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On the Control of Asynchronous Machines With Races 

Thomas E. Murphy, Xiaojun Geng, and Jacob Hammer 

Abstract-The problem of eliminating the effects of critical races on 
asynchronous machines is considered in a control theoretic context. State 
feedback controllers that eliminate the effects of critical races are devel­
oped. The results include necessary and sufficient conditions for the exis­
tence of such controllers and algorithms for their design. When the con­
trollers exist, they eliminate the race effects and control the machine to 
match a given race-free model. 

I11dex Terms-Asynchronous machines, feedback, finite state machines, 
hazards, races. 

I. INTRODUCTION 

A critical race is a flaw in the operation of an asynchronous sequen­
tial machine, causing the machine to exhibit unpredictable behavior. 
Critical races can occur as a result of malfunctions, design flaws, or 
implementation flaws. When a critical race occurs, common practice 
is to replace the machine with a new one, built from a race-free de­
sign. This note proposes a different, possibly more efficient, alterna­
tive: develop feedback controllers that control a race-afflicted machine 
to render its response predictable and acceptable. This eliminates the 
need to redesign, rebuild, and replace the entire machine. Instead, it is 
only necessary to add an appropriate feedback controller, an attractive 
option when replacement of the machine is not practical or not econom­
ical. The controller can be deployed before a flaw develops to yield a 
system that functions properly both before and after a malfunction oc­
curs, improving reliability. The configuration is given in Fig. 1. 

The controller C, sometimes called a corrective controller, drives 
the machine ~ to eliminate the effects of races and to guarantee a pre­
dictable and desirable response of the closed loop system. Our main ob­
jective is to find necessary and sufficient conditions for the existence of 
a corrective controller C. Whenever C exists, we provide an algorithm 
for its design. The input-output relation of the closed-loop system of 
Fig.I is denoted by ~r-

Consider an asynchronous machine ~ afflicted by a critical race 
with q possible outcomes. To model the race, represent ~ by a crit­
ical race Jami(v 11,J = {~1

, ••• , ~q} of q asynchronous machine 
models;~' represents I: for one outcome of the race (see the example 
in Section VI). The controller C controls I: so that ~r has the same 
response, irrespective of which one of ~ 1 

•••• , ~q is inserted for~­
The closed-loop system response is then the same for all outcomes of 
the race, i.e., it is predictable. 

Recall the distinction between stable states and unstable states of an 
asynchronous machine: a stable state is a state at which the machine 
lingers until an input change occurs; an unstable state is a state through 
which the machine passes rapidly, unable to rest there with the existing 
input. A machine spends (ideally) zero time at an unstable state, and, in 
its path from one stable state to another, it may pass in rapid succession 
through several unstable states. The latter are not noticeable to the user, 
as the machine does not linger at them. Our controller C transforms into 
unstable states all states at which the members of ~U differ from each 
other. The "noticeable" response of the closed-loop system is then the 
same for all members of JU. 
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Fig. 1. Feedback configuration. 

The existence of a corrective controller depends on certain reach­
ability properties that all members of JI have in common. These 
properties are characterized in terms of a numerical matrix called 
the "skeleton matrix" of JI (Section III). Necessary and sufficient 
conditions for the existence of a corrective controller are stated in 
terms of the skeleton matrix. 

This note continues [6] [9], and is based on [17]. The existing 
literature on races concentrates on the design of race free machines 
[IO] [12], [16], [3], [2], [14]. There seems to be no previous literature 
on the use of control techniques to overcome the effects of critical 
races in an existing machine. Other aspects of discrete systems are 
examined in [l], [4], [6], [15], and [18]- [20], and others. These inves­
tigations do not address issues specifically related to asynchronous 
machines, like races, stable and unstable states, and fundamental mode 
operation (Section 11). 

The presentation here is for machines with a single critical race, 
but can be generalized to machines with multiple races. Basics are re­
viewed in Section II, and Section III introduces the skeleton matrix. 
Controllers are developed in Section IV and Section V; Section VI is 
an example. 

II. TERMINOLOGY AND BACKGROUND 

A. Asynchronous Machines and States 

An asynchronous machine is activated by input characters from a 
finite nonempty alphabet A .. A word 111 over .-1 is a finite (possibly 
empty) ordered string of characters of A; the length lu•I is the number 
of characters of 111. The set of all words over A is A*, while A.+ is 
the set of all nonempty words. The concatenation of two words ·1111 , 

w2 E A* is w := 11111112. A partial fimction is a function defined over 
only a subset of its domain. 

A machine~ is determined by a quintuple (A , 1". X. f. h ), where 
A is the input alphabet, Y is the output alphabet, and X is a finite 
set of states; f: X x A --+ X and h.: X x A --+ Y are partial 
functions: f is the recursion fimction and I, is the output fimction. A 
point (.r, ·11.) E X x A at which f and I, are defined is called a valid 
pair. An input sequence uo, ·11.1, 11.2, ••• E A is transformed by I: into 
an output sequence Yo, .1/1, Y2, ... , E Y according to the relations 
.1·i·+1 = f(:i:b 11.i,), Jh = h(:l'b '11.i, ), h = 0, 1, 2 .... ; the initial 
condition :ro is specified. Here, h serves as a step counter, advancing 
when a change in state or input occurs. The input sequence is permis­
sible if {:ri,, '11.i,) is a valid pair for all h. A valid pair (.r, 11.) is a stable 
combination if f ( .r, u) = .r ( e.g., [ 13]). A state is potentially stable if 
it has a stable combination. By standard convention, all states of I: are 
potentially stable. Our main interest is in input/state machines, namely, 
machines where 1" = X and 

k = 0. 1. 2 ..... (2.1) 

B. Fundamental Mode Operation and Stable-State Machines 

To prevent ambiguity of the response, it is best to restrict asyn­
chronous machines to fundamental mode operation, where no more 
than one of their input and state variable may change at a time ( e.g., 
[13]). Input variables change only one at a time, and only after the 

0018-9286/03$17.00 © 2003 IEEE 



1074 

machine has reached a stable combination (so the state stays fixed 
while an input value changes). In the following, all machines and all 
combinations of machines operate in fundamental mode. 

When ( .r. 11) is not a stable combination, the machine ~ continues 
from it through a chain of transitions that terminates if and only if a 
stable combination (.r'. 11.) with the same input value II occurs. If it ex­
ists, .r' is the next stable state of .1· with the input value 11. If there is no 
such .r', then ~ has an infinite cycle. An infinite cycle cannot be termi­
nated in fundamental mode operation, since 'II must be kept fixed while 
state transitions are in progress. Thus, for fundamental mode operation, 
one must exclude machines with infinite cycles; then, every valid pair 
(.I', u ) has a next stable state .r' with input 11. 

Definition 2.2: Let ~ = (A. Y. X. f. Ii) be a machine with no 
infinite cycles. The stable recursion fimction .c; of~ is a partial func­
tion .c; : X x A ---+ X defined for every valid pair (.r. 11.) of~ by 
.'>(.1·. 11) := .r', where .r' is the next stable state of .r with the input 
value 11. The stable recursion function induces the stable-state machine 
(A. Y. X . .c;. Ii) of~, denoted ~1.s· + 

When going from one stable state to the next, ~ may pass through a 
number of unstable states that are ignored in practice, since ~ cannot 
linger at them. Thus, the operation of~ is best described by its stable 
state machine~ 1.q. However, unstable states cannot be entirely ignored, 
since our controllers operate by transforming undesirable stable states 
into unstable states. 

Consider an input string 111 = 110111 ••• ui- E A+ applied at a 
state .1· of ~- In fundamental mode operation, the input value 110 

is kept fixed until ~ reaches the next stable state .c;(.r. 110 ). Then, 
the input switches to u 1 and stays constant till the next stable state 
(.c;(.c;(.r. 110). 111 )) is reached; and so on to the last stable state 
.r' := -'>( •••• c;(.c;(.c;(.r. 110). 111 ). 112) ••.• 11d =: .c;(.r. 111 ). We review 
now the (standard) notion of machine equivalence (e.g., [5]). 

Definition 2.3: A state ~· of~ = (A. r. X. f. T,) and a state .r' 
of~, = (A. Y. X'. f'. h') are equivalent if the following is true: 
When ~ starts from .r and ~, starts from .r', then ~ and ~, have the 
same permissible input strings, and, for each such string, they produce 
the same output string. The machines~ and~, are equivalent (written 
~ = ~') if every state of~ has an equivalent state of~, and every 
state of~, has an equivalent state of~. + 

C. Races and Race Families 

A race occurs when two or more variables try to change values simul­
taneously ( e.g., [ 13] and [21 ]). As simultaneous change of independent 
variables is unlikely, a sequential change in unpredictable order occurs 
instead. The order is unpredictable since it depends on random hard­
ware conditions. In a critical race, the response of the machine depends 
on the order in which the race variables change, creating a pair (r, 11) 
whose next stable state is unpredictable. We also call ( r. v) a critical 
race. A critical race may derive from a component failure, an imple­
mentation flaw, or a design error. 

Let ~ be a machine with a single critical race ( 1·. v ). When ~ is at 
the stater and receives the input v, the next state of the machine can be 
one of several options, say p1 , .... pq, called the outcomes of the race. 
To represent~. build a family M = {~1 

••••• ~q} of q machines all 
having the same input set, the same output set, the same state set, and 
the same output function as ~. The recursion function f .; of~; is the 
same as the recursion function f of~, except at the critical race (r , v) 

{ 

f(;1·, 11.), 
f;(.r. n) = 

p,. 

for all (.1', u) :f. (r. r) 

for ( x, 11) = ( 1·, v ). where p.; :f. r 
(2.4) 

i = l ..... q. We call 11! a critical race family; its members are de­
terministic. Each member represents I: for one outcome of the race 
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(see Section VI). If r .; is the next stable state of p; with input 1·, then, 
r ; :f. r. i = l. ... , q; otherwise, an infinite cycle occurs. 

Consider a machine ~ operating in fundamental mode, with recur­
sion function f, initial state .1·0, and input string 111 = 1•01•1 •..•. I'm -1 . 

The machine goes through a string of states Q'o •••• , .rm, where 
.r,+1 = f(.r ; . 1·, ). i = 0 ..... m - 1, ending with the stable 
combination (.rm. 1·,,, - 1 ) . Fundamental mode operation implies 
that 1·, = 1•; +1 whenever (Q·; . 1· ; ) is not a stable combination, 
i = 0 ..... m - 2. This induces a list of pairs P(~ . . 1·0. 111 ) := 

{( .ro , l'o). (.1·1. 1·1) •..•• (.1·m - 1, 1'm - 1). (.rm, l'm - 1)} called a 
path. A path is generated by the recursion function, not by the stable 
recursion function. The following is a consequence of (2.4). 

Lemma 2.5: Let J/ = {~1 
••••• ~q} be a critical race family in­

duced by a critical race ( r. 1·), let .r be a state, and let IP be an input 
string . If ( r. 1•) (/. P( ~ ; . . 1·. ,,, ) for an i E { 1. .... q}, then all paths 
are equal: P( ~i .. r. 111) = P(~/ . . r. w ), for all j = 1. .... q. + 

We will list only one representative of a group of "repeating" input 
values, so, e.g., 11• = 1•01•01•1 1•21•21•2 will be listed w = 1·0 1·11·2. This is, 
in fact, the string used by the hardware (and the stable state machine), 
where input is constant until change. 

D. Controllers 

The controller C of Fig. I has two inputs: the reference 1• and the 
feedback .lJ. Take the values of 1• in the input alphabet A of~. With~ 
of (2.1 ), the input set of C is then A x X. The output set of C must be 
in A, so C = (Ax X. A. ~- </). 17 ), where~ is the state set, o is the re­
cursion function, and 17 is the output function. The closed-loop system 
~r, being composed of~ and ofC, has the state set Xx~; let f,. be 
its recursion function and let I, r be its output function. As the output of 
~ and ~rare the same, hr: (XX~) x A - X: hr((.r. O. 1·) = .r, 
for all~ E ~ and all valid pairs (.r, 1•) E X x A of~ . 

The fact that ~ of (2.1) is strictly causal guarantees that the 
closed-loop system of Fig. l is well posed, i.e., all signals in the loop 
are uniquely and causally determined by 7' (e.g., [8]). To guarantee 
that no new critical races arise, the composite system of Fig. I operates 
in fundamental mode. The latter occurs when C satisfies the following 
conditions. 

i) Starting from a stable combination and in response to a change 
in the external input variable t' of C, the output value of C does 
not change until C reaches its next stable state. 

ii) In response to changes in the output of~. the controller C does 
not commence any state transitions until~ reaches its next stable 
state. 

Then, :E and C' do not engage simultaneously in state transitions; 
while one of I:, C is in the process of state transitions, its input re­
mains fixed; and not more than one input of C changes at a time. Note 
that, by standard guidelines, ·1• must be kept constant sufficiently long 
between changes, to allow the composite system to reach its next stable 
combination. 

For a member~; of a critical race family M = {:E1 
•••• , ~q}, let 

~~ be the closed loop system obtained when :E is replaced by ~; in 
Fig. l. Denote by :E~I-• the stable-state machine induced by ~~- Then, 
the main topic of our discussion is the following. 

Model Matching Problem 2.6: Let M = {~1
, • • • , ~q} be a crit­

ical race family and let~, be a race-free stable-state machine with the 
same input and output alphabets as the members of 1'1 . Find necessary 
and sufficient conditions for the existence of a controller C such that 
:E~I-~ = ~,, for all ·i = l. .... q. When C exists, provide a method for 
its design. + 

The controller C of Problem 2.6 eliminates the effects of a race by 
assigning to the closed-loop system the desirable race-free behavior 
~, (see the example in Section VI). Model matching for synchronous 
machines was investigated in [6], [7], and [9]. Asynchronous machines, 
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however, allow more flexibility, since one only needs to match a stable 
state behavior (rather than a full behavior). Accordingly, the methods 
used here are different, as are the results. 

III. REACHABILITY 

A. Stab(v Reachable States 

In fundamental mode operation, a controller can act only when the 
machine it controls is in a stable combination. Consequently, we are 
interested in reachability properties of the stable-state machine. 

Definition 3.1: Let .r and .r' be two potentially stable states of a 
machine ~ and let s be the stable recursion function of ~. Then, .r' 
is stab(v reachable from .1· if there is a permissible input string u = 
110111 ••• 111,. of ~ls for which .1.' = .<;(.r. 11 ). + 

Any stably reachable state can be reached in at most ( #S - 1 ) steps, 
where #X is the number of states of the machine. 

Lemma 3.2: Let I:1.• = (A. L X. s, Ii) be the stable-state ma­
chine induced by an asynchronous machine ~. If a state .r' E S is 
stably reachable from the state .r E _y, then there is an input string 
u. EA* oflength lul::; (#S - 1) for which .r' = .<;(.r. u). 

Proof Let .r' be stably reachable from .r and let 11
1 

.-

110111, •••• 111.-- 1 be an input string for which .,., = .<;(.r. 11.' ). If 
lu'I ::; #X - 1, then the Lemma holds. If k = ln'I > #S - 1, 
define the states :ro .. r1 ...... r,.. by i·o := :r, .r;+1 := .<;{.r; . 11.., ), 
i = 0. 1. .... /;· - 1, and .r,.. = .r'. The list .ro •..... r,.. con­
tains /;· + 1 > #S states, so at least one state must repeat in the 
list, say .r ; = .rj. 0 ::; ·i < j ::; /;·. Since .r; = .rj, the string 
11.

11 
:= 11011.1 ••••• 11, - 11/j ..... 111.--1 (or 11.

11 
:= 'llj ..... 11.1.-- 1 when 

i = 0) still has .1.' = s(.1>, ·11
11

), but lu"I < lu'I. This process of 
shortening the input string can be repeated until one obtains a string 11 

oflength lu.l < #X still satisfying .r' = s{:r, H). + 
An input string II that takes a machine through the stable 

states .ro .. r1 , ... , .r ,.. induces a cycle if a state repeats in the list 
.ro, :1·1 •••••• r 1.-. By the aforementioned proof, cycles can be elimi­
nated by shortening 11, without affecting the end states .ro and .r ,. .. 

B. Matrix of Stable Transitions 

Definition 3.3: Let~ be a machine with input alphabet A, state set 
X = { .r1 , ... , :1· n}, and stable recursion function s. The one-step 
stable transition matrix R(I:) of~ is an n x n matrix whose (i. j) 
entry R;j{~) is the set of all (single) input characters u E A satisfying 
:r1 = s(.r;. 11.). If Rij(~) is empty, write ll;j{~) := N, where N is a 
character not in A.. + 

Clearly, R(I:) shows all one-step stable transitions of I:; N indicates 
the lack of a corresponding one-step stable transition. To add JV to our 
lexicon, define the set A* (JV) := {<'le E A* or e = N}. Next, some 
special operations (U marks union). 

Definition 3.4: Let S1 and S2 be two nonempty subsets of A* ( N). 
The unison S1 ~ S2 is given by 

• 
The unison is similar to the union of sets, except that it removes the 
character N if the union contains a string of A.+. 

Definition 3.5: For two elements of w1. w2 E A* ( N), the con­
catenation is 
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Here, .Y takes the role of a '"multiplicative zero." For subsets 
n-1 = {11 11.1- 11'1.2, ... , 1111.q}, n-2 = {w2.1- 7112.2 , .... W2.r} C 
.-l*(S) 

conc(lV 1 , l1F2) := I\J;=1, .... q conc(w1.;.11•2.j)-
J=1, ... , r 

Definition 3.6: Let A and B be n x n matrices whose entries are 
subsets of A* ( ..:V). The product C := AB is an n x n matrix whose 
i. j entryisC; 1 := 1\11.-=1. .... 11 conc(A,,. .. B1.-j)), i . j = 1. .... n.+ 

Note the similarity to numerical matrix multiplication. It can be ver­
ified that the ( ·i, j) entry of a power R 111 

( ~) of the one-step stable tran­
sition matrix, if not N, consists of all input strings that take~ from .r, 
to .rJ in exactly m. stable transitions. 

Definition 3. 7: Let A and B be n x n matrices with entries in 
.-1 * ( _Y). The unison A ~ B is an 11 x n matrix whose (i , j) entry 
is (.-11\J B); 1 := A.;i 1\1 B; 1, i. j = 1. .... n. t 

The operation of unison is analogous to the addition of numerical 
matrices. Using unison, define 

m = 2, 3 ..... (3.8) 

The ( i. j) entry of R< 111
) ( ~), if not JV, consists of all input strings 

taking ~ from .r, to .r1 in at most m stable transitions. So 

is an n x n matrix that characterizes all stable transition paths of~­
Lemma 3.2 then leads to the following. 

Lemma 3.9: The (i. j) entry of the matrix R*(~) is A' if and only 
if the ('i. j) entry of the matrix n<n-1)(~) is N. + 

In other words, the matrix n< 11 
-

1
) ( ~) characterizes all pairs of states 

( .l' .; •. rj) of~ for which .1·1 is stably reachable from .r;. 
Definition 3.10: The matrix R(n-l)(~) is called the matrix of 

stable transitions of I:. + 
The entries of R< n -

1 >( ~), which characterize input strings for all 
stable transitions of I:, are essential for the construction of controllers 
later. However, the existence of controllers can be determined from a 
simpler matrix introduced next. 

C. Skeleton Matrix 

Definition 3.11: Let R(E) be then x n one-step stable transition 
matrix of I:. The one-step skeleton matrix S CE) of I: is an n x n matrix 
whose ('i, j) entry is S;j(~) := 0 if R11(E) = N and Si1(~) := 1 if 
R.;1(~) # N,i. j = 1, ... , n. + 

The one-step skeleton matrix is a matrix of zeros and ones. Its ( i. j) 
entry is one if there is a one-step stable transition that takes E from the 
state :r, to the state .r1; otherwise, the ( i, j) entry is zero. We need a 
special operation for skeleton matrices. 

Definition 3.12: Let A, B be two n x n matrices of zeros and ones. 
The combination AB is again an n x n matrix of zeros and ones; 
its (i. j) entry is (AB) ii := ma.x{A.;1.,Bkj: k = 1. .... n}, for all 
i. j = 1, ... , n. + 

Matrix combination is similar to matrix multiplication. Using com­
bination, consider the m th "power" sm (E) of the one-step skeleton 
matrix S(~), m = 2, 3, .... It can be seen that the ('i, j) entry of 
sm ( ~) is 1 if and only if it is possible to reach J'j from :1·; in exactly 
m stable transitions. For an integer rn ~ 1, define the matrix s< m) ( ~) 

by setting its ( i. j) entry to be 

S(m)(~) ·- • sl.· (~) ·ij ..., .- . n1a.x ·ii ..., , 
i -= 1, ... ,,n 

rn = 1, 2, .... (3.13) 

cone( w1, w2) := 
{ 

N, ifw1 = N orw2 = N 

w1 71'2. otherwise. 
Then, s<m)(~) is also a matrix of zeros and ones, and 5(1)(~) = 
S(~). A comparison of(3.13)and(3.8) shows that an entry of 5(m) (~) 

+ is zero if and only if the corresponding entry of n<m)(~) is N. By 
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Lemma 3.9, this implies that a state .r 1 is stably reachable from a state 
.r, if and only if 5~~,- ,) ( ~) = 1. Thus, 5<" _,) ( ~) contains substantial 
structural information about~-

Definition 3.14: Let 5(~) be then x none-step skeleton matrix of 
~- The skeleton matrix of~ is/\.(~) := 5(n- 1) (~ ). + 

The following is a direct consequence of Lemma 3.9 and the corre­
spondence between 5("') ( ~) and R("') ( ~). 

Proposition 3. I 5: For an asynchronous machine ~ with n ? 1 
states, 5(P)(~) = 5(n - l)(~), for all p? n - 1. + 

For two n x II skeleton matrices A·. /\.,, write /\.. ? A"' whenever 
A·,; ? A"f;, for all i . .i = 1. .... n. The following is then true. 

Proposition 3. I 6: Let A ? B and C ? D be n x n skeleton 
matrices. Then, under matrix combination, AC ? B D. 

Proof- Let (AC), 1 and (BD),; be the (i . .i) entries of 
AC and B D, respectively. Using (3.12) and the relations 
.-1 ? B and C ? D, we obtain (.-1C);1 := ma.x{.-l ;A.CA·i= 
I.= 1. .... n}? maxfH,ADA;: /. = 1. .... n} = (BD);;, for all 
i . .i. Hence, AC? BD. t 

For critical race families, the next notion underlies our main results. 
Definition 3.17: Let JI = {~ 1 

••••• ~q} be a critical race family 
with n states. The skeleton matrix l\.. ( JI) of JI is an n x n matrix 
with the entries A";1 (JJ) := min{J\,j(~A · ): k = 1. .... q}. i. j = 
1. .... n, where A-(~A· ) is the skeleton matrix of~k. + 

Note that A·;1 (JI) = 1 if the state .r1 is stably reachable from the 
state .r, for every member of JI; otherwise, A";1(Jf) = 0. 

IV. CORRECTIVE CONTROLLERS: BASIC CONSIDERATIONS 

For Fig.l with the input/state machine~ = (A . .Y . .Y. f. I,) and 
the controller C = (A x .Y . .-1. ~- o. 17 ), the closed-loop system is 
~ ... = (.-1 . .Y .. \X~. f,-. /1,..).Let11.r:Xx~xA--+ .Y:(.r. f.. 1•) ~ 

.r be the projection. Then, l,r = ;r:r , as the output of~ ... is .r. Given 
a stable state machine ~' = ( A. .Y. X . .c;'. I,), the model matching 
problem for a race free machine seeks a controller C for which 

" - "' --'rl,i; - --'. (4.1) 

Let ~i: X x ~ x A --+ X x ~ be the recursion function of ~ els. 
By Definition 2.3, ( 4.1) amounts to the following . For every valid pair 
(.1·. 11) of~', there is a state f. E ~ for which ( (.r. ~)- v) is a valid pair 
of ~ ... I .. and 

Ti.,. 1·(.r, c,. v) = .c;'(;r, v). (4.2) 

The next statement indicates how C can change the stable recursion 
function of ~. Given two sets o. /3, denote by /3\ o the set of all el­
ements of ;3 that are not in n; denote by s'[5) the image of a subset 
5 C X x A through the function .,/. 

Theorem 4.3: Let ~ I-~ = (A. X. X . .c;, I,) be the stable-state ma­
chine of the input/state machine I:. Let :r1 x U1 . .... :l'A· x U1.-C 
X x A, k ? 1, be disjoint sets of valid pairs of I:. Let :r~ E X 
be a state stably reachable by ~ from x .;, .; = 1, ... , k. There is 
a controller C for which ~r1.~ is equivalent to a stable-state machine 
~' = ( A. X. X. s'. h) whose recursion function s' satisfies 

i) s'[.r; x F;) = .r~, for all i = 1. .... !.-; 
ii) s' (.::. t) = .c;( .:. t), for all( .:. {) E X x A \(U., =1, ... , ,. .. r; x Ui ). 

Furthermore, the closed-loop system ~c is well posed and operates 
in fundamental mode. 

Proof- Since a< is stably reachable from :i:i , there is an input 
string u•; := ·1•?1•} •••.• 11;'1(-i)-l E .4+ for which s(x.;. 111; ) = :1:~, i = 
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1. . . . . k, where m ( i) : = 1 w, 1-With this input string, s generates the 
states 

.r'. := s(.r,. 1·~). m('i)-1 ( m( i ) - 2 m(·i) - 2) .r.; := .c; .r; . r ., 

.r? := .c;(.l'~. I'~) • . ... 1 ( m(i) - 1 m( i ) - 1) .l', :=.'i .l', • I' ; 

i = 1. .... I,·_ 

Let [ ~ ( .r ; ) C A be the set of all input characters that form stable com­
binations with the state .r.,, i = 1 ..... /..·. Define the sets 

5 := U;= 1. . .. A.I' ; x F(.r,). 1 · := U, :::::1. ... . k-l ' ; x u,. 

The controller C = (A. x X . . -1. ::::. o. 17) can then be constructed as 
follows. 

I) The state set :::: of C has 2 + ~7°=, m ( i) states denoted by 
- {' c cl ,2 ,rn(l) cl ,m(2) cl .::. = 1..,0 • I... l • I... 1 • I... 1 • • • • • I... 1 , 1...2 • • • • • '-2 • • • • • 1...k • • • • • 
c:rn(A·)} 
'-A· . 

2) The initial state of C is c.o, and C moves to the state 6 
upon detection of a stable combination with one of the states 
.r, ...... r A· . To this end, the recursion function 6 of C is 
defined at lo as follows: 

o(~o-(.:. t)) := lo- for an(.:. t) E .\ X .-1\5 

o(~o- (.r. 11)) :=f.,. for all (.r. 11) E 5. 

In fundamental mode, the output of C cannot change before C 
reaches the state l 1 , so set 17 ( f.o. (.:. t)) : = t, for a11 (.::. t) E 
X x .-1, feeding into~ the external input of ~r- At 6, choose a 
character11 ; E F(.r ; ) and set 17(6. (.r .,. t)) := 11,, for all t E 
.-1, i = 1. .... /..-. This preserves fundamental mode operation, 
since ~ was in a stable combination when the controner reached 
f.1. 

3) Assume that an input value II E U; appears at the input of ~r 

while ~ is in a stable combination with the state .r; . Then, C 
generates the input string 11•, driving ~ to a<. In fundamental 
mode, 11'-i is generated one character at a time; a new character is 
generated after~ reaches a stable combination. First, C signifies 
the detection of II by moving to the state (] 

¢(6. (a·; . 11)) := e. for all u E F;. i = 1, ... , 1.~ 

¢>(6. (.1·;. ·11)) := 6. for all 11. E U(.r; )\U;. ·i = 1 ..... k 

</>(6, (.:, f)) := (o. for all pairs(=, t) EX x A\(5 UV} 

Upon reaching the state t.] , the controller generates the first char­
acter of the input string w; for ~ by setting 17 W , (.:. t)) = 11?, 
for an(=, t) E X x A, i = 1. .... 1.~. This makes~ move to 
the state .d . 

4) Similarly, the following definitions prompt C to continue gener­
ating the input string 11•; for ~ 

<!>( €1. ( .r{, 'II,) := et+1 ' for a11 7/ E F; 

</J(E{ (z, t)) := €J. for a11 (.:. t) EX x A\.r{ x U; 

j = 1. 2. . . . . m (i) - 1. ·i = 1, . . . . /.,·. 

The state €f+1 of C signifies that ~ has reached the stable 
combination ( .r{. 1,{- 1 ) . In fundamental mode operation, 
~ is now ready for the next input character 1,{ of w;: for 
j = 1, 2, ... , m(i) - 1, set 17((/+1

• ( ..::, t)) .- vf, for a11 
(.:, t) E X x A, i = 1. ... , /..·. 
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5) Finally, for j = m ( i), assign 

Q (c(,)_ (.r'.). 11)) :=Cl( ;) for11 f F; 

<f; ((ll(iJ. (.:. t)) :=( 0 • for all(.:, f) EX x A\5 

i=l. ... ,k 

<f; ( (;11 ! i). (.:. t)) := ( 1 • for (.:. t) E 5. 

The definition of ¢ is consistent, since .1·1 x F1 . 
.r2 x F2, ..... r,. x F,.. are disjoint sets. The recursion 
function ~i of ~ r is then 

~, ( .i·;, ~o, u) = ( .'i ( .1·;. 11 ) • ci ) . for all u E F ( .r; ) 

~,(.r;. 6, u) =(.r;. 6). forall1, E F(.r .;) 

~i (.: , fo. t) = (.<;(.:. t). fo). for all( .:. t) E _\" x A\5 

1 (.r;, 6. t) =(.r.,. €0). forallt E A\(F"(.r .;)UF;) 

~,(.r.;. ~1- 11,) = (.r';. C1
(•)). forallu; E F; 

, · (.r';, C1
(i). u) := (.r';, ( 11(i)) for II E F; 

( 
,m(-i) ) ( ) (. ) ; ::.. <.,; • f := (.'i .:. t . <.,O_ . 

for all( ::.. t) E _\" X A\.r'; X Ui 

·i = 1, .... k-, so that (4.2) is valid. By construction, the closed 
loop operates in fundamental mode. + 

The controller C of Theorem 4.3 generates an input string that takes 
~ from the state .r, to the state .1< through a string of stable transitions of 
~- The intermediate states of this transition become unstable states of 
~r, where .r'; becomes the next stable state of ;r, with an input character 
of [T;. The number of states of C can be reduced by machine reduction 
techniques. 

V. MODEL MATCHING 

A. Model Matchingfor Deterministic Systems 

Here is a solution of the model matching problem for deterministic 
asynchronous machines. 

Theorem 5. 1: Let~ = ( A. X. X , f , I,) be an input/state machine 
and let ~, = ( A. X. X . .c/, h) be a stable-state input/state machine. 
The following two statements are equivalent. 

i) There exists a controller C for which ~cl.~ = ~,, where ~r is 
well posed and operates in fundamental mode. 

ii) The skeleton matrices of the machines~ and~, satisfy A"(~) ~ 
1\.·r~::::'). 

Pmof Let ; be the stable recursion function of :Er. De­
fine sc .- rr.r ~, , let ~ be the state set of the controller C, 
and let X { .1·1 •••• , .r n} be the state set of :E. Assume 
first that part i) of the Theorem holds. Then, for every valid 
pair (a:, 11.) E X x A of~', there is a state € E ~ such that 
sc(;r, €, 11.) = s'( :1:, 11). Now, :i.· and sr(;r , €, 11) are states of~. 
say ;1; = :i·; E X and 8r( :t, €, 11.) = s' (:i·, u ) = .r,.. E X, so 
:1:1., = sr(:i·i, €, ·u.) = s'(;ri, 11.). For the one-step skeleton matrix 
5(:E 1

) of I:', this implies that sil..(:E') = 1. 
Since C accesses only the input ofE, the equality :1· k = sc ( .1· i , E.. 11.) 

means that there is an input string w E A+ such that :i· k = s( .r.;, w), 

so that K;1.,(:E) = 1. Thus,J(;1.,(:E) = 1 if S.;1.-(~1 ) = 1, and J((~) ~ 
S(~ 1

). Multiplying each side of this inequality by itselfn-1 times, we 
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obtain by Proposition 3.16 that A·(n-l) ( :E) ~ 5(n-J) (~') = ]\."(~' ). 
Applying Proposition 3.15, we conclude that K(:E) ~ A"(:E') . This 
shows that i) implies ii). Conversely, assume that part ii) of the Theorem 
is valid; since always J{(I': 1

) ~ 5(~'), we obtain A"(~) ~ 5(~'). 
This means that, for every valid pair ( :r. u) of~,, the state s' ( .r. 11) is 
stably reachable from .r by :E. Theorem 4.3 shows then the existence 
of a controller C for which :E,., .• = :E', and part ii) implies part i). + 

An algorithm for the construction of a controller C that satisfies The­
orem 5.1 is provided in the proof of Theorem 4.3. 

B. Controlling Races 

Here is our solution of the model matching problem 2.6 for a system 
with a critical race. 

Theorem 5.2: Let J I = {~1 
•• ••• ~q} be a critical race family of 

input/state machines and let ~, be a stable-state input/state machine 
having the same state set and input alphabet as the members of J.U. 
Let I{ (JI) be the skeleton matrix of the family M, and let A" ( ~,) 
be the skeleton matrix of I: 1

• Then, the following two statements are 
equivalent. 

I) There is a controller C for which ~~I$ = ~,, for all 
i = 1. .... q, where the closed-loop systems~~- ~~- .... :E~ 
are all well posed and operate in fundamental mode . 

2) The skeleton matrices satisfy l'!..(M) ~ ]\.·(~'). 
The proof of Theorem 5.2 (provided later) includes a construction of 

C; an example is in Section VI. In crude terms, C operates as follows. 
When C detects the stable combination ( r i . I') after the race, it ap­
plies an input string that drives the member ~ -i to a stable combination 
common to all members of JI. This equalizes the stable state response 
of ~ c , for all members of JJ. 

The skeleton matrix 1\.· (JI) of a critical race family M cannot be 
entirely zeros, since each state is potentially stable. Thus, there always 
is a stable-state machine :E1 with skeleton matrix equal to K(M). By 
Theorem 5.2, this entails that every critical race can be resolved via 
state feedback control. We tum now to technical issues related to the 
proof of Theorem 5.2 . 

Let s i be the stable recursion function of a member~; of JU and let 
s' be the stable recursion function of~,. The set 

D(~ ;. ~,) = { (:1·. 11.) E X x A: (:i:, ·11) is a valid pair of~ 1 

and s\:i-, n) =p _.,1 (:1·, 11.)} (5.3) 

is the discrepancy set of ::E;; it consists of all valid pairs for which the 
next stable state of~ ; differs from that of :E'. Here, controller action 
is necessary to match the desired response. When J\.·(~ ; ) ~ J\.·(~') 
there is, for each ( :i·. 11.) E D ( :E\ I: 1

), a string w E A+ satisfying 
s\r , w) = s' (.r. 11 ). Let S; (:r , ·u.) C A+ be the set of all such strings 
·1t1 • For a pair (.r , u) E D(~;, :E') and an input string 111 E Si( :r. '1t.), 
let P( ~ -; , :r. w) be the path of :E;. Recalling that ( 1·. 1,) is the critical 
race of ~u, build the subset 

DN(~ ;' ~') := {(.r. 11) ED(~ ; .~'): (r. 1•) rt P(~\ :r, 1L') 

foratleastonestring 111 E S ;(:i·. 11)} CD(~ ; .~') 

i = 1, ... , q. 

On D :V ( :E.;. :E'), the stable state response of:E; can match the response 
of~' without passing (1·. ·1·). But then, by Lemma 2.5, every member 
of l\l can match the response of I: 1 on DN(::E;, :E') without passing 
through the race ( 7\ 11). This yields the following. 

Lemma 5.4: In the notation of Theorem 5.2, assume that l((1il) ~ 
K(~ 1

). Then, DN(~;. ~') = D:V(I°:J, I: 1
), forallj = 1, ... , q. + 
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In view of Lemma 5.4, we use the notation 

D ;,;(Jl. ::S') := D :\°("5:.'. ::S'). ·i = 1. .... q. (5.5) 

To match ::S' over D .v(JJ. ~,),the controller can apply the same input 
string to all members of JJ. On the difference set 

(5.6) 

the response of ::S' cannot be matched by ::S; without passing through 
the critical race ( r. 1·). Still, by Lemma 2.5, the path of~' up to (but 
not beyond) ( r. ,, ) is identical for all members of J/. This leads to the 
following. 

Lemma 5.7: In the notation of Theorem 5.2, assume that A"(1U) ~ 
l\.. ( ~,).Then, for every (.r. u) E DR(::S;. ::S' ), there is an input string 
111 that takes al I members of J/ from ( .1·. 11 ) to the critical race ( r. 1·), 
meeting ( r. l') only in the last step of 111. + 

Thus, the process of matching ::S' over DR ( ::S;. ~,) splits into two 
parts: i) before the race and ii) after the race. Before the race, one does 
not need to identify which member of 1\1 is active, since all mem­
bers can use the same input. After the race, the string that the con­
troller needs to generate may vary from one member of JJ to another. 
By reading the outcome of the race, the controller can identify which 
member of ~u is active and then select the appropriate input string. This 
action makes the next stable combination of ::S' into the postrace stable 
combination of all members of J/; it is the basis of the next proof. 

Proof (of Theorem 5.2): If _I·i:(Jl) i J\."(::S'), then there is a ma­
chine ::S' E JlforwhichJ{(~') i J{(::S').Then,byTheorem5.l, 
there can be no controller C for which ~~Is = ::S'. Whence, part 1) of 
Theorem 5.2 implies part 2). Conversely, assume that part 2) of The­
orem 5.2 is valid. We construct below a controller C satisfying part i) 
of Theorem 5.2, using earlier notation. 

If D(::S'. ::S1 ) = 0, for all ·i = l. .... q, then all members of J/ 
match ::S', so there is no need for C. Otherwise, D(::S.;. ~,) -=/-0 for 
at least one i. Let 1r :rD( ::S;, ~,) be the set of all states .r for which 
there is a u satisfying ( .1-, 11) E D ( ::S;, ::S'). Let Fi( .r) be the set of 
all input characters forming stable combinations with the state :r of::S;. 
The only pair at which the members of .U differ from each other is 
( r. t' ), which, by (2.4), cannot be a stable combination. Hence, U; (.1·) 
is the same for all ·i = l, ... , q; set U(:i-) := U;(.r). Then, 1,: := 
{ ;1· x U ( ;1·): ;1· E ri :r D (:Si , E 1

)} consists of all stable combinations 
with states in ri:rD(::S;, ::S'). Define 

V := U.;= ], ... ,q v;. 

DR(M, ~ 1
) := u.,=1, .... q DR(::S\ ::S') 

D := u.,=l, .... q D(::Si. ::S1 ) 

D(;1·) := {'II. E A: (x, 11.) E D}. (5.8) 

Assume that DN(JU, ~ 1
) # 0. For each (;1·, 11) E DN(M. ::S1 ) 

there is, by definition, a (shortest) input string w(;1·. 11) satisfying 
s(x. w(a:, 11.)) = s'( .r. 11.) and (r, v) (J. P(::S, a·. w(.r. 11.)), where,<; 
is the common restriction of s 1

, •.•• sq. Let m(.r , u) := 1111(;1·. 11)! 
and let v 0 

( :r. 11. ), 11
1 (;1·, 'II), ... , vm(:r, u)-l (.1:, 71) be the characters 

of w(;1·, u.), i.e., 

w(;l", 11.) := v 0(:1:, 11.) ... vm(:r , u) - 1 (;1·. 11). (5.9) 
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The stable states through which w( .r. 11) takes the machine ::Sare de­
noted by 

and 

.r1 (.1·. 11) := s( .1'. 1•0(.r. 11)) 

2 1 1 .r ( .r, 11) := .c;(.1· (.r. 11). 1· (.t. 11)), • •• 

.l'm(,- , 11)-1(.r. II) :=,<;(J'm(.r.11.)-2(.r. 1I). 1,m(.r.11.)-2(.r, u)) 

8 1 (;1·. 11) := .c;(.rm(:r . 11.)- 1 ( .r. 11 ). 1,m(,- . 11)-1 (.r. 11) ). 

(5.10) 

Define n(X) .- #D ,v(J/. ::S1 ) and, when n(_V) > 0, let 
(;1·1. 111 ), .... (.r,,(.Y)· un(N)) be the elements of D .v(J/. ::S1 ). The 
following set will be used later as part of the state set of the controller 
C (if D ,v(Jl. ::S') = 0, set ~;v := 0): 

. (.l'n(:V)• 1111(:V))} · (5.11) 

Next, set n(R) := #DR(Jl. ::S' ). When n(R) > 0, consider an 
i with Dn(::S;. ~ 1

) # 0. For each (.r. 11) E Dn(::S;. ::S'), there 
is then a (shortest) input string w(.r. 11) such that .c;; (.r , 111(.r, u)) = 
.c;' ( ;1·. u); the path P( ::S', .r. 111 ( .r. 11)) contains the critical race ( r. 1•) 

of~. Eliminating cycles, we obtain that P(::S; . . r. w(.1·, u.)) contains 
( r. 1•) exactly once . Divide the path P( ::S; .. r . w(.1'. u.)) into two parts 
P1.;(.r , u.) and A . ,(.r. 11): A , .; (.r. 11) contains (r. 1•) and ends with 
the stable combination (r;. 1•) immediately following (r. 1•); the part 
A , ; ( .r. u.) consists of the remaining segment of P(::S', .r. 111(.1·. 11) ), 

starting with (r ;. 11). Referring to Lemma 5.7, let 

Wo(.'.I'. II) := 7'0 (;1·, II) .. . 1'm(r , u) - 1 (.r , 7/) (5.12) 

be a shortest common input string taking ::S from :r to ( r, v). Here, 
m(.1·. ·u.) := lwo(.r. 11.)I, and note that 1• is the last character of 
wo(;1·. 11.). The path P(::Si .. r. wo(.r. 11)) of ~i starts at (.1-, 11.), 
is driven by wo(.r. 11), and ends with (r;. v). By Lemma 5.7, 
A , ;(;l\ 11.) can be replaced by P(::S;. ;1·, wo(.1·. 11.) ); the concatenation 
P(::s·i .. 1·. wo( ;-r, 11.))P2 , -;{:r, 11.) still takes ::S; from (.r , 11) to the 
desired state s' ( ;1·, 11). Let 

ll '; (:r , 11.) :=1 10(:1-, 11.. i), ... ~·11"'(:r.u ,·i) - l(a· . 1,, i) (5.13) 

be the input string generating A, ; (.r , u.), where m(;1-, 11, ·i) := 
lwi(.r. 11)1. Since :E; is at r; when w;(.r , 11.) starts, we have 
1·.; = s'1 (;1:m(:r,u)- 1 (;1-, 11.), 7,m(:r , u) - 1 (.r. u.)), and w;(x. u) drives 

::S; through the states 

.1'1 (.r, u.,,i) :=s\1· .;, v
0 (;1:, 11, ·i)) 

;1·
2 (;1·. 11., i ) := . ./(.r1(;1-, 11. i) , 1•

1 (.r. 11. ·i)), ... 

r/( .r, u) :=.c/ (.i :m(:r , 11,i ) - 1(;1·. 'II , i). 1,m(:r , u , ;) - 1(.r. II., ·i)) , 

for an (;1·, 11.) E DR(::S;. ::S1 ) and all i = 1. .... q. 

(5. 14) 
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The following wi11 be used as states of the controller C ( denote 
Dn( aU. ~') = {(.r1. 111 ) ..... (.rll(R)· llll(R))} when not empty): 

Sn:= { (6 (.1·1. 111 ) ..... lm(J ·1 . ,, 1 )(.r1. 111 ) ..... 

6 (.rll(R)· llll(n)) · · · · · lm(:1·,,(R)· 11,,(R)) 

' ( .l' ll ( R) • 'II,, ( R)) } (5.15) 

=:.; := { (6. ; (.l'1, 11i) ..... lm(r 1. 111, i). ,(.1·1. ui) . .. · · 

6.-i (.rll(n)· '11,,(R)) · · · · · lm(r,,(R)·"n(R)·;)., 

· i (.1',,(R)· llll(R))} · i = 1. .... q. (5.16) 

Selections are so that S,'\-. SR , S1 ..... Sq are disjoint sets. If 
Dn(I:;i, I:') = 0, set S, := 0. If DR(Jl. I:')= 0, set SR := 0 
and Si := 0, for a11 i = I, .... q. Fina1ly, the set So := {lo- 6} of 
two more elements will also be used later for states of C. 

We are ready to start the construction of the contro1ler C. First, the 
state set of C is given by 

S := So U S.v U SR U S1 U · · · U Sq (5.17) 

and X is the state set of I:. In the construction that fo11ows, the states 
of So help C record certain stable combinations of I:, to ensure fun­
damental mode operation. The states of SN and Sn help C generate 
input strings of I: along path segments common to all members of JI. 
Finally, the states of ==.; help the controller generate the input string 
of I: after the machine has passed through the race with the outcome 
r i. The recursion function ¢ and the output function 17 of C are con­
structed in the following steps, assuming that S,y. Sf?. S1 ..... Sq 
are all nonempty; adjustments can be made for other cases. 

i) Initially, C is at the state lo. Without changing its output, C 
moves to the state 6 when it detects a pair in F, so ~ is in 
a stable combination before its input is changed by C (funda­
mental mode operation). Accordingly, </J is defined by 

¢(eo. (.: , t)) :=fo, fora11 (.:. t) EX X .-1\1' 

¢(lo. (.1-, 11.)) := 6, for all (.1·, 11) E Y. 

The controller is inactive in the state eo, applying to~ its own 
external input. Accordingly, the output function ·17 is defined by 
11(ea, (.:, t)) := t, for all (.:. t) E X x A. At the state 6, 
chooseacharacten,.* E U(;r),andset17(6. (.:. t)) := u.*,for 
all(.:, t) EX x A. Then, :E remains in a stable combination at 
:1; as long as C is in the state 6 (fundamental mode operation). 

ii) Assume that I: is in a stable combination at a state .r E 1r r D, and 
an input value 'II appears for which ( .1·. u) E D. Then, C pre­
pares to generate an input string taking I: to the state . .,' ( :r, 11.), 
to match I:'. This process is similar to the one used in the proof 
of Theorem 4.3. First, C moves to a state 6 ( .1·. 11.) to signify the 
encounter of (.r. 11.) (fundamental mode operation) 

¢(6, (;1:, 11.)) :=6(.1-, 11.)for(.:1·. 11) ED 

¢(6, (;1\ 11.)) :=i;1 , fora1111. E F(.1·)\D(.1·) 

and 

¢(6. (.:. f}} :=eo. forallpairs(.:. t) EX X .-1\(VUD). 

Upon reaching 6 ( .r. 11), the controller starts to generate the 
string 111 ( .:1·, ·11.) or wo ( .:1·. u), as needed. This is accomplished by 
setting 17(6 (.r., 11.). (.:. t)) = -r•0 (.r. u.), for all(.: , t) EX x A 
[by (5.9) or (5.12)]. Note that I: is in a stable combination when 
this change in its input occurs. The input 1•

0 
( .r. 11.) moves I: 

iii) 
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to the state .r1 (.r. 11). The pair (.r 1 (.r. 11). r 0(.r. 11)) is again a 
stable combination, being the next step of s. Then, C continues 
to generate w ( .r. 11) [ or 'll'o (.I'. 11)] as input for I:, according to 
iii). 

<::>(lj(.:1·. 11.). (.:. t)) 

:= (.j(.1·. 11). for all(.:. t) -=f:. (.rj(.:1·. 11). '11) 

17 ( (.H 1 ( .r. u. ) • ( .: • t) ) 

:= ·1•j(.r. 11). for all(.:. t) EX x A. 

1::; j::; rn(.r. u) - 1. and (.r. 11.) ED 

where 1•j (.1-. 11) is from (5.9) or (5.12), as the case may be. 
iv) For .i m(.r. '11), consider two cases: a) When 

(.r. ·11) E D :Y(J/ , :E'), assign 

0 (lm(.r,11)(.1', 11.). (R'(.r. 11). 11))) := lm(r.11.)(.r. 11) 

<P (lm(r. u)(.r. u.). (.:, t)) 

: = ea. for an (.: ' t) i- ( .c;' (.I'' II ) • I/ ) 

completing the action of C here, since s'(.r. u.) has 
been reached. b) When ( .:1·. 11) E DR (I:;. ~,) for some 
i E { 1, ... q}, set 

c/> (lm(J·.u)(.r , 11). (r.;. 11)) := 6. ; (.:1·. 11) 

c/> (lm(l·.u)(.1·. 11.). (.:. t)) 

:= em(r.u)(.l', 11), for all(.:. t) -=f:. (r;. '11) 

17( 6. i( .r , 11), (.:, t)) 

:= 11°(.r , 11.,i), for all(.:. t) EX x A 

here, v 0(.1·, ·n. i) is the first character of (5.13). Then, C 
continues to generate (5.13), following the stable combinations 
(5.14): 

</J((j,i(X, 11.). (.:1j(.r.. ·11 .• i), u.)) := Cj+1.i(.:1·. 7/. ) 

qJ ( (j, ; ( :1:, 7/.). (.:, f)) 

:= «;j,;( ;r. 11.), for all(.:, t) -=f:. (.1.i(.r, 11, i) , 11)) 

11 ( lH, , ; ( .:1·. u). (.:. {)) 

:= 1i(;1·, u .. i) , for all(.:. t) EX x A , 

j = l. ... , m(x, 11,i) - l. 

Theendoftheinputstring(5.13)isreachedatj = m(.1·, ·u., i)­
l; by (5.14), :Ei reaches then the desired states' (.r. ·11._), so assign 

<f> (lm(x, 11 , -i), ;(.r, 11.), (.c/ (a;, 11.), '//.)) := Cm(.r, u. i). ;( ;r , 11.) 

</> (lm(x, u, ·i), i (;1:, 11.), (.: , t)) 

:=ea.fora]](.:: , t) -=f:. (s1
(a·. 11). 11.). 

This completes the construction of C, yielding a closed-loop 
system that is well posed and operates in fundamental mode. + 

The construction of the controller C in the proof does not attempt to 
minimize the number of states. Once C has been derived, its number of 
states can be reduced by state reduction techniques (e.g., [13]). Careful 
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selection of the strings generated by the controller can further reduce 
the number of controller states. If necessary, unstable transitions can 
be eliminated from the output of the closed loop system by adding an 
output function similar to the one used for C in the proof. 

VI. EXAMPLE 

We demonstrate the construction of the controller C of Theorem 5.2. 
The machine ~ to be controlled has the input alphabet A = { n. b, c} 
and the state set X = { .ro .. r1 .. r2}. There is a critical race at ( .ro. c) 

with the outcomes .r1 and .r2 

(/ b r 

. ro .ro .r, {:r1 . :1·2} 

~= .f 
.r1 .1·:2 .r, .r1 

.1·2 .1"2 .1·1 .1·2 

~ induces a critical race family JI = {~ 1. ~ 2} of two members 
whose stable recursion functions .c; 

1 and .';2 are 

(/ b r 

.ro .ro .1·1 .r1 
"1 _,,_.: 8 

1 

.r1 .r2 .r1 .l'J 

.l'2 .1·2 .l'1 .r2 

(/ b C 

.ro :ro .r1 .r2 
"2 2 ....,,_.: s (6.1) 

.r, .1'2 .r1 .l'J 

.r2 ;1·2 .l'] .r2 

From the tables, the one-step stable transition matrices R( :E 1 ) , R( ~ 2
), 

and the one step skeleton matrices S(~ 1 ), S(~::2) are 

c:: 
{b. c} 

N ) R(~1) = {b. r} {a} 

N {b} {n, c} 

c:} {b} 
{c} ) 

R(~ 2) = {b, c} {a} 

{b} {n. c} 

C 
1 ] C 

1 

} S(~1) = 1 S(~2) = 1 

1 1 
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The skeleton matrices /\.· (:::: 1 ) and J{ ( ~ 2
), calculated from Definition 

3.14, yield the skeleton matrix !{ ( JI) the family JI as follows: 

(~ 
1 

] C 
1 

] 1 J{(~.2) = 
1 1 

(~ 
1 

} 1 

1 

A.( JI) = 

Choose the stable-state machine ~' := :Sf. as the model to match 
(this is an arbitrary choice), and follow the proof of Theorem 5.2 to 
obtain a controller C. By (5.3) and (6.1), D(~ 1. ~') = {(.r 0. r·)} 
and, since ~' = ~ 2

, we get D ( ~ 2
• ~,) = 0. The set of input values 

that form stable combinations with the state .ro is F ( .ro) = { r,}, and 
V = {(:1·0. n)} [see (5.8)]. From (6.1 ), the recursion function .• / of 
~' = ~f. has .c;' ( .ro. c) = .r2, and the set of input strings that take ~ 1 

from (.ro, c) to s'(.ro, r·) = .1:2 is S1(.ro. r·) = {rn}; the set of input 
strings that take ~ 2 from ( .ro. r·) to s' ( .ro. r·) is 52 ( .ro. r) = { r·}. The 
paths are 

P(~ 1 .. ro. co) ={(.ro. r·). (.r1. r·). (.r1. a). (:r2. o)} 

P(~ 2 .. ro. c) = { (.ro. c-). (.1·2. r·)}. 

Both paths include the race (.ro. e), so D.v(JI. ::::') 0, 
DR(~ 1

• ~') = D(~ 1. ~') = {(.ro. r·)}. Using (5.11), (5.15) and 
(5.16), we obtain =-s = 0. =-n = {6 (.ro. r·)}, =-1 = {6.1 (.ro. r·)}, 
and =-2 = 0. By (5.17), Chas the state set=- = {~o- 6. l1 (.ro. r·), 

6, 1 (.1·0. c)}, i.e., four states. Following the proof of Theorem 5.2, the 
recursion function <f> and the output function 17 of C are 

9(~0- (.:. u.)) :=co. for all(.:. 11.) E .Y x A\(.ro. o) 

¢(6 (.ro. r). (.r1. c)) := c1.1 (.ro. r·) 

<P(co-(.ro. o)) := 6 

</>(6(;1·0. c), (.:. t)) :=6(.ro. r), for all(.:. t) 

¢ {(;1·,. c), (.r2. r)} 

17(~0, (.:. 11.)) :=u. for all(.:. 11.) E .Y x .-1 

¢(6 (:1·0. c). (.r2. c)) := co 

</>(6, (.1:0, c)) := 6 (.ro. c) 

·17(6(xo, c). (.:, 11)) :=c. for all(.:, 11.) E .Y x A 

</>(6, (.ro, n)) :=6 

</>(6, 1 (.ro, c). (.1·2, c)) := 6. 1 (.ro. r) 

</>(6, (.:, t)) :=co- for all pairs(.:. t) 

¢ {(;ro , a). (.ro. r)} 

</>(6,1(.ro, c) , (.:, t)) := co- for all(.:. t) =I= (.1·2, r) 

·17(6, (.:, 11)) :=a, for all(.:. 11) EX x A 

17(6,i(:1·0. c). (.:, 11)) :=a , for all(.:. 11) E .Y x A. 
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