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ABSTRACT

Recent studies have shown that, for a given sys-
tem 2, the possibilities for pole assignment through
internally stable output-feedback control configura-
tions depend on certain integer invariants, related
to the number of unstable poles, the number of unsta-
ble zeros, and the number of zeros at infinity of the
system Z. The present note provides a qualitative
discussion of the conceptual and of the intuitive
origins of these results.

1. INTRODUCTION

The purpose of the present note is to discuss the
conceptual and the intuitive implications of some re-
cent results in the theory of pole assignment for
linear time-invariant systems, reported In HAMMER
[1983]. In that report we discuss pole assignment for
various control configurations,including dynamic out-
put feedback, inside-:o0p precom._ensation, and unity
cutput feedback. The main point of the discussion
there is that the possibilities of pole assignment
for actual engineering control configurations are not
determined by classical system invariants, like the
MacMillan degree,the reachability indices, or the ob-
servability indices, as is the case for state feed-
back. Rether, for output feedback, the possibilities
of pole assignment are determined by certain other
integer invariants which depend, roughly speesking, on
the aumber of unstable poles, on the number of unsta-
ble zeros, and on the number of zeros at infinity of
the given system. Our main objective in the present
note is to show that these results are to be expected
not only from the mathematical point of view (which
is discussed in the above report), but from the intu-
itive practical-control point of view as well. Since
our main objective here is to provide intuitive in-
sight, we shall almost completely avoid mathematical
details. We start with a qualitative review of some
classical results on pole assignment.

Probably, one of the most fascinating features of
a linear time-invariant finite-dimensional control
system is the fact that its fundamental control capa-
bilities are determined by the (seeming) meager in-
formation contained in a finite set of integers. Spe-
cifically, we refer to pole assignment. Consider a
linear time-invariant system Z with a canonical
state representation

Z: X=Ax+ Bu, y = Cx,
where the state vector x 1is of dimension n, and
the input vector u is of dimension m. As is well
known. the dynamic behaviour of the system Z is de-
termined by the roots of the characteristic polyno-
mial ¢(z) := det (zI - A), which is of degree n.
One of the fundamental interrogations into the con-

trol capabilities of £ is the question of how can
the dynamic behaviour of Z be altered through the
application of state feedback. Explicitly, one defi-
nes the state feedback u = -Fx + v , to obtain the
new system (which is still controllable, but not al-
ways observable) % = Apx + Bv, y = Cx, where Ap =
A - BF, and the new characteristic polynomial ¢p(z)=
det (zI = AF), which again has degree n. The ques-
tion then is, what are the new characteristic polyno-
mials ¢F(z) that can be obtained by choosing acpro-
priate state feedback matrices F. As is well known,
the answer to this question is contained in the state
feedback pole assignment theorem [6], one direction
of which states the following. If the system X is
controllable, then, for any monic polynomial ¢(z)

of degree n, there exists a state feedback F for
which ¢p(z) = ¢(z). Thus, the solution to the prob-
lem of pole assignment through state-feedback is cha-
racterized by a single integer - the dimensicn of the
state space n (which is commonly cailed the Mac-
Millan degree of Z). This is indeed a striking re-
sult - though the description of Z consistsz of more
than n“ real numbers. and though the transformaticon
A + A - BF looks rather complicated, nevertheless
the set of all attainable characteristic polynomials
is completely determined by a single integer - the
MacMillan degree.

The theorem of pole assignment by state feedback
sparkled a large number of investigations into the
more applicative problem of pole assignment by dyna-
mic output feedback, which refers to the following
situation. Given a system Z,one connects around it
a dynamic output feedback compensator r

*

(1.1) ) Zr

[ r .
=
to obtain the new system Z,. Let ¢y denote the
characteristic polynomiel of Z,. The guestion now
is - what are the characteristic polynomials ¢,. that
can be obtained for Z, , by choosing an appropriate
dynamic output feedback compensator r.

We peuse here for a moment to remark that the
present situation is significantly more intricate than
the one for the case of state feedback. The compli-
cation is mainly due to the fact that the output feed-
back compensator r is a dynamic system. Under such
circumstances, the stability of the (input-output)
transfer matrix of I, no longer guaranties the com-
plete stability of the composite system (1.1). Some
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cancellations of unstable poles by unstable zeros

may have occured in the loop, so that the overall
system may contain unstable hidden (unreachable or
unobservable) modes, which do not appear in the input
output relationship Z... One has to guaranty the sta~
bility of all modes of the composite system (1.1),
not just the stability of the modes arpearing in the
inpute-output relationship. A linear time-invariant
system is called internally stable if all its modes,
including the unobservable and the unreachable ones,
are stable. Explicit conditions for the internal
stability of feedback systems have been derived in
the literature in several forms (e.g., (2], [41,[5]).
We now state the problem of pole assignment by
output feedback.

(1.2) Problem: Let ¢(z) be a monic polynomial with
stable roots. When does there exist a causal feedback
compensator r such that ¢(z) = ¢.(z) (the cha~
racteristic polynomial of Z.), and Z, is inter-
nally stable.

A fundamental result in the context of Problem
(1.2) was derived in [1]. This result consists of a
sufficient condition on the polynomial ¢, and it
can be stated as follows.

(1.3) THEOREM. Let u be the MacMillan degree of Z,

let uy Dbe t Ximal observability index of I,
and let ¢(z) Dbe any monic polynomial with stable
rcots. If deg ¢(z§ 2 p +py -1, then there exists
a causal feedback compensator r such that ¢(z)
is e characteristic polynomial of I, and Z, is
ingernally stable.

Thus, we again enccunter a condition determined
by an integer, and every polynomial with stable roots
can be assigned as a characteristic polynomial of
Z.., provided only that its degree satisfies the aoove
integer inequality. When one starts to examine the
conceptual implications of Theorem 1.3, one arrives
at certain difficulties, which give rise to a new
insight into the theory of linear systems. This is
the topic of our next section. (We wish to emphasize
that the intention of the following discussion is by
no means to diminish the significance of the funda-
mental result (1.3), but rather to use it as a star-
ting point for e new departure.)

2. SOME CONCEPTUAL CONSIDERATIONS

The main conceptual difficulty arising from (1.3)
is caused by the fact that usually the MacMillan
degree is not a characteristic invariant of the sys-
tem, but rather a parameter of an approximation of
the system. Indeed, the accurate description of most
engineering systems (e.g., electrical systems, me=-
chanical systems, flow systems) is provided by a
partial differential equation. Very roughly speaking,
a system described by a partial differential equation
has an infinite number of modes, and therefore an
infinite MacMillan degree. The common finite dimen-
sional description of the system is actually only an
aporoximation, obtained after the 'very high frequen-
cy' modes of the system are neglected, leaving only
a finite number of significant modes. However, the
term 'very high frequency' is a relative term, and
its gquantitative meaning depends on the application
at hand. Thus, for one and the same system, the num-
ber of significant modes which have to be included
in its finite dimensional description may vary from
application to application. Different finite dimen-
sional approximations of the same system may have
different MacMillan degrees.

For instance, consider an electrical resistor.
When this resistor is installed in an audio frequen-
cy circuit, it is usually described as a static sys-
tem, having zero MacMillan degree. However, when the
seme resistor is installed in an HF (High Freaguency)
circuit, its description as a static system will no
longer be adequate. One has to take into considera-
tion the so called 'stray inductance and capacitance?
of the resistor. In the HF circuit, the resistor will
be represented by an 'equivalent circuit', which con-
tains not only a resistor, but capacitors and induc-
tors as well. The important vpoint for our present
discussion is that the resistor will no longer be
approximated by a static system, but rather by a dy-
namic system having nonzero MacMillan degree. As we
see, for one and the same component, different app-
lications require different approximations with dif-
ferent MacMillan degrees. Thus, in many cases, the
MacMillan degree is just a parameter of the approxi-
mation at hand, and not a physical characteristic of
the system.

We return now to our discussion of the problem
of pole assignment thrcugh the output feedback (1.1).

Consider two approximations of the system Z - a
coarser approximation with MacMillan degree p, and
a finer approximation with MacMillan degree p' > p.

Theorem 1.3 then provides us with two different state-
ments regarding the possibilities of oole assignment
for Z : in the first case we may assign as charac-
teristic polynomials all those with degree deg ¢ =

u + py - 1, whereas in the latter case only those
polynomials with deg ¢ = u' + pf - 1, a subset of
the first case. There is an imminent paradox in this
situation, namely, the more accuracy we use in our
description of the system, the more restricted the
possibilities for nole assignment described by (1.3)
become. Theorem 1.3 differs in its conclusion from
one approximation >f the same system to the other,
and therefore does not provide a meaningful suffi-
cient condition for pole assignment as related to the
system Z.

The main objective of [3] was to address the prob-
lem of pole assignment (1.2) for a system, rather than
for a particular approximation of it. More explicit-
ly, we seek an answer to the problem of ~ole assign-
ment which, when apprlied to approximations of the
system I, will yield the same result for any signi-
ficant approximation of Z. Such an answer has to
depend on suitable invariants of the system 2 which
are structural in the sense that they are shared by
all significant approximations of 2. Thus, the pre-
liminary quest is to find invariants of the system Z
which are imprinted on all of its significant appro-
ximations. Even though this quest sounds somewhat
abstract and vague, its resolution is intuitively
clear and simple.

Consider again the system Z. As we have already
mentioned, it is a common practice in control engi-
neering to neglect the effect of *very high frequen-
cy' modes of Z, which are outside the natural fre-
quency range of the application at hand. However,
one major precaution has to be taken when these high
frequency modes are neglected. Namely, one may neg-
lect only stable modes. An unstable mode will even-
tually destroy the system, no matter how high its
frequency is. All unstable modes of the system Z
have to be represented in any significant approxima-
tion of it. Thus, all significant approximations of
Z will have the same number of unstable poles, equal



to the number of unstable modes of Z. The number of
unstable poles is therefore a structural invariant
of the system in the above sense.

An additional structural inveriant of the system
is given by the number of its unstable zeros, that
is, the number of zeros located on the right hand
side of the complex plane. The significance of the
unstable zeros follows from internal stability con-
siderations. As we have mentioned earl:er, a linear
system is said to be internally stable if all its
modes, including the hidden ones, are stable. In or-
der to guaranty the internal stability of (1.1) one
hes to make sure, in particular, that there are no
cancellations of unstable poles of the feedback com-
pensator r by unstable zeros of the system Z in
the open loop transmission 1rZ. In case some unstable
zeros of Z are not represented in the approximation
of it used for the computation of the stabilizing
feedback r, then r may have unstable poles coinci-
ding with these zeros, in which case some unstable
cancellations may occur, and the final system may
possess internal instabilities when the loop is closed.
On the other hand, if the epproximation containes
more unstable zeros than the system itself, then, by
e similar argument, the possibilities of choosing r
will be over-restricted. Thus, the number of unstable
zeros of 2 1is a structural invariant of the system
in our =bove sense.

The final structural invariant that we wish to
mention in this context is the number of zeros at
infinity, that is, roughly speeking, the difference
between the total number of poles and the total num-
ber of zeros of the system. The easiest way to under-
stand the intuitive significance of the number of
zeros at infinity is to consider its implications for
a discrete time system. For such system, the struc-
ture of zeros at infinity determines the internal de-
lay of the system, i.e.,the number of sampling per-
iods that one has to wait between the occurence of
the first nonzero sample of an input sequence, and
the occurence of the first nonzero sample of the cor-
responding output sequence. For instance, the single
varisble system 2z/(z+1)3 has two zeros at infinity,
and this is also the number of deley-steps between
the start of an input sequence and the start of the
corresponding output sequence. Since the internal de-
lay of any significant approximation of I evidently
has to match the internal delay of £ for any input
sequence, any such approximation will, in particular,
have the same number of zeros at infinity. We then
conclude that the number of zeross at infinity is a
structural invariant.

In sumary, intuitive control-engineering consi-
derations lead us to the conclusion that the number
of uistable poles, the number of unstable zeros, and
the number of zeros at infinity are structural inva-
riants of a system. They have to be equally represen-
ted in any significant approximating model of the
system. even though these models may widely vary in
their MacMillan degree - the state space dimension.

3. .POLE ASSIGNMENT

We now describe one of the pole assignment results
derived in [3] for the control configuration (1.1).
Motivated by our previous discussion, we would like
to express the conditions for pole assignment in
terms of structural invariants of the system Z, like
the number of its unstable poles, the number of its
unstable zeros, and the number of its zeros at infi-

nity. Such conditions will then rigidly depend on the
system Z, and not on the particular model at hand
used to approximate it. Of course, our discussion here
was very qualitative, and therefore it cannot lead us
to the exact mathematical definition of the structural
invariants of the system. In [3] we define several
structural invariants of the system Z which relate
to various versions of the pole assignment problem.
For our present case we need two of these invariants:
the stability index 6, and the maximal left pole index
pys To explain these invariants, co.sider first the
case when Z 1is a single-input single-ocutput system.
Let ( De the number of unstable zeros of 2, let 1
be the number of its zeros at infinity, end let
be the number of its unstable poles. Then,we have [3]
e=C+1, P =P
Thus, the building blocks
the structural invariants

of 6 and p, are indeed
that we have discussed be-
fore. In the general case of multi-input multi-output
systems, the integers 6 and py are also related
to the same structural invariants. An exact mathems~
tical definition of these invariants in general is
outside the scope of our present gualitative note,
aend it is given in [3]. Using these invariants, the
following can be shown [3, section 5]. (For an integer
q, we denote [ql]* :=q if q =20, and [q]* := 0
otherwise. )

(3.1) THEOREM. Let ¢(z) be a monic polynomial with
stable roots. If deg ¢ = 6 + [p; - 1]¥ , then there
exists & causal feedback compensator r such that

¢ is a characteristic polynomial of Z., and Z, is
internally stable.

EXAMPLE. In order to avoid unnecessary complications,
we consider a single-input single-output case. Let

Z Dbe represented by the transfer function f =
(z-l)(z+l)h/[(z-2)2(z+2)6l.Here we have p =2, { =1,
M=3, so that 6 =L and p; = 2. Clearly, p = 8
and py = 8. Now, let ¢ be Z monic polynomial with
stable roots. The differernt conditions for assignning
¢ as & characteristic polynomial of 1., with Z,.
internally stable, are:

Condition (3.1) [3] : deg ¢ = 5.
Condition (1.3) [1] : deg ¢ = 15.
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