
' C

.j

r

INT.J. CONTROL, 1996, VOL. 65, NO. 2,249-276

On the corrective control of sequential machines

JACOB HAMMERt

The paper deals with the design of controllers that correct faulty behaviour of
sequential machines caused by corrupted inputs. Alternatively, the results can be
interpreted as the design of controllers that steer a sequential machine from an
unknown initial condition to a prescribed steady-state course. In these terms, the
paper characterizes the uncertainties about the initial condition under which the
prescribed steady-state course can be achieved. The paper is written within the
input/ output framework of nonlinear control, and is motivated in part by potential
applications to molecular biology.

1. Introduction

In essence, a sequential machine is an entity that operates in a stepwise fashion,
progressing from one step to the next in response to a stimulus. The stimulus could be
external (e.g., a change in an input variable), or internal (e.g., a change in an internal
variable, or a clock tick). Sequential machines are widely used as models for
computing machinery, manufacturing equipment, traffic control, and many other
applications. Sequential machines can also be used to model sequences of chemical
reactions that progress in a stepwise manner (e.g., chain reactions, catabolic pathways,
etc.). An important application in this context is the modelling of (biological) cell
function, using the principles of molecular biology. Many of the basic processes that
govern the operation of cells have a natural sequential structure. Some examples are:
the Krebs cycle, the transcription of DNA into RNA, the translation of RNA into
protein, and others. The modelling of various biological phenomena within the
general framework of automata and language theory has been documented in the
literature for quite some time (Rashevsky 1948, Sugita 1963, von Neumann 1966,
Lindenmayer 1968, Kauffman 1969, Rozenberg and Salomaa 1975, IEEE 1974, the
references cited in these works, and many others).

The present paper deals with the development of methods for the control of
sequential machines. It provides techniques for the design of controllers that correct
undesirable behaviour of sequential machines. The basic motivation is to formulate
controllers that correct impaired function of biological cells. Control techniques have
proven successful in a great variety of engineering, physical and physiological
applications, and, in fact, are naturally invoked in various catabolic pathways (e.g. in
the synthesis of the amino acids lysine, threonine and isoleucine in mammal cells).
When combined with sequential models of cells, control techniques offer the prospect
of providing new insight into the regulation of unacceptable behaviour of cells, such
as the unrestrained division associated with pre-cancerous or cancerous trans
formations, or other malfunctions of the genetic system. By sequential models of cells

Received 13 February 1995. Revised 12 July 1995.
t Center for Mathematical System Theory, Department of Electrical Engineering, Uni

versity of Florida, P.O. Box 116130, Gainesville, FL 32611-6130, U.S.A.

0020-7179/96 $12.00 © 1996 Taylor & Francis Ltd

250 J. Hammer

we mean empirical input/ output models of cell function. These may include discrete
event approximations of continuous models, which have been created to facilitate
simulation or control via a digital computer.

The discussion within the paper is independent of any specific application. We
simply consider the control of a certain class of generalized sequential machines.
Nonetheless, we often allude to potential applications to gain insight and motivation.

The sequential machines that we consider are defined to be suitable for modelling
chemical or biochemical reaction systems within a medium. Here, each reactant
molecule (or molecular complex) in the medium is regarded as a variable, called a
word. The sequential machine implements the rules of chemistry that govern the
reaction steps, changing the molecular population within the medium as the reaction
evolves. Molecules that are externally injected into the medium are regarded as input
words, whereas molecules (or complexes) present within the medium at the end of a
reaction step are regarded as output words. The number of molecules within each
category varies with reaction, step and circumstance, and may, of course, be quite
large. However, in many systems of interest in molecular biology, the number of
significant kinds of molecules seems manageable. For instance, the functioning of an
E-coli bacterium probably involves no more than a few thousand different kinds of
significant molecules; and the operation of a mammal cell probably involves no more
than a few hundred thousands of different kinds of significant molecules (Alberts et al.
1989). The computational complexity involved with the modelling and control of
sequential machines with thousands or even hundreds of thousands of distinct
variables is not likely to be much higher than that required, for instance, for detailed
numerical studies of fluid dynamics.

We shall regard a sequential machine as a nonlinear system, transforming input
sequences (or words) into output sequences (or words). We concentrate on sequential
machines which, due to some 'harmful' or' defective' input words, have embarked on
an unacceptable course. Our principal objective is to study the existence and the design
of controllers which, once combined with the system, stear it back to an acceptable
course. The controllers are combined with the system while the system is operating
along an undesirable course, and aim to correct the behaviour; Thereupon, we refer to
this problem as corrective control. We note that the problem of corrective control is
equivalent to the problem of designing a controller that drives the system from an
unknown initial condition to a prescribed steady-state course.

In very broad (and somewhat inaccurate) terms, necessary and sufficient conditions
for the existence of a corrective controller are determined by an implication of the
principle of causality. Qualitatively, and quite obviously, a corrective controller exists
if and only if it is possible to detect a 'harmful' deviation in the behaviour of the system
before it is too late to correct for it. Of course, this fundamental principle needs to be
refined and presented in a computable form. In addition, effective techniques for the
design of corrective controllers, whenever such controllers exist, need to be developed.
These topics are discussed within the body of the paper.

A critical factor in our discussion is the fact that the information available about
the system that needs to be controlled is incomplete. The existence of a corrective
controller, as well as its design, need to be determined based on this incomplete
information. For cases where corrective control cannot be achieved due to the lack of
sufficient data about the system, we consider the question of characterizing the
'minimal' additional data that need to be provided in order to facilitate the existence
of a corrective controller. As it turns out, in general, there is no unique answer to this

Corrective control of sequential machines 251

question; the available data can be refined in various 'minimal' ways to facilitate
corrective control. The class of all data sets that are sufficient for corrective control
forms a partially ordered set (a poset) which is usually not a lattice. In general, there
is no data set that constitutes an absolute minimum among all data sets that are
sufficient for corrective control. Still, local minima exist within the poset, and
techniques for their computation are discussed in §5. Once the local minima are
known, an economical data set most convenient for measurement can be selected.

Although the present paper deals with objects within the general theory of
automata and languages, the point of view adopted here is mostly within traditional
control theory; we regard our systems as maps that transform sequences of (discrete)
inputs into sequences of (discrete) outputs. Still, a background in the basic theory of
automata, languages and discrete-event systems is helpful in the present context. It can
be gained from Ginsburg (1962, 1966), Eilenberg (1974), Hoare (1976), Milner (1980),
Arnold and Nivat (1980), and many other excellent sources.

The current widely spread interest in discrete-event systems within the research
literature on systems and control was sparked by a series of papers written by W. M.
W onham and his coworkers during the early to mid-eighties (Ramadge and Wonham
1987, Vaz and Wonham 1986, Lin and Wonham 1988, and others). In these papers,
basic notions of control theory, like controllability and observability, were extended
into the theories of automata and languages, and were applied to the design of
supervisors for discrete-event systems. These efforts evolved into a mathematical
framework based on the theory of formal languages, with co-languages playing an
important role (Thistle and Wonham 1988, Kumar et al. 1992). The objective in this
approach is to design a supervisor which, when combined with the system, produces
a prescribed formal language. The existence of a supervisor depends on whether or not
the prescribed language is contained within a certain maximal language, which is
determined by the underlying system and the nature of the observations . These topics
were further investigated by Cieslak et al. (1988), Cho and Marcus (1989), Ozveren
and Willsky (1990), and the references cited in these papers.

For systems with a large number of states, the computational burden required for
the design of supervisors is rather substantial. Computational aspects of supervisor
design are discussed by Ramadge (1989), Tsitsiklis (1989), and others. More recently,
the calculus of predicates was found to provide an alternative framework for the study
of supervisory control (Kumar et al. 1993). Problems in supervisory control were also
studied within a Petri net framework (Holloway and Krogh 1990, Sreenivas and
Krogh 1992). Lastly, various issues related to the problem of stabilization of discrete
event systems were considered by Ozveren et al. (1991). An important difference
between these results and the corrective control problem discussed in the present paper
is that here the system that needs to be controlled is uncertain in the sense that its
history is only partly known. In other words, in the present case the controlled system
needs to be driven to a desired steady-state response from an initial condition that is
not precisely known. The main emphasis is on the characterization of the maximal
uncertainty about the initial condition that still permits the achievement of the
objective.

To address the problem of corrective control, we adopt the classical input/output
point of view of linear and nonlinear control theory. The basic formalism is
introduced in §2. The remaining sections of the paper deal with the existence and the
design of corrective controllers. Necessary and sufficient conditions for the existence
of corrective controllers are derived in§ 3; § 4 deals with the construction of corrective

252 J. Hammer

controllers and with a characterization of their capabilities; and § 5 provides a
characterization of the minimal information that is needed about the system's history
in order for a corrective controller to exist.

Finally, to relate the present paper to the state space theory of discrete-event
systems, we recall that the problem of corrective control is equivalent to the problem
of designing a controller that drives the system from an unknown initial condition to
a prescribed steady-state course. This specific problem has not been previously studied
in the literature on discrete-event systems; but, in classical terms, the solution to the
problem would depend on a complex interaction between the notions of controllability
and observability, that would vary with the prescribed steady-state course. In the
present paper we show that the problem can be treated in a relatively simple way
through the input/ output theory of nonlinear control systems. The key notion
required for the solution is the classical notion of causality, that can be conveniently
handled only within an input/ output framework. Furthermore, input/ output theory
directly yields the structure of all dynamic controllers that achieve the desired control
objective. The main result of the paper is a characterization of the uncertainty about
the initial condition that still permits the achievement of the prescribed steady-state
course. The set of all possible controllers that achieve the desired objective is also
provided.

2. Words, sentences and interpreters

Consider a finite non-empty alphabet A = {a1, •.. , an}. A word w over the alphabet
A is a concatenation w = b1 b2 ... bm of a finite number of characters b1, ... , bm of A. In
a word, the leftmost character is the first and the rightmost character is the last. Denote
by A* the set of all words over A. The fact that A is non-empty implies that A* has
infinitely many elements. The alphabet A could be a disjoint union of various
alphabets. For instance, in biological applications it may represent the disjoint union
of alphabets consisting of the DNA bases, the RNA bases and the protein bases, as
well as other important ingredients.

The term sentence refers to a finite collection of (not necessarily distinct) words.
The empty set 0 is also regarded as a sentence. We emphasize that a sentence may
include several copies of the same word. The class of all sentences of words over the
alphabet A is denoted by SA. It contains infinitely many elements. The cardinality of
a sentence s is equal to the total number of words within the sentence, counting each
word according to its multiplicity in s; it is denoted by # s.

When discussing the inclusion of two sentences s1 and s2 within each other, the
multiplicity of each word in each sentence is taken into account; The relation s1 c s2

indicates that all words of s1 are also words of s2 ; for words appearing in multiple
copies, the number of copies in s1 does not exceed the number of copies in s2 .

The present paper deals with systems that transform sequences of sentences into
sequences of sentences. Formally, let S(SA) be the set of all sequences s0 , s1, s2 , ... of
sentences, where si ES A for all i. The index i is regarded as a step counter; a step may
or may not be linked to a specific time duration. A list of sentences is any finite or
infinite set of indexed sentences si, si+l, ... For a sequence s ES(SA) and two integers
j ~ i ~ 0, we denoted by si the ith sentence of the sequence, and by si the list of
sentences si, sH1, ... , si; the infinite list si, si+l, si+2, ... is denoted by sf. If j < i, then si
is the empty set. It is convenient to use the notation (S(SA)){ for the set of all lists
{si, si+1, ... , sj},j ~ i.

Corrective control of sequential machines 253

In their most basic form, the systems we consider can be described by the following
notion. A primitive interpreter is a map .E: D-+ S(SA), with a subset D c S(SA) as its
domain, and S(SA) as its codomain (or range). It is a discrete system that accepts
sequences of sentences as its input, and generates sequences of sentences as its output.

It is common to distinguish between two kinds of sequences generated by a system:
the output sequence, which describes the system's performance; and a monitored
sequence, which describes measurable quantities generated by the system that are
constantly monitored and can be used to control the system. In this spirit, we define
an interpreter as a map .E:D-+S(SA) x S(SA):u1-+.Eu = (y,µ) that generates the two
sequences y and µ, where y is the output sequence and µ is the monitored sequence of
the interpreter. In qualitative terms, y describes the 'product' of the interpreter,
whereasµ describes those parts of the product that are being continuously monitored.
The monitored sequence contains all the data that are available about the response of
.E. The pair (y,µ) is called the augmented output sequence of .E. We shall use the
abbreviation SSA:= S(SA) x S(SA).

For a subset Sc D and an interpreter .E:D-+SSA, denote by .E[S] the set of all
augmented output sequences generated by input sequences from S. As usual, Im.E :=
.E[D] is the image of .E. For an input sequence uED and a pair of integers}~ i ~ 0, we
denote by (.Eu){ the list of augmented output elements zi, ziw . .. , z1, where z:= 1:u is the
augmented output sequence.

An interpreter .E can be regarded as a pair .E = (I:
0

, .Em) of primitive interpreters
I:

0
,.Em:D-+S(SA), where for every input sequence uED the output sequence of.Eis

given by y = .E0 u, and the monitored sequence isµ= .Emu. The primitive interpreter
.E

0
is the output part of .E, and .Em is the monitored part of .E.
The term autonomous interpreter refers to an interpreter that operates on its own

with no external input sequence, i.e. an interpreter .E: 0-+ SSA. Autonomous
interpreters are of particular interest to us, since they require no human operator to
function correctly. Their output sequence is determined by their structure.

Consider, for a moment, the case of molecular biology. Here, a word represents a
molecule or a molecular complex, and a sentence represents a collection of molecules,
molecular complexes, etc. The interpreter represents the biochemical mechanisms
which, at each reaction step, transform one set of molecules and molecular complexes
into another. An input sentence represents a collection of molecules externally added
to the medium at a reaction step; an output sentence represents a collection of
molecules left within the medium after a reaction step. A monitored sentence
represents a collection of molecules or molecular complexes whose presence within the
medium at a specified step has been ascertained.

Clearly, a molecule or a molecular complex may be present in more than one copy
within a collection, and the number of copies is chemically significant. Consequently,
when sets of molecules and molecular complexes are combined, disjoint unions need
to be used to preserve all duplicate copies.

In formal terms, let a, b ES A be two sentences. Denote by a lJ b the disjoint union
of a and b, i.e. the sentence that consists of the aggregate of all the words of a and of
b, with all copies of duplicate words included. Similarly, the disjoint unions lJ u of two
sequences of sentences s, uES(SA), is again a sequence ofsentencesyES(SA), given by
Yk := sk 0 uk, k = 0, 1, 2, ...

The notion of causality plays an important role in our discussion, since, for
interpreters that evolve in time, only causal interpreters are possible. An interpreter
.E: D-+ SSA is causal (respectively, strictly causal) if, for every pair of input sequences

254 J. Hammer

u, v ED and for every integer k ~ 0, the equality u~ = v~ implies that (.Eu)~ = (.Ev)~
(respectively, (.Eu)~+i = (.Ev)~+1). These are, of course, the standard definitions.

Let S c S(S A) be a family of sequences. The value set V of Sis the smallest set of
sentences V c SA that satisfies skE Vfor all sequences sES and all integers k ~ 0. The
value set consists of all sentences that may appear at a step of any sequence belonging
to S. For an interpreter .E = (l:'0 ,.Em):D-+SSA, the value set of Dis called the input
value set; the value set oflml:' 0 is the output value set; and the value set oflm.Em is
the monitored value set.

A set D c S(S A) is a uniform domain if it is entirely determined by its value set V,
i.e. if it consists of all sequences uE S(SA) satisfying uk EV, k = 0, 1, 2, ... A uniform
domain is said to be induced by its value set V.

Let .E: D-+ SSA be an interpreter with the input value set J<0 • When the domain D
of.Eis uniform, every sentence of J<0 may appear as an input sentence of.Eat any input
step. When the domain Dis not uniform, some sentences within J<0 are permitted as
input sentences of .E only at certain input steps. For example, in biochemical
applications a uniform domain simply means that any combination of relevant
molecules can be injected into the reaction system at any reaction step, as the case
usually is. Of course, some of these molecules may create undesirable reactions; a
control algorithm will determine which molecules are to be injected at each step in
order to achieve desirable results.

2.1. Recursive interpreters

Of particular interest are interpreters that can be characterized through a finite
recursive structure, as we now discuss. Let X be a finite non-empty set, let

f:SA x X-+SA x X:(s,X)f--+(fh,x),f/s,x))

and h0 , hm: SA-+ SA be functions, and let (s0 , x0) ES A x X be a pair of elements. The list
(X,f,h 0 ,hm,s 0,x 0) induces an interpreter E:D-+SSA in the following way. For every
input sequence uED, the augmented output sequence (y,µ) = .Eu is obtained by the
recursion

(sk+1, xk+I) = f[(sk U uk), xk] I
Yk = ho(sk U uk)

µk = hm(sk U uk), k = 0, 1, 2, ...

(1)

The set Xis called the state set of the interpreter .E, and an element of Xis called
a state. The pair (sk, xk) is called the status of Eat the step k, and (s0, x0) is the initial
status. Note the distinction between 'state' and 'status'. The output sentence yk
represents the significant products of the interpreter at the step k. The sentence µk
represents the products whose presence has been ascertained at step k.

We refer to (1) as a recursive representation of the interpreter .E; the function/ is
called a recursion function of E. An interpreter that admits a recursive representation
is called a recursive interpreter. Throughout our discussion, a recursive interpreter is
always given together with its initial status (s0, x0), which is regarded as part of the
description of the interpreter. This, however, does not imply that the status of the
interpreter is precisely known at a later time when control is initiated. As discussed in

Corrective control of sequential machines 255

the next section, control of the interpreter starts at a step K ~ 0, and the exact status
of the interpreter at that step may not be known.

In a biochemical context, the input sentence uk represents the molecules that are
externally injected into the medium at step k. The sentence sk represents the results of
reaction step k- 1. The entire set of molecules or molecular complexes present within
the medium at the step k consists of sk and of the molecules uk injected externally at the
step, and is given by the disjoint union sk U uk; these determine the results of reaction
step k, together, of course, with the state xk of the interpreter. The sequence
s = {s0,s 1,s 2, ••• }ES(SA) is called the internal sequence of I:, and the sequences (Ju is
called the medium sequence of I:. The internal value set of I: is the set Im};, which
includes all sentences that may appear as elements of the internal sequences of I:,
excluding possibly the initial one s0 •

Finally, (1) represents a time-invariant system, since the step counter k does not
appear as a separate argument in the recursion. In our biochemical context, this simply
reflects the (common) assumption that the laws of chemistry do not change with time.

Remark 1: A comment about compartmentalization. In molecular biology, it is
known that the effects of certain molecules are restricted to single individual cell
organelles, whereas other molecules have a broader influence, affecting entire cells,
entire families of cells or the entire cell population. This situation is referred to as
compartmentalization; the range of activity of each molecule is described by an
appropriate compartment, which varies, of course, from molecule to molecule.
Compartmentalization can be accommodated within the present mathematical
framework through the use of an addressing scheme. Each word that represents a
molecule is preceded by an address prefix code that indicates the compartment within
which it is active. The interpreter I: decodes the address prefix, and restricts the effects
of the word to the compartment corresponding to that address. In this way,
compartmentalization becomes a modelling issue, and requires no separate attention
within the general framework.

We next discuss several qualitative issues that arise from the definition of a
recursive interpreter. First, note that the number of words within each one of the
sentences sk, uk, k = 0, 1, 2, ... , is unspecified and may vary with k. When each word is
regarded as an input or an output variable, this indicates that the number of input or
output variables of the interpreter is not fixed, and may vary from step to step. The
number of characters may vary from word to word.

The notion of an interpreter is a generalization of the notion of a sequential
machine. For instance, a single-input single-output sequential machine is obtained
from the definition of an interpreter by imposing the following four restrictions:
restrict all words to one character length; fix the cardinalities# sk = 1 and# uk = 1 for
all k; set µk = yk = sk for all k; and take a recursion function/that is independent of
sk. Thus, a (standard) sequential machine is a particular case of an interpreter.

Further, we comment that the definition of a recursive interpreter contains a
redundancy in the sense that one of the quantities xk or sk can be eliminated. Indeed,
the pair (xk, sk) can equivalently be regarded either as an internal variable or as a state,
thus eliminating the need for two separate terms. Nevertheless, from a practical point
of view, it is convenient to distinguish between the state set xk and the internal set sk,
since they may represent physically distinct entities. For example, the internal set may
represent molecules, whereas the state set may represent states of a computing
machine that implements a control algorithm within the biochemical system.

256 J. Hammer

As a final comment on the nature of the definition (1), consider the alternative
formulation

(2)

which seems more general at first glance. Yet the use of an address prefix to distinguish
between the elements of sk and those of uk in the disjoint union sk (J uk renders (2)
equivalent to (1). For biochemical systems, (1) seems preferable, since the outcome of
a reaction step is determined by the molecules present, regardless of whether their
origin is sk or uk.

2.2. Control of interpreters

The basic objective of the present paper is to develop techniques for the control of
recursive interpreters. Control is achieved by combining a given interpreter E with a
controller C. The controller generates an input sequences for E, which, in turn, induces
a desirable output sequence from E. The information available to the controller during
its operation consists of the monitored sequences of E; in addition to that, the
controller may be prompted by an external reference sequence v taken from a domain
Dc c S(SA). Specifically, consider a recursive interpreter E = (Em,E 0):D-+SSA given
by (1), where u is the input sequence and (y,µ) is the augmented output sequences of
E. The input sequence u of Eis generated by a controller C: (Im Em) x Dc-+ D: (µ, v)
1-+ C(µ, v) according to

u= C(µ,v) (3)

where v E Dc is the external reference sequence of C. (As seen in the next paragraph, the
external reference sequence v serves as the input sequence of the composite system
created by E and C.) The controller C is required to be causal. Also, since the
monitored sentence µk = hm(sk (J uk) may depend on uk, we require C to be strictly
causal in its first variable; This makes (1) into an explicit, rather than an implicit,
expression for u, thus simplifying various statements. The input sentence uk+l of E is
then determined by the sentences µ 0, µ 1 , •.. , µk and v0 , ••• , vk+1 · A controller C(µ, v) that
is strictly causal in µ and causal in v is called a semistrictly causal controller.

The combination of E with the controller C is denoted by Ec. It is an interpreter
Ec:Dc-+SSA:vi-+Ecv = (y,µ) given by the equations

(y,µ) = Eu

u= C(µ,v)

The first equation directly shows that every output sequence of Ec is also an output
sequence of E, and we have

(4)

Note that the controller C needs to operate in synchronization with E (Hoare
1976). At each step k of E, the controller C needs to inject the sentence uk into the
medium. This requires coordination between the controller and the interpreter, and is
an important implementation issue. Its resolution varies from one application to
another, and is outside the scope of the present paper.

Corrective control of sequential machines 257

A controller C is autonomous if it has no external input sequence v. A semistrictly
causal autonomous controller is, in fact, a strictly causal map C: Im Em----+ D :µf-+ C(µ) .
The combination interpreter Ec is then an autonomous system, described by

(y,µ) = Eu

u = C(µ)

Here, C determines the input sentence uk+l of E from the monitored sentences µ0 , µ 1,

... , µk of E. An autonomous contoller automatically executes the various dynamical
manipulations necessary to achieve desirable performance, and does not require the
interference of a human operator. For this reason, it is of major practical interest. It
is the subject of the next section.

3. Autonomous corrective control of recursive interpreters

This section deals with the basic aspects of corrective control of interpreters, using
autonomous controllers. An important point is the fact that the information provided
about the interpreters is incomplete. Let E: D----+ SSA be a recursive interpreter with the
representation (1). Due to a faulty input at an unknown step, the interpreter E has
embarked on an unacceptable course. Departure from acceptable behaviour has been
detected, and an autonomous controller C is combined with E at the step K ~ 0 to
provide correction. The controller C acts as a corrective controller.

The input history of the interpreter Eup to the step Kat which control initiates may
not be precisely known. The only information available is that the initial input list u0,

u1, ... , uK of E belongs to a given subset J(K) c (Dn of possible initial input lists, called
the initial input set of E. The initial input set J(K) contains all the data available at the
step K about the input history of E. Clearly, the smaller the set J(K) is, the more
accurate is the information. At the step K, the interpreter E is combined with the
(strictly causal) autonomous controller C. The inputs of E from the step K + l and on
are provided as outputs of the controller C, and are therefore known.

The combination Ec of E and C sets out on a corrective course, and, assuming that
correction is effective, acceptable behaviour will commence at a future step. The
specific step at which acceptable behaviour commences is not specified; rather,
acceptable behaviour is characterized by specifying a desirable tail for the output
sequence. The objective is to devise, if possible, a controller C that steers the
interpreter E from an unacceptable beginning to an acceptable tail of its output
sequence. The notion of tail needs to be made more accurate.

A tail of a sequence sf is any subsequence sf, where k ~ i is an integer. A tail set
is a non-empty set of tails of sequences. A tail set is complete if it contains all the tails
of each one of its elements. A complete tail set always contains infinitely many
elements.

Every tail set Eis associated with a complete tail set E, called the completion of E,
that consists of all elements of E and all their tails. Clearly, when Eis itself a complete
tail set, it is equal to its completion.

As a simple example of completion, consider a single sequence s E S(S A). Then

T(s):= LJ sf
k~O

is a complete tail set, called the complete tail set of the sequences.
The following proposition is easy to verify.

258 J. Hammer

Proposition 1: The intersection of two complete tail sets is a complete tail set, and so
is the union of two complete tail sets.

Returning now to corrective control, recall that the interpreter E = (E 0 , Em)
operates without a controller up to the step x:, at which it is combined with the
autonomous controller C. During operation, the controller has access only to the
monitored sequence of E, i.e. to the output sequence of Em. Due to strict causality,
the first output of the controller C occurs at the step x: + I, and, being autonomous,
C:(lmEm):i--+(D):i+1· Consider a specific initial input list u0, ••• ,uK of E, and let
y~ 1 denote the output list of the controller C when E is started from this initial
input list. The entire input sequence v of E is then given by the concatenation
v = (u0 , ••• , uK, yK+l' YK+2, •••). Clearly, for fixed E and C, the sequence y~ 1 generated
by the controller can depend only on the initial input list u0 , ••• , uK of E. It will be
convenient to use the notation

C{u~} = Y~1 I
Ec{u~}:= Ev

Eco{ifo}::_ Eo V

Ecm{ifo}.-Em V

(5)

to denote the response of the controller C and the interpreter-controller combination
Ee for the initial input list u0 , ••• , uK. We can now formulate our main subject.

The problem of autonomous corrective control: let E = (E 0 , Em): D--+ SSA be a
recursive interpreter with an initial input set f (x:), and let T be a complete tail set.
Devise, if possible, an autonomous controller C: (lmEm):i--+ (D)~ 1 that satisfies the
following. For every initial input list u~ E f (x:), the complete tail set (T(Ec0{um of
the output sequence of the interpreter-controller combination satisfies T(Ec0{ifo}) n
T =i= 0.

In the above problem the tail set Tis called the target tail set of E; it represents
'acceptable' or' desirable' behaviour. The controller C is said to steer E from f (x:) to
T. If a controller C that steers E from f (x:) to Texists, then Tand f (x:) are said to be
compatible (for the interpreter I:). The issue of compatibility is, of course, of central
interest to us.

Remark 2: In essence, the problem of corrective control deals with the control of
interpreters whose status is not exactly known at the step x: at which control is
initiated. In our current presentation, the uncertainty about this status is represented
through an uncertainty about the initial input list of the interpreter, expressed by the
set f (x:). Alternatively, one could directly describe the indeterminacy of the status at
the step x: as a set of possible stati.

A notion analogous to the usual control theoretic notion of reachability is relevant
in the present context. A complete tail Tis reachable from an initial input list ex E f (x:)
if there is a sequence uE(D)~ 1 such that T(E 0 au) n T=t= 0. The following statement
is a consequence of the definitions.

Proposition 2: Let E = (E 0 ,Em):D--+SSA be an interpreter with the initial input set
f (x:) and the target tail set T. If Tis compatible with f (x:), then Tis reachable from
every element off (x:).

However, it will become clear later that even if Tis reachable from every initial

Corrective control of sequential machines 259

input list e< E f (K), it may still be the case that Tis incompatible with f (K) (see Lemma
1 below).

An autonomous open loop controller C for the interpreter E: D-+ SSA is a
controller that generates a fixed sequence, independent of the response of E, i.e.
C: 0-+ (D): 1 . Information about E, the initial input set f(K), and the target tail
set Tis incorporated into the design of C, but no updates about the response of E are
provided during operation.

From a practical perspective, open-loop autonomous controllers are quite
attractive, since they do not require monitoring of the response of E. However, as one
might expect, the capabilities of open-loop controllers are rather limited. The following
necessary and sufficient condition for the existence of an open-loop controller is
directly implied by the fact that such controller can generate only one fixed output
sequence.

Proposition 3: Let E = (E 0 ,Em):D-+SSA be an interpreter with the initial input set
f(K) and the target tail set T. An open-loop autonomous controller that steers E from
f (K) to T exists if and only if the following holds. There is a sequence w E (D): 1 such
that,for every list e< E f(K), one has T(E

0
aw) n T =t= 0.

The question of whether an open-loop controller is feasible or not depends, among
other factors, on the size of the initial input set f (K). Consider, for instance, the simple
case where f(K) contains only one single list e< = ifo, i.e. when exact data about the
input history of E are available. In this case, Proposition 3 reduces to the statement
that an open-loop controller exists if and only if the target tail set Tis reachable from
e<. Yet, in view of Proposition 2, the latter is a necessary condition for the existence of
any controller that steers E from f (K) to T. Thus, if the input history of E is
known precisely, an open-loop controller is feasible whenever any other controller
is feasible.

However, in most cases of practical interest, the initial input set f(K) contains
more than just one list (i.e. exact information about the input history of E is not
available). In many of these cases, different initial input lists require different
continuations in order to steer E to the target trail set T. An open-loop controller,
which is capable of generating only one predetermined continuation, would then be
inadequate. Instead, one would resort to a feedback controller, i.e. to a usual
autonomous controller C: (Im Em):'-+ (D): 1. We have here a demonstration of the
well known principle that feedback controllers are necessitated by incomplete (or
uncertain) data about the system being controlled.

Consider an autonomous controller C: (Im Em):'-+ (D): 1 combined at the step
K ~ 0 with the interpreter E = (Em,E 0):D-+SSA. Let f(K) be the initial input set,
and let Tbe the target tail set of E. As before, let y:1 = C{u~} be the output list of the
controller C corresponding to the initial input list u~ E f(K) of E, and letµ:= Ecm {ifo}
be the monitored sequence of the interpreter-controller combination. The entire input
list of Eis then v = (u0, ... , uK, YK+I' YK+2, ...). By the strict causality of C, the sentence
Yi+1 is determined by the elements µK, µK+l' ... , µ1, for all j ~ K. This justifies the
notation.

(6)

In particular, YK+1 = (CµK)K+I" By the causality of E, the monitored listµ~ is determined
by the input list v0 , v1, ..• , v1 of E, so we shall write

(Em V0 V1 ... v1l:= µ~, j ~ K

260 J. Hammer

For each list aE,/(K), let U1(a) be the set of all sequences wE(D)~ 1 satisfying
T(E

0
aw) n T =I= 0. In other words, U1(a) consists of all continuations of the list a that

lead E to T. Clearly, a necessary condition for the existence of a corrective controller is
that U1(a) =I= 0 forall a E ,/(K), i.e. that Tbe reachable from every a E ,f (K). However,
in general, this condition is not sufficient. The following necessary and sufficient
condition for the existence of an autonomous feedback controller is basically a
consequence of strict causality. We shall discuss computable forms of it in subsequent
sections.

Lemma 1: Let E = (E
0

, Em): D--+ SSA be a causal interpreter with the initial input set
,f (K) and the target tail set T. For each a E ,/(K), let Ui(a) be the set of all sequences
u E (D)~ 1 satisfying T(E

0
au) n T =I= 0. Then, the following two statements are equivalent.

(a) Tis compatible with ,f (K) for E.
(b) There is a function F:,f(K)--+ UaefM U1(a):a1-+F(a) for which the following

holds. For each pair a, a1
E ,/(K) and for each integer k ~ K, one has (F(a))k+1 =

(F(a 1))k+1 whenever (Em aF(a))! = (Em Cl.
1 F(a 1))!.

Proof: We show first that (a) implies (b). Assume that Tis compatible with ,f (K);
then, there is a strictly causal autonomous controller C: (Im Em)~--+ (D)~ 1 that steers E
from ,f (K) to T. Using the notation of (5), the controller C generates, for each a E ,/(K),
a list v(a):= C{a} E (D)~ 1 satisfying T(E 0 av(a)) n T =I= 0- Clearly, v(a) E Ui(a), and we
obtain a function F:,f(K)--+ Uaef<K> Ui(a):a1-+F(a):= v(a). Now, let k ~ K be an
integer, and let a, a1 E ,/(K) be two lists for which (Em aF(a))! =(Ema' F(a 1))!. Then,
using the strict causality of C and (6), we have (F(a))k+l = (C(Em aF(a))!)k+l =
(C(Em a1 F(a 1))!)k+l = (F(a 1))k+1' and the final part of the Lemma is necessary.

To prove the converse direction, i.e. that (b) implies (a), assume that (b) holds.
Using (b), we construct an autonomous strictly causal controller C that steers E from
,f(K) to T as follows. First, some notation. Let Vm be the monitored value set of E.
Given an integer j ~ K and a list of sentences PK, ... , P1 E Vm, let E(PD be the (possibly
empty) class of all elements aE,/(K) satisfying (EmaF(a))~ = P{, where Fis the
function of (b). By (b) one has (F(a))m = (F(a1

)) 1+1 for all pairs a, a1 E E(PD-This
allows us to define a map C: (Im.Em)~--+ (D)~ 1 in the following way. For every integer
j ~ Kand for every list PK, ... , P1 E Vm set (CPD1+1 := 0 if E(PD = 0; otherwise, pick any
element a E E(PD, and set

(CP!\+1:= (F(a))1+1

The map C is clearly strictly causal. Furthermore, in terms of the notation of (5), the
combination Ee satisfies Ec{a} = EaF(a) for every a E ,/(K). Since F(a) E U1(a), it
follows that T(Ec0{a}) n T =I= 0 for all a E ,/(K); whence, the controller C steers E from
,f(K) to T. D

We summarize separately the structure of the controller C derived in the above
proof.

Corollary 1: Let E = (E 0 ,Em):D--+SSA be a causal interpreter having the initial input
set ,f (K) and the target tail set T. Let Vm be the monitored value set of .E. Assume that

Corrective control of sequential machines 261

the condition (b) of Lemma 1 holds. For every integer j ~ K, and for every list of elements
A, ... ,PiE Vm, let E(/11,.) be the class of all elements r.1.E /(K) satisfying (Em r.1.F(a)t = g
Then, the assignment

(C/11,.) ·= {0 if E(PD = 0
K i+l" (F(a))m' otherwise, where r.1.EE(PD

induces a strictly causal controller C: (Im.Em):'-+ (D): 1 that steers E from /(K) to T.

In subsequent sections we shall see that a computable and implementable
construction can be directly derived from the Corollary in cases of practical interest,
where appropriate finiteness requirements hold.

4. Compatibility of target sets

Up to this point, the discussion has been on a rather general level, without regard
to whether the various quantities or computational procedures are finite or infinite. In
this section, we focus our attention on cases of practical interest, which are inherently
of a finite nature. This will allow us to develop implementable forms of corrective
controllers. The following notion is instrumental.

Definition 1: An interpreter E: D--+ SSA is bounded if it has a recursive representation
of the form (1) with a finite state set, and if the following hold: the domain D is
uniform; and the input, internal, monitored and output value sets of E are all finite.

Our discussion of the corrective control of bounded interpreters depends on
certain periodic properties, which we now examine. A sequence sES(SA) is ultimately
periodic if there is a pair of integers rt ~ 0, r > 0 such that si+, = si for all i ~ rt. The
smallest such integer r is called the ultimate period of the sequence; the first such
integer rt indicates the step at which periodicity commences. If rt= 0 the sequence is
periodic. The following simple conclusion is closely related to a well known property
of finite automata.

Proposition 4: The augmented output sequence of a bounded autonomous interpreter
E: 0--+ SSA is ultimately periodic. Its period does not exceed n:= (# Jt;) (# X), where Jt;
is the internal value set of E, and Xis its state set. Furthermore, periodicity commences
within the first n steps .

Proof: Being a bounded autonomous interpreter, E has a recursive representation

(sk+1, xk+1) = f(sk, xk) I
Yk = ho(sk)

µk = hm(sk), k = 0, 1, 2, ...

(7)

Note that E has no input sequence, since it is autonomous. Now, let Jt; be the internal
value set of E, and let Xbe its state set, both of which are finite sets by the boundedness
of E. Then, the set

{(s,x):sE Jt;,xEX}

is clearly finite, containing only(# Jt;)(# X) points. This implies that the sequence of
pairs (s0, x 0), (s1, x1), (s2, x2), ••• must have two identical elements in it, separated by at
most (# Jt;) (# X) steps. In other words, there is a pair of integers m ~ 0, r > 0 satisfying
(sm, xm) = (sm+,, xm+,), with m, r ~ (# Jt;) (# X). However, the recursion (7) implies that

262 J. Hammer

(sm+i' Xm+j) = (Sm+,+1' Xm+Hj), Or (s(m+j)' Xcm+j)) = (s(m+j)+T' X(m+j)+,), for all integers j ~ 0.
Thus, the sequence (s0 , x0), (s1 , x1), (s2, x 2), ••• is ultimately periodic with a period
not exceeding r, and its periodicity commences at a step no later than m, where
m, r ~ (# ~(# X). Since the augmented output sequence of Eis determined here
bys through the equation (y, µ) = (h0 (s), hm(s)), the assertion follows. D

Consider now a bounded interpreter E with a target tail set T that is compatible
with the initial input set f (K) of E, and let C be a corrective controller that steers E
from f (K) to T. The combination of C with E operates as an autonomous interpreter,
and generates a tail tE T. Now from a practical perspective the only case of interest is
the one where the interpreter-controller combination Ec constitutes a bounded
interpreter; otherwise, the controller would not have a finite implementation. When Ec
is bounded, Proposition 4 implies that t must be ultimately periodic; thus, we may
restrict our attention to target tail sets that consist entirely of ultimately periodic
sequences. Furthermore, ultimately periodic sequences always have periodic tails, and
whence it suffices to consider target tail sets that consist of periodic tails only. This
leads to the following definition.

Definition 2: A bounded target tail set is a complete tail set that consists of all tails
of a finite collection of periodic sequences.

An autonomous controller that steers a bounded interpreter I towards a bounded
target tail set has to generate an input sequence for I: that elicits from E an ultimately
periodic output sequence. We examine next some simple properties of input sequences
that generate ultimately periodic output sequences of (non-autonomous) bounded
interpreters.

It is quite easy to construct an example of a (non-injective) bounded interpreter
E: D -+ SSA where an ultimately periodic output sequence is generated by an input
sequence that is not ultimately periodic. For instance, consider a constant interpreter
I:: D -+ SSA that produces the constant output sequence a, a, a, ... for every input
sequence, and that has a uniform domain D whose value set contains at least two
distinct sentences. Then the output sequence of E is clearly periodic for every input
sequence; since D contains sequences that are not ultimately periodic, we see that an
ultimately periodic output sequence can be generated by an input sequence that is not
ultimately periodic. The next statement indicates, however, that, for a bounded
interpreter, one can always find an ultimately periodic input sequence that generates
any given ultimately periodic output sequence.

Proposition 5: Let E = (E 0 ,Em):D-+SSA be a bounded interpreter. For every
ultimately periodic output sequence wElmE 0 , there is an ultimately periodic input
sequence v ED satisfying w = E

O
v.

Proof: Let uED be an input sequence for which the output sequence w:= E 0 u is
ultimately periodic. Since w is ultimately periodic, there is a pair of integers 17 ~ 0,
r > 0 such that

(8)

for all integers i ~ 17. Let x be the sequence of states induced by u, and lets be the
internal sequence. Since Eis recursive, we have

(sk+l' xk+1) = f[(sk U uk), xk]

wk = ho(sk LJ uk), k = 0, I, 2, ... (9)

Corrective control of sequential machines

Consider the sequence of triples

263

(10)

Let Ji; be the internal value set, let X be the state set, and let ~n be the input value set
of L. By the boundedness of L, the set Ji;, X, and ~n are finite. Consequently, the set
of triples

{(a, b, c) I aE Ji;, bEX, and CE ~n}

has finite cardinality () ~ (# Ji;) (# X) (# ~n). Applying this fact to the sequence (10), it
follows that there is a pair of integers m > n ~ 0, where (m-n) ~()and n ~ e, such
that

(11)

Since wi+r = wi for all integers i ~ r,, we also have

(12)

Define now the concatenated input sequence

(13)

which is clearly ultimately periodic. Since Dis a uniform domain, v ED. Apply v as an
input sequence of L, denoting by a the resulting internal sequence; by<; the resulting
sequence of states; and by OJ the resulting output sequence. Since a recursive
interpreter is defined together with its initial status, we have

(14)

The recursive representation of L yields

(ak~' <;k+l) ~ fl(ak U ~), <;k] }
OJk - hoCak U vk), k- 0, 1,2, ...

(15)

From (13), we obtain that vz+mr-1:= u 6+mr-1, which, together with (14) and (15), yields

c;z+mr = _xz+mr

ai+mr = si+mr
(16)

and
(17)

Assume now for a moment that

~+[n+(i+l) (m-n)]r = sJ.+mr
11+[n+t(m-n)]r 11+nr (18)

for all integers i ~ 0. Then, in view of (13), it follows that

(a lJ v)ll+[n+\i+l)(m-n)]r-1 = (s lJ u)11+mr-l
11+[n+i(m-n)]r 11+nr

for all integers i ~ 0. Since OJk = hoCak (J vk) for all k ~ 0, we obtain that

OJ,,+[n+(i+l)(m-n)]r-1 _ ~+mr-1
11+[n+i(m-n)]r - 11+nr

for all integers i ~ 0; in view of (8) and (17), this shows that OJ = w, and w can be
generated by the ultimately periodic input sequence v. (Note, however, that the pair
(a,<;) may not be identical to the pair (s, x)). Thus, our proof will conclude upon
proving (18).

264 J. Hammer

We prove (18) by induction. Simultaneously, it will be convenient to also show that

c;,,+[n+(i+l) (m-n)]T = x,,+nr (19)

for all integers i ~ 0. Consider first the case i = 0. By (16), we have, in particular, that
d,(!:TT = s~!:: and that c;,,+mT = x,,+mT' When the latter is combined with (11), we obtain
c;,,+mT = x,,+mT = x,,+nr· Whence, (18) and (19) hold for the case i = 0.

In preparation for induction, assume that (18) and (19) hold for the case
i = j. Then, a,,+[n+(j+l)(m-n)]T = s,,+nT and c;,,+[n+(j+l)(m - n)]r = x,,+nr; and, by (13),
v11+[n+<~+2><m- n>Jr- 1 = u11+mr-1 This shows that the recursion (15) over the interval 11+[n+(J+l) (m- n)]T 11+nT ·

k = 17+[n+U+ l)(m-n)]r, ... ,17+[n+U+2)(m-n)]r-1 is identical to the
recursion (9) over the interval k = 17 + nr, ... , 17 + mr-1. Thus, both recursions yield the
same result, i.e.

(20)
and

(21)

However (20) is (18) for the case i = j+ l; and (21) together with (11) show that
c;,,+[n+(j+2)(m - n)]r = x,,+mT = x,,+nT' which is (19) for the case i = j+ I. By induction, this
corroborates the validity of (18) and (19) for all integers i ~ 0. In view of earlier
remarks, the proof of the Proposition is now complete. D

The proof contained the following bound on the period of the ultimately periodic
input sequence of Proposition 5.

Corollary 2: In Proposition 5 the period of the ultimately periodic input sequence v does
not exceed r(# v;) (# X) (# T<n), and periodicity of v commences no later than step
17 + r(# v;) (# X) (# T<n). Here, r is the period of the output sequence w, and the periodicity
of w commences at the step 17; also, Xis the state set, Ji; is the internal value set, and T<n is
the input value set of the bounded interpreter I.

We next examine some basic properties of tail sets of periodic sequences. Let
c:= {u0, u1 , ... , uT_1} be a list of sentences u1E SA,j = 0, 1, ... , r-1. Using concatenation,
we create from the list c the periodic sequence x(c):= ccc ... A cycle of x(c) is any
cyclic permutation of the list c, i.e. c itself or any list of the form {u1, ui+I• ... uT_1,

u0 , u1 , •.• , ui_1},jE {1, ... , r-1}. Despite some abuse of notation, it will be convenient to
denote every cycle of x(c) by the letter c. The length of the cycle c is r in the present case.
Given several lists c1, c2, ••• , cm, we denote by

i - 1, .. . , m

the union of all respective periodic sequences. By definition, every bounded tail set is
of the form X(C1 , C2 , .. . , Cm) for some cycles C1 , . .. , Cm.

4.1 . Basic properties of corrective controllers

Our next objective is to derive necessary and sufficient conditions for the
compatibility of an initial input set f(K) with a bounded target tail set, namely, with
a target tail set of the formx(c 1 , c2 , • • • , cm). We start with the case where m = 1, i.e. with
the problem of steering r from f(K) towards one specific periodic tail x(c).

When x(c) is compatible with f(K), there is, by definition, an autonomous
controller that steers r from f(K) to x(c). The next statement shows that such a

Corrective control of sequential machines 265

controller can be constructed so that its own output sequence also is ultimately
periodic. This basically guarantees that the controller is implementable. The
implementation issue is discussed later in this section.

Lemma 2: Let J;:D-+SSA be a bounded interpreter with initial input set f(K), input
value set i,,;n, internal value set Ji';, and state set X. Assume that x(c) forms a target tail
set that is compatible with f(K), and let r be the length of the cycle c. Then there is a
strictly causal autonomous controller C0 that steers J;from f(K) to x(c) and satisfies the
following conditions for every element a E f (K).

The output sequence Co{a} of the controller is ultimately periodic.
The period r 0 of Co{a} satisfies r 0 ~ r{(#v;}(#X)(#i,,;n) 2}<*.f(K)>, and periodicity of

Co{a} commences by the step r;0 ~ K+ 1 +{(# ,:.,;)(# X)(# i,,;n)2}<*.f(K)>.

Proof: Since x(c) is compatible with f (K) there is, by definition, a strictly causal
autonomous controller C: (Im J;m):'-+ (D)~ 1 that steers J; from f (K) to x(c). Our
objective is to show that in such case a controller C0 satisfying the Lemma also exists.

For every a E f (K), denote by C{a} the sequence generated by the controller C for
the initial input list a. (Recall that C{a} starts at the step K+ 1.) Let J;m be the
monitored part of r. Then, by the strict causality of C, the following holds. For every
pair a, a' E f(K) and for every integer k ~ K, one has

(C{a})!!i = (C{a'})!!i whenever (J;m aC{a})! = (J;m a'C{a'})! (22)

The interpreter r, being bounded, has a recursive representation (1), with internal
sequences, state sequence x, monitored sequenceµ, and output sequence y. For every
aEf(K), let s(a), x(a), µ(a) and y(a) be the respective sequences generated by the
recursive representation of J; when J; is driven by the concatenation aC{a}. Since C
steers J; to the periodic tail x(c), the sequence y(a) is ultimately periodic with cycle c.

Let i,,;n be the input value set, let Ji'; be the internal value set, and let X be the state
set of r. By the boundedness of r, these sets are all finite. Consider the quintuple

q(a)k:= (s(a)k, x(a)k, µ(a)k,y(a)k, (C{a})k+1)

for fixed a E f(K) and k ~ K. Note that (C{a})k+l E i,,;n, and that, according to (1), µ(a)k
and y(a)k are both determined by s(a)kE Ji'; and by uk = (C{a})kE i,,;n. Thus, the total
number of possible distinct quintuples q(a)k cannot exceed

p:= (# Ji';)(# X)(# i,,;n)2 (23)

The cardinality n of the initial input value set f (K) must clearly satisfy n ~
(# i,,;ny+i. Let a 1 , ... ,an be the elements of f(K). For every integer k = K,K+ 1, ... ,
define the list of n quintuples

L1k:= {q(al)k, q(a2)k, • • •, q(an)k}

By (23), the total number r of possible lists L1 k' for each integer k, satisfies

r ~ n*:= {(# ,:.,;)(# X)(# i,,;n)2}n (24)

Let r;(a) be the step at which periodicity of y(a) commences, and let r be the period of
x(c), which is also the ultimate period of y(a). Denote

r;:= max {r;(a1), ... , r;(an), K}

and consider the subsequence A,,, L1,,w A,,+2,, ••• In view of (24), there is a pair of
integers m > p ~ 0, (m-p) ~ n*, such that L1,,+m, = L1,,+p,·

266 J. Hammer

Consider the list L1z+pr-1, which is non-empty only when 17+pr-l ~ K. We
construct a list A as follows.

If [(17+pr-l)-K] ~ n*, set A:= L1z+pr- 1
.

If[(17+pr-l)-K] > n*, there must be a pair of integers}> i, where (17+pr- l) ~
j > i ~ K, for which L1i = L1r Construct a new list A1 := {L1K, L1K+1, ... , Ai, L1i+1 , ... , L1,,+pr- i}
by omitting L1i+1, ... ,L1j; the number of elements in the list A1 is given by a 1:=
(q + pr- 1)- K-U- i). If a 1 > n*, repeat the same process on A1 to obtain a list A2 , and
then on A2 to obtain a list A3 , etc., until a list Aq is obtained whose number of elements
aq satisfies aq ~ n*. Then, set A:= Aq.

With the list A, use concatenation to construct the sequence

(25)

the elements of this sequence are renumbered consecutively as c5K, c5K+l' c5K+2, ••• , where
each element c51c is a list of n quintuples that we denote by

c51c = {(sia1)1c, xia1)1c, µia1)1c,Yia1)1c, (C" a1)1c+1), (sia2)1c, xia2)1c,µia2)1c,

yia2)1c, (Cr5a2)1c+1), ···, (sian)1c, xian)1c,µian)1c,Ylan)1c, (Cr5an)1c+1)}

Apply now the sequence (Ciai))K+l' (Ciai))1c+2, ... as an input sequence for E with
the initial input list ai. From our construction and the recursive representation (1), it
follows that the output sequence of E becomes y i ai), the state sequence is xi ai), and
the monitored sequence is µiai), for all i = I, ... , n. Based on the fact that the original
output sequence y(ai) is ultimately periodic with cyclic c, our construction implies that
yiaJ is also ultimately periodic with cycle c for all i = I, ... , n.

Consider the assignment

(26)

In view of (22) and (25), it follows by construction that for all a, a' E f(K) and for all
integers k ~ K

(Cia))!!f = (Ca(a'))!!f whenever (Em aCia))! = (Em a'Cia'))!

Whence, by Corollary 1 the assignment (26) induces a strictly causal controller
C": (Im.Em):-+ (D):i.1 . As indicated earlier, the sequence Cia), when used as the
input sequence of E with the initial input list a E f (K), elicits from .E the output
sequence yia), and yia) is ultimately periodic with cycle c. Consequently, C" steers E
from f (K) to x(c). Finally, (25) shows that, for all i = I, ... , n, the sequence Ciai)
is ultimately periodic, with period not exceeding (m-p)r ~ n*r, and periodicity
commencing by the step aq ~ n*. Thus, the controller C" satisfies the Lemma with
r" ~ rn* and""~ K+ 1 +n*. D

As we can see, the complexity of the controller C" increases exponentially with the
uncertainty about the initial input list of .E, described by# f (K).

The technique employed in the proof of Lemma 2 can be used to derive a finite test
that determines whether or not there exists a corrective controller that steers .E from
f(K) to the periodic tail x(c). To this end, let E = (E

0
,Em):D--+SSA be a bounded

interpreter with the input value set ~n, the internal value set JI;, and the state set X. Let
f(K) be the initial input set of E, and let the periodic tail x(c) be its target tail set. Let
r be the length of the cycle c, and define the integers

B:= r[(# JI;) (# X) (# ~n)2]<* .f(K))}
v:= [(# Ji';)(# X)(# ~n)2]<*.f(K))

(27)

Corrective control of sequential machines 267

Let e ~ K be an integer. For each pair of elements aE,/(K) and uE(D)~:i, let y(au)k,
µ(au)k, s(au)k, and x(au)k be the output, monitored, internal and state sentences,
respectively, induced by the input list au at the step k, k = 0, ... , B + I. For each integer
k = K, ... , s, define the quintuple

(28)

The following statement provides a finite test to determine whether or not x(c) is
compatible with f (K).

Proposition 6: Let x(c) be a periodic tail with period r, let(} and v be given by (27), and
use the notation of (28). Then, x(c) is compatible with f(K)for the bounded interpreter
I: D-+ SSA if and only if,for every element a E f (K), there is a list u(a) E (D)Z!f+v+i that
satisfies the following.

(a) There is an integer y > 0 such that (Q(au(a)))K+O+v-YT = (Q(au(a))t+o+v; the list
(y(au(a)))Z!~!~-y, consists of y cycles c; and B+v-yr ~ 0.

(b) For each pair a, a' E,/(K) and for every integer k = K,K+ I, ... ,K+B+v, one has
(u(a))!!i = (u(a'))!!i whenever (µ(au(a)))! = (µ(a'u(a')))!.

According to the Proposition, in order to test whether or not x(c) is compatible
with f (K), one would simply search over all pairs a E f (K) and u E (D)Z!f+v+1 to find if
lists u(a), a E f (K), that satisfy conditions (a) and (b) of the Proposition exist. Note that
for each u and a the entries of Q can be computed directly from the recursive
representation (1) of I. Since the input value set ~n is finite, the search is finite, and can
be executed by computer.

Proof: Assume first that x(c) is compatible with f (K). Then, setting u(a):=
(Cia})Z!f+ 0+1, where C6 is the controller constructed in the proofofLemma 2, it follows
directly that (a) and (b) are satisfied.

Conversely, assume that (a) and (b) hold. For each element a E f (K), consider the
concatenated input sequence

() ._ ((N))K+8+v+ 1 (())K+8+v+ 1 (())K+8+v+ 1
V (1. .- U ""' K+l U (1. K+B+v+l-y, U (1. K+O+v+l-y, · · · (29)

In view of (a) and the proof of Lemma 2, the output sequence Io(av(a)) is ultimately
periodic with a cycle c. Furthermore, in view of the Proof of Lemma 2, condition (b)
implies that the assignment

C{a}:= v(a) (30)

induces a strictly causal autonomous controller C that steers I from f(K) to x(c).
Whence, x(c) is compatible with f (K). D

Proposition 6 shows that, for a bounded interpreter I, the question of whether or
not a periodic target tail set x(c) is compatible with the initial input set f (K) is a
decideable question. The description of the controller given by (30) is not directly
suitable for implementation, since it refers to the initial input list a, which is not given.
An implementable representation of a corrective controller is provided later in this
section.

Proposition 6 can be directly generalized to provide the following finite test for the
compatibility of any bounded target tail set with the initial input set f(K). The proof
is similar to that of Proposition 6.

268 J. Hammer

Theorem 1: Let I:: D--+ SSA be a bounded interpreter, with input value set J<n, internal
value set Jt;, state set X, initial input set f(K), and bounded target tail set x(c 1 , ... , cm).
Let ri be the length of the cycle ci. Denoter:= max{r 1, ... , rm}, and, with this value of r,
let() and v be given by (27). Then, the target tail set x(c 1 , ... , cm) is compatible with f (K)
for I: if and only if,for each element aE f (K), there is a list u(a) E (D); ! f+u+i that satisfies
the following.

(a) There is an integer y > 0 and a cycle ci E {c1 , ... , cm} such that (Q(au(a)))K +B+v-yri =
(Q(au(a)))K+B+v; the list (y(au(a)))~!i!~-yri consists of y cycles ci; and e+v - yri ~ 0.

(b) For each pair a, a' E f (K) and for every integer k = K, K+ 1, . .. , K + e+ v, one has
(u(cx))!!i = (u(cx'))!!i whenever (µ(au(a)))! = (µ(a'u(a')))!.

Note that the integer yin Theorem 1 may depend on the element aEf(K).
The theorem provides a finite test that determines whether or not the target tail set

x(c1, ... , cm) is compatible with f(K). The test is performed by searching among all lists
uE (D)~!f+v+1 forlists u(a) that satisfy conditions (a) and (b) of the Theorem. The search
can be programmed on a digitial computer.

Theorem 1 can also be used to characterize the class of all bounded tail sets that are
compatible with the given initial input set f (K). Of course, altogether, there may be an
infinite number of bounded target tail sets that are compatible with f (K). To avoid the
need to deal with infinite sets, these can be divided into finite families as follows.

Consider a target tail of the form x(c 1 , ... , cm}, and let ri be the length of the cycle
ci, i = 1, ... , m. A slight reflection shows that the number of distinct cycles that can be
induced by an autonomous controller C in combination with an interpreter J; cannot
exceed the number of initial input lists contained in f (K). Consequently, we can
restrict our attention to the case m ~ # f (K). Let <fJ(I:, r) denote the class of all
bounded tails x(c 1, ..• , cm) that are compatible with the initial input set f (K) for I:,
where m ~ # f(K) and ri ~ r, 1 = 1, ... , m. The class <fJ(I:, r) can be derived directly
through Theorem 1, by searching over all possible candidates, of which there is only
a finite number for each r. Once the class <fJ(I:, r) is known for the largest r of interest,
a desirable target tail set that is compatible with J; can be selected from it, if one exists.
This approach to selecting a target tail set is usually more practical than an arbitrary
prespecification of the target tail set, which might turn out to be incompatible with the
initial input set of I:.

In analogy with (29) and (30), the following formula can be readily shown to
provide the response of a strictly causal autonomous controller that steers J; from
f (K) to X(C1, ... , cm).

Lemma 3: Assume that a class of lists {u(a)}, CXE f(K), satisfying conditions (a) and
(b) of Theorem 1 exists. Then, in the notation of the Theorem, the controller C with the
response

C{IV} _ ((N))K+B+v+l (())K+8+v+l (())K+8+v+l
1J1. - U 1J1. K+l U C(K+8+v+l- yr1 U C(K+8+v+l-yr1 • • •

for all a E f (K), is a strictly causal autonomous controller that steers I: from f (K) to

x(c1, •••,cm).

The formula provided for the controller by Lemma 3 is not in implementable form,
since it includes a reference to the initial input list ex. We consider next the derivation
of an implementable formula for the corrective controller. To this end, we shall need
to reformulate some of our results into a somewhat more algebraic form.

I
~

Corrective control of sequential machines 269

4.2. Input/ output formulae for the controllers

Let E = {E0 , Em):D-+ SSA be a bounded interpreter with the initial input set f(K).
Let l<n be the input value set of E, let Ji'; be its internal value set, and let Vm be its
monitored value set. By causality, the monitored sentence µk generated by Eat the step
k is determined by the input values u0, u1, ••• , uk of E. To emphasize this fact, we use
the notation

We define a family of functions {aK+i}~0 , where aK+i is a function f (K) x Cl<n)i-+
(ImEm)~+i given by

The family of functions {aK+i}~0 is, of course, directly determined by the monitored
part Em of E.

In general, given two functionsf:A-+B and g:A-+ C, it is said that the function!
factors over the function g if there is a function h: C-+ B such that f = hg. As is well
known, the functionffactors over the function g if and only if every equivalence class
of the equivalence kernel of g is contained within an equivalence class of the
equivalence kernel off (MaClane and Birkhoff 1979). In intuitive terms, this means
that f must be constant over all sets over which g is constant.

For every integer i ~ 0, let <PK+i+1 be the family of all functions </J: f (K) x (J<n)i-+ l<n
that factor over the function aK+i· Namely, a function </J:f(K) x CJ<n)i-+ l<n belongs to
<PK+i+l exactly when there is a function 'If: (Im Em)~+i-+ l<n satisfying

(31)

When the interpreter Eis bounded, it follows by the finite cardinality of all value sets
that, for each integer i ~ 0, the family <PK+i+l contains only a finite number of members.
These members can all be computed for a given i from the equivalence kernel of the
function aKw as follows. Let the equivalence kernel of aK+i consist of e equivalence
classes e1, ... , ec Then, <PK+i+1 has{# l<nY members; each member of <PK+i+1 is obtained
by choosing e (not necessarily distinct) sentences a1, •.. , ae E J<n, and defining a function
</J by setting </J(b):= ai for all b E ei, i = 1, ... , e.

Let r:J. E f(K) be an element, and let ¢1 , ... , ¢5 be a list of functions, where <Pi E <PK+i
for all i = 1, ... ,j. Define the concatenation

u(r:J.<P1 · · · </J;):= uK+l · · · uK+i

where uK+1 := </Ji{r:J.) and, given uK+i for some integer i ~ 1, i <j, set uK+i+1 :=
</Ji+l(r:J.u1 ••. uJ It is convenient to use the notation ¢:= </J1 ••. ¢1 for the combined
function, and u(r:J.</J):= u(r:J.</)1 ..• </)1). We also denote by

</JU):= {</J = <P1 <P2 •.. <Pm I <Pi E <PK+i' i = 1, ... ,j+ l}

the family of all such combined functions. For a pair of elements r:J. E f (K) and </J E <PU),
let (x(r:J.</J))k:= (x(r:J.u(r:J.<j))))k,k = 0, ... ,K+j+ 1, be the states generated by the input list
r:J.u(r:J.</J); and similarly for the other relevant lists. Denote

as in (28). Then, the next statement is a reformulation of Theorem 1.

270 J. Hammer

Corollary 3: In the notation of Theorem 1, the bounded target tail set x(c 1 , ... , cm) is
compatible with the initial input set f(K) for E if and only if there is a member
tpE<P(fJ+v) that satisfies the following. For each element r:xEf(K), there is an integer
y > 0 and a cycle ciE{c1, ... , cm} such that

(a) Q(r:x</J),.+e+v-yrt = Q(r:x¢),.+ew where fJ+v-y,i;??; 0 and Q(r:x</J) is given by (32); and

(b) the list (y(r:x</J)t!~!~-yrt consists of y of cycles ci.

Proof: A slight reflection upon the definition of the family of functions </J(B + v)
shows that the following is true. An ensemble of lists {u(r:x)E(D);!f+v+1,r:xEf(K)}
satisfies condition (b) of Theorem 1 if and only ifthere is a member of <p E </J(B + v) such
that

u(r:x) = u(r:x¢) (33)

for all r:xEf(K). Combining this with the fact that conditions (a) and (b) of Corollary
3 are just a restatement of condition (a) of Theorem 1, the assertion follows. D

Furthermore, (33) shows that Lemma 3 takes the following form.

Corollary 4: Assume that conditions (a) and (b) of Corollary 3 are satisfied for the
function ¢ = ¢1 ¢2 ..• <Pe+v+i E </J(B+ v). Then, the response of the strictly causal auton
omous controller C of Lemma 3 that steers E from f (K) to x(c 1, •.. , cm) is given by

C{r:x} = u(r:x¢1 <P2 ·· · <Pe+v+1)(u(r:x</J1 <P2 ·· · <Po+v+1));!~!~!tyrt · · · (u(r:x¢1 </J2 · ·· ¢o+v+l));!~!~!tyrt ···

for all r:x E f (K).

For future use, it will be convenient to remove the dependence on the cycle length
,i from the statement of Corollary 4. This is done in the next Corollary, at the expense
of considering somewhat longer lists of functions.

Corollary 5: Assume that conditions (a) and(b) of Corollary 3 are satisfied. Then there
are an integer b > 0 and a function <p = <p1 <p2 ... (f)e+v+<>+I E </J(8 + v + b) such that the
following hold for all r:x E f(K).

(a) The list (y(r:x<p))~!~+o consists of an integer number of copies of one of the cycles
{c1, ···'cm};

(b) Q(r:x<p)o+v = Q(r:x<p)e+v+o; and

(c) the controller C with the response

C{r:x} = u(r:x<p1 (f)2 · · · (f)o+v+o+1)(u(r:x<p1 (f)2 · · · 'Po+v+o+1))~!~!f+1 · · · (u(r:x<p1 'P2 · · · 'Pe+v+o+1))~!~!f+1 · · ·

represents a strictly causal controller that steers E from the initial input set f (K) to the
target tail set x(c1, ... , cm).

The Corollary follows from Corollaries 3 and 4; for each element r:x E f (K), set
b(r:x):= y,i, where y and ,i are from Corollary 3 part (a), and take <5 > 0 to be a least
common multiple of all b(r:x), r:xE f(K). The result follows then similarly to Corollary 4
by considering longer portions of the sequences. We omit the details here.

The expression for the controller C in Corollary 5 part (c) still refers to the
(possibly unknown) initial input list r:x, and whence is not in implementable form. This
reference, however, can now be eliminated by using the factorization (31), and the
following statement is obtained.

Theorem 2: Assume that the conditions of Corollary 5 are satisfied for the function rp:=
<p1 ••. (f)o+v+o+1 E<P(B+v+b). Using (31), factor 'Pi= 'l'i+KaK+i-i,i = 1, ... , B+v+<5+ 1.

Corrective control of sequential machines 271

Then, an autonomous strictly causal controller C: (Im E):i--+ (D):+-1 that steers the
bounded interpreter E from the initial input set f (K) to the target tail set x(c1 , ... , cm) is
given by the concatenation

Cµ = VK+l VK+2 • • • Ve+v+J+l Ve+v+l • • • Ve+v+J+I Ve+v+l • · · Ve+v+J+I • • ·

where V/= lfliµK µK+I ... µ1_1),j = K + 1, ... , 0 + v + t5 + 1, and where µ is the monitored
sequence of the interpreter-controller combination.

The controller C of Theorem 2 is a feedback controller up to the step O + v + t5 + 1 ;
thereafter it can be regarded as an open-loop controller, producing a periodic input
sequence for E with the cycle {ve+v+1 ... Ve+v+J+1} of previously generated values. The fact
that the control algorithm turns into an open-loop algorithm at some point is not
surprising, since once the periodic part of the ultimately periodic input sequence of E
is reached, the continuation of the sequence becomes predictable, and does not need
to be recomputed.

The controller of Theorem 2 can be implemented by using the functions { If/) to
create the required feedback for the steps K + 1 to O + v + t5 + 1, and thereafter by simply
repeating periodically the appropriate part of the previously generated list. Thus, we
have obtained an implementable autonomous controller C that steers a bounded
interpreter E from a given initial input set to a desired bounded target tail set,
whenever such a controller exists.

Remark 3: Characterization of all controllers: we comment that Theorem 2 can be
used to characterize the set of all strictly causal autonomous controllers with a finite
implementation that steer E from f(K) to a specified bounded target tail set. The set
of all such controllers is determined by following the path toward the derivation of
Theorem 2, including along the way all members of the following two sets: the set of
all controllers C,, that satisfy the first part of Lemma 2; and the set of all relevant
solutions If/ of the factorization (31).

Finally, we note that Theorem 2 provides a general bound on the necessary
complexity of a corrective controller.

5. Compatibility of initial input sets

Let E: D--+ SSA be a causal interpreter with a uniform domain, with the initial
input set f (K) and the target tail set T. In case the desired target tail set is not
compatible with the given initial input set, it may still be possible to achieve
compatibility by changing the initial input set. The initial input set can only be changed
by collecting more accurate data about the history of the interpreter E. This has the
effect of replacing the initial input set f (K) by one of its subsets. It is therefore of
interest to characterize the class ~(f (K), T) of all subsets off (K) that are compatible
with T, when used as initial input sets for E. The class ~(f(K), T) indicates all the
various ways in which the initial input data about E can be refined to achieve
compatibility with the desired target tail set T. Recall that, by definition, an
autonomous corrective controller that steers E to T exists if and only if the initial input
set of E is compatible with T.

The present section deals with the determination of the class ~(f(K), T).
Compatibility is always with respect to the interpreter E and the target tail set T. We
start with some elementary properties.

272 J. Hammer

First, it is quite clear that if there is an autonomous controller C that steers f (K)
to T, then the same controller also steers every subset off (K) to T. This yields the
following statement.

Lemma 4: If f(K) is compatible with T, then so is every subset of f(K).

In intuitive terms, a smaller initial input set embodies more accurate data about the
history of the interpreter E. Lemma 4 simply states, as one would expect, that more
accurate data do not hamper the prospects of corrective control. In particular Lemma
4 implies that every intersection of input sets that are compatible with T is also
compatible with T. Note, however, that a union of input sets that are compatible with
Tis not necessarily compatible with T. Indeed, consider the case where f(K) consists
of two elements oc1, oc2 , and let U1 (oci) be the set of all input sequences u E (D)~ 1 satisfying
T(Eoci u) n T =I= 0, i.e. the set of all continuations that lead from oci to T, i = I, 2.
Assume that U1(oc1) and Ui(oc2) are both non-empty, but that their intersection is
empty, so that no single continuation can lead from both initial input lists to T.
Finally, assume that the monitoring function hm of Eis a constant function. Clearly,
in this case, the monitored sequence generated by Eis always the same, and whence no
controller can provide a continuation that leads to T, when there is an uncertainty as
to whether oc1 or oc2 is the initial input list. Thus, though the initial input sets {oc1} and
{oc2} are both compatible with T, their union {oc1 , oc2} is not.

However, the logical negation of Lemma 4 directly implies that a union of input
sets that are incompatible with Tis always incompatible with T. We formally state this
fact below.

Lemma 5: An initial input set f(K) that contains a subset that is incompatible with T,
is itself incompatible with T.

In particular, the union of an initial input set that is compatible with T with one
that is incompatible, is incompatible with T. Still, the intersection of two input sets that
are incompatible with Tis not necessarily incompatible with T.

Consider a bounded interpreter E:D-+ SSA with the initial input set f(K) and the
bounded target tail set T, where f(K) is incompatible with T. For every ocEf(K), let
U1(oc) be the set ofall input sequences uE(D)~ 1 satisfying T(Eocu) n T =I= 0, i.e. the set
of all continuations that lead from oc to T. It is readily seen that the class ({}(f (K), T)
is non-empty if and only ifthere is at least one list ocEf(K) for which U1(oc) =I= 0.

We regard the class ({}(f (K), T) as a partially ordered set (a poset), under the usual
relation of set inclusion. The meet of two elements c1, c2 E ({}(f(K), T) is given by their
intersection c1 n c2, which, according to Lemma 4, always belongs to ({}(f (K), T). The
join of c1 and c2 is given by their union c1 U c2, whenever it belongs to ({}(f(K), T). We
refer to ({}(f (K), T) as the compatibility poset; the compatibility poset depends, of
course, on E, as well as on f(K) and T.

As noted earlier, the union of two initial input sets that are compatible with T, is
not always compatible with T. Consequently, the poset ({}(f (K), T) may not contain
the join of some of its members, and whence, in general, does not form a lattice. From
our current perspective, the most important implication of this fact is that ({}(f (K), T)
does not always contain a 'global maximum'. In other words, in general, there is no
largest compatible initial input set contained within f (K). Recall that a larger
compatible initial input set means that a corrective controller can be built with less
accurate information about the input history of E. Of course, one would like to use as
little information as possible, to reduce measurement complexity.

Corrective control of sequential machines 273

A member c E <CCf (K), T) is a local maximum if it is not a strict subset of any other
member of<C(f(K), T). To provide an intuitive perspective, assume that rc(f(K), T) is
not empty, i.e. that there is at least one initial list within f (K) that is compatible with
the target tail set T. When the initial input set/ (K) is not itself compatible with T, it
must be replaced by a member fc(K) ofrc(f(K), T) to facilitate corrective control. This
is achieved by collecting additional data about the input history of I: up to the step K.

Clearly, the larger the set fc(K) is, the less additional information needs to be gathered
about the input history of I:. Each local maximum of rc(f(K), T) provides a
compatible initial input set that is 'largest' in the sense of not being contained within
any other compatible initial input set. The local maxima ofrc(f (K), T) characterize the
various 'minimal' ways in which additional data about the initial input history of I:
can create compatibility with the target tail set T. Below, we develope a finite
procedure that determines the entire compatibility poset (61(/ (K), T) for a bounded
target tail set T.

Let I: = (I:0 , I:m): D--+ SSA be a bounded interpreter with the initial input set f (K)
and the target tail set T. Recall that, due to boundedness, f(K) is a finite set; Let
oc1, ... , ocn be the elements off (K). As before, for each list oci E f (K), let Ui(oci) be the
set of all input sequences uE (D)~ 1 satisfying T(I:ocu) n T =t= 0-

Next, for each pair of lists oci, oc1 E f (K), i =t= j, let Uloci, oc1) be the set of all pairs of
sequences (u, u'), where u E Ui(oci) and u' E Ui(oc1), and the following holds.

(u):!f = (u'):!}, whenever (I:m oci u): = (I:m oc1 u'):, k = K, K + l,... (34)

The sets Ulai, oc1) play an important role in the present context. First, combining
Lemmas 1 and 5 with (34), we obtain the following lemma.

Lemma 6: If Uloci, oc1) is empty, then there is no member ofrc(f(K), T) that contains
both initial input lists oci and oc1•

If Uloci, oc1) is non-empty, then the class {oci, oc1} belongs to rc(f (K), T).

Using the sets Ul oci, ocj), i,j = 1, ... , n, i =t= j, we can construct the entire class
rc(f (K), T) in the following way. Let oci , ... , oc,, be any p elements off (K),p = 3, ... ,

1 •P

n. Define the set Up(oci, ... , oci) as the set of all p-tuples (ui, ... , ui) of sequences for
which

1
p

1
p

(up ui) E Uloci' oci), for all}, k = 1, ... ,p,j =t= k (35)
j k j k

Note that Up(oci, . .. , oci) is obtained from the sets {Uloci, ai)} via (35) by a screening
process. The co~patibility po set rc(f (K), T) can now b; ch;racterized as follows.

Proposition 7: For the initial input set f(K) = {oc1, ... , an}, the compatibility poset
<C(f (K), T) consists of all subsets {ai , ... , oci } c f(K),p = 1, ... , # f (K), for which

1 p

UP(oci , ... , oci) =t= 0.
1 p

Proof: Let p E {l, ... , # f(K)} be an integer, and let A(K) = {oci, ... , oci } cf (K) be a
subset. Assume first that UP(oci , ... , ai) =t= 0; we show that ii{ such d'ase, the initial
input set A(K) is compatible with the tafget tail set Tfor I:. To this end, let (ui, . .. , ui)
be any element of Up(oci

1
, ••• , ociv). Consider the function F:A(K)--+ UoceA<K> U1(oc):oci ~

F(oct):= ui ,j = 1, ... ,p. Then, (34) and (35) imply that condition (b) of Lemma 1 is
satisfied f6r the initial input set A(K) with the present function F. This, by the same
Lemma, entails that A(K) is compatible with the target tail set T for I:.

Conversely, assume that the initial input set A(K) is compatible with the target tail
set T for I:. We show that then Up(rxi.' ... , oci) =t= 0- Indeed, since A(K) is compatible
with T, part (b) of Lemma 1 is valid: Let Fbe the function of part (b) of Lemma 1,

274 J. Hammer

and set (u., ... , u,):= (F(ai), ... , F(ai)). Then, by statement (b) of Lemma 1, condition
il 'p 1 P

(35) holds for (ui, ... , ui), so (ui, ... , ui)E UP(ai, ... , ai), and UP(ai, ... , ai) * 0.
I P I p 1 p 1 P

This concludes our proof. D

Of course, Proposition 7 cannot be directly used to find the members of the
compatibility class <&(f (K), T), since Up(ai, ... , ai) consists of infinite sequences.
Notwithstanding, when the interpreter rand the t;rget tail set Tare both bounded,
the proposition can be modified into a finite procedure that yields all members of the
compatibility poset <&(f (K), T), as discussed next.

Consider again the bounded interpreter r = (X:0 ,X:m):D-+SSA with the input
value set ~n• the internal value set i,;, the state set X, the initial input set f (K), and the
bounded target tail set T = x(c 1 , ... , cm). Let ri be the length of the cycle ci, i = 1, ... ,
m; denote r:= max { r 1, •.. , rm}; let (} and v be the integers given by (27) for this value
of r, and let Q be given by (28). For each element ai E f (K), let 0/li(ai) be the set of all
lists u E (D)~!f+u+l for which the following holds.

There is an integer y > 0 and a cycle ciE{c1, .•• ,cm} such that (Q(aiu))K+B+v-y,i =
(Q(a1 u))K+B+v; the list (y(au(a))t!~!~-y,i consists of y cycles ci; and (J + v-yri ~ 0.

Note that the set 0/li(ai) can be obtained by a finite screening process. Next, for each
pair of elements ai, ai E f (K), i * j, let 0/llai, a1) be the set of all pairs of lists (u, u'),
where u E 0//1 (ai) and u' E 0//1 (ai), and

(u)!!i = (u')!!i Whenever (I;m ai u)! = (I;m a1 u')!, k = K, K+ 1, ... , K+ (}+ V

(36)

The class 0//l ai, a1) is obtained from the sets 0//1 (ai) and 0//1 (a1) by a screening process,
which is finite since all involved sets are finite. Theorem 1 yields then the following
finite version of Lemma 6.

Lemma 7: Let T be a bounded target tail set for the bounded interpreter I:, with the
initial input set f (K) = {a1, ... , an}.

(a) IfO/llai, a1) is empty, then there is no member of<&(f (K), T) that contains both initial
input lists ai and a1•

(b) If 0/llai, ai) is non-empty, then {ai, a1} belongs to <&(f(K), T).

Next, for every subset {ai, ... , ai } c f(K) of p elements,p = 3, ... , n, define the set
I p

0/lp(ai, ... , ai) as the collection of all lists (ui, ... , ui) that satisfy
1 p I p

(ui, ui)EO/llai, at), for allj,k = 1, ... ,p,j * k (37)
j k j k

Note that the set 0/LP(ai, ... , ai) is obtained by a screening process over a finite number
I p

of candidates.

When Theorem 1 is combined with Proposition 7, we obtain the following statement,
which yields a finite technique for the derivation of the compatibility poset <&(f (K), T)
of r.
Theorem 3: Let T be a bounded target tail set for the bounded interpreter I:, with the
initial input set f (K) = {a1, •.. , an}. The compatibility poset <&(f (K), T) consists of all
subsets {ai, ... , ai } cf (K),p = 1, ... , # f (K),for which 0/LP(ai, ... , ai) * 0.

1 p 1 p

Theorem 3 allows us to derive the compatibility poset <&(f (K), T) for r through a
finite procedure, as mentioned. Every member of <&(f (K), T) forms an initial input set
that is compatible with Tfor I:, and every initial input set that is compatible with Tfor

Corrective control of sequential machines 275

E belongs to rc(f (K), T). Once the compatibility poset is known, its local maxima can
be found directly by partially ordering the members. A convenient compatible initial
input set can be selected from rc(f(K), T) (if one exists); a corrective controller that
steers E from the selected initial input set to the target tail set T can then be constructed
using Theorem 2.

An important issue that is outside the scope of the present paper is, of course, the
physical implementation of corrective controllers. In a digitial circuit environment,
corrective controllers can be directly implemented from their mathematical models
using standard techniques and components. In biochemical systems, however, the
transition from a mathematical model to an implementation remains, to a large extent,
an important open issue. Appropriate tools and techniques that bridge the gap
between a mathematical model of a controller and its actual biochemical im
plementation wait to be developed. In practically all other areas of engineering, tools
that bridge the span between mathematical models and implementations are well
established.

REFERENCES

ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K., and WATSON, J. D., 1989, Molecular
Biology of the Cell, second edition (New York: Garland).

ARNOLD, A., and NIVAT, M., 1980, Controlling behaviors of systems: some basic concepts and
some applications. Proceedings of the 9th Symposium on Mathematical Foundations of
Computer Science (Berlin: Springer-Verlag).

CHO, H., and MARCUS, S. I., 1989, Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Mathematical Systems Theory, 22,
177-211.

CIESLAK, R., DESCLAUX, C., FA WAZ, A., and V ARAIYA, P., 1988, Supervisory control of discrete
event processes with partial observations. IEEE Transactions on Automatic Control, 33,
249-260.

EILENBERG, S., 1974, Automata, Languages, and Machines (New York: Academic Press).
GINSBURG, S., 1962, An Introduction to Mathematical Machine Theory (Reading, Massachusetts,

U.S.A.: Addison-Wesley); 1966, The Mathematical Theory of Context Free Languages
(New York: McGraw-Hill).

HOARE, C. A. R., 1976, Communicating Sequential Processes (New Jersey, U.S.A.: Prentice
Hall).

HOLLOWAY, L. E., and KROGH, B. H., 1990, Synthesis of feedback control logic for a class of
controlled Petri nets. IEEE Transactions on Automatic Control, 35, 514-523.

IEEE COMPUTER SYSTEMS SOCIETY (Conference publications), 1974, Proceedings of the 1974
Conference on Biologically Motivated Automata Theory, McLean, Virginia, U.S.A.

KAUFFMAN, S. A., 1969, Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22, 437-467.

KUMAR, R., GARG, V., and MARCUS, S. I., 1992, On supervisory control of sequential behaviors.
IEEE Transactions on Automatic Control, 37, 1978-1985; 1993, Predicates and predicate
transformers for supervisory control of discrete-event systems. IEEE Transactions on
Automatic Control, 38, 232-247.

LIN, F, and WONHAM, W. M., 1988, On observability of discrete-event systems. Information
Science, 44, 173-198.

LINDENMAYER, A., 1968, Mathematical models for cellular interactions in development, Parts I
and II. Journal of Theoretical Biology, 18, 280-315.

MACLANE, S., and BIRKHOFF, G., 1979, Algebra (New York: Macmillan).
MILNER, R., 1980, A Calculus of Communicating Systems, Lecture Notes in Computer Science

(Berlin: Springer-Verlag).
VON NEUMANN, J., 1966, The Theory of Self-reproducing Automata, edited and completed by A.

W. Burks, (Urbana, Illinois, U.S.A.: University of Illinois Press).
OzVEREN, C. M., and WILLSKY, A. S., 1990, Observability of discrete-event dynamic systems.

IEEE Transactions on Automatic Control, 35, 797-807.

276 Corrective control of sequential machines

OZVEREN, C. M., WILLSKY, A. S., and ANTSAKLIS, P. J., 1991, Stability and stabilizability of
discrete event systems. Journal of the Association for Computing Machinery, 38,
730-752.

PRUSINKIEWICZ, P., LINDENMAYER, A., and HANAN, J., 1990 The Algorithmic Beauty of Plants
(New York: Springer-Verlag).

RAMADGE, P. J., 1989, Some tractable supervisory control problems for discrete event systems
modeled by Buchi automata. IEEE Transactions on Automatic Control, 34, 10-19.

RAMADGE, P. J., and WoNHAM, W. M., 1987, Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25, 206-230.

RASHEVSKY, N., 1948, Mathematical Biophysics (The University of Chicago Press).
ROZENBERG, G., and SALOMAA, A., 1975, L Systems, Lecture Notes in Computer Science, Vol.

15 (Berlin: Springer-Verlag).
SREENIVAS, R. S., and KROGH, B. H., 1992, On Petri net models of infinite state supervisors,

IEEE Transactions on Automatic Control, 37, 274-277.
SuGITA, M., 1963, Functional analysis of chemical systems in vivo using a logical circuit

equivalent. II. The idea of a molecular automaton. Journal of Theoretical Biology, 4,
179-189.

THISTLE, J. G., and WoNHAM, W. M., 1988, On the synthesis of supervisors subject to w
language specifications. Proceedings of the 22nd Annual Conference on Information
Sciences and Systems, Princeton University, Princeton, New Jersey, U.S.A., pp.
440-444.

TSITSIKLIS, J. N., 1989, On the control of discrete-event dynamical systems. Mathematics of
Control, Signals and Systems, 2, 95-107.

VAZ, A. F., and WONHAM, W. M., 1986, On supervisor reduction in discrete-event systems.
International Journal of Control, 44, 475-491.

