= {q(al)k, q(a2)k, • • •, q(an)k} 

By (23), the total number r of possible lists L1 k' for each integer k, satisfies 

r ~ n*:= {(# ,:.,;)(# X)(# i,,;n)2}n (24) 

Let r;(a) be the step at which periodicity of y(a) commences, and let r be the period of 
x(c), which is also the ultimate period of y(a). Denote 

r;:= max {r;(a1), ... , r;(an), K} 

and consider the subsequence A,,, L1,,w A,,+2,, ••• In view of (24), there is a pair of 
integers m > p ~ 0, (m-p) ~ n*, such that L1,,+m, = L1,,+p,· 
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Consider the list L1z+pr-1, which is non-empty only when 17+pr-l ~ K. We 
construct a list A as follows. 

If [(17+pr-l)-K] ~ n*, set A:= L1z+pr- 1
. 

If[(17+pr-l)-K] > n*, there must be a pair of integers}> i, where (17+pr- l) ~ 
j > i ~ K, for which L1i = L1r Construct a new list A1 := {L1K, L1K+1, ... , Ai, L1i+1 , ... , L1,,+pr- i} 
by omitting L1i+1, ... ,L1j; the number of elements in the list A1 is given by a 1:= 
(q + pr- 1 )- K-U- i). If a 1 > n*, repeat the same process on A1 to obtain a list A2 , and 
then on A2 to obtain a list A3 , etc., until a list Aq is obtained whose number of elements 
aq satisfies aq ~ n*. Then, set A:= Aq. 

With the list A, use concatenation to construct the sequence 

(25) 

the elements of this sequence are renumbered consecutively as c5K, c5K+l' c5K+2, ••• , where 
each element c51c is a list of n quintuples that we denote by 

c51c = {(sia1)1c, xia1)1c, µia1)1c,Yia1)1c, ( C" a1)1c+1), (sia2)1c, xia2)1c,µia2)1c, 

yia2)1c, (Cr5a2)1c+1), ···, (sian)1c, xian)1c,µian)1c,Ylan)1c, (Cr5an)1c+1)} 

Apply now the sequence (Ciai))K+l' (Ciai))1c+2, ... as an input sequence for E with 
the initial input list ai. From our construction and the recursive representation (1), it 
follows that the output sequence of E becomes y i ai), the state sequence is xi ai), and 
the monitored sequence is µiai), for all i = I, ... , n. Based on the fact that the original 
output sequence y(ai) is ultimately periodic with cyclic c, our construction implies that 
yiaJ is also ultimately periodic with cycle c for all i = I, ... , n. 

Consider the assignment 

(26) 

In view of (22) and (25), it follows by construction that for all a, a' E f(K) and for all 
integers k ~ K 

(Cia))!!f = (Ca(a'))!!f whenever (Em aCia))! = (Em a'Cia'))! 

Whence, by Corollary 1 the assignment (26) induces a strictly causal controller 
C": (Im.Em):-+ (D):i.1 . As indicated earlier, the sequence Cia), when used as the 
input sequence of E with the initial input list a E f (K), elicits from .E the output 
sequence yia), and yia) is ultimately periodic with cycle c. Consequently, C" steers E 
from f (K) to x(c). Finally, (25) shows that, for all i = I, ... , n, the sequence Ciai) 
is ultimately periodic, with period not exceeding (m-p)r ~ n*r, and periodicity 
commencing by the step aq ~ n*. Thus, the controller C" satisfies the Lemma with 
r" ~ rn* and""~ K+ 1 +n*. D 

As we can see, the complexity of the controller C" increases exponentially with the 
uncertainty about the initial input list of .E, described by# f (K). 

The technique employed in the proof of Lemma 2 can be used to derive a finite test 
that determines whether or not there exists a corrective controller that steers .E from 
f(K) to the periodic tail x(c). To this end, let E = (E

0
,Em):D--+SSA be a bounded 

interpreter with the input value set ~n, the internal value set JI;, and the state set X. Let 
f(K) be the initial input set of E, and let the periodic tail x(c) be its target tail set. Let 
r be the length of the cycle c, and define the integers 

B:= r[( # JI;) ( # X) ( # ~n)2]<* .f(K))} 
v:= [(# Ji';)(# X)(# ~n)2]<*.f(K)) 

(27) 
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Let e ~ K be an integer. For each pair of elements aE,/(K) and uE(D)~:i, let y(au)k, 
µ(au)k, s(au)k, and x(au)k be the output, monitored, internal and state sentences, 
respectively, induced by the input list au at the step k, k = 0, ... , B + I. For each integer 
k = K, ... , s, define the quintuple 

(28) 

The following statement provides a finite test to determine whether or not x(c) is 
compatible with f (K). 

Proposition 6: Let x(c) be a periodic tail with period r, let(} and v be given by (27), and 
use the notation of (28). Then, x(c) is compatible with f(K)for the bounded interpreter 
I: D-+ SSA if and only if,for every element a E f (K), there is a list u(a) E (D)Z!f+v+i that 
satisfies the following. 

(a) There is an integer y > 0 such that (Q(au(a)))K+O+v-YT = (Q(au(a))t+o+v; the list 
(y(au(a)))Z!~!~-y, consists of y cycles c; and B+v-yr ~ 0. 

(b) For each pair a, a' E,/(K) and for every integer k = K,K+ I, ... ,K+B+v, one has 
(u(a))!!i = (u(a'))!!i whenever (µ(au(a)))! = (µ(a'u(a')))!. 

According to the Proposition, in order to test whether or not x(c) is compatible 
with f (K), one would simply search over all pairs a E f (K) and u E (D)Z!f+v+1 to find if 
lists u(a), a E f (K), that satisfy conditions (a) and (b) of the Proposition exist. Note that 
for each u and a the entries of Q can be computed directly from the recursive 
representation (1) of I. Since the input value set ~n is finite, the search is finite, and can 
be executed by computer. 

Proof: Assume first that x(c) is compatible with f (K). Then, setting u(a):= 
(Cia})Z!f+ 0+1, where C6 is the controller constructed in the proofofLemma 2, it follows 
directly that (a) and (b) are satisfied. 

Conversely, assume that (a) and (b) hold. For each element a E f (K), consider the 
concatenated input sequence 

( ) ._ ( (N))K+8+v+ 1 ( ( ))K+8+v+ 1 ( ( ))K+8+v+ 1 
V (1. .- U ""' K+l U (1. K+B+v+l-y, U (1. K+O+v+l-y, · · · (29) 

In view of (a) and the proof of Lemma 2, the output sequence Io(av(a)) is ultimately 
periodic with a cycle c. Furthermore, in view of the Proof of Lemma 2, condition (b) 
implies that the assignment 

C{a}:= v(a) (30) 

induces a strictly causal autonomous controller C that steers I from f(K) to x(c). 
Whence, x(c) is compatible with f (K). D 

Proposition 6 shows that, for a bounded interpreter I, the question of whether or 
not a periodic target tail set x(c) is compatible with the initial input set f (K) is a 
decideable question. The description of the controller given by (30) is not directly 
suitable for implementation, since it refers to the initial input list a, which is not given. 
An implementable representation of a corrective controller is provided later in this 
section. 

Proposition 6 can be directly generalized to provide the following finite test for the 
compatibility of any bounded target tail set with the initial input set f(K). The proof 
is similar to that of Proposition 6. 
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Theorem 1: Let I:: D--+ SSA be a bounded interpreter, with input value set J<n, internal 
value set Jt;, state set X, initial input set f(K), and bounded target tail set x(c 1 , ... , cm). 
Let ri be the length of the cycle ci. Denoter:= max{r 1, ... , rm}, and, with this value of r, 
let() and v be given by (27). Then, the target tail set x(c 1 , ... , cm) is compatible with f (K) 
for I: if and only if,for each element aE f (K), there is a list u(a) E (D); ! f+u+i that satisfies 
the following. 

(a) There is an integer y > 0 and a cycle ci E {c1 , ... , cm} such that (Q(au(a)))K +B+v-yri = 
(Q(au(a)))K+B+v; the list (y(au(a)))~!i!~-yri consists of y cycles ci; and e+v - yri ~ 0. 

(b) For each pair a, a' E f (K) and for every integer k = K, K+ 1, . .. , K + e+ v, one has 
(u(cx))!!i = (u(cx'))!!i whenever (µ(au(a)))! = (µ(a'u(a')))!. 

Note that the integer yin Theorem 1 may depend on the element aEf(K). 
The theorem provides a finite test that determines whether or not the target tail set 

x(c1, ... , cm) is compatible with f(K). The test is performed by searching among all lists 
uE (D)~!f+v+1 forlists u(a) that satisfy conditions (a) and (b) of the Theorem. The search 
can be programmed on a digitial computer. 

Theorem 1 can also be used to characterize the class of all bounded tail sets that are 
compatible with the given initial input set f (K). Of course, altogether, there may be an 
infinite number of bounded target tail sets that are compatible with f (K). To avoid the 
need to deal with infinite sets, these can be divided into finite families as follows. 

Consider a target tail of the form x(c 1 , ... , cm}, and let ri be the length of the cycle 
ci, i = 1, ... , m. A slight reflection shows that the number of distinct cycles that can be 
induced by an autonomous controller C in combination with an interpreter J; cannot 
exceed the number of initial input lists contained in f (K). Consequently, we can 
restrict our attention to the case m ~ # f (K). Let <fJ(I:, r) denote the class of all 
bounded tails x(c 1, ..• , cm) that are compatible with the initial input set f (K) for I:, 
where m ~ # f(K) and ri ~ r, 1 = 1, ... , m. The class <fJ(I:, r) can be derived directly 
through Theorem 1, by searching over all possible candidates, of which there is only 
a finite number for each r. Once the class <fJ(I:, r) is known for the largest r of interest, 
a desirable target tail set that is compatible with J; can be selected from it, if one exists. 
This approach to selecting a target tail set is usually more practical than an arbitrary 
prespecification of the target tail set, which might turn out to be incompatible with the 
initial input set of I:. 

In analogy with (29) and (30), the following formula can be readily shown to 
provide the response of a strictly causal autonomous controller that steers J; from 
f (K) to X(C1, ... , cm). 

Lemma 3: Assume that a class of lists {u(a)}, CXE f(K), satisfying conditions (a) and 
(b) of Theorem 1 exists. Then, in the notation of the Theorem, the controller C with the 
response 

C{IV} _ ( (N))K+B+v+l ( ( ))K+8+v+l ( ( ))K+8+v+l 
1J1. - U 1J1. K+l U C( K+8+v+l- yr1 U C( K+8+v+l-yr1 • • • 

for all a E f (K), is a strictly causal autonomous controller that steers I: from f (K) to 

x(c1, •••,cm). 

The formula provided for the controller by Lemma 3 is not in implementable form, 
since it includes a reference to the initial input list ex. We consider next the derivation 
of an implementable formula for the corrective controller. To this end, we shall need 
to reformulate some of our results into a somewhat more algebraic form. 
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4.2. Input/ output formulae for the controllers 

Let E = {E0 , Em):D-+ SSA be a bounded interpreter with the initial input set f(K). 
Let l<n be the input value set of E, let Ji'; be its internal value set, and let Vm be its 
monitored value set. By causality, the monitored sentence µk generated by Eat the step 
k is determined by the input values u0, u1, ••• , uk of E. To emphasize this fact, we use 
the notation 

We define a family of functions {aK+i}~0 , where aK+i is a function f (K) x Cl<n)i-+ 
(ImEm)~+i given by 

The family of functions {aK+i}~0 is, of course, directly determined by the monitored 
part Em of E. 

In general, given two functionsf:A-+B and g:A-+ C, it is said that the function! 
factors over the function g if there is a function h: C-+ B such that f = hg. As is well 
known, the functionffactors over the function g if and only if every equivalence class 
of the equivalence kernel of g is contained within an equivalence class of the 
equivalence kernel off (MaClane and Birkhoff 1979). In intuitive terms, this means 
that f must be constant over all sets over which g is constant. 

For every integer i ~ 0, let <PK+i+1 be the family of all functions </J: f (K) x (J<n)i-+ l<n 
that factor over the function aK+i· Namely, a function </J:f(K) x CJ<n)i-+ l<n belongs to 
<PK+i+l exactly when there is a function 'If: (Im Em)~+i-+ l<n satisfying 

(31) 

When the interpreter Eis bounded, it follows by the finite cardinality of all value sets 
that, for each integer i ~ 0, the family <PK+i+l contains only a finite number of members. 
These members can all be computed for a given i from the equivalence kernel of the 
function aKw as follows. Let the equivalence kernel of aK+i consist of e equivalence 
classes e1, ... , ec Then, <PK+i+1 has{# l<nY members; each member of <PK+i+1 is obtained 
by choosing e (not necessarily distinct) sentences a1, •.. , ae E J<n, and defining a function 
</J by setting </J(b):= ai for all b E ei, i = 1, ... , e. 

Let r:J. E f(K) be an element, and let ¢1 , ... , ¢5 be a list of functions, where <Pi E <PK+i 
for all i = 1, ... ,j. Define the concatenation 

u(r:J.<P1 · · · </J;):= uK+l · · · uK+i 

where uK+1 := </Ji{r:J.) and, given uK+i for some integer i ~ 1, i <j, set uK+i+1 := 
</Ji+l(r:J.u1 ••. uJ It is convenient to use the notation ¢:= </J1 ••. ¢1 for the combined 
function, and u(r:J.</J):= u(r:J.</)1 ..• </)1). We also denote by 

</JU):= {</J = <P1 <P2 •.. <Pm I <Pi E <PK+i' i = 1, ... ,j+ l} 

the family of all such combined functions. For a pair of elements r:J. E f (K) and </J E <PU), 
let (x(r:J.</J))k:= (x(r:J.u(r:J.<j))))k,k = 0, ... ,K+j+ 1, be the states generated by the input list 
r:J.u(r:J.</J); and similarly for the other relevant lists. Denote 

as in (28). Then, the next statement is a reformulation of Theorem 1. 



270 J. Hammer 

Corollary 3: In the notation of Theorem 1, the bounded target tail set x(c 1 , ... , cm) is 
compatible with the initial input set f(K) for E if and only if there is a member 
tpE<P(fJ+v) that satisfies the following. For each element r:xEf(K), there is an integer 
y > 0 and a cycle ciE{c1, ... , cm} such that 

(a) Q(r:x</J),.+e+v-yrt = Q(r:x¢),.+ew where fJ+v-y,i;??; 0 and Q(r:x</J) is given by (32); and 

(b) the list (y(r:x</J)t!~!~-yrt consists of y of cycles ci. 

Proof: A slight reflection upon the definition of the family of functions </J( B + v) 
shows that the following is true. An ensemble of lists {u(r:x)E(D);!f+v+1,r:xEf(K)} 
satisfies condition (b) of Theorem 1 if and only ifthere is a member of <p E </J(B + v) such 
that 

u(r:x) = u(r:x¢) (33) 

for all r:xEf(K). Combining this with the fact that conditions (a) and (b) of Corollary 
3 are just a restatement of condition (a) of Theorem 1, the assertion follows. D 

Furthermore, (33) shows that Lemma 3 takes the following form. 

Corollary 4: Assume that conditions (a) and (b) of Corollary 3 are satisfied for the 
function ¢ = ¢1 ¢2 ..• <Pe+v+i E </J(B+ v). Then, the response of the strictly causal auton
omous controller C of Lemma 3 that steers E from f (K) to x(c 1, •.. , cm) is given by 

C{r:x} = u(r:x¢1 <P2 ·· · <Pe+v+1)(u(r:x</J1 <P2 ·· · <Po+v+1));!~!~!tyrt · · · (u(r:x¢1 </J2 · ·· ¢o+v+l));!~!~!tyrt ··· 

for all r:x E f (K). 

For future use, it will be convenient to remove the dependence on the cycle length 
,i from the statement of Corollary 4. This is done in the next Corollary, at the expense 
of considering somewhat longer lists of functions. 

Corollary 5: Assume that conditions (a) and(b) of Corollary 3 are satisfied. Then there 
are an integer b > 0 and a function <p = <p1 <p2 ... (f)e+v+<>+I E </J( 8 + v + b) such that the 
following hold for all r:x E f(K). 

(a) The list (y(r:x<p))~!~+o consists of an integer number of copies of one of the cycles 
{c1, ···'cm}; 

(b) Q(r:x<p)o+v = Q(r:x<p)e+v+o; and 

(c) the controller C with the response 

C{r:x} = u(r:x<p1 (f)2 · · · (f)o+v+o+1)(u(r:x<p1 (f)2 · · · 'Po+v+o+1))~!~!f+1 · · · (u(r:x<p1 'P2 · · · 'Pe+v+o+1))~!~!f+1 · · · 

represents a strictly causal controller that steers E from the initial input set f (K) to the 
target tail set x(c1, ... , cm). 

The Corollary follows from Corollaries 3 and 4; for each element r:x E f (K ), set 
b(r:x):= y,i, where y and ,i are from Corollary 3 part (a), and take <5 > 0 to be a least 
common multiple of all b(r:x), r:xE f(K). The result follows then similarly to Corollary 4 
by considering longer portions of the sequences. We omit the details here. 

The expression for the controller C in Corollary 5 part (c) still refers to the 
(possibly unknown) initial input list r:x, and whence is not in implementable form. This 
reference, however, can now be eliminated by using the factorization (31), and the 
following statement is obtained. 

Theorem 2: Assume that the conditions of Corollary 5 are satisfied for the function rp:= 
<p1 ••. (f)o+v+o+1 E<P(B+v+b). Using (31), factor 'Pi= 'l'i+KaK+i-i,i = 1, ... , B+v+<5+ 1. 



Corrective control of sequential machines 271 

Then, an autonomous strictly causal controller C: (Im E):i--+ (D):+-1 that steers the 
bounded interpreter E from the initial input set f (K) to the target tail set x(c1 , ... , cm) is 
given by the concatenation 

Cµ = VK+l VK+2 • • • Ve+v+J+l Ve+v+l • • • Ve+v+J+I Ve+v+l • · · Ve+v+J+I • • · 

where V/= lfliµK µK+I ... µ1_1),j = K + 1, ... , 0 + v + t5 + 1, and where µ is the monitored 
sequence of the interpreter-controller combination. 

The controller C of Theorem 2 is a feedback controller up to the step O + v + t5 + 1 ; 
thereafter it can be regarded as an open-loop controller, producing a periodic input 
sequence for E with the cycle {ve+v+1 ... Ve+v+J+1} of previously generated values. The fact 
that the control algorithm turns into an open-loop algorithm at some point is not 
surprising, since once the periodic part of the ultimately periodic input sequence of E 
is reached, the continuation of the sequence becomes predictable, and does not need 
to be recomputed. 

The controller of Theorem 2 can be implemented by using the functions { If/) to 
create the required feedback for the steps K + 1 to O + v + t5 + 1, and thereafter by simply 
repeating periodically the appropriate part of the previously generated list. Thus, we 
have obtained an implementable autonomous controller C that steers a bounded 
interpreter E from a given initial input set to a desired bounded target tail set, 
whenever such a controller exists. 

Remark 3: Characterization of all controllers: we comment that Theorem 2 can be 
used to characterize the set of all strictly causal autonomous controllers with a finite 
implementation that steer E from f(K) to a specified bounded target tail set. The set 
of all such controllers is determined by following the path toward the derivation of 
Theorem 2, including along the way all members of the following two sets: the set of 
all controllers C,, that satisfy the first part of Lemma 2; and the set of all relevant 
solutions If/ of the factorization (31 ). 

Finally, we note that Theorem 2 provides a general bound on the necessary 
complexity of a corrective controller. 

5. Compatibility of initial input sets 

Let E: D--+ SSA be a causal interpreter with a uniform domain, with the initial 
input set f (K) and the target tail set T. In case the desired target tail set is not 
compatible with the given initial input set, it may still be possible to achieve 
compatibility by changing the initial input set. The initial input set can only be changed 
by collecting more accurate data about the history of the interpreter E. This has the 
effect of replacing the initial input set f (K) by one of its subsets. It is therefore of 
interest to characterize the class ~(f (K), T) of all subsets off (K) that are compatible 
with T, when used as initial input sets for E. The class ~(f(K), T) indicates all the 
various ways in which the initial input data about E can be refined to achieve 
compatibility with the desired target tail set T. Recall that, by definition, an 
autonomous corrective controller that steers E to T exists if and only if the initial input 
set of E is compatible with T. 

The present section deals with the determination of the class ~(f(K), T). 
Compatibility is always with respect to the interpreter E and the target tail set T. We 
start with some elementary properties. 
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First, it is quite clear that if there is an autonomous controller C that steers f (K) 
to T, then the same controller also steers every subset off (K) to T. This yields the 
following statement. 

Lemma 4: If f(K) is compatible with T, then so is every subset of f(K). 

In intuitive terms, a smaller initial input set embodies more accurate data about the 
history of the interpreter E. Lemma 4 simply states, as one would expect, that more 
accurate data do not hamper the prospects of corrective control. In particular Lemma 
4 implies that every intersection of input sets that are compatible with T is also 
compatible with T. Note, however, that a union of input sets that are compatible with 
Tis not necessarily compatible with T. Indeed, consider the case where f(K) consists 
of two elements oc1, oc2 , and let U1 ( oci) be the set of all input sequences u E (D)~ 1 satisfying 
T(Eoci u) n T =I= 0, i.e. the set of all continuations that lead from oci to T, i = I, 2. 
Assume that U1(oc1) and Ui(oc2) are both non-empty, but that their intersection is 
empty, so that no single continuation can lead from both initial input lists to T. 
Finally, assume that the monitoring function hm of Eis a constant function. Clearly, 
in this case, the monitored sequence generated by Eis always the same, and whence no 
controller can provide a continuation that leads to T, when there is an uncertainty as 
to whether oc1 or oc2 is the initial input list. Thus, though the initial input sets {oc1} and 
{oc2} are both compatible with T, their union {oc1 , oc2} is not. 

However, the logical negation of Lemma 4 directly implies that a union of input 
sets that are incompatible with Tis always incompatible with T. We formally state this 
fact below. 

Lemma 5: An initial input set f(K) that contains a subset that is incompatible with T, 
is itself incompatible with T. 

In particular, the union of an initial input set that is compatible with T with one 
that is incompatible, is incompatible with T. Still, the intersection of two input sets that 
are incompatible with Tis not necessarily incompatible with T. 

Consider a bounded interpreter E:D-+ SSA with the initial input set f(K) and the 
bounded target tail set T, where f(K) is incompatible with T. For every ocEf(K), let 
U1(oc) be the set ofall input sequences uE(D)~ 1 satisfying T(Eocu) n T =I= 0, i.e. the set 
of all continuations that lead from oc to T. It is readily seen that the class ({}(f (K), T) 
is non-empty if and only ifthere is at least one list ocEf(K) for which U1(oc) =I= 0. 

We regard the class ({}(f (K), T) as a partially ordered set (a poset), under the usual 
relation of set inclusion. The meet of two elements c1, c2 E ({}(f(K), T) is given by their 
intersection c1 n c2, which, according to Lemma 4, always belongs to ({}(f (K), T). The 
join of c1 and c2 is given by their union c1 U c2, whenever it belongs to ({}(f(K), T). We 
refer to ({}(f (K), T) as the compatibility poset; the compatibility poset depends, of 
course, on E, as well as on f(K) and T. 

As noted earlier, the union of two initial input sets that are compatible with T, is 
not always compatible with T. Consequently, the poset ({}(f (K), T) may not contain 
the join of some of its members, and whence, in general, does not form a lattice. From 
our current perspective, the most important implication of this fact is that ({}(f (K), T) 
does not always contain a 'global maximum'. In other words, in general, there is no 
largest compatible initial input set contained within f (K). Recall that a larger 
compatible initial input set means that a corrective controller can be built with less 
accurate information about the input history of E. Of course, one would like to use as 
little information as possible, to reduce measurement complexity. 
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A member c E <CCf (K), T) is a local maximum if it is not a strict subset of any other 
member of<C(f(K), T). To provide an intuitive perspective, assume that rc(f(K), T) is 
not empty, i.e. that there is at least one initial list within f (K) that is compatible with 
the target tail set T. When the initial input set/ (K) is not itself compatible with T, it 
must be replaced by a member fc(K) ofrc(f(K), T) to facilitate corrective control. This 
is achieved by collecting additional data about the input history of I: up to the step K. 

Clearly, the larger the set fc(K) is, the less additional information needs to be gathered 
about the input history of I:. Each local maximum of rc(f(K), T) provides a 
compatible initial input set that is 'largest' in the sense of not being contained within 
any other compatible initial input set. The local maxima ofrc(f (K), T) characterize the 
various 'minimal' ways in which additional data about the initial input history of I: 
can create compatibility with the target tail set T. Below, we develope a finite 
procedure that determines the entire compatibility poset (61(/ (K), T) for a bounded 
target tail set T. 

Let I: = (I:0 , I:m): D--+ SSA be a bounded interpreter with the initial input set f (K) 
and the target tail set T. Recall that, due to boundedness, f(K) is a finite set; Let 
oc1, ... , ocn be the elements off (K). As before, for each list oci E f (K), let Ui(oci) be the 
set of all input sequences uE (D)~ 1 satisfying T(I:ocu) n T =t= 0-

Next, for each pair of lists oci, oc1 E f (K), i =t= j, let Uloci, oc1) be the set of all pairs of 
sequences (u, u'), where u E Ui(oci) and u' E Ui(oc1), and the following holds. 

(u):!f = (u'):!}, whenever (I:m oci u): = (I:m oc1 u'):, k = K, K + l,... (34) 

The sets Ulai, oc1) play an important role in the present context. First, combining 
Lemmas 1 and 5 with (34), we obtain the following lemma. 

Lemma 6: If Uloci, oc1) is empty, then there is no member ofrc(f(K), T) that contains 
both initial input lists oci and oc1• 

If Uloci, oc1) is non-empty, then the class {oci, oc1} belongs to rc(f (K), T). 

Using the sets Ul oci, ocj), i,j = 1, ... , n, i =t= j, we can construct the entire class 
rc(f (K), T) in the following way. Let oci , ... , oc,, be any p elements off (K),p = 3, ... , 

1 •P 

n. Define the set Up(oci, ... , oci ) as the set of all p-tuples (ui, ... , ui ) of sequences for 
which 

1 
p 

1 
p 

(up ui) E Uloci' oci ), for all}, k = 1, ... ,p,j =t= k (35) 
j k j k 

Note that Up(oci, . .. , oci) is obtained from the sets {Uloci, ai )} via (35) by a screening 
process. The co~patibility po set rc(f (K), T) can now b; ch;racterized as follows. 

Proposition 7: For the initial input set f(K) = {oc1, ... , an}, the compatibility poset 
<C(f (K), T) consists of all subsets {ai , ... , oci } c f(K),p = 1, ... , # f (K), for which 

1 p 

UP( oci , ... , oci ) =t= 0. 
1 p 

Proof: Let p E {l, ... , # f(K)} be an integer, and let A(K) = {oci, ... , oci } cf (K) be a 
subset. Assume first that UP( oci , ... , ai ) =t= 0; we show that ii{ such d'ase, the initial 
input set A(K) is compatible with the tafget tail set Tfor I:. To this end, let (ui, . .. , ui ) 
be any element of Up(oci

1
, ••• , ociv). Consider the function F:A(K)--+ UoceA<K> U1(oc):oci ~ 

F(oct ):= ui ,j = 1, ... ,p. Then, (34) and (35) imply that condition (b) of Lemma 1 is 
satisfied f6r the initial input set A(K) with the present function F. This, by the same 
Lemma, entails that A(K) is compatible with the target tail set T for I:. 

Conversely, assume that the initial input set A(K) is compatible with the target tail 
set T for I:. We show that then Up(rxi.' ... , oci ) =t= 0- Indeed, since A(K) is compatible 
with T, part (b) of Lemma 1 is valid: Let Fbe the function of part (b) of Lemma 1, 
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and set (u., ... , u, ):= (F(ai ), ... , F(ai )). Then, by statement (b) of Lemma 1, condition 
il 'p 1 P 

(35) holds for (ui, ... , ui ), so (ui, ... , ui )E UP(ai, ... , ai ), and UP(ai, ... , ai) * 0. 
I P I p 1 p 1 P 

This concludes our proof. D 

Of course, Proposition 7 cannot be directly used to find the members of the 
compatibility class <&(f (K), T), since Up(ai, ... , ai ) consists of infinite sequences. 
Notwithstanding, when the interpreter rand the t;rget tail set Tare both bounded, 
the proposition can be modified into a finite procedure that yields all members of the 
compatibility poset <&(f (K), T), as discussed next. 

Consider again the bounded interpreter r = (X:0 ,X:m):D-+SSA with the input 
value set ~n• the internal value set i,;, the state set X, the initial input set f (K), and the 
bounded target tail set T = x(c 1 , ... , cm). Let ri be the length of the cycle ci, i = 1, ... , 
m; denote r:= max { r 1, •.. , rm}; let (} and v be the integers given by (27) for this value 
of r, and let Q be given by (28). For each element ai E f (K), let 0/li(ai) be the set of all 
lists u E (D)~!f+u+l for which the following holds. 

There is an integer y > 0 and a cycle ciE{c1, .•• ,cm} such that (Q(aiu))K+B+v-y,i = 
(Q(a1 u))K+B+v; the list (y(au(a))t!~!~-y,i consists of y cycles ci; and (J + v-yri ~ 0. 

Note that the set 0/li(ai) can be obtained by a finite screening process. Next, for each 
pair of elements ai, ai E f (K), i * j, let 0/llai, a1) be the set of all pairs of lists (u, u'), 
where u E 0//1 ( ai) and u' E 0//1 ( ai), and 

(u)!!i = (u')!!i Whenever (I;m ai u)! = (I;m a1 u')!, k = K, K+ 1, ... , K+ (}+ V 

(36) 

The class 0//l ai, a1) is obtained from the sets 0//1 ( ai) and 0//1 ( a1) by a screening process, 
which is finite since all involved sets are finite. Theorem 1 yields then the following 
finite version of Lemma 6. 

Lemma 7: Let T be a bounded target tail set for the bounded interpreter I:, with the 
initial input set f (K) = {a1, ... , an}. 

(a) IfO/llai, a1) is empty, then there is no member of<&(f (K), T) that contains both initial 
input lists ai and a1• 

(b) If 0/llai, ai) is non-empty, then {ai, a1} belongs to <&(f(K), T). 

Next, for every subset {ai, ... , ai } c f(K) of p elements,p = 3, ... , n, define the set 
I p 

0/lp(ai, ... , ai ) as the collection of all lists (ui, ... , ui ) that satisfy 
1 p I p 

(ui, ui )EO/llai, at), for allj,k = 1, ... ,p,j * k (37) 
j k j k 

Note that the set 0/LP(ai, ... , ai ) is obtained by a screening process over a finite number 
I p 

of candidates. 

When Theorem 1 is combined with Proposition 7, we obtain the following statement, 
which yields a finite technique for the derivation of the compatibility poset <&(f (K), T) 
of r. 
Theorem 3: Let T be a bounded target tail set for the bounded interpreter I:, with the 
initial input set f (K) = {a1, •.. , an}. The compatibility poset <&(f (K), T) consists of all 
subsets {ai, ... , ai } cf (K),p = 1, ... , # f (K),for which 0/LP(ai, ... , ai ) * 0. 

1 p 1 p 

Theorem 3 allows us to derive the compatibility poset <&(f (K), T) for r through a 
finite procedure, as mentioned. Every member of <&(f (K), T) forms an initial input set 
that is compatible with Tfor I:, and every initial input set that is compatible with Tfor 
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E belongs to rc(f (K), T). Once the compatibility poset is known, its local maxima can 
be found directly by partially ordering the members. A convenient compatible initial 
input set can be selected from rc(f(K), T) (if one exists); a corrective controller that 
steers E from the selected initial input set to the target tail set T can then be constructed 
using Theorem 2. 

An important issue that is outside the scope of the present paper is, of course, the 
physical implementation of corrective controllers. In a digitial circuit environment, 
corrective controllers can be directly implemented from their mathematical models 
using standard techniques and components. In biochemical systems, however, the 
transition from a mathematical model to an implementation remains, to a large extent, 
an important open issue. Appropriate tools and techniques that bridge the gap 
between a mathematical model of a controller and its actual biochemical im
plementation wait to be developed. In practically all other areas of engineering, tools 
that bridge the span between mathematical models and implementations are well 
established. 
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