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On the control of sequential machines with disturbances 

JACOB HAMMERt 

The problem of controlling a sequential machine under the influence of distur
bances is considered. A methodology is developed for the design of controllers that 
guarantees that the effect of a 'small' disturbance on the performance of the 
controlled machine remains 'small'. The methodology is based on a theory of 
fraction representations of sequential machines reminiscent of the general theory of 
fraction representations of nonlinear systems. 

1. Introduction 

Quite frequently one encounters the need to deal with sequential machines that 
are influenced by disturbances. These disturbances may originate from physical noise 
sources or from modelling uncertainties, or they may have a numerical origin. As an 
example of the former, consider a digital control system with remote telemetry. Here, 
noises in the telemetry communication channel create a disturbance that affects the 
system. As another example, consider a biochemical signalling chain in molecular 
biology (Hammer 1995 a, b). Here, several distinct phenomena may be regarded as 
disturbances that act on a fixed nominal model: (i) the natural random nature of 
biochemical processes can be viewed as a disturbance acting on a deterministic model 
that represents the 'average' response of the system; (ii) measurement inaccuracies 
incurred in the determination of the state of a biochemical reaction chain can be 
regarded as disturbances; and (iii) small differences among copies of similar reaction 
chains functioning in different locations can be regarded as disturbances that act on 
a fixed nominal model. Digital control systems and digital filtering systems furnish 
examples of sequential machines where disturbances of numerical origin may 
become important. Here, inaccuracies caused by finite word length can be regarded 
as disturbances that act on an idealized model. Other examples of application areas 
abound. 

Consider then a sequential machine E that operates within an environment where 
disturbances have undesirable effects on the performance of the machine. In order to 
correct the undesirable effects and improve the overall performance of the machine, 
connect E to another sequential machine C that serves as a controller, as depicted in 
the Figure. Here, the composite system is influenced by three disturbances: an 
external input disturbance v3, an in-loop input disturbance v 1, and an output 
disturbance v2 • The only a priori information available about these disturbances is 
an amplitude bound, i.e. it is known that the amplitude of the disturbances v 1, v 2 and 
v3 cannot exceed a specified value. Other than that, no assumption is made as to the 
nature or the origin of the disturbances. The purpose of the controller C is to drive 
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Figure 1. Composite system. 

the system I: so as to elicit from it desirable behaviour, while accommodating the 
disturbances. As the figure indicates, the signal y is regarded as the output signal of 
the configuration. Alternatively, one could regard the signal z as the output signal. 
The external input signal is denoted by v. The symbol '1:c will be used to indicate the 
input /output map induced by the closed loop system, so that, when the disturbances 
are absent, y = '1:c v. 

In the present paper we concentrate on the study of controllers C for which the 
effect of a disturbance on the output signal y does not exceed the original amplitude 
of the disturbance. We shall refer to such controllers as disturbance attenuating 
controllers. A disturbance attenuating controller guarantees that the disturbance is 
not amplified, so that 'small' disturbances have only 'small' effects on performance. 
The main result of the paper is the derivation of necessary and sufficient conditions 
for the existence of disturbance attenuating controllers, as well as the construction of 
such controllers, when they exist (§ 3). 

Following a long-standing tradition in digital circuit theory and practice, we 
conduct our discussion within an input /output framework, where a sequential 
machine is considered as a system that maps input sequences of discrete values 
into output sequences of discrete values. Input /output representations are usually the 
most convenient form of specifying the desired characteristics of a system, and hence 
are the most common starting point for design considerations. The process of 
implementing a system involves the translation of the input /output description into a 
state representation, or realization, of the system. Techniques for deriving realiza
tions from input /output representations are well established (e.g. Kohavi 1978). 

The effect of disturbances on closed loop systems is, of course, a central and 
widely studied subject in the literature on linear and nonlinear control theory. An 
important difference between the situation considered here and the standard 
literature is the fact that, presently, the systems operate over discrete spaces. 
Consequently, the standard notions of continuity and differentiability, which are 
commonly used to analyse the effects of small disturbances in classical control 
theory, do not apply here. To study the effects of small perturbations in discrete 
spaces, we introduce in § 2 the notion of 'continuity radius'. In intuitive terms, the 
continuity radius gauges the largest deviation that can occur in the response of a 
sequential machine as a result of a small perturbation in the input sequence. The 
notion of continuity radius is used to analyse quantitatively the effects of small 
disturbances on sequential machines, and to derive techniques for the design of 
controllers that keep these effects below specified bounds. 

The tools and notions developed in this paper form a conceptual framework for 
the analysis of error propagation in systems over discrete spaces, and can be used, 
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among other applications, to study error propagation in numerical algorithms. 
Presently however, we concentrate exclusively on control theoretic applications. 

An important aspect of the framework presented here is the development of a 
theory of fraction representations of sequential machines (§ 3), in line with the 
general theory of fraction representations of nonlinear systems (Hammer 1984 a, b, 
1985, 1994 a, Desoer and Kabuli 1988, Verma 1988, Verma and Hunt 1993, Sontag 
1989, Chen and de Figueiredo 1990, Paice and Moore 1990, Paice and van der Schaft 
1994, Baramov and Kimura 1995, and others). In brief terms, a right fraction 
representation of a sequential machine Eis a representation of the form E = PQ- 1

, 

where P and Q are sequential machines with desirable continuity radii. Fraction 
representations provide convenient tools for the investigation of disturbance 
attenuation for sequential machines, fulfilling here a role analogous to their role in 
the theory of control for systems over continuous spaces. 

The sequential machines considered in this paper are recursive machines over the 
integers. To be specific, let Z be the set of integers and, for an integer n > 0, let Z 12 be 
the set of all n-dimensional vectors of integers. We then consider sequential machines 
E that permit a representation of the form 

xk+l = f (xk, uk) } 

Yk = h(xk), k = 0, 1,2, ... 
(1.1) 

where xk E Z 11 is an n-dimensional vector of integers called the state of E at the step 
k; uk E zm is an m-dimensional vector of integers called the input value at the step k; 
and Yk E zP is a p-dimensional vector of integers called the output value of E at the 
step k. The function! is the recursion function of E, and his the output function. We 
assume that an initial condition x0 is provided, so that the response to an input 
sequence is uniquely determined. Following accepted practice in digital circuit 
theory, coding theory, and other areas, we adopt an input/output view and regard 
the machine E as a system that generates a sequence of output values in response to 
each sequence of input values. 

Models of the form (1.1) are used to represent systems in many application areas. 
Some examples are models of biological signalling chains (Hammer 1995 a, b), a 
class of critical biochemical reactions that in many ways determine the well being of 
all live organisms; models of digital curcuits used in computer hardware and 
software design; models of digital control systems; and models of digital filters. 

In order to provide a quantitative characterization of disturbances, we shall use 
(in § 2) the /00 -norm as a notion of distance within the spaces of input and output 
sequences, in analogy to the notion of distance commonly used in coding theory (e.g. 
Berlekamp 1968). 

Background related to the theory of automata and sequential machines can be 
found in Ginsburg (1962, 1966), Eilenberg (1974), Hoare (1976), Milner (1980), 
Arnold and Nivat (1980), and many other excellent sources. 

In general terms, the material discussed in this paper is within the context of the 
theory of discrete-event systems, although the basic approach relies more heavily on 
concepts and techniques used in nonlinear control theory. The theory of discrete 
event systems offers a number of alternative treatments of problems related to the 
control of discrete systems; these include Ramadge and Wonham (1987), Vaz and 
Wonham (1986), Lin and Wonham (1988), Thistle and Wonham (1988), Cieslak et 
al. (1988), Ozveren and Willsky (1990), the references cited in these papers, and many 
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others. Issues related to the stabilization of discrete-event systems were investigated 
by Ozveren et al. (1991). Finally, the discussion of the present paper is a continuation 
of the work presented by Hammer (1994 b, 1995 a, b, 1996 a). 

2. Basic concepts 

2.1. Preliminaries 

As mentioned earlier, the paper deals with sequential machines that operate on 
vectors of integers. We denote by Z the set of integers, and by Z 111 the set of all m
dimensional vectors with integer entries. Let S(Z 111

) be the set of all sequences 
( u0 , u1, u2, ... ) of m-dimensional integer vectors uk E Z 111

, k = 0, l, 2, .... Given a 
sequence u E S(Z 111

), we denote by uk the kth element of the sequence, where k ~ 0 is 
an integer, and we call uk the kth step of the sequence u. For an integer k ~ 0, we 
denote by u~ the list u0 , u1, .•• , uk. 

A sequential machine that accepts sequences of m-dimensional integer vectors as 
input and generates sequences of p-dimensional integer vectors as output is simply a 
map E: S(Z 111

) --+ S(ZP). In many cases, the set of input sequences accepted by Eis 
restricted. For instance, E may only permit input sequences whose amplitudes do not 
exceed a given bound. We denote by DI: the subset of S(Z 111

) that consists of all 
sequences that are allowed to serve as input sequences of the system E, and call DI: 
the input domain of E. In these terms, a sequential machine is represented by a map 
E: DI:--+ S(ZP), where DI: c S(Z 111

) is the input domain of E. Our main interest is 
in sequential machines E that permit a recursive representation of the form (1.1). 

Let u be an input sequence of a system E, and let y == Eu be the corresponding 
output sequence. We denote by Eu]~ the list of output values y 0 ,y 1, •.. ,Yk· 

A system E : DI: --+ S(ZP) is causal (respectively, strictly causal) if the following 
holds for all input sequences u, v EDI:: whenever u~ = v~ for some integer k ~ 0, 
then Eu]~= Ev]~ (respectively, Eu]~+I = Ev]~+1). This is the standard definition of 
causality, and it indicates that the system cannot react to changes in its input 
sequence before they have occurred. 

It can readily be shown that a system with a recursive representation of the form 
(1.1) is strictly causal. If the output function h in (1.1) also depends on the input 
value uk (rather than depending only on the state xk), then the system is causal, but 
not necessarily strictly causal. A system M : D 1 --+ D2, where D1 c S(Z 111

) and 
D2 c S(ZP), is bicausal if it is a set isomorphism with both Mand M- 1 being causal. 

The input domain of a sequential machine usually has a simple structure, which 
we now describe. A subset LI c zrn is called an interval if it is of the form 
[a1, bi] x · · · x [am, b111], where bi~ ai, i = l, ... , m, are integers (and therefore finite). 
The interval LI c zm induces an interval S(LI) in S(Zrn), which consists of all 
sequences in S(Zrn) whose elements belong to LI. Normally, the input domain of a 
sequential machine Eis an interval in S(Z 111

). 

A subset D c S(Zrn) is bounded if it is contained in an interval. Similarly, a 
system E: DI:--+ S(ZP) is bounded if its image Im Eis contained within an interval 
in S(ZP). 

We conclude this subsection with a qualitative review of the definition of a 
fraction representation. Consider a system E: DE--+ S(ZP), where DE c S(Zrn). A 
right fraction representation of Eis determined by a subset D c S(Zq), where q > 0 is 
some integer, and by a pair of causal systems P: D--+ S(ZP) and Q: D--+ DE, where 
Q is a set isomorphism and the equality E = PQ - 1 is satisfied. The set Dis called the 
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factorization set of the fraction representation. The numerator and denominator 
systems P and Q are required to satisfy additional conditions (usually relating to 
their continuity properties), and we shall discuss these further requirements later. 

Finally, in this paper the term functional norm refers to an assignment I· I 
that assigns a number If I to each function f of a given class, with the follow
ing properties: (a) for every function f and variables u and v, one has 
lf(u) - f(v)I ~ If llu - vi; and (b) for every pair of functions/,g having appropriate 
domain and codomain, the composition gf satisfies lg/ I~ jgll/ j. These properties 
make functional norms useful for the derivation of bounds on disturbance effects. 

2.2. The continuity radius and the gain functional norm 

The main subject of the present paper involves the investigation of sequential 
machines that are influenced by perturbations and disturbances. The investigation of 
the effects of perturbations and disturbances is, of course, a long standing subject of 
control theory. In the classical theory of control systems over continuous spaces, the 
analysis of the effects of small perturbations and disturbances depends, to a large 
degree, on the notions of continuity and differentiability. Needless to say, these 
notions cannot be directly used for systems that operate over discrete spaces. In the 
present subsection we define a notion for functions over discrete spaces which, in its 
qualitative properties, resembles the standard topological notion of continuity. This 
notion will allow us to develop a formalism for handling the effects of perturbations 
and disturbances for systems over discrete spaces. We base our discussion in this 
context on the use of the standard /00 -norm, but other norms can be used instead. 

Given a vector v = (v1, ... , v111
) E Z 111 we denote by lvl :=max (Iv\ ... , lv111I) the 

largest absolute value of a component. For a sequence u = (u0 , u1, ••• ) E S(Zrn), let 

lul := sup luil 
i2".0 

denote the usual zcxi_norm. Clearly, the norm lul of a sequence u E S(Z 111
) is either a 

non-negative integer, or infinity. 
Consider for a moment the classical notion of continuity over a topological 

space. In qualitative terms, a function is deemed continuous if a 'small' change in its 
variable creates (only) a 'small' change in its value. In order to gauge the effect of a 
'small' change in the variable of a function over a discrete space, we define the 
following notion. 

Definition 2.2.1: Let g : L1 ---+ ZP be a function with the non-empty input domain 
L1 c zm. The continuity radius 8 of g is given by 

8 := sup{jgu' - gul: u', u E L1 and ju' - ul ~ l}. D 

The continuity radius is simply a gauge of the effect on the output of the smallest 
possible deviation in the input. Clearly, when g : L1 ---+ zP is a constant function, its 
continuity radius is zero. Note however that a zero continuity radius does not 
necessarily imply that the function is constant. In the case where the domain L1 has 
the property that any pair of distinct points u and u' satisfies lu - u'I > 1, then g has 
continuity radius zero over L1. This anomaly is eliminated through the notion of gain 
functional norm defined later in this subsection. 

Before defining the continuity radius for a sequential machine, we need to analyse 
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some implications of the notion of causality. First, we define two projections for 
every integer k 2': 0. One is the projection 

Pk : S(Z 11
) -+ Z 11 

: Pk(Uo, U1, ... ) := Uk 

that projects each sequence onto its kth step; the second one is the projection 

(2.2.2) 

that projects each sequence onto its initial (k + 1) elements. Now, consider a causal 
system I: : DE -+ S(ZP) having the input domain DE C S(Z 111

). Since I: is a causal 
system, it follows that the output value Pkl:u is determined by the input values Pku 
for any input sequence u E S(Z 111). We can then define, for every integer k 2': 0, a 
function 

(2.2.3) 

defined for all points (u0 , ... , uk) E PkDE by the relation LJk(u0 , ... , uk) := Pkl:u, 
where u E DE is a sequence for which (u0 , ... , uk) = Pku. 

Conversely, given a family of functions Fk: PkDE-+ zP,k = 0, 1, 2, ... , we can 
induce a causal system <l>: DE-+ S(ZP) by setting <l>u := (F0P0u,F 1P1u,F2P2u, .. . ) 
for all u EDE. Thus we conclude that a causal system I: is equivalent to the family 
{ E

1
d k=O of functions. The family { Eid characterizes the causal structure of the 

system I:, and we use it now to define the continuity radius of I:. 

Definition 2.2.4: Let I: : DE -+ S(ZP) be a causal system with the non-empty input 
domain DE c S(Z 111

), and let Ok be the continuity radius of the function 
l:Jk, k = 0, 1, 2, .... Then, the continuity radius o of the system I: is 8 := supk2=:0 Ok. 

D 

The continuity radius of a system is defined so that it coincides with the 
impression obtained by following the system output as time progresses. At each 
step in time, the continuity radius gauges the effect on the present output value of 
perturbations whose present and past values are of amplitude not exceeding one. The 
continuity radius of a constant system is zero. 

We list now a few simple properties of the continuity radius. First, consider two 
systems E 1 and 1:2 with a common input domain DE· In order to obtain an estimate 
of the continuity radius of the sum E1 + 1:2 , note that (J:1 + l'2)

1
k = 1'11k + L2Jk for 

all integers k 2': 0. Also, for any pair of input sequences u', u E DE, we have 
l(I:11k+l:21k)Pku' - (1'1jk + l'21k)Pkui = l(l'1tkPku' - 1:l[kPku) + (E21kPku' -1'21kPku)I ~ 
l(l' qkPku' - E11kPku)I + l(I:21kPku' - I:21kPku)I, which directly implies the following. 

Proposition 2.2.5: Let 1' 1, 1'2 : Dr -+ S(ZP) be two causal systems having continuity 
radii 81 and 82, respectively. Then, the sum LI + 1'2 has continuity radius not exceeding 
(81 + 82). 

Our next objective is to discuss the continuity radius of a composition of two 
systems. (For a positive real number a > 0, denote by [a]+ the smallest integer that is 
not less than a; for a negative number a< 0, set [a]+:= -[-at.) 

Proposition 2.2.6: Let D 1 c S(Z 111
) and D2 c S(ZP) be bounded subsets, where D2 is 

an interval, and let 1': D1 -+ D2 and I:' : D2 -+ S(Zq) be two causal systems. Assume 
that 1' has a.finite continuity radius of o, and that 1'' has a.finite continuity radius of 8'. 
Then, the composition I:' I: : D1 -+ S(Zq) has a continuity radius not exceeding the 
product 01 0. 
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Proof: Fix an integer k ~ 0. Let u, u' E D1 be two input sequences satisfying 
IPku - Pku'I ::; 1, let v := Eu, w := Eu', and note that v, w E D2. From the definition 
of the continuity radius it follows that 

(2.2.7) 

In the next paragraph we build a list z0, z1, ... , z8 of 8 + l points in D2 that are 
'between' v and w, and have the property that IPkz, - Pkz,+11 ::; 1 for all 
r = 0, ... , 8 - l. 

Let vj E zP be the }th step of the sequence v, where O ::; j ::; k, and let v}, ... , v1j 
be the components of vj. Similarly, let wj be the }th st~p of _the sequence w, and let 
w}, ... , w1j be the components wj. By (2.2. 7), we have lv.1 - w.11 ::; 8 for all i = _ l, ... ,P. 
and}= 0, ... , k. For fixed i and}, consider the scalar interval in Z having vi and w.1 
as its endpoints. Since the length of this interval cannot exceed 8, we can select in it 
8 f 1 i~tegers zJ,o, ... , zj,8 that satisfy the conditions zj,0 := vj, zj,8 = wj; and 
lz1Z., - z1'· r+i I ::; 1 for all r = 0, ... , 8 - l. For fixed r and j, build now the vector 

' '1 2 · zj,r := (zj,n zj,r, ... zf,). Fmally, for each r = 0, ... , 8, create the sequence z, := 

(z0,,, z1,,, z2,,, ... , zk,n zk+l,n .. . ) E S(ZP), setting z1,, := zk,r for all integers t ~ k. 
Then, since D2 is an interval, it follows that z0 , ... , z, E D 2, and, by construction, 
IPkz, - Pkz,+11 ::; 1 for all r = 0, ... , 8 - l. Furthermore, recalling the projection 
Pk : S(ZP) --+ zP : y i--+ Yk, we obtain 

Pkll''Eu - E'Eu'I = IE1kPkEu - E1kPkEu'I 

= 11'/kPkv - E/kPkwl 

= IE1kPkzo - E/kPkz81 

= l(E/kPkzo - E1kPkz1) + (E1kPkz1 - E1kPkz2) + · · · 

+ (E,kPkz8-l - E/kPkz8)1 

::; l(E/kPkzo - E1kPkz1)I + l(E1kPkz1 - E/kPkzJ + · · · 

+ l(E1kPkz8-1 - E/kpkz8)1 

::; 88' 

where we used the facts that l' and E' are causal systems; that IPkz, - Pkz,+11 ::; 1 
for all r = 0, ... , 8 - l; and that E' has a continuity radius not exceeding 8'. Since the 
above is valid for all integers k ~ 0, this concludes our proof. D 

In the following, we shall need to consider the combined effect of several 
independent perturbations, each one acting on its own variable. We encounter 
such an example in Fig. 1, which contains the three independent disturbances 
v1, v2 , and v3. The next statement shows that the effects of several simultaneous 
pertubations may combine, but the overall effect cannot exceed the sum of the effects 
of the perturbations acting individually. 

Proposition 2.2.8: Let f: zm x zn --+ ZP(u, v) 1---+ f(u, v) be a function of the two 
variables u E zm and v E zn. For each value of v, let 81(v) be the continuity radius of 
the partial function f(., v): zm--+ ZP; and, for each value of u, let 82(u) be the 
continuity radius of the partial function f ( u, . ) : zn --+ ZP. Denote 81 := supv 81 ( v) and 
82 := supu 82(u). Then, the continuity radius 8 off satisfies 8::; 81 + 82. 
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Proof: Let (u, v) and (u', v') be two points in zm x Z 11 satisfying 
l(u', v') - (u, v)I :S 1. Using the triangle inequality, we have lf(u', v') - f(u, v)I = 
I [f(u', v')- f(u, v')] + [f(u, v')- f(u, v)]I :S lf(u', v')- f (u, v') I+ If (u, v') - f(u, v)I :S 
81 + 82. D 

Let g : L1i11 -+ zP be a function defined over the domain L1i11 c Z 111
• It is convenient 

to defined the gain functional norm lgl of g by the integer 

I I { [ 
lgu - gu'I] + , '} 

g := sup lu- u'I : u,u E D 1,u =f. u (2.2.9) 

In intuitive terms, the gain functional norm provides a measure of the 'largest 
application' that g generates for perturbations in its argument. It is closely related to 
a standard mathematical norm, and is an important tool for our discussion. Note 
that the gain functional norm of any constant function is zero, so that the zero 
function is not the only function that has a zero gain functional norm. Consequently, 
the gain functional norm is not a norm in the rigid sense of the word. Nevertheless, 
as we show below, the gain functional norm shares norm properties that are 
important for the derivation of bounds on the effects of disturbances. We next 
show that the gain functional norm has the multiplicative property, i.e. that the gain 
functional norm of a composition cannot exceed the product of the gain functional 
norms of the functions being composed. 

Proposition 2.2.10: Let L11 c zm and L12 c ZP be non-empty subsets, and let 
g1 : L11 -+ L12 and g2 : L12-+ S(Zq) be two functions with bounded gain functional 
norms. Then, lg2g1 I :S lg2llg1 I. 

Proof: Let u, u' E L11 be two points satisfying u =f. u'. Clearly, when g1u = g1u', we 
have g2g1u - g2g1u' = 0. When g1u =f. g1u', we can write 

Consequently 

lg2g1u - g2g1u'I 

lu-u'I 

lg2g1 u - g2g1 u' I lg2g1 u - g2g1 u' I lg1 u - g1 u' I 
lu - u'I lg1u - g1u'I lu - u'I 

{ 
lg2g1u - g2g1u'l lg1u - g1u'I , , '} 

::;sup I 'I I 'I :u,u EL11,u=f.u,g 1u=f.g 1u g1u-g1u u- u 

< { [ Jg2g1 u - g2g1 u' 1 J + [ Jg1 u - g1 u' 1 J + . , E A -1- , 
_ sup I 'I I 'I . u, u LI 1, u, u , g1u-g1u u- u 

g,u,ig,u'} 

::; lg21Jg1 I 

which implies Jg2g1 I :::; Jg21Jg1 J. D 

Before discussing further properties of the gain functional norm, we extend the 
definition to the case of causal systems. 

Let E : DL -+ S(ZP) be a causal system with the non-empty input domain 
DL C S(Z 111

). The gain functional norm JEJ of E is defined by 

IEI := sup IE1kl 
k"?_O 
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where Elk is given by (2.2.3). It is closely related to the standard Lipschitz norm. If a 
causal system l:' has a finite gain functional norm IEI, we obtain jl:'u - 1:'u'I = 
supk?.O II1kPku-I1kPku'I ~ supk?.O II1kllPku - Pku'I ~ (supk?.O II1kl)(supk?.O IPku -Pku'I) 
which directly yields 

IIu - Iu'I ~ IEl(lu - u'I) (2.2.11) 

The relationship between the gain functional norm of a system and its continuity 
radius is indicated by the following. 

Proposition 2.2.12: Let I : D:r ~ S(ZP) be a causal system with the input domain 
D:r c S(zm). If 17 has a bounded gain functional norm IEI, then the continuity radius of 
I over D does not exceed Ill 
Proof: For any points u, u' ED satisfying ju' - ul ~ 1, it follows by (2.2.11) that 
jl:'u - l:'u'I ~ IEl(lu - u'I) ~ IEI. D 

Consider now the composition l:' == l:'21:'1 of two causal systems l:'1 and l:'2. For 
each integer k ~ 0, define the vector function Et 10 == (1:'110 , 1:'111, .. . , l:'llk). It follows 
then by causality that, for every integer k ~ 0, one has 

(2.2.13) 

Using Proposition 2.2.10, we obtain IE1kl ~ IE21kllI:t1ol, so that IE1kl ~ 
II21kl(supO$J$k ll'111I), and 

sup ll'1kl ~ (sup ll'21ki) (sup IE111i) 
k?_O k?.0 J?.0 

In view of the definition of the gain functional norm of a causal system, this yields 
the following statement. 

Proposition 2.2.14: Let D1 c S(zm) and D2 c S(ZP) be non-empty subsets, and let 
l:'1 : D1 ~ D2 and l'2 : D2 ~ S(Zq) be two causal systems with bounded gain 
functional norms. Then, II21:'1 I ~ IE2lll'1 I-

We turn now to the problem of extending the domain of a function without 
affecting its gain functional norm. This will lead us to an adaptation to our present 
discrete set-up of an analogue of the Tietze Lemma on the extension of continuous 
functions, and is critical to our discussion of disturbance attenuating controllers in 
the next section. To be specific, let l': D:r ~ D0 be a system having the bounded 
domain D:r c S(Zm), and whose image is contained within an interval D0 c S(ZP). 
We show that, for any bounded domain D c S(Zm) containing D:r, there is an 
extension Le : D ~ D0 of l:' whose gain functional norm does not exceed the original 
gain functional norm of l:', i.e. IEel = IEI, and whose image is contained within the 
same interval D0• To simplify the notation, we shall adopt the convention of using 
the same symbol for a function and for its extension, so that we shall use the symbol 
l' for l'e in the following. We start by considering scalar valued functions. 

Lemma 2.2.15: Let L1in c L1 c zm be non-empty bounded domains, let L10 c Z be an 
interval, and let g: L1in ~ L1o be a scalar valued function with gain functional norm 

1 == jgl. There is then an extension g : L1 ~ L1o of g whose gain functional norm is 
still 1 . 
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Proof: We construct an extension for gin a stepwise manner, where at each step the 
function g is extended to one new point at which it has not been previously defined. 
Assume then that g has been extended so far to the set CJ' c L1 while preserving the 
gain functional norm 'Y and the codomain L'.10• At the initial step, we set CJ':= Lfin· 

Consider now a point p in the difference set L1 - CJ', i.e. a point p in L1 at which the 
extension has not yet been defined. For each point q E CJ', define the interval 

Sq(P) := [g(q) - 'YIP - qi, g(q) + 'YIP - qi] n Lio (2.2.16) 

A sight reflection shows that the set Sq(P) consists of all possible values within L'.10 
that an extension of g could take at the point p without violating the condition 

lg(p) - g(q)l!IP - qi ~ 'Y 

Letting L'.10 be the interval [a, ,B] c Z, we obtain 

Sq(p) = [max {g(q) - 'YIP - qi, a}, min {g(q) + 'YIP - qi, ,B}] 

(2.2.17) 

Since g(q) E L'.10, it follows that Sq(P) -1-0. Note that Sq(P) is an interval in Z. 
Assume now for a moment that the intersection 

S(p) := n Sq(P) 
qEa 

is not empty, and let a E S(p) be an integer. Define the extension of g at the point p 
by setting g(p) := a. It follows then directly from (2.2.16) and (2.2.17) that g(p) E Lf 0 

and lg(p)-g(q)l/lp-ql ~ 'Y for all points q E CJ', so that we obtain an extension to 
the larger set CJ' Up. Further extension of g to the entire domain L1 is then achieved by 
repeating this process for each point in the difference set L1 - Lf in. Thus, our proof 
will conclude upon showing that the set S(p) is not empty, which we do next. 

The set S(p) is clearly not empty when the set CJ' consists of only a single point. 
For larger sets CJ', the fact that Sq(p) is always an interval in Z implies that the set 
S(p) is not empty if and only if the following holds. For any pair of points q, r E CJ', 

the intersection Sq(P) n S,(p)-=/ 0. We prove that this intersection is not empty. 
Let q, r E CJ' be two points. Without loss of generality, we can take g(q) ~ g(r) (if 

this inequality does not hold initially, exchange the roles of q and r). By contra
diction, assume that Sq(P) n S,(p) = 0. But then one must have 

g(q) - 'YIP - qi > g(r) + 'YIP - rl 

which implies g(q) - g(r) > 'Y(IP - qi + IP - r l). Using the triangle inequality 
IP - qi + IP - rl ~ jq - rl, this yields g(q) - g(r) > 'Ylq - rl, in contradiction to the 
fact that the gain functional norm of g over CJ' does not exceed 'Y· Thus, the equality 
Sq(P) n S,(p) = 0 leads to a contradiction, and it follows that Sq(P) n S,(p) -1-0 
for all pairs of points q, r E CJ'. This concludes our proof. D 

Note that, in view of Proposition 2.2.12, the continuity radius of the extension 
g : L1 --+ L10 of Lemma 2.2.15 does not exceed 'Y· 

Consider next the case of a vector valued function g : Lf in ~ zP. The function g is 
then simply a vector of p scalar valued functions g = (g 1, ••• , gp), where 
gi: Lfin--+ Z, i = I, ... ,p. By applying Lemma 2.2.15 to each one of the component 
functions g1, ... , gp, we obtain the following proposition. 
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Proposition 2.2.18: Let Llin c LI c zm be non-empty bounded domains, let L10 c ZP 
be an interval, and let g: Llin -+ Lio be a function with gain functional norm "(== I gl. 
There is then an extension g: LI -+ Lio of g whose gain functional norm is still"'(. 

As before, Proposition 2.2.12 implies that the continuity radius of the extension 
g: LI -+ zP of Proposition 2.2.18 cannot exceed "Y· 

Finally, we consider the extension of causal systems. 

Proposition 2.2.19: Let DE c D C S(Z 111
) be non-empty bounded domains, let 

Do c S(ZP) be an interval, and let 1:: DE -+ D0 be a causal system having the gain 
functional norm "Y == ILi. Then, there is a causal extension 1:: D-+ Do of 1: having gain 
functional norm "Y· 

Proof: Let Lio c ZP be the interval generating Do, i.e. Do = S(Ll0). Recall that 
"Y = supk2'.0 "Yk, where "Yk is the gain functional norm of the function l:1k, 
k = 0, l, 2, .... By Proposition 2.2.18 there is, for every integer k ~ 0, an extension 
1:lk,e : PkD -+ Lio of the function l'lk : PkDE -+ Lio, with gain functional norm 
IJ:lk,el = "Yk· The family of extended functions {1:lk,e}k=o induces then a causal 
extension l:e : D-+ Do of 1:, whose gain functional norm 8 is, by definition, given 
by 8 = supk2'.0 IJ:lk,el = supk2'.0 "Yk = "Y, as required. D 

2.3. Disturbance attenuating systems 

In this subsection we introduce an analogue of the gain functional norm, which 
leads to a somewhat less restrictive treatment of disturbance attenuation. Consider 
for a moment a system whose gain functional norm does not exceed 1. For such a 
system, the effect of an input disturbance on the system output cannot exceed the 
amplitude of the disturbance. As appealing as this is, it may in some cases be overly 
restrictive. In the present subsection we 'atomize' the disturbance amplitude into 
multiples of an integer 8 > 0. We regard a system as 'disturbance attenuating' if any 
input disturbance of amplitude not exceeding 8 causes an output deviation of 
amplitude not exceeding 8. In this sense, the system 'attenuates' the class of 
disturbances of amplitude not exceeding 8. However, the output deviation caused 
by an input disturbance of amplitude less than 8 may exceed the disturbance 
amplitude (but may not exceed 8). This broader sense of disturbance attenuation 
is satisfactory in many applications, and it broadens the class of systems for which 
disturbance attenuation can be achieved. We start our discussion of this broader 
notion with the following definition. 

Definition 2.3.1: Let g: Llin -+ ZP be a function defined over the non-empty domain 
Llin c Z'n, and let 8 > 0 be an integer. The 8-gainfunctional norm lgl6 of g is defined 
by the integer 

lgl6 ,= sup { [ lgu ~/u''r: d '= [ lu ~ u'r; u, u' E ,Jin, U # u'} 

The function g is 8-attenuating if I gl6 ~ 1. D 

Note that when 8 = 1, the 8-gain functional norm reduces to the gain functional 
norm defined earlier in (2.2.9). When the 8-gain functional norm is finite, it is, of 
course, a non-negative integer. 

A 8-attenuating function has the property that a perturbation of amplitude not 
exceeding 8 in its input induces a deviation of amplitude not exceeding 8 in its 
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output. Strictly speaking, however, the term 'attenuating' applies only to the overall 
effect of the entire class of disturbances of amplitude not exceeding 8. A particular 
input disturbance of amplitude less than 8 may induce an output deviation of 
amplitude larger than its own, but not exceeding 8. When 8 = 1, the amplitude of an 
output deviation never exceeds the amplitude of the input perturbation causing it. 

In the context of controlling a system (discussed later), the main advantage of the 
use of the 8-gain functional norm with 8 > 1 is that it entails less restrictive 
requirements. It allows more latitude in controller selection and design, and increases 
the class of systems amenable to control. With a larger value of 8, the designer can 
also take advantage of the further freedom to improve other aspects of system 
performance. 

For a vector u E Z 111
, we denote lul8 := [lul/ 8J+. It follows then from the definition 

that 
lgu - gu'l 8 :::; lgl81u - u'l8 for all u, u' E L'.lin 

We start our investigation of the 8-gain functional norm by showing that it is 
multiplicative under composition. 

Proposition 2.3.2: Let 8 ~ 1 be an integer, let L'.11 c Z 111 and L'.12 C ZP be two non
empty domains, and let g1 : L'.11 ---t L'.12 and g2 : L'.12 ---t zq be two functions with bounded 
8-gainfunctional norms lg1l8 and lg2l8, respectively. Then, the 8-gainfunctional norm 
of the composition g:=g2g1: L'.11 ---t zq satisfies lgl8 :::; lg1l8lg2l8. 

Proof: Consider two elements u, u' E L'.11, where u -=I u', and denote 

d•= [lu ~ u''r and d' •= [lg1u ~ g1u"r 
In view of the fact that the round-up operation [·J+ increases a number by less than 1, 
we have 

Assume further that u and u' are such that g 1u -=I g 1u'. We can write 

lg2g1u - g2g1u'I 
d8 

lg2g1u -g2g1u'I d'8 

d'8 d8 

< [lg2g1u-g2g1u'l] + [d'8]+ 
- d'8 d8 

= [ lg2g1u - g2g1u'J J + [ Jg1u - g1u'J J + 
d'8 d8 

where (2.3.3) was used in the last step. Consequently 

(2.3.3) 

Jg2g1u-g2g1u'J <sup{[Jg2g1u-g2g1u'JJ+[Jg1u-g1u'JJ+. 'EA ...1.. , 

d {: - I 'I I 'I . u, u LJ 1, u I u' u g1u - g1u u - u 

g1u ,of g1u'} 

:::; Jg2J0Jg1Jo 

which implies that Jg1g2J0 :::; Jg2J0lg1l0. D 
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In our discussion of the control of systems subject to disturbances, we shall 
encounter the need to extend functions without altering their 8-gain functional norm. 
Such extensions were discussed in § 2.2 for the gain functional norm, which 
corresponds to the case 8 = l of the 8-gain functional norm. Presently, we consider 
the extension problem for the case 8 > l, starting with the following analogue of 
Lemma 2.2.15. As before, we slightly abuse the notation by using the same symbol 
for a function and its extension. 

Lemma 2.3.4: Let Ain CA C zm be non-empty bounded domains, let Ao c Z be an 
interval, and let 8 > 0 be an integer. Let g : Ain ~ Ao be a scalar valued function with 
8-gain functional norm , == I gL5• There is then an extension g : A ~ Ao of g whose 8-
gain functional norm is still ,. 

Proof: The proof is similar to the proof of Lemma 2.2.15. We construct the 
extension of gin a stepwise manner, where at each step the function g is extended 
to one new point at which it has not been previously defined. Assume then that g has 
been extended so far to the set CI c A while preserving the 8-gain functional norm , 
and the codomain A0 • At the initial step, we set CI== Ain· Consider now a point pin 
the difference set A - CI, i.e. a point pin A at which the extension has not been defined 
yet. For each point q E CI, define the quantity d(p, q) == [IP - qj/8]+, and consider the 
interval 

Sq(p) == [g(q) - ,d(p, q)8, g(q) + ,d(p, q)8] n Ao (2.3.5) 

Note that Sq(P) consists of all possible values in A0 that an extension of g could have 
at the point p and still satisfy the condition 

lg(p) - g(q)I < 
d(p,q)8 - ' 

(2.3.6) 

Assume for a moment that the intersection S(p) == nqEcr Sq is not empty, let 
a E S(p) be an integer, and define the extension of g at the point p by setting 
g(p) == a. It follows then directly from (2.3.5) and (2.3.6) that g(p) E Ao and 
jg(p) - g(q)l/(d(p, q)8) ~, for all points q E CI, so that we obtain an extension to 
the larger set CI Up. Thus, our proof will conclude upon showing that the set S(p) is 
not empty, which we do next. 

The set S(p) is clearly not empty when CI contains only a single point. For larger 
sets CI, the fact that Sq (p) is an interval in Z implies that S(p) is not empty if and only 
if the following holds. For any pair of points q, r E CI, the intersection 
Sq(p) n Sr(P) -=I-0. We prove that this intersection is not empty. We can clearly 
take g(q) ~ g(r) (otherwise, exchange the roles of q and r). Assume, by contra
diction, that Sq(P) n Sr(P) = 0 for some pair of points q, r E CI. Then, a slight 
reflection shows that one must have g(q) - ,d(p, q)8 > g(r) + ,d(p, r)8. This 
implies g(q) - g(r) > ,(d(p, q)8 + d(p, r)8). By Lemma 2.3.7 below, we have 
d(p, q) + d(p, r) ~ d(q, r) so that we obtain g(q) - g(r) > 18d(q, r), in violation of 
the fact that the 8-gain functional norm of g over CI does not exceed,. Consequently, 
Sq(P) n Sr(P) -=I-0 for all pairs of points q, r E CI, and our proof concludes. D 

Lemma 2.3.7: For two points z, w E zm and an integer 8 > 0, define the quantity 
d(z, w) == [lz - wj/8]+. Then, for every three points p, q, r E zm, one has d(p, q)+ 
d(p, r) ~ d(q, r). 
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Proof: The triangle inequality directly yields that IP - qi + IP - rl ~ lq - rl, or 
IP- ql/8 + IP- rl/8 ~ lq- rl/8, which implies [IP - ql/8 + IP- rl/8 ]+ ~ [lq - rl/8]+. 
Furthermore, a slight reflection shows that [IP - ql/8]+ + [IP - rl/8] + ~ [IP - qj/8 + 
IP - rl/ 8] +. Combining this with the previous inequality, we obtain [IP - qi/ 8] + + 
[Ip - rl/ 8]+ ~ [lq- rl/8]+, as required. D 

Using techniques similar to the ones used in the proof of Proposition 2.2.18, we 
obtain the following consequence of Lemma 2.3.4. 

Proposition 2.3.8: Let L1in c L1 c Z 111 be non-empty bounded domains, let L1o C ZP be 
an interval, let 8 > 0 be an integer, and let g : L1in ---+ L1o be a function with 8-gain 
functional norm "(== lgl8. There is then an extension g: L1 ---+ L1o of g whose 8-gain 
functional norm is still,. 

We now adapt the notion of 8-gain functional norm to causal systems. 

Definition 2.3.9: Let L : Dx. ---+ S(ZP) be a causal system having the non-empty 
input domain Dx. c S(Z 111

), and let 8 > 0 be an integer. For every integer k ~ 0, let 
1Ltkl8 be the 8-gain functional norm of the function L lk of (2.2.3) induced by the 
system L. Then, the 8-gain functional norm ILl8 of L is defined by 

IEl8 := sup IL1kl8 
k?.0 

The system L is 8-attenuating if ILl8 ::; 1. D 

Adapting the proof of Proposition 2.2.19 to the present situation, we obtain from 
Proposition 2.3.8 the following result. 

Proposition 2.3.10: Let Dx. c D c S(Z 111
) be non-empty bounded domains, let 

Do c S(ZP) be an interval, let 8 > 0 be an integer, and let L : Dx. ---+ Do be a causal 
system having the 8-gain functional norm , := ILl8. Then, there is a causal extension 
L : D ---+ Do of L whose 8-gain functional norm is still,. 

Consider now the 8-gain functional norm of a composition L := L2L 1 of two 
causal systems E I and L 2 . Using (2.2.13) and Proposition 2.3.2, we have 
IL1kl8 ::; IL2[kl8(sup0::;J:::;k IL111l8) for all integers k ~ 0. By the Definition of the 8-
gain functional norm for a causal system, this implies the following. 

Proposition 2.3.11: Let D1 c S(Z 111
) and D2 c S(ZP) be two non-empty domains, 

and let L 1 : D 1 ---+ D2 and L2 : D2 ---+ S(Zq) be two causal systems with bounded 8-gain 
functional norms 1Eil8 and IL2l8, respectively. Then, the 8-gainfunctional norm of the 
composition L := L2L1 : Dr ---+ S(Zq) satisfies ILl8 ::; IL2l8 IL118. 

An important consequence of this Proposition is the fact that the class of 8-
attenuating systems is closed under composition. 

3. Disturbance attenuation 

In the present section we consider the problem of disturbance attenuation for 
sequential machines. Specifically, we derive necessary and sufficient conditions for 
the existence of a disturbance attenuating controller for a given sequential machine 
L. When the conditions for the existence of such a controller are satisfied, we also 
describe the controller structure. The section starts with a derivation of conditions 
on the controlled machine L that are necessary for the existence of a disturbance 
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attenuating controller. Later we show that these conditions are also sufficient. The 
discussion is based on a theory of fraction representations of sequential machines 
developed in this section. We start with some basic definitions and observations. 

3.1. Disturbance attenuation and fraction representations 

We employ the mathematical tools developed in earlier parts of the paper to 
investigate the propagation of disturbances through the control configuration (Fig. 
1). Here, Eis a given system whose performance in the presence of disturbances has 
to be controlled, and C is a controller. Our main interest is in controllers C that 
guarantee disturbance attenuation for the closed loop system, where the term 
'disturbance attenuation' is discussed in detail below. In broad terms, disturbance 
attenuation means that the deviation caused by a disturbance of amplitude 8 > 0 
does not exceed 8. 

In Fig. 1, the system E : D1; ~ S(ZP) has the non-empty input domain 
D1; c S(Zm). The input domain of the closed loop system is denoted by Din, and 
it is required to be an interval in S(Zm). In this way, the closed loop system accepts 
any input sequence v whose element values stay within a prescribed range. The 
controller C is then a map C : Din x S(ZP) ~ S(Zm). In the absence of disturbances 
(i.e. when v1 = 0, v2 = 0 and v3 = 0), the controller generates the input signal u of E 
according to the equation u = C(v,y). The configuration contains three additive 
disturbances v1, v3 E S(Zm) and v2 E S(ZP), which we assume are bounded in norm 
by a specified integer 8 > 0. Only additive disturbances are considered (but note that 
any disturbance can be represented as an additive disturbance, equal to the difference 
between the disturbed and undisturbed signals). Of course, the set-up must be such 
that the effective input signal v + v3 is always contained within the input interval 
Din C S(Zm) of the closed loop system. The disturbances vi, v2 and v3 may represent 
actual disturbance or noise signals that affect the configuration, or they may 
represent deviations between the actual and the nominal models of the system or 
the controller. The equations that describe Fig. 1 are 

u = C(v + v3,y + v2) + V1} 
y=Eu 

(3.1.1) 

Following standard terminology, we say that the configuration in Fig. 1 is well 
posed if the signals u and y are uniquely determined by the input signal v and by the 
disturbance signals v1, v2 and v3 . In most applications, only well posed control 
configurations are of practical interest. A simple condition that guarantees that Fig. 
1 is well posed is the requirement that one of the systems E or C be strictly causal 
(more general conditions for well posedness can, of course, be stated). For the sake 
of simplicity, we shall assume throughout our discussion that the system Eis strictly 
causal and the controller C is causal, so that Fig. 1 is well posed. We use the notation 

(3.1.2) 

to denote the response of the closed loop system to the external signal v and the 
disturbances v1, v2 and v3• Since the configuration is well posed, the input signal u of 
E is uniquely determined by the external input signal v and the disturbances v 1, v2 
and v3 , and we shall write 

(3.1.3) 
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where E is an appropriate system. It follows then directly that 

(3.1.4) 

In view of this relation, it is common to refer to E as an equivalent precompensator. 
We shall also use the notation E0 (v) == E(v, 0, 0, 0) and I'co == I'c(v, 0, 0, 0) to indicate 
the noise-free response of the corresponding systems. 

A frequent restriction on the controller C is that, for any output sequence y, the 
map C(v,y) be an injective (one to one) function of the external input sequence v. A 
controller that satisfies this requirement is called a reversible controller (see Hammer 
1989 a for a more detailed discussion). For example, an additive feedback controller 
is always reversible. In fact, the notion of a reversible controller can be regarded, in 
many ways, as a generalization of the additive feedback controller to the nonlinear 
case. In intuitive terms, a reversible controller passes on to the controlled system .r 
all the degrees of freedom available in the external input space Din, so as to allow 
maximal utilization of the external input sequence to fine-tune the response of the 
closed loop system. 

For a reversible controller C, the equivalent precompensator E0 is an invertible 
system, as indicated by the following statement (see Hammer 1989 a for a proof). 

Lemma 3.1.5: Let I' : Dx: -t S(ZP) be a strictly causal system with the input domain 
Dx: c S(zm), and let C : Din x S(ZP) -t S(zm) be a causal controller. If C is a 
reversible controller, then the equivalent precompensator Eo : Din -t Im Eo is a set 
isomorphism. 

When discussing the quantitative effects of disturbances on the performance of a 
system, one has to specify the number of disturbance sources that are simultaneously 
active. As a simple example, consider the two-variable function f(x, u) = x + 2u. 
When x is the only variable subject to disturbance, the effect of the disturbance on 
the value off can be obtained by calculating the continuity radius off as a partial 
function of x only; in this case, this continuity radius is 1. When u is the only variable 
subject to disturbance, the effect of the disturbance is represented by the continuity 
radius off as a partial function of u only; in this case, this continuity radius is 2. 
When both x and u are simultaneously subject to disturbances, f is considered a 
function of the vector (x, u), and its continuity radius is 3. In general, Proposition 
2.2.8 indicates that the effect of several simultaneous disturbances (as described by 
the continuity radius) is bounded by the sum of the continuity radii of the individual 
disturbances acting alone. Thus, it is relatively simple to estimate the combined effect 
of several disturbances, when the individual effect of each disturbance is known. The 
evaluation of the effect of each disturbance acting alone has the advantage of 
providing information that indicates which disturbance sources have the most 
significant effects on the performance of the system. For these reasons, as well as 
for the sake of simplicity, we shall consider below the effects of each one of the 
disturbance sources v1, v2 and v3 of the configuration in Fig. 1 individually. 

In this spirit, we turn now to our investigation of the effects of the disturbances 
vi, v2 and v3 on the control configuration (Fig. 1). We shall require for each of these 
disturbances that whenever their amplitude is bounded by 8 > 0, the deviation they 
cause in any of the internal or external signals of the configuration also be bounded 
by 8. In this way we guarantee that the entire control configuration is not disturbed 
beyond a permissible bound. This requirement leads to the following notion of 
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disturbance attenuation, which is in the spirit of the definition of internal stability 
used in nonlinear control theory. 

Definition 3.1.6: Let 8 > 0 be an integer. The configuration of Fig. 1 has a 
disturbance attenuation radius of 8 if, for any disturbances v1, v3 E S(Z 111

) and 
v2 E S(ZP) satisfying !vii ~ 8, lv2I ~ 8, and jv3 1 ~ 8, and for any external input 
sequence v satisfying v + v 3 E Din, the following hold: (here Eis given by (3.1.3) and 
Le is given by (3.1.2)) 

(i) IE(v + v3, 0, 0) - E(v, 0, O)I ~ 8 

(ii) IE(v,v1,0) -E(v,0,0)I ~ 8 

(iii) IE( v, 0, v2) - E( v, 0, 0) I ~ 8 

(iv) ILc(v + V3, 0, 0) - Lc(v, 0, O)I ~ 8 

(v) ILc(v, vi, 0) - Lc(v, 0, O)I ~ 8 

(vi) ILc(v, 0, v2) - Lc(v, 0, 0)1 ~ 8 D 

A disturbance attenuating control configuration gives rise to a particular fraction 
representation of the system L being controlled. Indeed, consider a control 
configuration of the form in Fig. 1, where C is a reversible causal controller and E 
is a strictly causal system, and assume the configuration has a disturbance 
attenuation radius of 8. Combining formula (3.1.4) with Lemma 3.1.5 while setting 
all disturbances to zero, we obtain the fraction representation 

L = LcoEo
1 

where E0 : Din -t S(Z 111
) and Eco : Din -t S(ZP). As we can see, the input interval Din 

of the closed loop system serves here as the factorization set. We claim that 
requirements (i) and (iv) of Definition 3.1.6 imply that E0 and Leo are 8-attenuating 
systems. 

Indeed, consider first E0 . Let v1, v2 E Din be two distinct points, and let 
d== [lv1 - v2 j/ot. Taking into account the fact that Din is an interval, and employ
ing a technique used in the proof of Proposition 2.2.6, we can construct a list 
z0, ••. , Zct E Din of points satisfying z0 = v1; Zct = v2; and lzi - zi+1 I ~ 8, 
i = 0, ... , d - 1. We then have 

[IEo( vi) ;/o( v,)T = [l[Eo(vil-Eo(zr)] +[Eo(zr)-E;~z2)]+ · ·+[Eo(zd_i)-Eo(v,)]1 r 
< d8 = 1 - do 

where the inequality follows by the triangle inequality and part (i) of Definition 3.1.6. 
This shows that E0 is 8-attenuating. The case of Leo is similar. Thus, the fraction 
representation L = LeoE01 has numerator and denominator systems that are 8-
attenuating. This yields the following proposition. 

Proposition 3.1.7: Let L: Dx: -t S(ZP) be a strictly causal system, with the input 
domain Dx; C S(Z 111

). Assume there is a causal reversible controller C : Din x S(ZP) -t 

S(Z 111
) for which the closed loop system of Fig. 1 has disturbance attenuation radius 

8 > 0. Then, the system L has a right fraction representation L = sr- 1 with Din 
serving as the factorization set, where S : Din -t S(ZP) and T : Din -t Im T C S(Z 111

) 
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are causal 8-attenuating systems. The fraction representation is valid over the domain 
T[Din] C DJ:.. 

The full significance of Proposition 3.1. 7 will come to light later in this section, 
when we consider the construction of disturbance attenuating controllers. In the 
meantime, we briefly interrupt our examination of disturbance attenuation in order 
to review the notion of a graph. 

Let L : DE -+ S(ZP) : u ~ LU be a strictly causal system with the non-empty 
input domain DE c S(Z 111

). As usual, the graph GE of L is a subset of the cross
product space S(ZP) x S(Z 111

), consisting of all pairs (Lu, u), u E DJ:.. The graph of 
the system L plays an important role in our discussion, compatible with its role in the 
general theory of nonlinear control systems over topological spaces (Hammer 
1984a, 1985). Proposition 3.1.7 has certain implications on the structure of the 
graph of L, as we discuss next. 

Assume there is a causal reversible controller C: Din x S(ZP) -+ S(Z 111
), where 

Din C S(Z 111
) is an interval, for which the control configuration of Fig. 1 around the 

given system L has a disturbance attenuation radius 8 > 0. Then, as Proposition 
3.1.7 indicates, there is a right fraction representation L = ST- 1

, where 
S : Din -+ S(ZP) and T : Din -+ Im T are 8-attenuating causal systems. For every 
sequence v E Din, the sequences u := Tv and y := Sv satisfy y = Sv = (ST- 1

) Tv = 
LTV= Lu, so that the pair (Sv, Tv) = (Lu, u) is a point of the graph of L. 
Consequently, the set 

I'= {(Sv, Tv), v E Din} 

is a subset of the graph GE of L. Define the map 

M := Din -+ I' : Mv := (Sv, Tv) 

We claim that M is a set isomorphism. Indeed, M is surjective (onto) by the 
definition of the set I', and it is injective since T is injective. Furthermore, the fact 
that S and T are both 8-attenuating causal systems implies that M is a 8-attenuating 
causal system as well, and the following holds. 

Lemma 3.1.8: Let I: : DE -+ S(ZP) be a strictly causal system with the non-empty 
input domain DE C S(Z 111

), and let GE be the graph of L. Assume there is a reversible 
causal controller C: Din x S(ZP) -+ S(Z 111

) for which the closed loop in Fig. 1 has a 
disturbance attenuation radius 8 > 0. Then, there is a causal 8-attenuating injection 
M: Din-+ GJ:.. 

We continue now with our qualitative discussion of the effect of the disturbances 
v1, v2 and v3 on the configuration of Fig. 1. So far, we have imposed the requirement 
that small disturbances cause only small deviations of the signals u and y. It is also 
important to address the question of whether or not it is possible to correct for these 
deviations, as small as they may be, through small changes in the external input 
sequence v. To be more specific, assume that the configuration has a disturbance 
attenuation radius 8 > 0, and consider, for example, a persistent (constant) dis
turbance v1 of amplitude not exceeding 8. Since the closed loop system has a 
disturbance attenuation radius of 8, the deviation of the signals u and y caused by 
this disturbance will not exceed 8. Nevertheless, a deviation has occurred. It would 
be natural to demand that it be possible to counteract this deviation (and return the 
signals u and y to their undisturbed values) by making a 'small' adjustment to the 
external input signal v of the closed loop system. In broader terms, we shall require 
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that it be possible to cancel the effect of any (known) disturbance signal of amplitude 
not exceeding d8, by applying an adjustment of magnitude not exceeding d8 to the 
external input sequence v, where d 2: 1 is any integer. This will lead us to the concept 
of strict disturbance attenuation, which is defined shortly. In preparation for the 
definition, we need the following notation. 

Let Sc(Din, 8) c S(Zm) be the set of all possible input sequences u that the system 
E may obtain within the closed loop configuration of Fig. 1, with disturbance signals 
of amplitude not exceeding 8. Explicitly, it follows from (3.1.1) that 

Sc(Din, 8) == { C(v + V3,y + v2) + VI : v E Din,V + V3 E Din,lv1 I :S 8, lv2I :S 8, jv3 j :S 8} 

Definition 3.1.9: Let 8 > 0 be an integer. For a pair of internal input sequences 
u, u' E Sc(Din, 8) of E in Fig. 1, denote by y == Eu and y' == Eu' the corresponding 
output sequences. Then, the configuration in Fig. 1 with a reversible controller C is 
strictly disturbance attenuating with radius 8 > 0 if the following hold. 

(i) The configuration has a disturbance attenuation radius of 8; and 

(ii) whenever ju - u'I :s; d8 and IY - y'I :s; d8 for some integer d 2: 1, there are 
external input sequences v, v' E Din for which u = E0v, u' = Eov', and 
Iv - v'I :s; d8. D 

In order to examine the implications of Definition 3.1.9, assume first that the 
configuration in Fig. 1 has a disturbance attenuation radius of 8, i.e. that part (i) of 
the definition holds. In the discussion that leads to Lemma 3.1.8, we have seen that in 
such a case the map M: Din~ I': Mv = (Ecov, E0v) is a 8-attenuating set isomorph
ism. Assume now that part (ii) of Definition 3.1.9 also holds. Then, in the notation of 
the Definition, we have Mv = (y, u) and Mv' = (y', u'), or M- 1 (y, u) = v and 
M- 1(y', u') = v'. This shows that when part (ii) of Definition 3.1.9 holds, the inverse 
map M- 1 

: I'~ Din must also be 8-attenuating. In other words, when the config
uration in Fig. 1 is strictly disturbance attenuating with radius 8, the systems M and 
M- 1 are both 8-attenuating. A system M for which M and M- 1 are both 8-
attenuating is called a 8-unimodular system. We have obtained the next statement. 

Proposition 3.1.10: Let E : Dx; ~ S(ZP) be a strictly causal system, let Gx: be the 
graph of E, and let 8 > 0 be an integer. Assume there is a causal reversible controller 
C : Din x S(ZP) ~ S(zm) for which the closed loop (Fig. 1) is strictly disturbance 
attenuating with radius 8. Then there is a causal injection M: Din ~ Gx: for which the 
restriction M : Din ~ Im M is 8-unimodular. 

In general terms, Proposition 3.1.10 indicates that if there is a controller for E 
that provides strict disturbance attenuation, the system E must have the following 
property: the graph of E must contain a subset that is homeomorphic to an interval 
Din c S(Zm), in the sense described in the Proposition. We show below that this 
property is, in fact, also a sufficient condition for the existence of a controller that 
provides strict disturbance attenuation for E. Thus, the existence of a subset of the 
graph of E that is homeomorphic to an interval is a necessary and sufficient 
condition for strict disturbance attenuation. This fact is closely analogous to the 
situation encountered in the theory of robust stabilization of nonlinear systems over 
topological spaces (Hammer 1989 b ), and can be viewed as a general principle of 
control theory. 
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3.2. The existence of a controller for strict disturbance attenuation 

In the previous subsection, we have discussed conditions that are necessary for 
the existence of a controller that provides strict disturbance attenuation for a given 
system L. In particular, we have seen that, whenever such a controller exists, there 
must be a subset of the graph of L that is homeomorphic to an interval of S(Zm). In 
the present subsection we consider the reverse direction, showing that whenever such 
a subset exists, one can construct a controller that provides strict disturbance 
attenuation for the system L . We start with the examination of a fraction 
representation of L that is directly induced by the graph of .r (see also Hammer 
1984 a, 1985 for the use of analogous techniques in the theory of nonlinear control 
systems over topological spaces) . 

First, some notation. 
Denote by nP : S(ZP) x S(Zm) ~ S(ZP) : (y, u) ~ y the standard projection 

onto the first p coordinates. Similarly, let n111: S(ZP) x S(Z 111
) ~ S(Zm): (y, u) ~ u 

be the standard projection onto the last m coordinates. It follows directly that the 
projections nP and n 111 are both 8-attenuating for any integer 8 > 0. 

Now, let L : DE ~ S(ZP) be a strictly causal system with the non-empty input 
domain DE C S(Zm), and let GE C S(ZP) x S(Zm) be the graph of L. Let 

P: GE ~ S(ZP) : P(y, u) == y 

be the restriction of the projection n P to the graph GE of L, and let 

Q : GE ~ DE : Q(y, u) == u (3.2.1) 

be the restriction of the projection nm to the graph GJ:.. Note that on the graph GE, 
each point (y, u) corresponds to exactly one value of u, since y = Lu. Consequently, 
Q is a set isomorphism, with the inverse Q- 1u = (l:u, u) for all u EDE. It can also be 
readily seen that Q is a bicausal system. Furthermore, for every input sequence 
u EDE we can write y =Lu= P(Lu, u) = PQ- 1u, which yields the fraction repre
sentation 

L = PQ- 1 

over the input domain DE of L. This fraction representation has then the special 
property that its numerator and denominator systems are both 8-attenuating for 
every integer 8 > 0, and its factorization space is the graph of L. The denominator Q 
is bicausal, and the numerator P = l:Q is strictly causal by the strict causality of L. 

In Proposition 3.1.10 we have seen that a controller that provides strict 
disturbance attenuation with radius 8 > 0 for the system L exists only if there is a 
causal 8-unimodular system M: Din~ Im Mc GE, where Din is an interval in 
S(Zm). We now prepare to address the converse direction of this fact, starting 
with some terminology. 

A subset I' c GE is 8-homeomorphic to a subset D c S(Z 111
) if there is a bicausal 

and 8-unimodular set isomorphism M : D ~ I'. The system M is then called a 8-
homeomorphism. 

Next, let Din C S(Zm) be an interval, and let 8 > 0 be an integer. A point v E Din 
is a 8-interior point of Din if Din contains all points v' E S(Zm) satisfying Iv' - vi ::; 8. 
In other words, a 8-interior point of Din is an interior point of Din, not closer than 8 
to the boundary of Din· Note that when the configuration of Fig. 1 has a disturbance 
attenuation radius of 8, only external input sequences that are 8-interior points of Din 
are allowed, so as to guarantee that v + v3 E Din for all lv3 I ::; 8. Of course, we 
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assume throughout this paper that the interval Din is large enough, so that the set of 
8-interior points of Din is not empty. 

We turn now to a technical property of subsets that are 8-homeomorphic to an 
interval. In qualitative terms, we show that a subset of the graph of L that is 8-
homeomorphic to an interval, must contain all input/output pairs that correspond to 
a neighbourhood of size 8 around each input sequence it includes. An accurate 
statement of this property is provided by the following auxiliary result. 

Lemma 3.2.2: Let L : Dx; -+ S(ZP) be a strictly causal system with the non-empty 
input domain Dx; c S(zm), let Din c S(zm) be an interval, and let 8 > 0 be an integer. 
Assume that the graph of L has a subset I' that is 8-homeomorphic to Din, and let 
M: Din -+ I' be a 8-homeomorphism. Then, (i) for every 8-interior point v E Din, the 
set I' contains all points (Lu, u) E S(ZP) x S(zm) for which lu - IImMvl :s; 8; (ii) the 
map JI mM : Din -+ JI111I' is a 8-homeomorphism. 

Proof: (i) Fix a 8-interior point v E Din, and let fih be the set of all points v' E Din 

satisfying Iv' - vi :s; 8. Denote M 0 == M[E>o]. Then, M 0 is a subset of the graph of E, 
and the set of all input sequences corresponding to elements of M 0 is given by the set 
U0 == IImMo c S(zm). Since M 0 is a subset of the graph of L, each point of U0 

corresponds to exactly one point of M 0. Let Io be the set of all sequences u' E S(zm) 
that satisfy iu' - IImMvl :s; 8. Since Mis 8-attenuating, we have 

U0 C I0 (3.2.3) 

We show next that U0 = I6. The fact that M is bicausal means that for every 
integer n 2::: 1, the first n elements of any sequence of B O uniquely determine the first n 
elements of a sequence of M 6; and, vice versa, the first n elements of any sequence of 
M 0 uniquely determine that first n elements of a sequence of B 0• Since every sequence 
of M 0 corresponds to exactly one sequence of U0 (i.e. its input sequence), we obtain 
that for every integer k 2::: 0, there is a set isomorphism Pk[B0] ~ Pk[U0], where Pk is 
the projection onto the first k + 1 elements of a sequence, as defined in (2.2.2). Since 
Pk[B0] and Pk[U0] are finite sets, this implies that they must have the same 
cardinality. Now, the cardinality of Pk[B0] is equal to that of Pk[I0], since the sets 
B 6 and !0 are both obtained by adding all sequences of S(Zm) with amplitude not 
exceeding 8 to a fixed sequence. Thus, Pk[Uo] has the same finite cardinality as Pk[I6]; 

since (3.2.3) implies that Pk[Uo] c Pk[I6], it follows by finiteness that PdU 6] = Pk[I0]. 

Being valid for all integers k 2::: 0, this yields U0 = Io, which proves (i). 
To prove (ii), note that the bicausality of M implies that the map 

IImM: Din -+ IImI' is a bicausal set isomorphism. The fact that Mis 8-attenuating 
directly implies that IImM is 8-attenuating as well. Finally, the earlier part of the 
proof indicates that (IImM)- 1 [I0] = B 6, which proves that the inverse system 
(IImM) - 1 is also 8-attenuating, concluding our proof. D 

We are now in a position to state one of the main results of the paper, which 
shows that whenever the graph of L contains a subset that is 8-homeomorphic to an 
interval, there is a reversible controller that provides strict disturbance attenuation 
for L. The structure of such a controller is described in the proof below in terms of 
the 8-homeomorphism. This yields a converse direction of Proposition 3.1.10. 

Theorem 3.2.4: Let L : Dx;-+ S(ZP) be a strictly causal system with the non-empty 
input domain Dx; C S(zm), and let 8 > 0 be an integer. Assume there is a bounded 
subset I' of the graph of L that is 8-homeomorphic to an interval Din c S(zm). Then, 
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there is a causal reversible controller C for which the configuration of Fig. 1 around L is 
strictly disturbance attenuating with radius 8, and has the external input domain Din· 

Proof: We start by constructing the controller, and then we show that it satisfies the 
requirements of the theorem. Let 8 > 0 be an integer, let I' be a bounded subset of 
the graph Gx; of L that is 8-homeomorphic to the interval Din c S(Z 111

), and let 
M: Din~ I' be a 8-homeomorphism. Define the system 

(3.2.5) 

where Q is the projection defined in (3.2.1). Since Q and Mare both 8-attenuating, it 
follows by Proposition 2.3.11 that N is 8-attenuating as well. Furthermore, the fact 
that Q and M are both bicausal implies that the restriction N : Din ~ Im N also is 
bicausal. 

Consider now a sequence v E Din· Denote Mv = (y, u) E Gx;, so that y = Lu. By 
(3.2.5), we can write u = Nv, so that (y, Nv) = Mv, and we have v = M- 1 (y, Nv). 
Applying now N to both sides of this equality, we obtain the formula 

u = NM- 1 (y, Nv) (3.2.6) 

which creates the input sequence u of the system L from the output sequence y of L 
and the sequence v E Din, in analogy to the way the controller C operates in the 
configuration of Fig. 1. We shall use (3.2.6) as the basis for the ensuing construction 
of our controller. 

The construction of the controller C depends on an extension of the inverse 
system M- 1 

: I' ~ Din· Since I' is a bounded set by assumption, there are two 
intervals Dy c S(ZP) and Du c S(Z 111

) such that I' c Dy x Du. We construct a 
causal and 8-attenuating extension F : Dy x Du ~ Din of M- 1 in two steps. First, 
for every point (y, u) E (Ilpr) x (I1111I') we set 

F 1 (y, u) == (II 111M) - 1u (3.2.7) 

By part (ii) of Lemma 3.2.2, the system F1 : (IlpI') x (II,J) ~ Din is well defined, 
causal, and 8-attenuating. It is independent of y, but is clearly injective in the 
variable u for every (fixed) value of y. Combined with our forthcoming construction, 
the last fact implies that the controller C we build is a reversible controller. 

Next, by Proposition 2.3.10, there is a causal 8-attenuating extension 
F: Dy x Du~ Din of F1• We now define the controller C: Din x Dy~ ImN by 
setting 

C(v,y) == NF(y, Nv) for all (v,y) E Din x Dy (3.2.8) 

The controller C is causal since N and Fare causal. We next show that when this 
controller is used to control the system L according to the configuration of Fig. 1, it 
provides strict disturbance attenuation with radius 8. To this end, we shall consider 
each one of the requirements of Definitions 3.1.6 and 3.1.9. 

Consider first the effect of a disturbance jv3 I :s; 8 in the configuration of Fig. 1, 
taking v1 = 0 and v2 = 0. Let v E Din be an external input sequence satisfying 
v + v3 E Din· By (3.2.8), the output sequence y of the closed loop system Le and the 
input sequence u of Lare given in this case by (y, u) = M(v + v 3). The fact that Mis 
8-attenuating indicates directly that requirements (i) and (iv) of Definition 3.1.6 hold. 

Consider next the effect of a disturbance jv1 I :s; 8, taking v2 = 0 and v3 = 0. Let v 
be a 8-interior point of Din serving as the external input sequence of the configuration 
in Fig. 1. Let u' denote the sequence that is induced at the input of L in the 
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configuration of Fig. 1, when v serves as the external input sequence and the 
disturbance v1 is active. Let u denote the sequence generated by the controller C 
under these conditions, so that u' - u = v1• The output sequence of the configuration 
in Fig. 1 is then given by y = Lu'. We then have u = C(v,y), which by (3.2.8) implies 
u E Im N. Define the sequence 

w == N- 1u = F(y, u) E Din (3.2.9) 

Then C(w,y) = NF(y, Nw) = NF(y, u) = NN- 1u = u, so that when w is used as the 
external input sequence of the configuration of Fig. 1 together with the disturbance 
v1, it yields the same sequences u, u' and y as the external input sequence v. 
Furthermore, by (3.2.8), the equality C(w,y) = C(v,y) = u implies 

F(y, Nw) = F(y, Nv) (3.2.10) 

Now, note that llmM and N are identical maps (except for the definition of their 
codomains), so that Im N = llm[Im M]. Also, the equality u' - u = v 1 clearly 
implies lu' - ul ~ 8. It follows then by Lemma 3.2.2(i) that u' E Im N. Therefore, 
(y, u') = (Lu', u') Er, so that y E llPI'. Combining this with (3.2.7), we obtain 
that F(y,Nw) = F1(y,Nw) = (llmM)- 1Nw = w, and F(y,Nv) = F1(y,Nv) = 
(llmM)- 1 Nv = v. By (3.2.10) this implies that v = w = F(y, u), where the last 
equality is by (3.2.9). 

Next, consider the sequence v' == F(y, u'). In view of the fact that F is 8-
attenuating, the relations lu' - ul ~ 8 and v = F(y, u) imply that Iv' - vi ~ 8. 
Apply now v' as the external input sequence of Fig. 1 with all disturbance signals 
set to zero. Using (3.2.8) combined with the definition of v' and the fact that (y, u') 
belongs to the graph of L, it follows that C(v',y) = u'. Thus, the new input sequence 
v' (with no disturbances) creates the same input sequence u' of L (and hence the same 
output sequence y) as the combination (v, vi). Consequently, we can say that the 
effect of the disturbance v1 is equivalent to shifting the input sequence from v to v', 
where Iv' - vi ~ 8. In this way, the effect of the disturbance v1 is equivalent to the 
effect of a disturbance v 3 of amplitude not exceeding 8, given by v3 == v' - v. Our 
analysis of the effect of the disturbance v3 earlier in this proof shows then that 
requirements (ii) and (v) of Definition 3.1.6 are satisfied. A slight modification of this 
argument would also show that part (ii) of Definition 3.1.9 is valid. 

Finally, consider the effect of a disturbance v2 with lv21 ~ 8, keeping v1 = 0 and 
v 3 = 0. As before, let v be a 8-interior point of Din that serves as the external input 
sequence of Fig. l. Under these conditions, let u be the input sequence of L generated 
by the controller C in Fig. 1, let y be the output sequence of L, and let z be the 
sequence fed into the controller from the output side. Then, z - y = v 2, so that 
lz - YI~ 8, and u = C(v,z). Define now the sequence u' == C(v,y). The fact that F 
and N are both 8-attenuating implies, by (3.2.8) and Proposition 2.3.11, that C is 
8-attenuating as well; since lz - YI ~ 8, it follows then that lu' - ul = 
IC(v,y) -C(v,z)I ~ 8. Define now the disturbance v 1 ==u- u', note that lv11 ~ 8, 
and consider the configuration of Fig. 1 with the disturbance v1 and the external 
input sequence v, while setting v2 = 0 and v3 = 0. Since u' + v 1 = u, it follows that 
the input sequence of Lin Fig. 1 (and hence its output sequence y) is the same under 
these conditions as it was before. Thus, the effect of the disturbance v2 is equivalent 
to the effect of a disturbance v1 that satisfies lv1 I ~ 8. In view of our earlier 
discussion of the effects of the disturbance vi, we obtain that requirements (iii) 
and (vi) of Definition 3.1.6 are satisfied. Thus, all requirements of Definition 3.1.6 
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hold. We have seen earlier that part (ii) of Definition 3.1.9 also holds. This concludes 
our proof. D 

To summarize in somewhat crude terms, we have seen that a necessary and 
sufficient condition for strict disturbance attenuation for a system E is the 
requirement that the graph of E contain a subset I' that is homeomorphic to an 
interval. Furthermore, given a homeomorphism M : Din ---+ I' from an interval Din 

onto a subset I' of the graph of E, we can construct a disturbance attenuating 
controller m,ing (3.2.8). Methods for the derivation of such homeomorphisms M 
have been developed for the case of nonlinear systems over topological spaces 
(Hammer 1989 a, c and 1991). These methods can be adapted to the present discrete 
framework as well. 

We conclude our discussion with some comments relating to the extension of our 
present results to the case of systems over continuous spaces. First we note that the 
disturbance attenuating controller C constructed in the proof of Theorem 3.2.4 can 
be an open loop controller, namely, it may be independent of the output signal y. 
Such an open loop controller is feasible here due to the fact that our systems operate 
over discrete spaces. It is facilitated by Lemma 3.2.2, which is not valid for systems 
over continuous spaces in its present form. For systems over continuous spaces, one 
would usually need a feedback controller to achieve the disturbance attenuation 
properties described in Theorem 3.2.4. When extended to the case of systems over 
continuous spaces, the techniques and results of the present paper will indeed yield 
feedback controllers when necessary, and we shall discuss this topic in a separate 
report. We remark that feedback controllers are also indispensable when dealing 
with large deviations of systems over discrete spaces, as discussed by Hammer 
(1996 a). 
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