
International Journal of Control
Vol. 79, No. 7, July 2006, 764–785

On the control of asynchronous sequential machines
with infinite cycles

N. VENKATRAMANy and J. HAMMER*z

yDepartment of Electrical Engineering, Northern Arizona University,
Flagstaff, AZ 86011, USA

zDepartment of Electrical and Computer Engineering, University of Florida,
Gainesville, FL 32611, USA

(Received 9 March 2005; in final form 28 February 2006)

The problem of eliminating the effects of infinite cycles on asynchronous sequential machines

is considered in a control theoretic context. The main objective is to develop state feedback

controllers that stop infinite cycles in an existing asynchronous machine, while controlling the

machine to match a prescribed model. Necessary and sufficient conditions for the existence of

such controllers are derived in terms of an inequality condition between two numerical

matrices. The results include an algorithm for the characterization of all infinite cycles of

a given machine as well as an algorithm for the construction of appropriate controllers,

whenever they exist.

1. Introduction

Asynchronous sequential machines, or, as they are
sometimes called, clockless logic circuits, form the
building blocks of some of the fastest computing
machines. An infinite cycle is a common defect of an
asynchronous sequential machine. It causes the machine
to loop indefinitely among several of its states. Infinite
cycles can occur as a result of malfunctions, design
flaws, component failures, or implementation flaws.
In this paper, we develop techniques to control an
asynchronous machine so it meets the following two
objectives: (i) the controlled machine does not linger
in an infinite cycle; and (ii) the performance of the
controlled machine matches a desired model. The basic
control configuration is described by figure 1.
In figure 1, � is the asynchronous machine being

controlled and C is another asynchronous machine that
serves as a feedback controller. We denote by �c the
closed loop machine represented by the diagram. The
controller C drives the machine � so as to eliminate the
effects of infinite cycles and to match specified
performance. In brief terms, we refer to C as a corrective
controller.

A corrective controller can be designed so that the

closed loop system will function properly whether

or not the machine � is afflicted by an infinite cycle.

In this way, the corrective controller can be used as

a preemptive measure against malfunctions before they

occur, improving system reliability. In addition, the use

of a corrective controller is often economically more

efficient than a complete replacement of a faulty system.

It is the only practical solution in cases where the

affected system is inaccessible.
The existence of a corrective controller depends on

certain reachability properties of the faulty machine �.

These properties can be characterized in terms of a

numerical matrix of zeros and ones, called the ‘‘skeleton

matrix’’ of � (x 4). The skeleton matrix is calculated

from the given description of �, and it underlies the

statement of necessary and sufficient conditions for

the existence of a corrective controller (x 6).
An important aspect of our discussion is the creation

of a mathematical framework for handling asynchro-

nous machines with infinite cycles. This framework

requires a generalization of the concept of state. Recall

that, in qualitative terms, an asynchronous machine has

two kinds of states: stable states, i.e., states in which the

machine can linger indefinitely, and unstable states –

transient states through which the machine passes in*Corresponding author. Email: hammer@mst.ufl.edu

International Journal of Control
ISSN 0020–7179 print/ISSN 1366–5820 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207170600665022

quick succession. In x 4 we show that, in order to
develop a consistent mathematical framework for

asynchronous machines with infinite cycles, one must
interpret an infinite cycle as a kind of ‘‘stable state’’,
since a machine can linger indefinitely in an infinite
cycle. This observation leads to the notion of a

‘‘generalized state’’, which is fundamental to the
derivation of the skeleton matrix. It facilitates the
statement of a simple necessary and sufficient condition
for the existence of corrective controllers.
The discussion of this paper is a continuation of

Hammer (1994, 1995, 1996a, b, 1997), Murphy et al.
(2002, 2003), and Geng and Hammer (2004, 2005). The
technical literature about infinite cycles of asynchronous
machines deals mostly with techniques for the design

and implementation of machines that are free of infinite
cycles. These design techniques, initiated by Huffman
(1954a, b, 1957), are reviewed in many textbooks on the
design of digital systems, e.g., Kohavi (1970). It seems

that the literature contains no reports regarding the
use of control techniques to eliminate the effects of
infinite cycles from an existing asynchronous sequential
machine.
Much of the terminology and notation of the present

paper follows Eilenberg (1974). Studies dealing with
other aspects of the control of discrete event systems can
be found in Ramadge and Wonham (1987), Dibenedetto
et al. (1994), Thistle and Wonham (1994), Barrett and

Lafortune (1998), Dibenedetto et al. (2001), the refer-
ences cited in these papers, and others. Prior to the
present paper and the ones preceding it in its sequence
(Murphy et al. 2002, 2003, and Geng and Hammer 2004,

2005), there were apparently no reports addressing the
impact of unstable states, critical races, or infinite cycles
on the control of asynchronous machines. The earlier
papers in the sequence deal with the development of

controllers that eliminate the effects of critical races. The
present paper concentrates on the design of controllers
that eliminate the effects of infinite cycles, while
guarantying that no critical races or other hazards are

created when the control loop is closed.
The paper is organized as follows. Basic notation,

terminology, and background are provided in x 2. An
algorithm for characterizing the infinite cycles of a given

asynchronous machine is described in x 3. Section 4 deals
with the mathematical representation of machines with
infinite cycles by introducing the notion of a generalized
state. Our examination of corrective controllers for
asynchronous machines with infinite cycles starts in x 5,
where we discuss the skeleton matrix. Necessary and
sufficient conditions for the existence of corrective
controllers are presented in x 6, which also describes
the construction of corrective controllers. The paper
concludes with a comprehensive example (x 7) and
conclusions (x 8).

2. Terminology and background

Let A be a finite non-empty alphabet, let A* denote the
set of all finite strings of characters of A, and let Aþ be
the set of all non-empty strings in A*. We assume that
the alphabet A does not include the digits 0 and 1. The
length |w| of a string w 2 A* is the number of characters
of w. For two strings w1,w2 2 A*, the concatenation is
the string w:¼w2w1, obtained by appending w1 to the
end of w2 (note the reverse order). A partial function f:
S1!S2 is a function whose domain is a subset of S1,
e.g., Eilenberg (1974).

An asynchronous machine � is defined by a sextuple
(A,Y,X, x0, f, h), where A, Y, and X are non-empty finite
sets, x0 is the initial state, and f: X�A!X and h:
X�A!Y are partial functions. Here, A is the input
alphabet, Y is the output alphabet, and X is the set of
states. The partial function f is the recursion function
and h is the output function. A valid pair (x, u) 2 X�A
is a point at which the partial functions f and h are
defined.

The machine � starts from the initial state x0 and
accepts input strings of the form u:¼ u0 u1 � � � 2 A*. In
response, it generates a string of states x0x1x2 � � � 2 X*
and a string of output values y0y1y2 � � � 2 Y*, according
to the recursion

xkþ1 ¼ fðxk, ukÞ,

yk ¼ hðxk, ukÞ, k ¼ 0, 1, 2, . . . :

An input sequence is permissible if all pairs (xk, uk),
k¼ 0, 1, 2, . . . are valid pairs. The step counter k is
incremented by one at every change of the input value
or of the state value. The machine � is an input/state
machine if Y¼X and the output is equal to the state
at each step, i.e.,

yk ¼ xk, k ¼ 0, 1, 2, . . . :

An input/state machine � is represented by the triple
(A,X, f), allowing for an arbitrary initial state.

C
v Σ

y

Σc

u

Figure 1. Basic control configuration.

The control of asynchronous machines 765

A valid pair (x, u) 2 X�A of the machine � is a

stable combination if f(x, u)¼ x, i.e., if the state x is a

fixed point of the function f. An asynchronous machine

lingers at a stable combination until an input change

occurs. A pair (x, v) that is not a stable combination is

called a transient combination. A potentially stable state

is a state for which there is a stable combination.
A transient pair (x, u) initiates a chain of transitions

x1¼ f(x, u), x2¼ f(x1, u), . . . , where the input character u

is kept fixed. This chain of transitions may or may not

end. If it ends, then there is an integer q � 1 such that

the state x0:¼ f(xq, u) of the chain satisfies x0 ¼ f(x0, u),

i.e., (x0, u) is a stable combination. In this case, the state

x0 is called the next stable state of x with the input

value u. If this chain of transitions does not terminate,

then the pair (x, u) is part of an infinite cycle.
The notion of next stable state leads to several

important concepts, e.g., Kohavi (1970). The first of

these is the stable recursion function s: X�A!X of �,

which is defined as follows. For every valid pair (x, u) of

� that has a next stable state x0, set s(x, u):¼ x0; leave s

undefined for other pairs. Then, the stable state machine

�|s induced by � is the sextuple (A,X,Y, x0, s, h), where

the stable recursion function s replaces the recursion

function f of �. For transitions that do not involve

infinite cycles, the stable state machine describes the

behavior of � as observed by a user: it ignores all

transients (which, ideally, occur in zero time) and

highlights the persistent states of the machine (see also

Murphy et al. 2003).
If the input value of an asynchronous machine

changes while the machine is undergoing a chain of

transitions, then the response of the machine may

become unpredictable, since the state of the machine

at the time of the input change is unpredictable. To

avoid this uncertainty, asynchronous machines are

normally operated in fundamental mode, where only

one variable of the machine is allowed to change at a

time; while one variable is undergoing transitions, all

other variables of the machine are kept constant. In

fundamental mode operation, a change of the input

value is allowed only while the machine is in a stable

combination. When the control configuration in

figure 1 operates in fundamental mode, then the

output of the controller C must remain constant

while the machine � is undergoing state transitions,

and the output of the machine � must remain

constant while the controller C is undergoing state

transitions.
Consider a machine � operating in fundamental mode

and resting at a stable combination with the state x1,

when the input string w¼w1w2 . . .wm is applied to

it. The machine undergoes a chain of transitions,

say, x2¼ f(x1,w1), x3¼ f(x2,w2), . . . , xmþ1¼ f(xm,wm).

Fundamental mode operation requires that

wi ¼ wi þ 1 whenever ðxi,wiÞ is not a stable

combination, i ¼ 1, . . . ,m� 1:

Thus, input values may be constant over a number of
steps. Specifically, consider a situation where the input
value of the machine� is kept constant at the character v,
while the machine is engaged in a string of transitions
through the states x1, x2, x3, Then, the machine goes
through the state-input pairs (x1, v), (x2, v), (x3, v),
In other words, the input value v is being repeated, as
in vvv To simplify notation, it is convenient to
represent all such repetitions by one character v. In fact,
this is how such input is implemented – the input value v is
simply kept constant during the transition process. In this
spirit, a string of the form v0v0v1v1v1v2v2 is represented
by the shortened form v0v1v2, where each character is
considered as being repeated once for each transition that
occurs while it is in effect. Transitions with constant input
are described by the following iteration.

For an integer i � 1 and a valid pair (x, u) of the
machine �, we denote by f �i(x, u) the ith iteration of the
recursion function f with the (constant) input character
u, i.e.,

f �1ðx, uÞ :¼ fðx, uÞ,

f �2ðx, uÞ :¼ fðfðx, uÞ, uÞ, . . . ,

f �iðx, uÞ :¼ fð f �i�1ðx, uÞ, uÞ, i ¼ 2, 3, . . . :

We refer to f �i as the ith constant input iteration of f.
Note that fundamental mode operation is impossible

when a machine is in an infinite cycle, since the machine
never reaches a stable combination with its active input
value. To take a machine out of an infinite cycle, the
input value of the machine must be changed during
the cycle. As it is not possible to predict at which state
the machine is when such an input change is applied, the
outcome of an input change during an infinite cycle
may be unpredictable. In our discussion, asynchronous
machines operate in fundamental mode in all cases,
except when in an infinite cycle. A detailed discussion
of this point is provided in x 4 below.

We conclude our review with the following notion,
which is critical to the discussion (see also Murphy et al.
(2002, 2003) and Geng and Hammer (2005)).

Definition 1: Let �¼ (A,Y,X, x0, f, h) and �0 ¼

(A,Y,X0, �0, f
0, h0) be two machines having the same

input and the same output sets, and let �|s and �0
js be the

stable state machines induced by � and �0, respectively.
Two states x 2 X and � 2 X0 are stably equivalent (x� �)
if the following is true: when �|s starts from the state x

766 N. Venkatraman and J. Hammer

and �0
js starts from the state �, then (i) �|s and �0

js have
the same permissible input strings; and (ii) �js and �0

js

generate the same output string for every permissible
input string.
Two machines � and �0 are stably equivalent if their

initial states are stably equivalent, i.e., if x0� �0; in such
case, we write �¼�0. œ

Machines that are stably equivalent appear identical
to a user.

3. Infinite cycles

As mentioned earlier, an infinite cycle occurs in an
asynchronous machine when a valid pair (x, u) has no
next stable state. In an infinite cycle, the machine keeps
moving indefinitely from one transient combination to
another, while the input character is kept constant. An
infinite cycle can be characterized by listing the states
and the input character involved in the cycle.
Specifically, consider an asynchronous machine � with
the state set X¼ {x1, x2, . . . , xn}. Assume that � has an
infinite cycle � that involves p states, say the states x j1,
xj2, . . . , x jp 2 X and the input character a 2 A. The
infinite cycle then functions according to the recursion

x jkþ1 ¼ fðx jk , aÞ, k ¼ 1, . . . , p� 1,

x j1 ¼ fðx jp , aÞ:
ð1Þ

As a shorthand notation, we denote this infinite cycle by

� ¼ x j1 , x j2 , . . . , x jp; a
� �

:

The input character of � is a, and the state set of � is

Xð�Þ :¼ x j1 , x j2 , . . . ,x jp
� �

:

Using the iterated recursion function, we can write

Xð�Þ ¼ x j1 , fðx j1 , aÞ, f �2ðx j1 , aÞ, . . . , f �ðp�1Þðx j1 , aÞ
� �

:

ð2Þ

The length ‘ of the infinite cycle � is the number of
distinct states it includes, i.e., ‘¼ p in this case.
Note that, when the length of an infinite cycle is 1, say

�¼ {x; a}, only the second line of (1) applies, and it
yields x¼ f(x, a), i.e., (x, a) is stable combination of the
machine �. Thus, an infinite cycle of length 1 is a stable
combination. In the sequel, unless specifically stated
otherwise, the term ‘‘infinite cycle’’ is used exclusively
for infinite cycles of length greater than 1.
Of course, an asynchronous machine � can have more

than one infinite cycle. The following statement shows

that infinite cycles associated with the same input
character must have disjoint state sets.

Lemma 1: A valid state/input pair (x, a) of an asynchro-
nous machine can be a member of at most one infinite
cycle.

Proof: Let �1 and �2 be two infinite cycles of the
machine �¼ (A,X, x0,Y, f, h), and assume that both
contain the pair (x, a). Let p be the length of �1, and let q
be the length of �2. Then, using (2), the corresponding
state sets are X(�1)¼ {x, f(x, a), f �2(x, a), . . . , f �(p–1)(x,a)}
and X(�2)¼ {x, f(x, a), f �2(x, a), . . . , f �(q–1)(x, a)}.
Clearly, if p¼ q, then X(�1)¼X(�2), and �1¼�2.
Otherwise, without loss of generality, assume that
p< q. Applying (1) to the infinite cycle �1, it follows
that f �p(x, a)¼x, so that f �(pþ1)(x, a)¼ f(x, a),
f �pþ2(x, a)¼ f �2(x, a), . . . , f �q(x, a)¼ f �(q–p)(x, a). Thus,
X(�1)¼X(�2), and, since �1 and �2 also have the same
input character a, we have �1¼�2. œ

Lemma 1 allows us to derive a bound on the maximal
number of infinite cycles an asynchronous machine can
have, as follows. (Denote by [q]� the largest integer not
exceeding q.)

Proposition 1: Let � be an asynchronous machine with
n states and an input alphabet of m characters. Then, �
cannot have more than m[n/2]� infinite cycles.

Proof: Consider the set of all infinite cycles involving
a single input character a. In view of Lemma 1, all such
infinite cycles have disjoint state sets; since an infinite
cycle must contain at least 2 states, and since � has a
total of n states, we conclude that � cannot have more
than [n/2]� infinite cycles with the input character a.
As this argument applies to each one of the m input
characters of �, the total number of infinite cycles
cannot exceed m[n/2]�. œ

In addition to infinite cycles, an asynchronous machine
can have another malfeasance: critical races (Unger
1995). A critical race describes a situation where the next
state of the machine is not uniquely determined.
Specifically, a critical race pair (x, u) of an asynchronous
machine �¼ (A,Y,X, x0, f, h) is a valid pair of � for
which f(x, u) is a subset of states, rather than a single
state. In other words, for a machine with critical races,
the recursion ‘‘function’’ f is multivalued at some points.

3.1 Finding the infinite cycles of an
asynchronous machine

In order to control an asynchronous machine with
infinite cycles, we must first determine all the infinite
cycles of the machine from given data, i.e., from the
recursion function of the machine. To this end, the
following matrix is helpful.

The control of asynchronous machines 767

Definition 2: Let �¼ (A,X,x0,Y, f, h) be an asynchro-
nous machine with the state set X¼ {x1, . . . , xn}, and
let " be a character not included in A. Let Uij be the set
of input characters that take � in one step from the state
x j to the state xi, i.e.,

Uij ¼ fu2A: x i 2 fðx j, uÞg, i, j ¼ 1, . . . , n:

Then, the one-step transition matrix �(f) of � is
an n� n matrix, whose (i, j) entry is

�ijð f Þ :¼
Uij if Uij 6¼ 1,

" if Uij ¼ 1, i, j ¼ 1, . . . , n:

(
h

Clearly, the information included in the one-step
transition matrix is equivalent to the information
included in the recursion function f of �. In fact, we
can associate a one-step transition matrix �(g) with every
function g: X�A!X. The following fact is useful.

Lemma 2: Let �(f) be the one-step transition matrix
of the asynchronous machine �¼ (A,X, x0,Y, f, h). If �

has no critical races, then no input character appears more
than once in a column of �(f).

Proof: By contradiction, assume that � has no critical
races, while the input character u appears more than
once in column j of the one-step transition matrix �(f).
Then, letting n be the number of states of �, there are
two integers p 6¼ q 2 {1, . . . , n} such that u 2 �pj(f) and
u 2 �qj(f). Invoking the definition of �(f), this means
that xp 2 f(x j, u) and xq 2 f(x j, u). Consequently, (x j, u)
is a critical race pair of �, contradicting the fact that �
has no critical races. This implies that column j of �(f)
cannot include more than one appearance of the input
character u, and our proof concludes. œ

To simplify notation, we shall assume from now on that
the machine � does not have any critical races. Still,
critical races play an important role in our discussion,
as they can be created when the machine is taken out
of an infinite cycle. Furthermore, the results presented
in this paper apply equally well to machines with
critical races.

We define next some operations on the one-step
transition matrix, which will allow us to examine the
response of � over several steps. First, recalling that "
is not in A, we introduce the extended alphabet A0,
obtained by adding the character " to A. Next, define the
operations

" [" :¼ ",

u [" :¼ u for all u2A:

Note that " behaves similarly to a ‘‘zero’’ under this

operation. Further, define an operation of multiplica-

tion over the set A0, given by

u � u :¼ u,
u � u0 :¼ " for all elements u 6¼ u0 2A0:

ð3Þ

For subsets {a1, a2, . . . , aq}, {b1, b2, . . . , br}�A0, the

multiplication is defined pairwise over all possible pairs

fa1, a2, . . . , aqg � fb1, b2, . . . , brg ¼ fai � bjgi¼1,..., q, j¼1,..., r

ð4Þ

Two operations on matrices whose entries are subsets

of A0 are needed. One is the union of two such n� n

matrices C and D, defined entrywise by

ðC [DÞij :¼ Cij [Dij, i, j ¼ 1, . . . , n;

this operation is reminiscent of the numerical addition

of matrices. The second operation is reminiscent of

numerical multiplication of matrices

ðC �DÞij :¼ [k¼1,..., nCik �Dkj for all i, j ¼ 1, . . . , n:

ð5Þ

Example 1: For the matrices

C ¼
a fa, bg

fb, cg b

� �
; D ¼

b c
a a

� �
,

we obtain

C �D ¼
a a

b c

� �
: h

Constant input iteration is related to multiplication of

the corresponding one-step transition matrices.

Lemma 3: Let f: X�A!X be a recursion function with

the one-step transition matrix �(f), and let �(f �r) be the

one-step transition matrix of the constant input iteration

f �r, r¼ 2, 3, Then, �(f �r)¼ �(f �(r–1))��(f).

Before stating the proof, we provide an example.

Example 2: Consider a machine � with the input set

A¼ {a, b, c}, the state set X¼ {x1, x2, x3}, and the

transition function f. The state transition table and the

state flow diagram of � are shown below in figure 2.

From the table, the one-step transition matrix of � is

�ð f Þ ¼
fa, cg " "
" a fa, bg
b fb, cg c

0
@

1
A: ð6Þ

768 N. Venkatraman and J. Hammer

A direct calculation yields

�ð f �2Þ ¼ �ð f Þ � �ð f Þ ¼

fa, cg " "

b fa, bg a

" c fb, cg

0
B@

1
CA ð7Þ

h

Proof of Lemma 3: We start with r¼ 2. Assume that

the state set X consists of the n elements x1, . . . , xn.

Using (5), we have

�ð f Þ � �ð f Þ ¼ [k¼1,..., n�ikð f Þ � �kjð f Þ:

Clearly, each entry of �(f)��(f) is either ", or it

contains a character of the input alphabet A. Using

(3), (4) and (5), it can be readily seen that the

following two statements are equivalent for every

character u 2 A.

(i) The (i, j) entry of �(f)��(f) includes u.

(ii) There is an integer k 2 {1, . . ., n} for which

u 2 �ik(f) and u 2 �kj(f).
Now, when (ii) holds, we have xi¼ f(xk, u) and

xk¼ f(x j, u), so that xi¼ f(f(x j, u), u)¼ f�f(x j, u)¼

f �2(x j, u), and the (i, j) entry of �(f �2) includes u.

Consequently, (ii) implies that

ðiiiÞ u2 �ijð f
�2Þ:

Conversely, if (iii) holds, then it follows from the

definition of �(f �2) that xi¼ f �2(x j, u)¼ f(f(x j, u), u).

Now, the value f(x j, u) is an element of X, say the

element xk. Then, we have xk¼ f(x j, u) and xi¼ f(xk, u),

which implies that (ii) is valid for this k. Thus, (iii)

implies (ii), and, using our earlier observation, we

conclude that (ii) is equivalent to (iii). As (i) and (ii)

are also equivalent, it follows that (i) and (iii) are

equivalent, and whence the matrices �(f �2) and

�(f)��(f) have the same entries. This completes the

proof for r¼ 2. The proof for r>2 is done by induction,

using a similar approach. œ

Given an n� n matrix C whose entries are subsets of the
alphabet A0, introduce the powers

C �p :¼ C�C� � � � �C ð p timesÞ, p ¼ 1, 2, . . .

The following is a consequence of Lemma 3.

Corollary 1: Let �¼ (A,X, x0,Y, f, h) be an asynchro-
nous machine with the one-step transition matrix �(f).
Then, �(f �p)¼ ��p(f) for every integer p � 1. œ

As discussed earlier, a stable combination (x, u) of an
asynchronous machine � can be interpreted as an
infinite cycle of length 1. We use this interpretation to
simplify the wording of the following statement, which
forms an important tool for characterizing all infinite
cycles of an asynchronous machine.

Proposition 2: Let � be an asynchronous machine with
the recursion function f, the state set X¼ {x1, . . . , xn}, and
the input alphabet A. Then, the following three statements
are equivalent for every valid pair (xi, u) 2 X�A.

(a) There is an integer q � 1 for which u is included
in the (i, i) entry of the matrix ��q(f).

(b) (xi, u) is part of an infinite cycle, whose length ‘
is an integer divisor of q.

(c) xi¼ f �q(xi, u).

Proof: First, to show that (a) implies (b), assume that
u is included in the (i, i) entry of the matrix ��q(f).
Considering that ��q(f)¼ �(f �q) by Corollary 1, it
follows from the definition of the matrix �(f �q) that

x i ¼ f �qðx i, uÞ: ð8Þ

Hence, the set E of integers p � 1 for which xi¼ f �p(xi,u)
is not an empty set. Let ‘ be the smallest non-zero
integer in the set E. Then, ‘� q by (8). Now, if ‘¼ 1,
then xi¼ f(xi, u), and (xi, u) is a stable combination of �
(i.e., an infinite cycle of length 1). If ‘>1, then
the equality xi¼ f �‘ (xi, u) implies that the infinite
sequence of states xi, f(xi, u), f �2(xi, u), . . . , constitutes
a periodic sequence xi, f(xi, u), . . . , f �(‘–1)(xi, u), xi,
f(xi, u), . . . , f �(‘–1)(xi, u), . . . , yielding an infinite cycle
{xi, f(xi, u), . . . , f �(‘–1)(xi, u); u} of length ‘.

Now, using the integer division algorithm, we can
write q¼ a‘þ r, where a and r are integers and 0� r< ‘.
If r>0, then the equality xi¼ f �‘ (xi, u) implies that

x i ¼ f �qðxi , uÞ ¼ f �rð f �a‘ðxi , uÞ, uÞ ¼ f �rðx i, uÞ

so that xi¼ f �r(xi, u). Considering that r< ‘, the last
equality contradicts the fact that ‘ is the smallest
nonzero integer in the set E. Thus, we must have r¼ 0,
and ‘ is an integer divisor of q. This shows that (a)
implies (b).

a b c
x1

x2 x2 x3

x3 x3x2 x2
x3

x1 x1x3
c

a,c

b

b,c

a

a,b

(a) (b)

x1

x2 x3

Figure 2. (a) State transition table of �; (b) State flow
diagram of �.

The control of asynchronous machines 769

To show that (b) implies (c), assume that (b) is valid,
i.e., that (xi, u) is part of an infinite cycle whose length

‘ � 1 is an integer divisor of q. Then, q¼ a‘ for
some integer a � 1, and the equality xi¼ f �‘(xi, u)
implies that f �q(xi, u)¼ f �a‘(xi, u)¼ [f �‘]�a(xi, u)¼
f �‘ (f �‘ (� � �f �‘ (xi, u), . . . , u), u)¼ xi, and (c) is valid.
Finally, we show that (c) implies (a). Assume that (c)

is valid, so that xi¼ f q(xi, u) for some integer q � 1.

Then, by Definition 2, the character u is included in the
(i, i) entry of the matrix �(f q). As �(f q)¼ ��q(f) by
Corollary 1, it follows that u is included in the entry (i, i)
of the power ��q(f) of �(f), implying that (a) is valid.
This concludes our proof. œ

We describe now a procedure for finding all the states
of an infinite cycle, when given one state of the cycle.

Proposition 3: Let � be an asynchronous machine with

the state set X¼ {x1, . . . , xn}, the recursion function f, and
the one-step transition matrix �(f). Assume that � has an
infinite cycle � of length ‘> 1 with the input character u,
and let x j0 be a state of �. Then, the other states x j1,
x j2, . . . , x j‘–1 of � can be found by the following recursive

process: having found the state x ji, the index jiþ1 of the
next state x jiþ1 is the number of the row in which the
character u appears in column ji of �(f), i¼ 0, . . . , ‘–2.

Proof: Noting that x j0, x j1, . . . , x j‘–1 are the states of

our infinite cycle �, it follows by (1) that x jiþ1¼ f(x ji, u),
i¼ 0, . . . , ‘ – 2, where u is the input character of �. By
Definition 2 of the one-step transition matrix �(f), this
means that the character u appears in position (jiþ1, ji) of

the matrix �(f), which proves our statement. œ

We will now outline an algorithm that finds all the
infinite cycles of an asynchronous machine �. (#S
denotes the number of elements of a set S.)

Algorithm 1: Let �¼ (A,X, x0,Y, f, h) be an asynchro-
nous machine, and let �(f) be its transition matrix. The
steps below are performed individually for each input
character u 2 A.

Step 1: Let �1(u) be the set of all states of �

corresponding to diagonal entries of �(f) that include
the character u. Set �1(u):¼�1(u).

Step 2: For i � 2, let �i(u) be the set of all states of �

corresponding to diagonal entries of ��i(f) that include
the character u. Define the difference set

�iðuÞ :¼ �iðuÞn
[

1�j�i�1
�jðuÞ: ð9Þ

Step 3: If

iþ 1 > n�
Xi

j¼1

#�jðuÞ, ð10Þ

where n is the number of states of �, then the algorithm
terminates for the character u. Otherwise, repeat from
Step 2, using iþ 1 for i. œ

As indicated in Theorem 1 below, the set �i(u) of
Algorithm 1 consists of all states of the machine � that
are included in infinite cycles of length i with the input
character u. Note that, for a machine � with n states,
it follows from (10) that Algorithm 1 cannot require
more than n iterations for each input character. Here is
an example.

Example 3: We demonstrate Algorithm 1 on the
machine � of Example 2; the one-step transition
matrix �(f) of � is given by (6). Start by applying
Algorithm 1 with the input character a 2 A.

Step 1: Using (6) yields �1(a)¼ �1(a)¼ {x1, x2}.

Step 2: Since i<2, skip to Step 3.

Step 3: The inequality (10) becomes here 2>3� 2¼ 1,
which is true; hence, the Algorithm ends for the input
character a.

We now proceed to the input character b.

Step 1: Since b does not occur on the main diagonal
entry of �(f), we have �1(b)¼ �1(b)¼1.

Step 2: Since i<2, skip to Step 3.

Step 3: Inequality (10) becomes 2>3� 0, which is
false; consequently, go to Step 2 with i¼ 2.

Returning to step 2: In view of (7), there are two
occurrences of the input character b on the main
diagonal entry of �(f �2): in positions (2, 2) and (3, 3).
Consequently, �2(b)¼ {x2, x3}.

From (9),

�2ðbÞ ¼ �2ðbÞn�1ðbÞ ¼ fx2, x3g:

Returning to step 3: Inequality (10) becomes here
3>3� 2¼ 1, which is true. Thus, Algorithm 1
terminates for the character b.
Finally, we proceed to input character c.

Step 1: From (6), we have �1(c)¼ �1(c)¼ {x1, x3}.

Step 2: As i¼ 1<2, skip to Step 3.

Step 3: Inequality (10) becomes 2>3� 2¼ 1, which
is true; hence, Algorithm 1 terminates for the input
character c. This terminates the entire process.

To summarize, we have obtained that �1(a)¼ {x1, x2},
�1(b)¼1, �2(b)¼ {x2, x3}, and �1(c)¼ {x1,x3}. In view of
Theorem 1 below, this implies that the states x1 and x2

form cycles of length 1 (i.e., stable combinations) with

770 N. Venkatraman and J. Hammer

the input character a; the states x2 and x3 form a cycle
of length 2 with the input character b; and the states x1

and x3 form stable combinations with the input
character c. œ

Theorem 1: Let i � 1 be an integer. Then, in the notation
of Algorithm 1, the following are true.

(a) The set �i(u) consists of all states of the machine �
that are members of infinite cycles of length i with the
input character u.

(b) The machine � has exactly #�i(u)/i infinite cycles of
length i with the input character u.

Proof: Let X¼ {x1, . . . , xn} be the state set of �, and
let u 2 A be an input character. First, we show by
induction that (9) can be rewritten in the form

�iðuÞ :¼ �iðuÞn
[

1�j�i�1
�jðuÞ, i ¼ 2, 3, . . . ð11Þ

Indeed, since �1¼�1 by Step 1 of Algorithm 1, the
relation is valid for i¼ 2. Next, let k � 2 be an integer,
and assume that (11) is valid for all 2� i� k. This
implies that

�i ¼
[

1�j�i
�jðuÞ, i ¼ 2, 3, . . . , k: ð12Þ

Now, considering i¼ kþ 1 and substituting (12) into (9),
we obtain that

�kþ1ðuÞ :¼ �kþ1ðuÞn
[

1�j�k
�jðuÞ

¼ �kþ1ðuÞn
[

1�j�k
�jðuÞ:

The last equality shows that (11) is valid for i¼ kþ 1,
and whence, by induction, it is valid for all i � 2.

Next, by Proposition 2, the set �1(u) consists of all
states of � that are included in infinite cycles of length 1
with the character u. As �1(u)¼�1(u), this implies
directly that part (a) of our present theorem is valid
for i¼ 1. Preparing for induction, let k � 1 be an integer,
and assume that part (a) of our theorem is valid for
i¼ k. Proceeding to i¼ kþ 1, it follows from (11) that

�kþ1ðuÞ :¼ �kþ1ðuÞn
[

1�j�k
�jðuÞ:

Now, by Proposition 2, the set �kþ1(u) consists of all
states of � that are included in infinite cycles with the
input character u, and whose length is an integer divisor
of kþ 1. Combining this with our induction assumption,
it follows that the states included in �kþ1(u) have the
following properties:

(i) Being members of �kþ1(u), they are involved in
infinite cycles with the input character u, and the
length of these infinite cycles is an integer divisor
of kþ 1.

(ii) They are not involved in cycles whose length is k or

less, since the states [1�j�k�jðuÞ are excluded from

�kþ1(u).

Thus, �kþ1(u) consists exactly of all states that are

included in infinite cycles of length kþ 1 with the input

character u, and part (a) of the theorem is valid.
Regarding Step 3 of Algorithm 1, we claim that the

following is true. If the machine � has an infinite cycle �0

of length iþ 1 with the input character u, then the states

of this infinite cycle must be included in the difference set

D :¼ Xn
[

j¼1,..., i
�iðuÞ:

This is a consequence of the following facts: (i) by

Lemma 1, the cycle �0 cannot have any common states

with infinite cycles of length i or less that use the input

character u; and (ii) by our earlier argument, [j¼1,..., i�iðuÞ
�i(u) includes the states of all infinite cycles of length i or

less. But then, if iþ 1>#D, the set D does not contain

enough states to include an infinite cycle of length iþ 1

or more, and whence the search for such infinite cycles
terminates.

Turning to part (b) of the theorem, note that, by

Lemma 1, different infinite cycles with the input

character u have no states in common. Combining this

with part (a), we conclude that the number of elements
of �i(u) is a multiple of i, and the number of infinite

cycles of length i is exactly #�i(u)/i, i¼ 1, 2, œ

The sets �i(u) derived in Algorithm 1 can be used to

find all infinite cycles of the machine � by the following

procedure.

Algorithm 2: In the notation of Algorithm 1, all infinite

cycles of length i with the input character u are found as

follows.

Step 0: If �i(u)¼1, then � has no infinite cycles of

length i with the input character u, and the algorithm

terminates. Otherwise, set

d0 :¼ �iðuÞ and j :¼ 0:

Step 1: Pick a state x j0 from the set dj. Using the
procedure of Proposition 3, find the remaining (i� 1)

states x j1, x j2, . . . , x ji–1 of the infinite cycle. Define the

difference set

djþ1 :¼ djn x j0 , x j1 , x j2 , . . . , x ji�1
� �

:

Step 2: If djþ1¼1, then the algorithm terminates.

Otherwise, repeat from Step 1, replacing j by jþ 1. œ

Algorithm 2 yields a complete characterization of all
infinite cycles of an asynchronous machine �. It can

be readily seen that, for a cycle of length i, the number

The control of asynchronous machines 771

of iterations in Algorithm 2 cannot exceed [n/i]�, where
n is the number of states of the machine.

Example 4: We demonstrate Algorithm 2 on the
machine � of Examples 2 and 3. Recall from Example 3
that �1(a)¼ {x1, x2}, �1(b)¼1, �2(b)¼ {x2, x3}, and
�1(c)¼ {x1, x3}.

Applying Algorithm 2 for the input character a:

Step 0: The relation �1(a)¼ {x1, x2} implies that the
states x1 and x2 form stable combinations with the input
character a. As �i(a)¼1 for i>1, this completes the
consideration of this input character.

Next, apply Algorithm 2 to the input character b.

Step 0: �1(b)¼1, so there are no stable combinations
with the input character b.

Step 0: �2(b)¼ {x2, x3}, which means that there exist
infinite cycles of length 2 with the input character b. Set

d0 :¼ �2ðbÞ and j :¼ 0:

Step 1: Pick a state from d0, say the state x2. By
Proposition 3, the state x3 belongs to the same infinite
cycle, yielding the infinite cycle {x2, x3; b}. As

d1 :¼ d0nfx
2, x3g ¼ 1,

the algorithm terminates for the input character b.

Finally, turning to the input character c, recall that
�1(c)¼ {x1, x3} and �i(c)¼1 for all i>1. Thus, x1 and
x3 form stable combinations with the input character c,
and c is not involved in any (other) infinite cycles. œ

4. Stable-state representations of machines

with infinite cycles

Consider an asynchronous machine �¼ (A,X,Y,x0, f, h)
that has no infinite cycles. For valid pairs (x, u) of � that
have a next stable state x0, we can define a partial
function s: X�A!X by setting s(x, u):¼ x0 for every
valid pair (x, u) of �. The function s is called the stable
recursion function of the machine �. When s is used
as a recursion function, it induces the stable-state
machine �|s¼ (A,X,Y, x0, s, h). The stable-state machine
describes the persistent states of �, and hence describes
the behavior of � as experienced by a user (see also
Murphy et al. (2002, 2003)).
For an asynchronous machine � with infinite cycles,

being in an infinite cycle is clearly a persistent status of
the machine, and this status is definitely experienced
by the machine’s user. Thus, if the notion of stable-state

machine is to remain true to its goal of representing the

persistent features of �, then it must include a
representation of the infinite cycles of �. This leads to

the following generalization of the notion of a stable-
state machine, which is critical to the development of

control strategies.

Definition 3: Let � be an asynchronous machine with

the state set X¼ {x1, . . . , xn}. Assume that � has t>0
infinite cycles �1, . . . ,�t of length greater than 1. With

each infinite cycle �i of �, associate a new state xnþi,
called a cycle state. The set

~X :¼ xi, . . . , x
n, xnþ1, . . . , xnþi

� �
is called the augmented state set of �. The elements of
are the generalized states of �.

A pair (x, u) ~X�A is a generalized valid pair of � if

one of the following holds: (i) x 2 X and (x, u) is a valid
pair of �; or (ii) x¼ xnþi for an integer i 2 {1, . . . , t}

and u forms a valid pair with each state of the infinite
cycle �i.

A pair (x, u) 2 ~X�A is a generalized stable combina-

tion of � if one of the following is valid: (i) x 2 X and
(x, u) is a stable combination of �; or (ii) x¼ xnþi for an

integer i 2 {1, . . . , t} and u is the input character of the
infinite cycle �i. œ

Thus, any persistent status of the machine � is
described by a generalized stable combination, since

a persistent status of � is either a stable combination or
an infinite cycle.

Example 5: Consider the machine � of Example 4,
where it was shown that � has only one infinite cycle

(of length bigger than one) – the infinite cycle �1:¼ {x2,
x3; b}. With this infinite cycle, we associate a cycle state

x4. The augmented state set of � is then ~X¼ {x1, x2, x3,
x4}. The generalized valid pairs of � include, for

instance, the pairs (x1, a), (x2, a), (x3, a), and (x4, a).
The generalized stable combinations of � are (x4, b),

(x1, a), (x2, a), (x1, c), and (x3, c). œ

We introduce now a new recursion function over the

augmented state set of the asynchronous machine
�¼ (A,Y,X, x0, f, h). Let �1, . . . ,�t be the infinite

cycles of �, and let ~X¼ {x1, . . . , xnþt} be its generalized

state set. First, we define a partial function se:
X�A! ~X over all valid pairs (x, u) 2 X�A of � by

setting

se x, uð Þ ¼

s X, uð Þ if x, uð Þ has a next stable state,

xnþi if f x, uð Þ, uð Þ is a pair of the

infinite cycle �i:

8>><
>>:

772 N. Venkatraman and J. Hammer

Recall that, for an infinite cycle � of �, the symbol X(�)
indicates the set of states included in �. Let u be an input
character that forms valid pairs with all states of �.
Denote by se[X(�), u] the image of the set X(�)� u
through se, namely,

se X �ð Þ, u½ 	 :¼ x0 2 ~X : x0 ¼ se x, uð Þ and x2X �ð Þ
� �

:

Note that se[X(�), u] can be a single state or a set of
states, depending on � and on u. The following notion
is critical to the control of asynchronous machines with
infinite cycles. It defines a function whose values are
subsets of ~X. When the value consists of a single element
x of ~X, we shall drop the (formal) distinction between
the element x 2 ~X and the subset {x}� ~X.

Definition 4: Let �¼ (A,Y,X, x0, f, h) be an asynchro-
nous machine with the infinite cycles �1, . . . ,�t and the
augmented state set ~X¼ {x1, . . . , xnþt}. Denote by P(~X)
the set of all subsets of ~X. Then, the generalized stable
recursion function s: ~X�A!P(~X) of � is defined over
all generalized valid pairs (x, u) 2 ~X�A of � by

s x, uð Þ :¼
se x, uð Þ if x2X,

se X �ið Þ, u½ 	 if x ¼ xnþi, i ¼ 1, . . . , t:

�

The generalized stable-state machine �|s¼ (A, ~X, s)
of � is an input/state machine with the state set ~X and
the recursion function s. œ
Note that, when the machine � has no infinite cycles,

the generalized stable recursion function is essentially
equal to the stable recursion function (only the
codomains differ). In such case, we will make no
distinction between the two functions. However, when
� has infinite cycles, the generalized stable recursion
function can be ‘‘multivalued’’ over cycle states.

Example 6: Referring to the machine � of Example 5,
the generalized stable state machine �|s¼ (A, ~X, s) is
given in table 1. The state x4 represents an infinite
cycle. œ

The generalized stable transition function describes the
behavior of an asynchronous machine as experienced
by a user, since it describes the persistent aspects of the
machine’s response. We are now ready to state in formal
terms the main problem considered in this paper.
Denote by �c|s the generalized stable-state machine
induced by the closed loop system �c of figure 1.

The model matching problem: Let � and �0 be input/
state asynchronous machines having the same input and
output alphabets, where �0 is a stable-state machine.
Find necessary and sufficient conditions for the existence
of a controller C for which the stable-state machine
�c|s is stably equivalent to �0 for all initial conditions.
When C exists, provide a method for its design. œ

The controller C of the model matching problem
makes the closed loop system simulate the stable-state
behavior of the machine �0. The machine �0 is called the
model, and it has no infinite cycles. Thus, when model
matching is achieved, the controller C eliminates the
effects of the infinite cycles of �. Model matching for
asynchronous machines without infinite cycles was
discussed in Murphy et al. (2002, 2003) and Geng and
Hammer (2004, 2005). The presence of infinite cycles
requires the development of new analytical tools,
including the notions of generalized state and general-
ized stable recursion function introduced earlier in this
section. We assume that � and �0 have the same state
set and the same initial condition.

4.1 The generalized skeleton matrix

For asynchronous machines with infinite cycles, funda-
mental mode operation is usually impossible, since
exiting an infinite cycle requires an input change while
the cycle is in progress, i.e., while the system is in
transition. For such machines, the closest one can come
to fundamental mode operation is described by the
following notion.

Definition 5: An asynchronous machine � operates in
semi-fundamental mode if it operates in fundamental
mode when not in an infinite cycle. œ

Recall that, in the generalized stable state machine �|s

of �, an infinite cycle � of � is represented by a stable
combination (x, u), where x is the cycle state corre-
sponding to � and u is the input value of �. Accordingly,
the following is valid.

Proposition 4: Semi-fundamental mode operation of an
asynchronous machine � is equivalent to fundamental
mode operation of the generalized stable state machine �|s

induced by �. œ

We adjust now the notion of stable reachability
(Murphy 2002, 2003) to our present framework.

Definition 6: Let � be an asynchronous machine with
the augmented state set ~X and the generalized stable
recursion function s. A generalized state x0 2 ~X is stably
reachable from a generalized state x 2 ~X if there

Table 1. Generalized stable transition table of �.

a b c

x1 x1 x4 x1

x2 x2 x4 x3

x3 x2 x4 x3

x4 x2 x4 x3

The control of asynchronous machines 773

is a input string u¼ u0u1. . .uk of � for which
x0 2 s(x, u). œ

To perform computations related to stable reach-
ability, we need the following matrix.

Definition 7: Let �¼ (A,Y,X, x0, f, h) be an asynchro-
nous machine with the state set X¼ {x1, . . . , xn} and
the infinite cycles �1, . . . ,�t. Let �|s¼ (A, ~X, s) be the

generalized stable state machine induced by �, where
~X¼ {x1, . . . , xnþt} and xnþi is the generalized state
corresponding to the infinite cycle �i, i¼ 1, . . . , t.
Denote by s*(xi,x j) the set of all input characters
u 2 A for which xi 2 s(x j, u), and let N be a character
not included in the alphabet A. Then, the matrix of

one-step generalized stable transitions R(�|s) is an
(nþ t)� (nþ t) matrix whose (i, j) entry is given by

Rij �js

� �
¼

s
 x i, x j
� �

if s
 x i, x j
� �

6¼ 1,
N otherwise,

�

i, j¼ 1, . . . , nþ t. œ

The matrix R(�|s) characterizes the set of all one step
transitions of the generalized stable-state machine �|s.
Its (i, j) entry, if not N, consists of all (single) input
characters that can take �|s from x j to a generalized

stable combination with xi. An (i, j) entry of N indicates
that �|s cannot be driven from x j to a generalized stable
combination with xi by applying a single input
character.

Example 7: A direct calculation shows that the matrix

of one-step generalized stable transitions of the machine
considered in Example 6 is given by

R �js

� �
¼

a, cf g N N N

N a a a

N c c c

b b b b

0
BBB@

1
CCCA: ð13Þ

h

We describe now some operations on the matrix R(�|s)
that are essential to the solution of the model matching

problem for asynchronous machines, starting with an
operation that mimics matrix addition (Murphy et al.
(2002, 2003). Let A* be the set of all strings of characters
of the alphabet A, and let wi be a subset of A* or the
character N, i¼ 1, 2. The operation =[of unison is
defined by ([indicates union of sets)

w1=[w2 :¼

w1

S
w2 if w1 � A
 and w2 � A
,

w1 if w1 � A
 and w2 ¼ N,
w2 if w1 ¼ N and w2 � A
,
N if w1 ¼ w2 ¼ N:

8>><
>>:

Note that N is treated like the empty set it represents.
The unison C:¼A =[B of two n� n matrices A and B,
whose entries are either subsets of A* or the
character N, is defined entrywise by Cij:¼Aij =[Bij,
i, j¼ 1, . . . , n.

Concatenation of elements w1,w2 2 A*[N is
defined by

conc w1,w2ð Þ :¼
w2w1 if w1,w2 2A
,

N if w1 ¼ N or w2 ¼ N:

(

More generally, let W¼ {w1,w2, . . . ,wq} and V¼

{v1, v2, . . . , vr} be two subsets, whose elements are
either words of A* or the character N. Define

conc W,Vð Þ :¼ =[i¼1,..., q
j¼1,..., r

conc wi, vj
� �

:

Note that the concatenation result is either a subset
of A* or the character N. The concatenation is non-
commutative, and N takes the role of a ‘‘zero’’.

Next, we need an operation that is reminiscent of
matrix multiplication. Let C and D be two n�n matrices
whose entries are either subsets of A* or the character N.
Let Cij and Dij be the (i, j) entries of the corresponding
matrices. Then, the product Z:¼CD is an n� n matrix,
whose (i, j) entry Zij is given by

Zij :¼ =[n
k¼1conc Cik,Dkj

� �
, i, j ¼ 1, . . . , n:

Using this product, we can define powers of the matrix
of one-step generalized transitions by setting

Rq �js

� �
:¼ Rq�1 �js

� �
R �js

� �
, q ¼ 2, 3, . . . :

For an integer q � 1, the matrix Rq(�|s) has the
following physical significance. If not N, the (i, j) entry
of Rq(�|s) is the set of all input strings that may take x j

to a generalized stable combination with xi in exactly q
generalized stable transitions (these transitions can
result in a critical race). If the (i, j) entry is N, then it
is not possible to reach from x j to a generalized stable
combination with xi in exactly q generalized stable
transitions. Thus, Rq(�|s) is called the matrix of q-step
generalized stable transitions. Define

R qð Þ �js

� �
:¼ =[p¼1...qR

p �js

� �
q ¼ 2, 3, . . . : ð14Þ

By construction, if not N, the (i, j) entry of R(q)(�|s)
consists of all strings that may take the machine �|s from
x j to a generalized stable combination with xi in q or
fewer generalized stable transitions (these transitions can
result in a critical race). The following fact is important
to our discussion; its proof is similar to that of Murphy
et al. (2003, Lemma 3.9).

774 N. Venkatraman and J. Hammer

Lemma 4: Let � be an asynchronous machine with n

states and t infinite cycles, and let �|s be the generalized

stable-state machine induced by �. Then, the following

two statements are equivalent.

(a) The generalized state xi is stably reachable from the

generalized state xj.
(b) The (i, j) entry of R(nþt–1)(�|s) is not N. œ

Thus, the matrix R(nþt–1)(�|s) characterizes all transitions

possible for the generalized stable-state machine �|s

induced by �. These include transitions that start at

infinite cycles and transitions that pass through infinite

cycles. The latter two classes of transitions may culminate

in critical races. Transitions that culminate in a critical

race can be easily recognized in the matrix R(nþt–1)(�|s),

as discussed below. First, we introduce Definition 8.

Definition 8: Let R(�|s) be the matrix of one-step

generalized stable transitions of the machine �,

where � has n states and t infinite cycles.

The generalized stable reachability matrix of � is

�(�):¼R(nþt–1)(�|s). œ

When the machine � is in an infinite cycle �i, it

moves quickly from state to state within the cycle. A

change of the input character during the infinite cycle

may lead to an unpredictable outcome, since the exact

state at which the input change occurs is unpredict-

able. When translated into our generalized framework,

this means that a cycle state, such as the cycle state

xnþi corresponding to �i, may be involved in critical

races.
For example, assume that �i¼ {x1, x2; u}, and that

the input character is changed from u to v, where

s(x1, v)¼x3, while s(x2, v)¼ x4. As � switches quickly

between the states x1 and x2 during the infinite cycle �i,
it is not possible to predict in which one of these states �

will be when the input character changes to v. Thus, it is

impossible to foretell whether the outcome of the change

to v will be x3 or x4; this indicates that the pair (xnþi, v) is

a critical race pair.
In the one-step matrix of generalized stable transitions

R(�|s), a critical race is represented by the presence of

the same input character in different entries of a column.

For instance, in our example, the input character v will

appear in rows 3 and 4 of column nþ i of R(�|s).

Combining these observations with Lemma 4, we reach

the following conclusion.

Proposition 5: Let � be an asynchronous machine with n

states and t infinite cycles, and let �(�) be its generalized

stable reachability matrix. Then, the following are

equivalent for all input strings u 2 Aþ and for all

j¼ 1, . . . , nþ t.

(i) Applying u at the generalized state xj results in a

critical race.
(ii) The string u appears in more than one entry of

column j of the matrix �(�). œ

Definition 9: Let �|s be a generalized stable state

machine with the generalized stable recursion function s,

and let u be an input string of �|s. The transition induced

by u from a generalized state x is a deterministic

transition if s(x, u) consists of a single state. The machine

� is a deterministic machine if all transitions of �|s are

deterministic. œ

Consider again the machine � with the generalized state

set {x1, . . . ,xnþt} and the input alphabet A. Assume that

the input string u 2 Aþ, when applied at the generalized

state x j of �|s, creates a critical race with the outcomes

xp and xq, where p 6¼ q. Assume further that there are

input strings that take the machine � from these two

states to a common target state xs via deterministic

transitions. Namely, assume there are input strings

u1, u2 2 Aþ such that u1 takes �|s from xp to xs

deterministically, while u2 takes �|s from xq to xs

deterministically; i.e., xs¼ s(xp, u1)¼ s(xq, u2). Then, by

using state-feedback control, we can induce a determi-

nistic transition from x j to xs as follows: apply the input

string u at the state x j, and check the outcome. If the

outcome is xp, then continue with the input string u1; if

the outcome is xq, then continue with the input string u2.

This strategy leads to the deterministic outcome xs,

masking the effects of the critical race along the way;

it creates a deterministic transition from x j to xs. More

generally, we have the following concept. (Denote by

�x: ~X�A! ~X: �x(x, u)¼ x the standard projection

onto the state set.)

Definition 10: Let � be an asynchronous machine

with the generalized state set ~X¼ {x1, . . . , xnþt}, the input

alphabet A, and the generalized stable recursion

function s. A feedback trajectory from the generalized

state x j to the generalized state xi is a list {S0, S1,

S2, . . . ,Sp} of sets of valid pairs of �|s with the following

properties:

(i) S0¼ {(x j, u0)},
(ii) s[S�]��x[S�þ 1], �¼ 0, . . . , p� 1,
(iii) s[Sp]¼ {xi}. œ

Example 8: Consider the generalized stable state

machine �|s of Example 6. By iterating the generalized

stable recursion function induced by Table 1, we obtain

the following feedback trajectory from the generalized

The control of asynchronous machines 775

state x1 to the generalized state x2: S0¼ {(x1, b)},
S1¼ {(x4, a)}, S2¼ {(x2, a)}. œ

A feedback trajectory characterizes the existence
of a feedback controller, as follows.

Proposition 6: Let � be an asynchronous machine, and
let x j and xi be two generalized states of �. The following
two statements are equivalent.

(a) There is a state feedback controller C that drives �

through a deterministic transition from xj to xi, using
semi-fundamental mode operation.

(b) There is a feedback trajectory from xj to xi.

Proof: Assume first that (b) is valid, and let {S0, S1,
S2, . . . ,Sp} be a feedback trajectory from x j to xi. We
build now a state feedback controller that takes the
machine � deterministically from x j to xi in response to
a command input character. As depicted in figure 1, the
controller has two inputs: one is the state of the
controlled machine �, and the other is an external
input u that serves as the command input of the
controller. Given a set of characters W�A, we build
a controller C(x j, xi,W). It drives the machine � from
the state x j to a generalized stable combination with the
state xi, in response to an input character w 2 W.
Assume then that � is in a generalized stable combina-
tion with the state x j. Referring to figure 1, the
controller C(x j, xi,W) rests in its initial state as long as
u =2 W, feeding the input character u to � (i.e., C is then
transparent). When u changes into one of the characters
of W, then C starts to feed into the input of � a string of
characters that take � from x j to xi through a string
of generalized stable transitions, i.e., through a string
of transitions of �|s. In view of Proposition 4, stable
transitions of �|s imply semi-fundamental mode
operation of �.
Denote by � the recursion function of C(x j, xi,W) and

by � its output function, and let � denote a state of
C(x j,xi,W). Recalling that C(x j, xi,W) has two inputs –
the generalized state x of � and the external input u – it
follows the functions � and � depend on the three
variables �, x, and u. To indicate this fact, we shall write
�(�,(x, u)) and � (�,(x, u)).
Let U(x j)�A be the set of all input characters that

form stable combinations with the generalized state x j,
and let �0 designate the initial state of C(x j, xi,W). We
design C(x j, xi,W) to move to the state �1(x

j) when
it detects a stable combination with the generalized state
x j, in preparation for a possible activation. To imple-
ment, set

�ð�0, ðz, tÞÞ :¼ �0 for all ðz, tÞ 2X� Anx j �Uðx jÞ,

�ð�0, ðx
j, uÞÞ :¼ �1ðx

jÞ for all u2Uðx jÞ:

When in the state �0, the controller C(x j, xi,W) is

transparent – it applies its own external input u to �,

so we set

�ð�0, ðz, uÞÞ :¼ u for all ðz, uÞ 2X� A:

We refer to the state �1(x
j) as the transition state of the

controller C. At the transition state �1(x
j), the controller

feeds into � an input character that forms a stable

combination with x j, so that � continues to rest at x j

until further change. To implement, choose a character

uj 2 U(x j), and set

�ð�1ðx
jÞ, ðx j, tÞÞ :¼ uj for all t2Uðx jÞ:

The purpose of the transition state is to decouple the

machine � from the external input of figure 1 when

it reaches a stable combination with the state x j. This

shields the machine when the external input changes to

a character ofW, allowing the controller to take over the

machine’s input without disturbing semi-fundamental

mode operation.
Assume further that � is in a stable combination

with the generalized state x j, when a command

input character w 2 W is applied to the controller.

This initiates the process of taking � from x j to xi.

Our forthcoming construction uses P new controller

states to implement the transition from x j to xi,

where

P ¼ #�xS0 þ #�xS1 þ � � � þ #�xSp: ð15Þ

Each one of the new controller states is denoted by

�k(x j,w, x), where x 2 �xSk and k¼ 1, . . . , p. As � is in

a generalized stable combination with x j, the controller

is at the state �1(x
j). When the input character w

appears, the controller transits to the state �0(x j,w, x j);

this is accomplished by setting

�ð�1ðx
jÞ, x j,wÞ :¼ �0ðx j,w, x jÞ for all w2W

�ð�1ðx
jÞ, x j, uÞ :¼ �1ðx

jÞ for all u2Uðx jÞnW;

�ð�1ðx
jÞ, x j, uÞ :¼ �0 for all u =2 Uðx jÞ [W:

Let u0 2 A be an input character for which (x j, u0) 2 S0.

Set the controller output to

�ð�0ðx j,w,x jÞ, x, vÞ :¼ u0 for all ðx, vÞ 2X� A,

i.e., the controller C(x j, xi,W) applies u0 to �. By the

definition of our feedback trajectory, this makes �

776 N. Venkatraman and J. Hammer

move to a generalized stable combination with a
generalized state in the set �xS1, say to the general-
ized state x1. Let u1 2 A be an input character for
which (x1, u1) 2 S1. When � reaches x1, the controller
moves to its next state �1(x j,w, x1); this is implemen-
ted by setting:

�ð�0ðx j,w,x jÞ, x1,wÞ :¼ �1ðx j,w,x1Þ:

The controller output function is defined by

�ð�1ðx
j,w, x1Þ, x, vÞ :¼ u1 for all ðx, vÞ 2X� A:

This guarantees semi-fundamental mode operation,
since the controller output changes only after � has
reached a generalized stable combination with x1.
When applied to the machine �, the input value u1
takes � to a generalized stable combination with a
generalized state in the set �xS2, say to the general-
ized state x2. Let u2 2 A be an input character for
which (x2, u2) 2 S2. The process continues similarly
until xi is reached. In general, at a step
k 2 {1, 2, . . . , p}, the machine � reaches the general-
ized state xk 2 �xSk, and there is an input character
uk 2 A for which (xk, uk) 2 Sk. Following the above
pattern, the transition function and the output
function of C(x j, xi,W) are defined by (to simplify

notation, set x0: ¼ x j)

� �k�1 x j,w, xk�1

� �
, xk,w

� �
:¼ �k x j,w, xk

� �
,

� �k x j,w,xk
� �

, x, v
� �

:¼ uk for all x, vð Þ 2X� A:

Note that this definition assures semi-fundamental
mode operation.
At k¼ p, the machine � reaches a state xp 2 �xSp.

Let up be an input character such that (xp, up) 2 Sp.
According to the definition of the feedback
trajectory, we have s(xp, up)¼ xi. Consequently, set

� �p x j,w, xp

� �
, xi,w

� �
:¼ �pþ1 x j,w, x i

� �
,

� �pþ1 x j,w, x i
� �

, x, v
� �

:¼ up for all x, vð Þ 2X� A,

� �pþ1 x j,w, x i
� �

, z, t
� �

:¼ �0 for all z, tð Þ 2 ðX� AÞnW:

In this way, the controller keeps � at the stable
combination (xi, up) as long as the external input
character remains within W. When the external input
character leaves W, the controller resets to its initial
condition �0. This completes the construction of the

controller and shows that (b) implies (a). Note that
the total number of controller states is Pþ 2, where P
is given by (15), and the additional two states are �0
and �1(x

j).
Conversely, assume that (a) is valid. Let � be the state

set of the controller C, and let �0 be its initial state.
Denote by C(�, x, u) the output value produced by the
controller C when it is at the next stable state
corresponding to its state �, the generalized state x of
�, and the external input value u. By assumption, there
is an external input value w that induces the controller C
to generate an input string u0u1 . . . up for �, taking �
from the generalized state x j to the generalized state xi

in semi-fundamental mode operation, with deterministic
outcome. The first character of this input string is
u0¼C(�0, x

j,w). Define the set S0:¼ {(x j, u0)}.
Let s be the generalized stable recursion function of �.

When � receives the input value u0 from the controller,
it moves to a generalized stable combination with one
of the states of the set s(x j, u0)¼ s[S0]. When � reaches
this state, the controller C, which operates in semi-
fundamental mode, detects the new state of � and
moves to its own next stable state. Let �(x, u0) denote the
next stable state reached by C immediately following
a transition of � to a generalized stable combination
with a state x 2 s(x j, u0). Let u1¼C(�(x, u0),x,w) 2 A
be the output character generated by the controller upon
reaching �(x, u0). Define the set

S1 :¼ x,C � x, u0ð Þ, x,wð Þð Þ : x2 s S0ð Þ
� �

:

Continuing in this way, assume that we have defined the
set Sk for an integer k � 0. We can then build a new set
by setting

Skþ1 :¼ x0,C � x0, ukð Þ, x0,wð Þð Þ : x0 2 s Skð Þ
� �

:

By assumption, the controller C drives � (determinis-
tically) to the state xi. Consequently, there is an integer p
such that s(Sp)¼ xi. In view of our construction, the list
S0, S1, . . . , Sp forms a feedback trajectory. Thus, the
existence of a state feedback controller C that drives �
through a deterministic transition from x j to xi in semi-
fundamental mode operation, implies the existence of a
feedback trajectory from x j to xi. This shows that (a)
implies (b), and our proof concludes. œ

The proof of Proposition 6 contains an algorithm for
the construction of a state feedback controller that
takes the machine � between two states among which
there is a feedback trajectory. After constructing the
controller according to the algorithm, the number of
states can often be reduced by using standard machine
reduction techniques.

The control of asynchronous machines 777

We turn now to the issue of characterizing the set of

all pairs of generalized states of � that can be connected

by a feedback trajectory. The next algorithm charac-

terizes all such pairs of generalized states. The algorithm

consists of a string of operations on the matrix of

one-step generalized stable transitions. It gradually

transforms the matrix into a numerical matrix with

entries of zero and one, called the ‘‘generalized skeleton

matrix’’ of �. We shall see later that, in this matrix, an

entry of 1 appears in position (i, j) if and only if there

exists a state-feedback controller that induces a deter-

ministic transition from x j to xi. The result is a simple

and concise characterization of the ways in which a

state feedback controller can affect an asynchronous

machine �.
Before continuing, we define the following meet

operation involving strings of Aþ and the digits 0

and 1. Let ! be a character not included in A. Set

0 ^ 0 : ¼ 0, 0 ^ 1 ¼ 1 ^ 0 :¼ 0, 1 ^ 1 :¼ 1,

0 ^ a ¼ a ^ 0 :¼ 0, 1 ^ a ¼ a ^ 1 :¼ w,

for all a 2 Aþ.
The meet of two vectors with r � 1 components

is defined entrywise as the vector of the meets of the

corresponding components. For example,

1

1

0

a

0

0
BBBBBB@

1
CCCCCCA
^

1

0

0

1

a

0
BBBBBB@

1
CCCCCCA

¼

1

0

0

!

0

0
BBBBBB@

1
CCCCCCA
:

Algorithm 3: Let �(�) be the generalized stable reach-

ability matrix of the asynchronous machine �.

Step 1: Replace all entries of N in the matrix �(�)

by the number 0; denote the resulting matrix

by K1.

Step 2: Perform (a) below for each i, j¼ 1, . . ., nþ t;

then continue to (b):

(a) If K1
ij includes a string of Aþ that does not appear in

any other entry of the same column j, then perform

the following operations:

Delete any string included in K1
ij from all entries of

column j of the matrix K1.

Replace all resulting empty entries, if any, by the

number 0.

Replace entry K1
ij by the number 1.

(b) Denote the resulting matrix by K0(1). Delete from
the matrix K0(1) all strings of Aþ whose length
is bigger than 1. Replace all empty entries, if any,
by the number 0. Denote the resulting matrix by
K(1). Set k:¼ 1, �:¼ 1.

Step 3: If k¼ nþ tþ 1, then perform the following
operations.

(a) Set K� (�): ¼K(k).
(b) If � � 2 and K� (�)¼K�–1(�), then replace by 0 all

entries of K�(�) that are not 1; denote the resulting
matrix by Kg(�), and terminate the Algorithm.
Otherwise, replace � by �þ 1, set k:¼ 1, and
continue to Step 4.

Step 4: If all entries of column k of the matrix K(k)
are 1 or 0, then set K(kþ 1):¼K(k), and repeat from
Step 3 with the value kþ 1 for k. Otherwise, proceed
to Step 5.

Step 5:

(a) If there is a character u 2 A that appears in column
k of K(k), then let i1, i2, . . . , iq be the rows of column
k of K(k) that include u. Denote by J(u) the meet

of columns i1, i2, . . . , iq of the matrix K(k).
(b) If J(u) has no entries other than 0 or 1, then

delete u from all entries of column k of the matrix

K(k); set all empty entries, if any, to the value 0.
Continue to (c).

(c) If J(u) has no entries of 1, then return to Step 4.

Otherwise, continue to (d).
(d) If J(u) has entries of 1, then let j1, . . . , jr be the

entries of J(u) having the value 1. Let S(k) be the set

of columns of K(k) that consists of column k and of
every column that has the number 1 in row k. In the
matrix K(k), perform the following operations on
every column of S(k).

(1) Delete from the column all occurrences of input
characters that appear in rows j1, . . . , jr of the
column.

(2) Replace rows j1, . . . , jr of the column by the number 1.
(3) If any entries of K(k) remain empty, then replace

them by the number 0. Return to Step 4. œ

The following generalization of a notion introduced
in Murphy et al. (2002, 2003) is central to our
discussion.

Definition 11: The outcome Kg(�) of Algorithm 3 is
called the generalized skeleton matrix of the asynchro-
nous machine �. œ

Example 9: For the generalized stable state machine
�|s of Example 6, we have n¼ 3 and t¼ 1, so that
nþ t� 1¼ 3. The matrix of one-step generalized stable

778 N. Venkatraman and J. Hammer

transitions is given by (13). The powers of this matrix

can then be computed to be

Using these matrices, the matrix �(�) is derived through
(14). Finally, applying Algorithm 3 to �(�), we obtain
the generalized skeleton matrix

Kg �ð Þ ¼

1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCA: ð16Þ

h

We have reached a critical step stone on our way toward
the solution of the model matching problem.

Proposition 7: Let � be an asynchronous machine with
the generalized skeleton matrix Kg(�), and let xi and xj

be two generalized states of �. Then, the following are
equivalent.

(i) There is a feedback trajectory from x j to xi.

(ii) The (i, j) entry of Kg(�) is 1.

Proof: Let s be the generalized stable recursion
function of the asynchronous machine �. Note that
the matrix K(1) obtained at the end of Step 2 of
Algorithm 3 is characterized by the following properties:
(�) it has 1 in position (i, j) if and only if �|s has a
deterministic transition from the state x j to the state xi;
and () an input character u appears in positions

i1, . . . , iq of column j if and only if the pair (x j, u) is a

critical race pair with the outcomes xi1, xi2, . . . , xiq.

Clearly, case (�) is valid if and only if there is an input

value u such that xi¼ s(x j, u). It is easy to see that

the Proposition is valid for entries of Kg(�) generated

by case (�). The remaining part of the proof addresses

case ().
Assume then that there is a feedback trajectory S 0

0,

S 0
1, . . .S

0
p from x j to xi. Define a new feedback trajectory

S0, . . . ,Sp from x j to xi as follows. Set S0:¼S
0

0; obtain

S1 by removing from S
0

1 all pairs that include generalized

states not in the set s[S0]; obtain S2 by removing from S 0
2

all pairs that include generalized states not in the set

s[S1]; and so on. In general, assuming that Sk has been

derived in this way, obtain Skþ1 by removing from

S
0

kþ1all pairs that include generalized states not in the

set s[Sk], k¼ 1, . . . , p� 1. Then, {S0, . . . ,Sp} still forms

a feedback trajectory from x j to xi.
By the definition of a feedback trajectory,

S0¼ {(x j, u)} for some input character u 2 A, and

s[Sp]¼ xi. Further, let �x[Sk]¼ {xi(1,k), . . . , xi(q(k),k)} be

the corresponding set of generalized states. Then, using

again the definition of a feedback trajectory, there are

input characters u(1, k), . . . , u(q(k), k) 2 A such that

(xi(r,k), u(r, k)) 2 Sk and s(xi(r,k), u(r, k)) 2 �x[Skþ1],

r¼ 1, . . . , q(k), k¼ 0, . . . , p. Setting k¼ p and recalling

that s[Sp]¼ xi, it follows that, for each one of the

generalized states xi(1,p), . . . ,xi(q(p),p), there is an input

character that takes that state to the generalized

R2 �js

� �
¼

aa, ac, ca, ccf g N N N

ba aa, ba, caf g aa, ba, caf g aa, ba, caf g

bc ac, bc, ccf g ac, bc, ccf g ac, bc, ccf g

ab, bb, cbf g ab, bb, cbf g ab, bb, cbf g ab, bb, cbf g

0
BBBBB@

1
CCCCCA,

R3 �js

� �
¼

aaa, aac, aca, acc

caa, cac, cca, ccc

()
N N N

aba, baa, bba, bca

cba

() aaa, aba, aca, baa

bba, bca, caa, cba

cca

8>><
>>:

9>>=
>>;

aaa, aba, aca, baa

bba, bca, caa, cba

cca

8>><
>>:

9>>=
>>;

aaa, aba, aca

baa, bba, bca, caa, cba

cca

8>><
>>:

9>>=
>>;

abc, bac, bbc, bcc

cbc

() aac, abc, acc, bac

bbc, bcc, cac, cbc

ccc

8>><
>>:

9>>=
>>;

aac, abc, acc, bac

bbc, bcc, cac, cbc

ccc

8>><
>>:

9>>=
>>;

aac, abc, acc, bac

bbc, bcc, cac, cbc

ccc

8>><
>>:

9>>=
>>;

aab, abb, acb

bab, bbb, bcb, cab

cbb, ccb

8>><
>>:

9>>=
>>;

aab, abb, acb, bab

bbb, bcb, cab, cbb

ccb

8>><
>>:

9>>=
>>;

aab, abb, acb, bab

bbb, bcb, cab, cbb

ccb

8>><
>>:

9>>=
>>;

aab, abb, acb, bab

bbb, bcb, cab, cbb

ccb

8>><
>>:

9>>=
>>;

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The control of asynchronous machines 779

state xi in a one step deterministic stable transition.
By Step 5 of Algorithm 3, we conclude that the

matrix Kg(�) has an entry of 1 in positions
(i, i(1, p)), . . . , (i, i(q(p), p).
To continue the proof inductively, assume that Kg(�)

has an entry of 1 in positions (i, i(1,k)), . . . , (i, i(q(k), k) for

some k 2 {1, . . . , p}. In view of the fact that {xi(1,k), . . . ,
xi(q(k),k)}¼ s[Sk–1] by construction, it follows by Step 5 of

Algorithm 3 that the matrix Kg(�) has an entry of 1 in
positions (i, i(1, k� 1)), . . . ,(i, i(q(k� 1), k� 1)). As this is
true for every k¼1, . . . , p, and since S0¼ {(x j, u)}, we

conclude that there is an entry of 1 in position (i, j) of the
matrix Kg(�). Thus, (i) implies (ii).
Conversely, assume that there is an entry of 1 in

position (i, j) of the generalized skeleton matrix Kg(�).

We build a feedback trajectory from x j to xi as follows.
Consider first the matrix K(1) of Algorithm 3. By
construction, an entry of 1 in a position (i, j) of K(1) is

equivalent to the existence of a deterministic transition
from the generalized state x j to the generalized state xi.
This implies the existence of a feedback trajectory

from x j to xi.
To consider the other possibilities, refer to Step 5 of

Algorithm 3. Let k0 be the first value of k at which the
condition of Step 5(a) is satisfied. Then, K(k0)¼K(1),

and, consequently, all existing entries of 1 in the matrix
K(k0) designate deterministic transitions. By the con-
struction of J(u) in Step 5(d) of Algorithm 3, this implies

that, if there is an entry of 1 in row j of J(u), then there is
a deterministic transition from every one of the states

xi1, . . . , xiq to the state x j. In other words, there are input
strings u(1, i1), . . . , u(1, iq) such that

xj ¼ s xi1 ,u 1, i1ð Þ
� �

¼ s xi2 ,u 1, i2ð Þ
� �

¼ � � � ¼ s xiq ,u 1, iq
� �� �

:

In view of Step 5(a) of Algorithm 3, we have
s(xk0,u)¼ {xi1, . . . , xiq}. A brief contemplation indicates

that the last two relations induce a feedback trajectory
from xk0 to x j. Applying these arguments to each entry
of column k0 of the matrix K(k0), it follows that the

following holds for the matrix K(k0þ 1): If an entry
of 1 appears in position (i, j) of K(k0þ 1), then there is

a feedback trajectory from xk0 to xi.
The reasoning of the previous paragraph can be

applied recursively at every cycle of Algorithm 3. This
leads to the conclusion that, if an entry of 1 appears

in position (i, j) of the matrix Kg(�), then there is a
feedback trajectory from x j to xi. Finally, referring
to Step 3(b), assume that � � 2 and K�(�)¼K�–1(�).

A slight reflection will show that any strings of Aþ

present in K�(�) indicate critical races whose outcomes
cannot be guided toward a single state by a state

feedback controller. Hence, these entries can be replaced
by zeros, and we conclude that (ii) implies (i). œ

The generalized skeleton matrix plays a critical role
in our discussion, reminiscent of the role played by the
skeleton matrix in Murphy et al. (2002, 2003) and in
Geng and Hammer (2004, 2005). Combining
Propositions 4, 6, and 7, we reach the following
conclusion, which forms one of the main results of
this paper.

Theorem 2: Let � be an asynchronous machine with the
generalized skeleton matrix Kg(�), and let xi and xj be
two generalized states of �. Then, the following are
equivalent.

(a) There is a feedback controller that takes � from xj

to xi in semi-fundamental mode operation.

(b) The (i, j) entry of Kg(�) is 1. œ

Theorem 2 provides a complete characterization of the
potential for controlling an asynchronous machine.
One simple consequence of the Theorem relates to the
problem of stopping infinite cycles. Consider an
asynchronous machine � with n states and t � 1 infinite
cycles, and let Kg(�) be its generalized skeleton matrix.
A brief examination of Theorem 2 and of the structure
of the generalized skeleton matrix leads to the following
conclusion. All infinite cycles of � can be stopped with
a deterministic outcome if and only if each one of the
columns nþ 1, nþ 2, . . . , nþ t of Kg(�) contains at least
one entry of 1 in its first n rows. We conclude this section
with the following.

Proposition 8: Algorithm 3 has polynomial complexity.

Proof: Recall that, for a machine with n states and t
infinite cycles, the generalized stable reachability matrix
�(�) is an (nþ t)� (nþ t) matrix. Tracing Algorithm 3,
we can see that Step 1 has at most (nþ t)2 operations;
Step 2 has at most 2(nþ t)2 operations; Step 3 has at
most 2(nþ t)2 operations; Step 4 has at most (nþ t)
checks; and Step 5 has at most 2(nþ t)2 operations.
Thus, the total number of operations in each cycle of
Algorithm 3 is not more than 7(nþ t)2þ (nþ t).
Applying Lemma 4 to the generalized stable state
machine �|s, it follows that the longest chain of
transitions without repetitions consists of (nþ t� 1)
steps (see also the proof of Murphy et al. (2003,
Lemma 3.9)). Thus, Algorithm 3 terminates after at
most (nþ t) cycles. Combining the last two sentences, we
conclude that Algorithm 3 has a maximum of
7(nþ t)3þ (nþ t)2 operations, and, consequently, has
polynomial complexity. œ

5. Corrective controllers

In the present section, we consider the construction
of controllers that solve the model matching problem.

780 N. Venkatraman and J. Hammer

Let �¼ (A,X, f) be an input/state asynchronous

machine controlled by a controller C according to

figure 1. Recall that �c denotes the machine induced by

the closed loop system. The stable state machine induced

by �c is denoted by �c|s. Let �
0 ¼ (A,X, s0) be a stable-

state input/state machine having the same input set and

the same state set as the machine �, and serving as the

model. To address the model matching problem, we

seek a controller C for which �c|s¼�0 for all initial

conditions.
Now, since the model �0 has the input alphabet A, this

must also be the input alphabet of the composite system

�c, i.e., the external input set of figure 1. Accordingly,

the input set of the controller C is the cross product

A�X, encompassing the two inputs of C: the external

input of figure 1 and the state x of the controlled

machine �. Further, as depicted in figure 1, the output

of C serves as the input of �; thus, it is natural to let A

be the output alphabet of C. Denoting by � be the state

set of C, we can write C ¼ A� X,A,�, �0,�, �ð Þ, where

� and � are, respectively, the recursion function and the

output function of C, and �0 is the initial state of C.

The composite system �c then has the input set A and

the state set X��. Let fc and hc be, respectively, the

recursion function and the output function of �c.

Considering that the output of figure 1 is the output

of �, it follows that the output set of �c is X, so that

�c ¼ A,X,X��, x0, �0ð Þ, fc, hcð Þ and the output func-

tion satisfies hc x, �, vð Þ ¼ x for all x, �, vð Þ 2X��� A.

Introducing the standard projection �x: X��� A !

X: �x x, �, vð Þ :¼ x, we have hc¼�x.
Now, let
 be the stable recursion function of �c, i.e.,

the recursion function of �c|s. Since C solves the model

matching problem, i.e., �c|s¼�0, it follows that, for

every valid pair (x, v) of �0, there is a state � 2 � for

which hc
(x, �, v)¼ s0(x, v). Using the equality hc¼�x,

this becomes

�x
 x, �, vð Þ ¼ s0 x, vð Þ:

An alternative representation of �c|s is important to

our discussion. Note that, since the controller C has a

fixed initial state �0, its next stable state is determined by

the external input of figure 1 and by the stable state

of �. Thus, �c|s can be represented by a stable

recursion function sc : X� A ! X : x, uð Þ 7! sc x, uð Þ.

When �c|s is stably equivalent to �0, then sc¼ s0.

We will use this alternative representation of �c|s most

often.
Further, let X¼ {x1, . . . , xn} be the state set of the

asynchronous machine �, and assume that � has t > 0

infinite cycles. The generalized state set of � is

then ~X ¼ fx1, . . . , xnþtg. For a cycle state z 2 ~X let

�ðzÞ ¼ fxk1 , xk2 , . . . , xkp; ag be the corresponding infinite

cycle, and let �x�ðzÞ ¼ fxk1 , xk2 , . . . , xkpg � X be the
states of the infinite cycle. Define

’ zð Þ ¼
z if z is a regular state,

�x� zð Þ if z is a cycle state:

�

Note that ’(z) yields a (regular) state or a set of (regular)
states of �; no cycle states appear in the result of ’.

The following statement characterizes the basic
technical requirements for the existence of a solution
of the model matching problem (compare to Murphy
et al. (2003, Theorem 4.3). Its proof describes the
construction of a model matching controller.

Theorem 3: Let �¼ (A,X, f) be an input/state machine
with stable recursion function s, and let z1, . . . , zq be
generalized states of �. Let U1, . . . ,Uq be sets of input
characters for which the product sets z1�U1,
z2�U2, . . . , z

q
�Uq are all disjoint. For each i¼ 1, . . . , q,

let z0i be a state of � that can be reached from zi via a
feedback trajectory. Then, there is a controller C that
makes �c|s stably equivalent to a stable-state machine
�0 ¼ (A,X, s0), whose stable recursion function s0 satisfies

(i) s0[’(zi),Ui]¼ z0i for all i¼ 1, . . . , q, and

(ii) s0(x, t)¼ s(x, t) for all pairs (x, t) 2
X�A\

S
i¼1,..., q zi�Ui for which s is defined.

Moreover, �0 is deterministic and free of infinite cycles,
and the closed loop system �c is well posed and operates
in semi-fundamental mode.

Proof: Under the given assumptions, we construct
a controller that satisfies requirements (i) and (ii). First,
note that the situation here is similar to that of
Proposition 6, except that instead of the single transition
x j

! xi that appears there, the controller here must
induce the set of transitions zi! z0i, i¼ 1, . . . , q.
However, each one of the transitions zi! z0i satisfies
the requirements of Proposition 6. Thus, our present
controller can be assembled from q controllers of the
kind derived in the proof of Proposition 6, as follows.

For each integer i¼ 1, . . . , q, follow the construction
described in the proof of Proposition 6 to obtain the
controller C(zi, z0i,Ui). Assemble the controller

C ¼ Cðz1, z01,U1ÞVCðz2, z02,U2ÞV � � � VCðzq, z0q,UqÞ,

which operates as follows.

(i) If the controllers C(z1, z01,U1), C(z2, z02,U2), . . . ,
C(zq, z0q,Uq) are all in their initial states, then
C¼C(z1, z01,U1).

(ii) If any of the controllers C(z1, z01,U1),
C(z2, z02,U2), . . . , C(zq,z0q,Uq) has reached its

The control of asynchronous machines 781

transition state (see proof of Proposition 6), then
C¼C(zr, z0r,Ur), where r is the smallest integer
k 2 {1, . . . , q} for which C(zk, z0k,Uk) has reached
its transition state (note that z1, . . . , zq are not
necessarily distinct states of �).

(iii) If one of the controllers C(z1, z01,U1), C(z2, z02,
U2), . . . ,C(z

q, z0q,Uq), say the controller
C(zi, z0i,Ui), is in a state other than its initial state
or its transition state, then C¼C(zi, z0i,Ui).

The fact that the sets z1�U1, z
2
�U2, . . . , z

q
�Uq are

all disjoint implies that, at any given time, only one
of the controllers C(z1, z01,U1), C(z2, z02,U2), . . . ,
C(zq, z0q,Uq) can be in a state other than its initial
state or its transition state.
In view of this construction, the stable recursion

function s0 of the closed loop system �c satisfies
s0 [zi,Ui]¼ z0i for all i¼ 1, . . . , q and s0 (x, t)¼ s(x, t) for
all (x, t) 2 X�A\

S
i¼1,..., qz

i
�Ui. By Definition 4 of the

generalized recursion function, the first set of equalities
yields s0 [’(zi),Ui]¼ z0i for all i¼ 1, . . . , q. Thus, (i) and
(ii) are valid. Finally, noting that the stable recursion
function s is defined only on pairs having a next stable
state, our proof concludes. œ

Note that, when zi is a cycle state, condition (i) of
Theorem 3 implies that the stable recursion function s0

of the closed loop system �c must be constant over the
states included in the infinite cycle represented by zi.
This requirement is, however, of little practical impact,
since it refers only to infinite cycles that form a
persistent status of the closed loop system. The
requirement does not apply to infinite cycles of � that
are activated only transiently, when � passes through
an infinite cycle on its way from one stable combination
to another. Under normal circumstances, infinite cycles
do not appear as a persistent status of �c; in fact, the
elimination of persistent infinite cycles is one of the
objectives of using a corrective controller.

6. The model matching problem

We turn now to the solution of the model matching
problem for input/state asynchronous machines with
infinite cycles. Consider an asynchronous machine �
having the state set X¼ {x1, . . . , xn} and t � 1 infinite
cycles. The generalized state set ~X of � consists then
of nþ t generalized states x1, . . . , xnþt. The generalized
skeleton matrix Kg(�) is then an (nþ t)� (nþ t) matrix.
In view of Proposition 7, a non-zero entry in row i of
column j of Kg(�) indicates the existence of a feedback
trajectory from the generalized state x j to the general-
ized state xi.
One of the objectives of a model matching controller

C is to eliminate persistent infinite cycles. Thus, once the

controller C has been activated, there is no more interest
in transitions of � that either start or end at generalized
stable combinations with cycle states. Now, transitions
that start at generalized stable combinations with cycle
states are represented by the last t columns of Kg(�),
while transitions that terminate at generalized stable
combinations with cycle states are represented by the
last t rows of Kg(�). Thus, for design purposes, the
last t rows and the last t columns of Kg(�) can be
deleted. This leads to the following notion.

Definition 12: Let � be an asynchronous machine with
n states and t infinite cycles, and let Kg(�) be its
generalized skeleton matrix. The skeleton matrix K(�)
is obtained by deleting the last t rows and the last t
columns of Kg(�). œ

Note that, although all rows and columns corresponding
to cycle states were removed, the entries of the skeleton
matrix may still include transitions that pass transiently
through infinite cycles. The only transitions that were
eliminated are the ones that start or end at infinite
cycles.

Example 10: For the generalized skeleton matrix Kg(�)
of (16), we have

Kð�Þ ¼

1 0 0
1 1 1
1 1 1

0
@

1
A: h

We are ready now to state the main result of the present
section. (Given two n� n numerical matrices A and B,
the inequality A �B is interpreted entrywise, i.e.,
Aij �Bij for all i, j¼ 1, . . . , n.)

Theorem 4: Let �¼ (A,X, f) be an input/state asyn-
chronous machine with the skeleton matrix K(�), and let
�0 ¼ (A,X, s0) be a stable-state input/state asynchronous
machine with the skeleton matrix K(�0). Then, the two
following statements are equivalent.

(a) There is a state-feedback controller C for which the
closed loop system �c|s is stably equivalent to �0,
where �c is well posed and operates in semi-
fundamental mode.

(b) The skeleton matrices satisfy K(�) �K(�0).

Theorem 4 provides a simple necessary and sufficient
condition for the existence of a solution to the model
matching problem for systems with infinite cycles. The
proof of the Theorem, which is provided below,
describes the construction of an appropriate controller
C. The controller C transforms into unstable combina-
tions all generalized stable combinations of � that do
not correspond to stable combinations of the model �0.

782 N. Venkatraman and J. Hammer

In this way, the stable-state machine �c|s induced by
the closed loop system becomes stably equivalent to �0.
Being a stable state machine, the model �0 has no
infinite cycles, and, as a result, neither will the closed
loop system �c have any persistent infinite cycles. Still,
within the closed loop, the machine � may pass
transiently through infinite cycles on its way from one
stable combination to another.

Proof of Theorem 4: Let X¼ {x1, . . . , xn} be the state
set of � and of �0. Assume first that condition (i) of
Theorem 4 is valid, i.e., that there is a controller C such
that �c|s¼�0. Let sc be the stable recursion function of
�c, and recall that s0 is the stable recursion function of
the model �0. The last equality means that sc(x, u)¼
s0(x, u) for all valid pairs (x, u) 2 X�A. Now, consider
a pair of integers i, j 2 {1, . . . , n} for which entry (i, j) of
the skeleton matrix K(�0) is 1. Then, by the definition
of the skeleton matrix, there is an input string v 2 Aþ

such that s0(x j, v)¼ xi; by the equivalence �c|s¼�0, we
obtain sc(x

j, u)¼ s0(x j, u)¼xi. In other words, the state
feedback controller C drives � from x j to xi in semi-
fundamental mode operation. Consequently, by
Theorem 2, entry (i, j) of the generalized skeleton
matrix Kg(�) must be 1. Since xi and x j are not cycle
states, the latter implies that entry (i, j) of the skeleton
matrix K(�) is also 1. Briefly, if the (i, j) entry of K(�0) is
1, then so must be the (i, j) entry of K(�). As all entries
are either zero or one, it follows that K(�) �K(�0), and
(i) implies (ii).
Conversely, assume that (ii) is valid, i.e., that

K(�) �K(�0). Recall that s0 is the stable recursion
function of the model �0 and that X¼ {x1, . . . , xn}
serves as the state set of �0 and of �. Let
{(x j, u1(x j)), . . . , (x j, ukj(x j))} be the set of all valid
pairs of s0 that include the state x j, where
j 2 {1, . . . , n}, and denote

xmðj, rÞ :¼ s0ðx j, urðx jÞÞ, r ¼ 1, . . . , kj, j ¼ 1, . . . , n: ð17Þ

Note that relations (17) completely characterize the
stable recursion function s0 of the model. By definition
of the skeleton matrix, (17) implies that entry (m(j, r), j)
of K(�0) is equal to 1. Since K(�) �K(�0) by assump-
tion, and since an entry of K(�) is either 0 or 1, we
conclude that entry (m(j, r), j) of K(�) must also be equal
to 1. In view of Definition 12, entry (m(j, r), j) of the
generalized skeleton matrix Kg(�) is 1 as well. Invoking
Proposition 7, we conclude that, for the machine �,
there is a feedback trajectory from the state x j to the
state xm(j,r), r¼ 1, . . . , kj, j¼ 1, . . . , n. Consequently,
conditions (i) and (ii) of Theorem 3 are satisfied
for � under the following assignments: z1 7!x1, z2 7!
x1, . . . , zk1 7!x1, zk1þ1

7!x2, . . . , zk1þk2 7!x2, . . .U1 7!

u1(x1), U2 7! u2(x1), . . . ,Uk1
7! uk1(x1), Uk1þ1 7! u1(x2), . . . ,

Uk1þk2
7! uk2(x2), . . . , z01 7!xm(1,1), z02 7! xm(1,2), . . . ,

z0k1 7!xm(1,k1), z0k1þ1
7!xm(2,1), . . . , z0k1þk2 7!xm(2,k2),

(Note that, since none of the states x1, . . . , xn is a cycle
state, condition (i) of Theorem 3 reduces to (17)). Thus,
considering that equalities (17) completely determine s0, it
follows by Theorem 3 that there is a controller C for
which �c|s is stably equivalent to �0. Whence, (ii) implies
(i), and our proof concludes. œ

The construction of a controller that satisfies the
requirements of Theorem 4 is described in the proof
of Theorem 3. After constructing the controller, its
state set can often be reduced by using well
established techniques for the reduction of asynchro-
nous machines (e.g., Kohavi (1970)). Further state
reductions can be achieved by careful choice of the
strings generated by the controller. Next, a compre-
hensive example.

7. Example

Consider the machine � of Example 2. Assume that
� must be controlled to match the model �0 ¼

(A,X, s0), whose stable recursion function s0 is given
by table 2 below.

Noting that �0 has no infinite cycles; its skeleton
matrix is calculated as

Kð�0Þ ¼

1 0 0

1 1 1

1 1 1

0
BB@

1
CCA:

Now, the skeleton matrix K(�) of the machine �

was calculated in Example 10, and a brief examina-
tion shows that indeed K(�) �K(�0) (in fact,
K(�)¼K(�0) in this case). In view of Theorem 4,
this implies that there is a controller C for which
the closed loop system �c is stably equivalent to the
model �0. To construct an appropriate controller C,
we use the procedure outlined in the proof of
Theorem 3. A comparison of Example 6 to table 2
shows that a suitable controller can be obtained by
inducing the following two stable state transitions of
�|s: from x1 to x2 upon receiving the external input

Table 2. The model �0.

a b c

x1 x2 x3 x1

x2 x2 x3 x3

x3 x2 x3 x3

The control of asynchronous machines 783

character a; and from the cycle state x4¼ {x2, x3; b}

to x3 upon receiving the external input character b.

A controller C that leads �|s through these two

transitions, while leaving all other one-step transi-

tions unchanged, solves the model matching problem

in this case.
Adhering to the notation of the proof of

Proposition 6, let C(x1, x2, {a}) be a controller that

induces the first transition, and let C(x4, x3, {b}) be

a controller that induces the second transition. As

described in the proof, these controllers are constructed

from corresponding feedback trajectories of �. In view

of the proof of Theorem 3, our final controller is the

combination C(x1, x2, {a})_C(x4,x3,{b}).
We start with the feedback trajectory {S0,S1,S2} from

x1 to x2 derived in Example 8. Recall that S0¼ {(x1, b)},

S1¼ {(x4, a)}, and S2¼ {(x2, a)}. Let � and � be the

transition function and the output function, respectively,

of the controller C. Using the notation of the proof of

Proposition 6, we have U(x1)¼ {a}. Letting �0 be the

initial state of the controller, set

�ð�0, ðz, tÞÞ :¼ �0 for all ðz, tÞ 2X� Anx1Uðx1Þ,

�ð�0, ðx
1, uÞÞ :¼ �1ðx

1Þ for all u2Uðx1Þ,

�ð�0, ðz, tÞÞ :¼ t for all ðz, tÞ 2X� A,

�ð�1ðx
1Þ, ðx1, tÞÞ :¼ a for all t2Uðx1Þ:

The number of new controller states needed for this

feedback trajectory is

P ¼ #
Y

x
S0 þ #

Y
x
S1 þ #

Y
x
S2 ¼ 1þ 1þ 1 ¼ 3:

Implementing the construction outlined in the proof
of Proposition 6, we obtain

�ð�1ðx
1Þ,x1,aÞ:¼ �0ðx1,a,x1Þ,

�ð�0ðx1,a,x1Þ,x,wÞ :¼ b for all ðx,wÞ2X�A,

�ð�0ðx1,a,x1Þ,x4,aÞ:¼ �1ðx1,a,x4Þ,

�ð�1ðx1,a,x4Þ,x,wÞ :¼ a for all ðx, wÞ2X�A,

�ð�1ðx1,a,x4Þ,x2,aÞ:¼ �2ðx1,a,x2Þ,

�ð�2ðx1,a,x2Þ,x,wÞ :¼ a for all ðx,wÞ2X�A,

�ð�2ðx1,a,x2Þ,ðz,tÞÞ :¼ �0 for all ðz,tÞ2X�Anx2�Uðx2Þ,

where U(x2)¼ {a}.
Next, we construct C(x4, x3, {b}) by a similar process.

The feedback trajectory from x4 to x3 is the set {S0,S1},
where S0¼ {(x4, c)}, S1¼ {(x3, c)}. The number of new
controller states for this feedback trajectory is

P ¼ #
Y

x
S0 þ #

Y
x
S1 ¼ 1þ 1 ¼ 2:

Further, we have U(x4)¼ {b}. Again, using the
construction outlined in the proof of Proposition 6, we
obtain the following controller functions for this case:

�ð�0,ðz,tÞÞ :¼ �0 for all ðz, tÞ2X�Anx4�Uðx4Þ,

�ð�0,ðx
4,uÞÞ :¼ �1ðx

4Þ for all u2Uðx4Þ,

�ð�0,ðz,tÞÞ :¼ t for all ðz, tÞ2X�A,

�ð�1ðx
4Þ,ðx4,tÞÞ :¼ b for all t2Uðx4Þ,

�ð�1ðx
4Þ,x4,bÞ:¼ �0ðx4,b,x4Þ,

�ð�0ðx4,b,x4Þ,x,wÞ :¼ c for all ðx,wÞ2X�A,

�ð�0ðx4,b,x4Þ,x3,bÞ:¼ �1ðx4,a,x3Þ,

�ð�1ðx4,b,x3Þ,x,wÞ :¼ c for all ðx,wÞ2X�A,

�ð�1ðx4,b,x3Þ,ðz,tÞÞ :¼ �0 for all ðz, tÞ2X�Anx3�Uðx3Þ,

ξ0

x0(x1,a,x1)

(x1,a), b

(x2,a)
(x2,a), a

(x4,a), a

(x3,b), c

(x4,b), c

{
(x,t) ∈

X
×

A
 \ {(x

1,a),(x
4,b)}}

, t

{(z,t) ∈X × A \ x2 × a}, t

{(z,t) ∈X × A \ x3 × c}, t

x1(x1,a,x4)

x2(x1,a,x2)

x1(x4,b,x3)

x0(x4,b,x4)

Figure 3. State flow diagram of the controller.

784 N. Venkatraman and J. Hammer

where U(x3)¼ {c}. Applying standard reduction techni-
ques to the controller C(x1, x2,{a}) VC(x4,x3,{b}) yields
the state flow diagram of a controller that solves the
requisite model matching problem (see figure 3).

8. Conclusion

To summarize, the paper presents a control methodol-
ogy that eliminates the effects of infinite cycles on the
behaviour of asynchronous sequential machines. A
critical aspect of the discussion is to guaranty that
closure of the control loop introduces no hazards
(critical races or infinite cycles) into the system. To use
the methodology, one starts by selecting a desired
behaviour to replace the one of the faulty machine,
and by describing this desired behavior in the form of an
asynchronous machine model. Then, the procedure
outlined in xx 5 and 6 leads (whenever possible) to the
design of a state feedback controller that controls
the given machine so as to match the desired model.
As the desired model is faultless, the resulting controlled
machine exhibits no ill effects from the infinite cycles
of the original machine. The design procedure depends
on several algorithms provided in the paper and can be
carried out within any digital programming environ-
ment. Once a controller has been designed, it can be
implemented as an asynchronous digital circuit and
connected to the faulty machine.

References

G. Barrett and S. Lafortune, ‘‘Bisimulation, the supervisory
control problem, and strong model matching for finite state
machines’’, Journal of Discrete Event Dynamic Systems, 8,
pp. 377–429, 1998.

M.D. Dibenedetto, A. Saldanha and A. Sangiovanni–Vincentelli,
‘‘Model matching for finite state machines’’, Proceedings of the
IEEE Conf. on Decision and Control, 3, pp. 3117–3124, 1994.

M.D. Dibenedetto, A. Sangiovanni–Vincentelli and T. Villa, ‘‘Model
matching for finite–state machines’’, IEEE Transactions on
Automatic Control, 46, pp. 1726–1743, 2001.

S. Eilenberg, Automata, Languages and Machines, NY: Academic
Press, 1974.

X.J. Geng and J. Hammer, ‘‘Asynchronous sequential machines:
input/output control’’, Proceedings of the 12th Mediterranean
Conference on Control and Automation, Kusadasi, Turkey, June
2004.

X.J. Geng and J. Hammer, ‘‘Input/output control of asynchronous
sequential machines’’, IEEE Trans. on Automatic Control, 50,
pp. 1956–1970, 2005.

J. Hammer, ‘‘On some control problems in molecular biology’’,
Proceedings of the IEEE Conference on Decision and Control,
pp. 4098–4103, December 1994.

J. Hammer, ‘‘On the modeling and control of biological signal chains’’,
Proceedings of the IEEE Conference on Decision and Control,
pp. 3742–3752, December 1995.

J. Hammer, ‘‘On the corrective control of sequential machines’’,
International Journal of Control, 65, pp. 249–276, 1996a.

J. Hammer, ‘‘On the control of incompletely described sequential
machines’’, International Journal of Control, 63, pp. 1005–1028,
1996b.

J. Hammer, ‘‘On the control of sequential machines with distur-
bances’’, International Journal of Control, 67, pp. 307–331, 1971.

D.A. Huffman, ‘‘The synthesis of sequential switching circuits’’,
J. Franklin Inst., 257, pp. 161–190, 1954a.

D.A. Huffman, ‘‘The synthesis of sequential switching circuits’’,
J. Franklin Inst., 257, pp. 275–303, 1954b.

D.A. Huffman, ‘‘The design and use of hazard-free switching
networks’’, Journal of the Association of Computing Machinery, 4,
pp. 47–62, 1957.

Z. Kohavi, Switching and Finite Automata Theory, New York:
McGraw-Hill Book Company, 1970.

T.E. Murphy, X.J. Geng and J. Hammer, ‘‘Controlling races in
asynchronous sequential machines’’, Proceeding of the IFAC World
Congress, Barcelona, July 2002.

T.E. Murphy, ‘‘On the control of asynchronous machines with races’’,
IEEE Transactions on Automatic Control, 48, pp. 1073–1081, 2003.

P.J.G. Ramadge and W.M. Wonham, ‘‘Supervisory control of a class
of discrete event processes’’, SIAM Journal of Control and
Optimization, 25, pp. 206–230, 1987.

J.G. Thistle and W.M. Wonham, ‘‘Control of infinite behavior
of finite automata’’, SIAM Journal on Control and Optimization,
32, pp. 1075–1097, 1994.

S.H. Unger, ‘‘Hazards, critical races, and metastability’’, IEEE
Transactions on Computers, 44, pp. 754–768, 1995.

The control of asynchronous machines 785

