
On the Control of Indeterminate Asynchronous
Sequential Machines: An Algebraic Framework

Jung-Min Yang
Department of Electrical Engineering

Catholic University of Daegu
330 Kumrak, Hayang, Gyeongsan

Gyeongbuk 712-702, Republic of Korea

Tan Xing
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, FL 32611-6130, USA

Jacob Hammer
Department of Electrical

and Computer Engineering
University of Florida

Gainesville, FL 32611-6130, USA

Abstract—An algebraic framework for controlling asyn-
chronous sequential machines with unknown or unpredictable
transitions is introduced. A semiring is used to characterize
all compound transitions that have a predictable outcome. This
semiring plays a critical role in model matching and in adaptive
feedback control of indeterminate asynchronous machines.

I. INTRODUCTION

Asynchronous sequential machines, or clockless logic cir-
cuits, serve important roles in high speed computing, in
parallel computing, in the modeling of signaling chains in
molecular biology, and in other applications. Often, the de-
scription of an asynchronous machine is not fully known: the
machine may not have been tested exhaustively, or its response
may be affected by interferences, malfunctions, or errors.

An indeterminate transition of an asynchronous machine
is a transition whose outcome is not known a-priori; a de-
terminate transition has a known outcome. A machine with
indeterminate transitions is an indeterminate machine.

Recall that an asynchronous machine has two kinds of
states: stable states (in which the machine lingers until an
input change occurs) and transient states (through which the
machine passes very quickly). A transition between stable
states is a stable transition. A compound transition is a string
of transitions between stable states. A compound transition
may be determinate even if it includes indeterminate segments.
By characterizing all determinate compound transitions of a
machine, we find all tasks the machine can perform determi-
nately. In this note, we present an algebraic framework that
characterizes all determinate compound transitions through
simple algebraic operations (section III).

In the control configuration of Figure 1,

C

xu

!

c
Σ

ω

Fig. 1. Closed loop configuration

Σ is an indeterminate asynchronous machine to be controlled,
while C is another asynchronous machine that serves as a

controller. Our objective is to design C so that the closed
loop machine Σc is a determinate machine. One important
application is model matching, where Σc is required to emulate
a specified determinate model Σ′. By ‘emulate’ we mean that
Σc and Σ′ have the same stable transitions and, hence, are
indistinguishable to a user. We write Σc =Σ′ when Σc emulates
Σ′. Using our algebraic framework, we derive in section V
simple necessary and sufficient conditions for the existence of
a controller C that achieves model matching.

Fundamental mode operation is an operating policy that
prohibits simultaneous change of two or more variables in
an asynchronous machine. This helps prevent uncertainties
since, in an asynchronous environment, simultaneous change
manifests itself as sequential change in unpredictable order
and may lead to unpredictable outcomes.

Condition 1. The closed loop machine Σc of Figure 1 operates
in fundamental mode when the following are valid:
(i) Σ is in a stable state while C is in transition.
(ii) C is in a stable state while Σ is in transition.
(iii) The external input ω changes only while Σ and C are both
in stable states. !

Parts (i) and (ii) of Condition 1 are restrictions on the design
of the controller C; part (iii), on the other hand, is a restriction
on the operation of the closed loop machine. As transitions
of asynchronous machines occur very quickly, (iii) is not a
burdensome requirement.

The paper is written within the framework of [7], [8], and
[12], where the control of asynchronous sequential machines is
considered. Studies dealing with other aspects of the control
of sequential machines can be found in [9], [11], and [6],
where the theory of discrete event systems is investigated; in
[3], [4], [5], [2], [1], and [13], where issues related to control
and model matching of sequential machines are studied; and
in many other publications.

The paper is organized as follows. Section II introduces
basic features of indeterminate asynchronous machines, while
sections III and IV introduce an algebraic framework that helps
characterize all determinate compound transitions of an inde-
terminate machine. The framework is applied in section V to
the solution of the model matching problem. A comprehensive
example runs through all sections of the paper.

211

 978-1-61284-144-1/11/$26.00 ©2011IEEE

Proceedings of the 2011 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2011), Guangzhou, China, Nov. 18-20, 2011

II. INDETERMINATE MACHINES

A. Basics

An input/state asynchronous machine is represented by a
quadruple Σ =

(
A,X ,x0, f

)
, where A is the input alphabet, X

is the set of states, x0 is the initial state, and f : X×A→ X is
a partial function called the recursion function. The machine
operates according to

xk+1 = f (xk,uk), k = 0,1,2, . . . ,

where x0 := x0 is the initial state, u0u1u2 . . . is the input
sequence, and x1x2 . . . is the sequence of states generated by
the machine. The step counter k advances by one upon a
change of input or state. A pair (x,u) ∈ X ×A is valid if it
is in the domain of f .

Often, values of the recursion function f are not precisely
known due to malfunctions or errors, or due to incomplete
characterization of the machine. In such cases, there may be
several options for the machine’s next state, and these are
specified as a set of potential next states by regarding f as
a set valued function. The set f (x,u) consists then of all next
state options of Σ.

Definition 2. If f (x,u) includes more than one element, then
(x,u) is an indeterminate pair; it induces an indeterminate
transition. !

A valid pair (x,u) is a stable combination if f (x,u) = x;
otherwise, (x,u) is a transient combination. At a stable com-
bination, a machine lingers until an input change occurs; the
machine passes quickly through transient combinations (ide-
ally, in zero time). A transition from one stable combination to
another may involve a chain of several transient combinations.
Specifically, assume that Σ is at a stable combination (x,u′),
when the input character changes to u. This may result in a
chain of transitions x1 := f (x,u), x2 := f (x1,u), ... If this chain
terminates, then there is an integer i≥ 1 for which xi = f (xi,u),
and xi is the next stable state. If the chain does not terminate,
then Σ has an infinite cycle.

Convention 3. Only machines without infinite cycles are
considered in this note. !

Thus, for machines considered here, every valid combina-
tion has a next stable state. The stable recursion function s of
Σ is defined at every valid pair (x,u) by s(x,u) := x′, where
x′ is the next stable state (or the set of potential next stable
states) of x with the input u. The stable recursion function
describes users’ experience with Σ, since transient states are
traversed very quickly. Notwithstanding, transients do play an
important role in the control of asynchronous machines, since
the controller C of Figure 1 works by turning undesirable
stable combinations of Σ into transient combinations of the
closed loop machine Σc. This dismisses undesirable features of
Σ (see [8]). For a string of input characters u := u0u1 · · ·uq, the
shorthand notation s(x,u) := s(s(...s(s(x,u0),u1)...),uq) de-
notes the final stable state that Σ reaches when the input string
u is applied starting at the state x. To preserve fundamental

mode operation, the string u must be applied character-by-
character, waiting after each character for Σ to reach its next
stable state before applying another character.

B. The Adjusted Machine

Consider an indeterminate input/state asynchronous ma-
chine Σ =

(
A,X ,x0, f

)
with the stable recursion function s,

and assume that the indeterminate pairs of s form the set

U := {(z1,u1),(z2,u2), ...,(zr,ur)}⊆ X×A. (1)

The set of potential next stable states Zi := s(zi,ui) of the pair
(zi,ui) has n(i)> 1 members called potential outcomes:

Zi := {zi,1, . . . ,zi,n(i)}⊆ X . (2)

The indeterminacy about the outcome of an indeterminate
pair (zi,ui) can be formally resolved by associating a unique
pseudo input character with every potential outcome, as fol-
lows. Let B be a sufficiently large alphabet disjoint from the
input alphabet A. For each indeterminate pair (zi,ui), choose
a distinct set Ai of n(i) characters of B:

Ai := {ui,1,ui,2, ...,ui,n(i)}⊆ B, where
Ai∩A j =∅ for all i ̸= j ∈ {1, ...,r}. (3)

The pseudo alphabet is then the set A′ := ∪i=1,...rAi, and the
extended input alphabet is Ã :=A∪A′. Now, we construct from
Σ the following determinate machine.

Definition 4. The adjusted stable recursion function sa : X ×
Ã→ X of Σ is

sa(x,u) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(x,u) if (x,u) is a determinate pair of Σ;

zi, j if (x,u) = (zi,ui, j) for some
i ∈ {1, ...,r}, j ∈ {1,2, ...,n(i)};

zi, j if (x,u) = (zi, j,ui, j) for some
i ∈ {1, ...,r}, j ∈ {1,2, ...,n(i)};

invalid for all other (x,u) ∈ X× Ã,
including all (x,u) ∈U.

(4)
Then, Σa := (Ã,X ,x0,sa) is the adjusted machine. !

In (4), the first line makes Σa identical to Σ at determinate
pairs of Σ; the second line formally resolves indeterminacy of
each indeterminate pair (zi,ui) by associating a distinct pseudo
input character ui, j ∈ Ã with every potential outcome zi, j; the
third line makes each pair (zi, j,ui, j) into a stable combination
of sa; and the fourth line turns all members of the set U of
indeterminate pairs into invalid pairs of sa. Then, the resulting
adjusted machine Σa has no indeterminate pairs.

Example 5. Consider an asynchronous machine Σ with the
input alphabet A = {a,b,c,d}, the state set X = {x1,x2,x3,x4},
the initial state x0 = x1, and the stable recursion function s
given in the following table, where “−” denotes an invalid
pair.

212

state a b c d
x1 x2 x1 x1 −
x2 x2 − {x1,x4} x3

x3 {x2,x4} − − x3

x4 x4 x1 x4 x4

The indeterminate pairs are U = {(x2,c),(x3,a)}. Correspond-
ingly, we introduce the pseudo character sets A1 := {c1,c2}
and A2 := {a1,a2}. These yield the pseudo input alphabet A′=
A1∪A2 = {a1,a2,c1,c2}, and the extended input alphabet Ã =
{a,b,c,d,a1,a2,c1,c2}. By (4), the adjusted stable recursion
function sa is then given by the following table.

state a b c d a1 a2 c1 c2

x1 x2 x1 x1 − − − x1 −
x2 x2 − − x3 x2 − x1 x4

x3 − − − x3 x2 x4 − −
x4 x4 x1 x4 x4 − x4 − x4

The adjusted machine Σa is a determinate ‘synthetic’ ma-
chine. Of course, members of the pseudo character set A′
cannot be applied as inputs to the real machine Σ, but they do
serve a critical role in characterizing compound determinate
transitions of Σ, as we discuss next.

III. A SEMIRING OF STRINGS AND COMPLETE SETS

A. Basic Operations and Complete Sets
To work with the extended alphabet Ã, we introduce a

semiring A over the set (Ã)∗ of all strings of characters of
Ã. In this semiring, concatenation serves as multiplication and
union serves as addition: the product of two strings a,b∈ (Ã)∗
is the concatenation ab, where a is the prefix; the sum of
two subsets c,d ⊆ (Ã)∗ is their union c+ d := c∪ d. These
operations combine with distributive laws

a(b+ c) = ab+ac,
(a+b)c = ac+bc.

To examine the utility of the semiring A, consider an inde-
terminate pair (zi,ui) of an asynchronous machine Σ with the
potential outcomes {zi,1, ...,zi,n(i)}, and let Ai = {ui,1, ...,ui,n(i)}
be the corresponding set of pseudo input characters. Then,
by (4), the adjusted stable recursion function satisfies zi, j =
sa(zi,ui, j) and zi, j = sa(zi, j,ui, j), j = 1, ...,n(i), i = 1, ...,r.
Now, assume that Σ has a state z′ with the following feature:
for each one of the outcomes zi, j, there is an input string
α j ∈ A∗ (with no pseudo characters) for which s(zi, j,α j) =
z′, j = 1, ...,n(i). Then, irrespective of which one of the states
zi,1, ...,zi,n(i) is the actual outcome of (zi,ui), we can always
reach the state z′ by using a state feedback controller: upon
detecting the outcome zi, j, the controller applies to Σ the
input string α j. This takes Σ to z′ for every outcome of the
indeterminate transition. More generally, every set of strings

γ1(i) := { ui,1α1+ui,2α2+· · ·+ui,n(i)αn(i) }, (5)

where α1,α2, ...,αn(i) ∈ A∗ and sa(zi,ui,1α1) = sa(zi,ui,2α2) =
· · ·= sa(zi,ui,n(i)αn(i)), gives rise to a determinate stable tran-
sition from the indeterminate pair (zi,ui) to a common final

stable state. The overall transition is determinate, despite the
inclusion of indeterminate segments.

Next, assume that Σ was taken from a determinate pair (z,u)
to the indeterminate pair (zi,ui) by an input string α ∈ A∗.
Then, using α as a prefix, we obtain the set of strings

Γ1(i) :=
{

αγ1(i)
}

(6)

which has two critical features:
(a) It includes a response to every outcome of the indetermi-

nate pair (zi,ui); and
(b) All these responses take Σ to the same stable state.
Assuming that Σ has r indeterminate pairs{
(z1,u1), ...,(zr,ur)

}
, we define the family of complete

sets of order 1 of Σ

Γ1(Σ) := ∪i=1,...,rΓ1(i).

A slight reflection shows that features (a) and (b) remain
valid when the strings α1,α2, ...,αn(i) of (5) include complete
sets of order 1, i.e., when α,α1,α2, ...,αn(i) ∈ (A∪Γ1(Σ))∗.
Doing so creates the family Γ2(i) of complete sets of order
2 associated with the indeterminate pair (zi,ui). The entire
family of complete sets of order 2 of Σ is then

Γ2(Σ) := ∪i=1,...,rΓ2(i).

In general, assuming that the family Γp(Σ) of complete sets
of order p of Σ has been created for an integer p≥ 1, define
the set γ p+1(i) by

γ p+1(i) := { ui,1α1+ui,2α2+· · ·+ui,n(i)αn(i)} , (7)

where α1,α2, ...,αn(i) ∈ [A ∪ Γp(Σ)]∗ and sa(zi,ui,1α1) =
sa(zi,ui,2α2) = · · ·= sa(zi,ui,n(i)αn(i)). Then, the family
Γp+1(i) of all complete sets of order p+ 1 for the indeter-
minate pair (zi,ui) is

Γp+1(i) := {αγ p+1(i)}, (8)

where α ∈ [A∪Γp(Σ)]∗ takes Σ from a determinate pair to the
indeterminate pair (zi,ui) and γ p+1(i) is given by (7). Finally,
the family of all complete sets of order p+1 of Σ is

Γp+1(Σ) := ∪i=1,2,...rΓp+1(i).

We use the notation Γ0(Σ) := {α ∈ A∗}, where α takes Σ from
a determinate pair to a determinate pair.

Definition 6. A complete set of Σ is any member of the family
Γ(Σ) := ∪p=0,1,2,...Γp(Σ). !

A complete set includes a response to every outcome of
every indeterminate transition encountered along its way, and
all these responses lead to the same stable state. Complete sets
are intimately related to state feedback, as follows.

Theorem 7. Let Σ be an indeterminate machine with the
adjusted machine Σa = (Ã,X ,x0,sa), and let x and x′ be two
states of Σ. Then, the following are equivalent:
(i) There is a state feedback controller C that takes Σ through
a determinate transition from x to x′ in fundamental mode.
(ii) There is a complete set γ satisfying sa(x,γ) = x′.

213

Proof: (sketch) If (i) is valid, then C generates a response
for every outcome of every indeterminate transition encoun-
tered along the way from x to x′; the cumulation of these
responses forms a complete set. Conversely, if (ii) is valid, the
complete set γ can be used to build a state feedback controller
C that induces a determinate transition from x to x′, as follows.
At each indeterminate pair (zi,ui) encountered, γ prescribes the
next input character wi, j that C must apply to Σ upon detecting
the outcome zi, j of (zi,ui).

It can be shown that, for an asynchronous machine with n
states, complete sets can always be shortened to a length not
exceeding n−1 characters (see [12]).

B. Reduced Sets of Input Sequences
Let S⊆ (Ã)∗ be the set of all strings that take the adjusted

machine Σa from a stable combination with a state x to a
stable combination with a state x′. If S includes a complete
set γ , then, by Theorem 7, there is a state feedback controller
that implements a determinate transition from x to x′. Clearly,
the presence or absence of additional members of S outside of
γ is irrelevant in this regard. Thus, to simplify calculations, we
ignore members of S outside of γ and augment the definition
of addition in the semiring A by the property

γ +α = γ for any complete set γ and any set α ⊆ (Ã)∗. (9)

Further, it can be verified that the following is valid.

Proposition 8. Let x,x′, and x′′ be states, and let γ and γ ′
be complete sets, where γ takes Σa from a stable combination
with x to a stable combination with x′, while γ ′ takes Σa from
a stable combination with x′ to a stable combination with x′′.
Then, γγ ′ is a complete set taking Σa from a stable combination
with x to a stable combination with x′′. !

Proposition 8 and (9) help us simplify expressions without
compromising information about the existence of state feed-
back controllers that induce determinate transitions.

Example 9. According to Example 5, the set of input strings
taking Σa from x2 to x1 is S = {c1 + c2b+ da2b+ · · ·}. As
c1 +c2b is a complete set of strings by (7), we can use (9) to
write S = {c1 + c2b}, a significant simplification. !
Definition 10. A set of input strings S ⊆ (Ã)+ is reducible
if it can be simplified into a complete set by using (9) and
Proposition 8; otherwise, S is irreducible. A reducible set is
in reduced form when it is expressed as a complete set. !

In view of Theorem 7, reducible sets represent transitions
that can be implemented in determinate form by a state
feedback controller. Therefore, the problem of determining the
existence of such state feedback controllers can be resolved
through simple algebraic manipulations within the ring A.

IV. STABLE REACHABILITY

A. Determinate and Indeterminate Transitions
As seen in [8], the matrix of stable transitions plays

an important role in the solution of control problems. To

extend its definition to indeterminate machines, consider an
indeterminate machine Σ = (A,X ,x0, f) with the state set
X = {x1, . . . ,xn} and the adjusted machine Σa = (Ã,X ,x0,sa).
Denote by (Ã)(i) the set of all strings of i or fewer characters
of the extended alphabet Ã. For two integers p,q ∈ {1, ...,n}
and an integer i > 0, define the set of strings

α i(p,q) := {u ∈ (Ã)(i) | sa(xp,u) = xq },

and let N be a character not in the alphabet Ã.

Definition 11. The adjusted matrix of stable transitions Ra(Σ)
has the entries

Ra
pq(Σ) :=

{
αn−1(p,q) if αn−1(p,q) ̸=∅,
N else;

the one-step adjusted matrix of stable transitions Ra(Σ,1) has
the entries

Ra
pq(Σ,1) :=

{
α1(p,q) if α1(p,q) ̸=∅,
N else,

p,q = 1,2, ...,n. !
We extend the semiring A to include the character N:

Nα = αN = N for all α ∈ (Ã)+,
N +α = α +N = α for all α ∈ (Ã)+.

Then, with the operations in A, we can use the usual definition
of matrix multiplication to obtain the powers (Ra(Σ,1))i, i =
1,2, ... and construct the combination

(Ra(Σ))(i) := Ra(Σ,1)+(Ra(Σ,1))2 + · · ·+(Ra(Σ,1))i.

It can be seen that

Ra(Σ) = (Ra(Σ,1))(n−1). (10)

Example 12. From Example 5, we have Ra(Σ,1) =
⎛

⎜⎜⎜⎜⎝

{b+ c+ c1} {a} N N
{c1} {a+a1} {d} {c2}

N {a1} {d} {a2}

{b} N N
{

a+ c+d
+a2 + c2

}

⎞

⎟⎟⎟⎟⎠
.

Then, Ra(Σ) can be obtained by (10). !
A statement analogous to the following is proved in [8].

Proposition 13. Let Σa be an adjusted asynchronous machine
with the state set X = {x1, ...,xn}, the extended input alphabet
Ã, and the adjusted matrix of stable transitions Ra(Σ). Then,
the following two statements are equivalent.
(i) There is an input string u∈ (Ã)+ that takes Σa from a sta-

ble combination with the state xi to a stable combination
with the state x j in fundamental mode operation.

(ii) Ra
i j(Σ) ̸= N. !

The adjusted matrix of stable transitions can be simplified:

Definition 14. The reduced matrix of stable transitions R(Σ)
is obtained by expressing every reducible entry of Ra(Σ) in
reduced form; irreducible entries are left unchanged. !

214

By Proposition 13, the reduced matrix of stable transitions
characterizes all determinate transitions that can be imple-
mented by state feedback (see [12] for details):

Corollary 15. Let Σ be an asynchronous machine with the
state set X = {x1,x2, ...,xn} and the reduced matrix of stable
transitions R(Σ). Then, the following are equivalent for any
states xi,x j ∈ X.
(i) There is a state feedback controller that takes Σ through a
determinate transition from a stable combination with xi to a
stable combination with x j in fundamental mode operation.
(ii) Ri j(Σ) is a complete set. !
Example 16. Using Example 12, the reduced matrix of stable
transitions is

R(Σ) =

⎛

⎜⎜⎝

{b} {a} {ad} R14(Σ)
{γ1} {a} {d} R24(Σ)
{γ2} {γ3} {d} R34(Σ)
{b} {ba} {bad} {a}

⎞

⎟⎟⎠ ,

where γ1 := c1 + c2b, γ2 = a1γ1 +a2b, and γ3 = a1 +a2ba are
complete sets; R14(Σ),R24(Σ), and R34(Σ) are irreducible. !

The information in the reduced matrix of stable transitions
can be further condensed as follows (compare to [8]).

Definition 17. Let Σ = (A,X ,x0, f) be an asynchronous ma-
chine with n states and the reduced matrix of stable transitions
R(Σ). Let ∆ be a character not in Ã∪{N}. Then, the skeleton
matrix K(Σ) is an n×n matrix with the entries (i, j = 1,2, ...,n)

Ki j(Σ) :=

⎧
⎨

⎩

1 if Ri j(Σ) is a complete set,
0 if Ri j(Σ) = N,
∆ if Ri j(Σ) is irreducible.

In K(Σ), transitions indicated by 1 can be implemented in
determinate form by a state feedback controller operating in
fundamental mode; transitions indicated by 0 are impossible;
and transitions indicated by ∆ are indeterminate – they may
or may not be possible, depending on the outcomes of inde-
terminate transitions along the way.

Example 18. Based on Example 16, the skeleton matrix is

K(Σ) =

⎛

⎜⎜⎝

1 1 1 ∆
1 1 1 ∆
1 1 1 ∆
1 1 1 1

⎞

⎟⎟⎠ . !

V. MODEL MATCHING

Consider a machine Σ = (A,X ,x0, f) connected to a state
feedback controller C as in Figure 1, and let Σ′ = (A,X ,x0,s′)
be a specified determinate model. Let K(Σ) and K(Σ′) be the
skeleton matrices of Σ and Σ′, respectively. When Σ has no
indeterminate transitions, [8, Theorem 5.1] states that a state
feedback controller C satisfying Σc = Σ′ exists if and only if

K(Σ)≥ K(Σ′). (11)

When Σ has indeterminate transitions, K(Σ) may include
entries of the character ∆, which indicate unpredictable out-
comes. When an entry of ∆ in K(Σ) appears opposite an

entry of 1 in K(Σ′), model matching cannot be guaranteed.
On the other hand, an entry of ∆ in K(Σ) opposite an entry
of 0 in K(Σ′) has no direct bearing on model matching, since
the transition it represents is not required to match Σ′. These
considerations can be incorporated into (11) by defining ∆ as
a number satisfying

0 < ∆ < 1. (12)

With the assignment (12), the following is true.

Theorem 19. Let Σ = (A,X ,x0, f) be an asynchronous ma-
chine with the skeleton matrix K(Σ), and let Σ′ = (A,X ,x0,s′)
be a determinate stable state machine with the skeleton matrix
K(Σ′). Then, the following are equivalent:
(i) There is a state feedback controller C satisfying Σc = Σ′,
where Σc operates in fundamental mode.
(ii) K(Σ)≥ K(Σ′). !

Theorem 19(ii) provides a convenient way to determine
whether model matching is possible.

ACKNOWLEDGEMENT

The work of J.-M. Yang was supported by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science
and Technology (No. 2011-0005116).

REFERENCES

[1] G. BARRETT and S. LAFORTUNE [1998], “Bisimulation, the su-
pervisory control problem, and strong model matching for finite state
machines," Discrete Event Dynamic Systems: Theory and Application,
vol. 8, no. 4, pp. 377–429.

[2] M. D. DIBENEDETTO, A. SALDANHA and A. SANGIOVANNI-
VINCENTELLI [1994], “Model matching for finite state machines,”
Proc. IEEE Conf. on Decision and Control, 1994, pp. 3117–3124.

[3] J. HAMMER [1994], “On some control problems in molecular biology,”
Proc. IEEE Conf. on Decision and Control, pp. 4098–4103, Dec. 1994.

[4] J. HAMMER [1995], “On the modeling and control of biological signal
chains,” Proc. IEEE Conf. on Decision and Control, pp. 3747–3752,
Dec. 1995.

[5] J. HAMMER [1996], “On the control of incompletely described sequen-
tial machines,” Int. J. Control, vol. 63, no. 6, pp. 1005–1028.

[6] R. KUMAR, S. NELVAGAL, and S. I. MARCUS [1997], “A discrete
event systems approach for protocol conversion,” Discrete Event Dy-
namic Systems: Theory and Applications, vol. 7, no. 3, pp. 295–315.

[7] T. E. MURPHY, X. J. GENG, and J. HAMMER [2002], “Controlling
races in asynchronous sequential machines,” Proceeding of the IFAC
World Congress, Barcelona, July 2002.

[8] T. E. MURPHY, X. GENG, and J. HAMMER [2003], “On the control
of asynchronous machines with races,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 1073–1081, 2003.

[9] P. J. G. RAMADGE and W. M. WONHAM [1987], “Supervisory control
of a class of discrete event processes,” SIAM Journal on Control and
Optimization, vol. 25, no. 1, pp. 206–230.

[10] M.-D. SHIEH, C.-L. WEY, and P. D. FISHER [1993], “Fault effects in
asynchronous sequential logic circuits,” IEE Proc.-E, vol. 140, no. 6,
pp. 327–332, 1993.

[11] J. G. THISTLE and W. M. WONHAM [1994], “Control of infinite
behavior of finite automata,” SIAM J. Control and Opt., vol. 32, no.
4, pp. 1075–1097.

[12] J.-M. YANG, T. XING, and J. HAMMER [2011], “Adaptive control of
asynchronous sequential machines with state output,” submitted.

[13] N. YEVTUSHENKO, T. VILLA, R. BRAYTON, A. PETRENKO, and
A. SANGIOVANNI-VINCENTELLI [2008], “Compositionally progres-
sive solutions of synchronous FSM equations,” Discrete Event Dynamic
Systems: Theory and Application, vol. 18, no. 1, pp. 51–89.

215

