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ABSTRACT 
Recent studies have shown that, for a given sys-

tem i, the possibilities for p:>le assignment through 
internally stab1e output-feedback control configura.-
tions deuend on certain integer invariants, related 
to the nu.Tober of unstable poles, the number of unsta-
ble zeros, and the number of zeros at infinity of the 
system r. The present note provides a qualitative 
discussion of the conceptual. and of the intuitive 
origins of these results. 

1. JN'I'RODUCTION 

The purpose of the present note is to discuss the 
conceptual and the intuitive implications of some re-
cent results in the theory of pole assignment for 
linear time-invariant systems, reported :n :f!.A1.~-1ER 
[1983]. In tha~ report we discuss pole assign~ent for 
various control configurations,including dynamic out-
put feed.back, inside-ioop preco~;ensation, and unity 
~utpu~ feedback. The ~ain point of the discussion 
there is that the possibilities of pole assigru:i.ent 
for actual engineering control configurations are not 
determined by classical system invariants, like the 
MacMill an degree,the reachability indices, or the ob-
servability indices, as is the case for state feed-
back. Rather, for output feedback, the possibilities 
of pole assignment are determined by certain other 
integer invariants which depend, roughly speaking, on 
the number of unstable poles, on the number of unsta-
ble zeros, and on the number of zeros at infinity of 
the given system. Our main objective in the present 
~ate is to show that these results are to be exoected 
not onl:; from the mathematical point of view ( which 
is discussed in the above repJrt), but from the intu-
itive practical-control point of view as well. Since 
our main objective here is to provide intuitive in-
sight, we shall almost completely avoid mathematical 
details. We start with a aualitative review of some 
classical results on pole assignment. 

PrJbably 1 one of the most fascinating features of 
a linear time-invariant finite-dimensional control 
system is the fact that its fundamental control capa-
bilities are determined by the (seeming) meager in-
formation contained in a finite set of integers. Spe-
cifically, we refer to pole assignment. Consider a 
linear time- invariant system i: with a canonical 
state representation 

i: : x = Ax + Bu, y = Cx, 
where the state vector x is Jf dimension n, and 
the input vector u is of dimensi::m m. As is well 
known. the dynamic behaviour of the system ! is de-
termined by the roots of the characteristic polyno-
mial ~( z) : = det (zI - A), which is of degree n. 
One of the :fundamental interrogations into the con-

trol capabilities of Z is the question of how can 
the dynamic behaviour of ! be altered through the 
application of state feedback. Explicitly, one defi-
nes the state feedback u • -Fx + v, to obtain the 
new system (which is still controllable, bu:t not al-
ways observable) x = AFx + Bv, y = ex, where Ap :s 
A - BF, and the new characteristic polynomial ~(z)= 
det (zI - AF ) , which again has degree n. The ques-
tion then is 1 what are the new characteristic polyno-
mials ~(z) that can be obtained by choosing af!)ro-
priate state feedback matrices F. As is well known, 
the answer to this question is contained in the state 
feedback pole as~ignment theorem (6], one direction 
of which states the following. If' the system r is 
controllable, then, for any monic nolyno~ial ¢(z) 
of degree n, there eY-ists a s~ate feedback F f~r 

¢F(z) ~{z). Thus, the solu~ion t~ the prob-
l em of po1e assignment through state-feedback is cha-
racterized by a single integer - the dimension of the 
state space n (which is commonly caued the Mac-
Millan degree of Z). This is indeed a strikingre-
sult - though the description of Z consis~s ~f more 
than n2 real numbers. and though the transformati~n 
A~ A - BF looks rather complicated, nevertheless 
the set of all attainable characteristic po1ynomia l z 
is complete l y determined by a single integer - the 
MacMillan degree. 

The theorem of pole assignment by state feedback 
spart.led a large number of investigations i nto the 
m::,re applicative problem of pole assignment by dyna-
mic output feedback, which refers to the following 
situation. Given a system !,one connects around it 
a dynamic output feedback compensator r 

(l.l) 1 ·: : :..---. 
to obtain the new system !r· Let ¢r denote the 
characteristic polynomial of Zr. The question now 
is - what are the characteristic polynomials ¢,,. that 
can be obtained for Zr, by choosing an appropriate 
dynamic output feedback compensator r. 

We pause here for a moment to remark that the 
present situation is significantly more intricate than 
the one for the case of state feedback. The compli-
cation is ma.inly due to the fact that the output feed-
back compensator r is a dynamic system. Under such 
circumstances, the stability of the (input-output) 
transfer matrix of Er no longer guaranties the com-
plete stability of the composite system (l.l). Some 
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cancellations of unstable poles by unstable zeros 
may have occured in the loop, so that the overall. 
system may contain unstable hidden (unreachable or 
unobservable) modes, which do not appear in the input 
output relationship z~. One has to guaranty the sta.-
bility of all modes Jf-the composite system (1.l), 
not just the stability of the modes appearing in the 
inuut-outnut relationship. A linear time-invariant 
sy~tem is- called internally stable if all its modes, 
including the unobservable and the unreachable ones, 
are stable. Explicit conditions for the internal 
stability of feedback systems have been derived in 
the literature in severaJ. forms (e.g., [2], [4]1 [5]). 
We now state the problem of pole assignment by 
outnut feedback. 
(1.2) Problem: Let ¢(z) be a monic polynomial with 
stable rJots. When does there exist a causal feedback 
com~ensator r such that ¢(z) = ¢r(z) (the cha-
racteristic polynomial of i:r), and Lr is inter-
naJ.ly' stable. 

A fundamental result in the context of Problem 
(l.2) was derived in [l]. This result consists of a 
sui'ficient condition on the polynomial ¢, and it 
can be stated as follows. 
(1.3) THEOREM • .----~---..-.-....._,-..,...._._ m µ, 
and lei ¢(z 
r:ots. If 

r such that 
is a characte!'istic 'DOl:v-nomial of rr, Lr lE. 
ir.-cernall ".; s-cable. 

Thus, we again enc~unter a condition determined 
by an integer, and every polynomial with stable roots 
can be assigned as a characteristic polynomial of 
i:~, provided only that its degree satisfies ~he aoove 
integer ineq_uality. When one start:; to examine the 
conceptual implications of Theorem 1.3, one arrives 
at certain difficulties, which give rise to a new 
insight into the theory of linear systems. This is 
the topic of our next section. (We wish to emphasize 
that the intention of the follow:i.ng discussion is by 
no means to diminish the significance of the funda-
mental result (1.3), but rather to use it as a star-
ting point for a new departure.) 

2. SOME CONCEPTUAL CONSIDERATIONS 
The main conceptual difficulty arising from (1.3) 

is caused by the fact that usually the MacMillan 
degree is not a characteristic invariant of the sys-
tem. but rather a parameter of an approximation of 
the· system. Indeed, the accurate description of most 
engineering systems (e.g., electrical systems, me-
chanical systems, flow systems) is provided by a 
partial differential equation. Very roughly speaking, 
a system described by a partial differential equation 
has an infinite number of m::>des, and therefore an 
infinite MacMillan degree. The common finite dimen-
sional description of the system is actually only an 
anoroximation. obtained after the 'very high frequen-
cy' modes of the system are neglected, leaving only 
a fi~ite number of significant modes. However1 the 
term 'very high frequency' is a relative t~ and 
its quantitative meaning depends on the application 
at hand. Thus. for one and the same system, the num-
ber of significant modes which have to be included 
in its finite dimensional description may vary from 
applicati:>n to ap ;)lication. Different finite dimen-
sional approximations of the same system may have 
different MacMillan degrees. 

For instance, consider an electrical resistor. 
When this resistor is installed in an audio freq_uen-
cy circuit, it is usually described as a static sys-
tem, having zero MacMillan degree. However, when the 
same resistor is installed in an HF (High Freq_uency) 
circuit, its description as a static system will no 
longer be adequate. One has to take into considera,-
tion the so called 'stray inductance and capacitance' 
of the resistor. In the HF circuit, the resistor will 
be represented by an 'equivalent circui. t', which con-
tains not only a resistor, but capacitors and induc-
tors as well. The important point for our present 
discussion is that the resistor w:i.11 no longer be 
approximated by a static system, but rather by a dy-
namic system having nonzero Mac~.illan degree. As we 
see, for one and the same component, different app-
lications require different approximations with dif-
ferent MacMillan degrees. Thus, in many cases, the 
MacMillan degree is just a parameter of the approxi-
mation at hand, and not a physical characteristic of 
the system. 

We return nowt~ our discussion ~f the nroblem 
of pole assignment thr~ugh the outpu~ feedb~ck (l.l). 
Consider two appr::nd.mations of the system Z - a 
coarser approximation with MacMillan degree µ, and 
a finer approximation with MacMillan degree µ' > µ. 
The~rem 1.3 then provides us with two different state-
ments regarding the possibilities of pole assignment 
for ! : in the first case we may assign as charac-
teristic p~lynomials all those with degree deg¢::::. 
µ + µ 1 - 1, whereas in the latter case only those 
polynomials with deg ¢ ::::. µ 1 + µ~ - 1, a subset of 
the first case. There is an imminent paradox in this 
situation, namely, the more accuracy we use in our 
descrip~ion of the system, the more restricted the 
possibilities for ~ale assignment described by (1.3) 
become. Theorem 1.3 differs in its conclusion from 
one approximation ~f the same system to the other, 
and therefore does not provide a meaningful su:ffi-
cient condition for pole assignment as rela-ced to the 
system z. 

The main objective of [3] was to address the prob-
lem of pole assignment (1. 2) for a svstem, rather than 
~or a particular ap~roximation of it. M~re explicit-
ly, we seek an answer to the problem of ::-ole assign-
ment which, when applied t~ approximations of the 
system z, will yield the same result for any signi-
ficant appr~ximation of z. Such an answer has to 
depend on suitable invariants of the system L which 
are structural in the sense that they are shared by 
all significant approximations of i:. Tb.us, the pre-
liminary quest is to find invariants of the system Z 
which are imprinted on all of its significant appro-
ximati~ns. Even though this quest sounds somewhat 
abstract and vague, its resolutio :1 is intuitively 
clear a.nd simple. 

Consider again the system i:. As we have already 
mentioned, it is a comm:>n practice in control engi-
neering to neglect the effect of 'very high ~requen-
cy I modes of Z, which are outside the naturaJ. fre-
quency range of the application at hand. However, 
one major precaution has to be taken when these high 
frequency modes are neglected. Namely, one may neg-
lect only stable mdes. An unstable m:ide will even-
tually destroy the system, no matter how high its 
frequency is. All unstable m~des ::if the system Z 
have to be represented in any significant approxima-
tion of it. Thus, all significant approximation.;; of 
.2: will have the same number ::,f unstable poles, equal 



to the number :Jf unstable modes of i:. The number of 
unstable poles is therefore a structural invariant 
of the system in the above sense. 

An additional structural invariant of the system 
is given by the number of its unstable zeros, that 
is, the number of zeros located on the right hand 
side of the complex plane. The significance of the 
unstable zeros follows from internal stability con-
siderations. As we have mentioned earl~er, a linear 
system is said to be inter~ally stable if all its 
modes, including the hidden ones, are stable. In or-
der to guaranty the internal stability :if (1.1) one 
has to make sure, in particular, that there a.re no 
cancellations of unstable pol.es of the feedback com-
pensator r by unstable zeros of the system E in 
the open loop transmission ri:. In case s:Jme unstable 
zeros of i: are n:Jt re~resented in the approximation 
of it used for the computation of the stabilizing 
feedback r, then r may have unstable poles coinci-
ding with these zeros, in which case some unstable 
cancellations may occur, and the final system m.ey 
possess internal instabilities when the loop is closed. 
On the other hand, if the approximation containes 
more tmstable zeros than the system itself, then, by 
a similar argument, the possibilities of choosing r 
will be over-restricted. Thus, the number of unstable 
zeros of ! is a structural invariant of the system 
in our above sense. 

The final structural invariant that we wish t:J 
mention in this context is the number of =eros at 
infinity,that is, roughly speaking, the difference 
between the total number of poles and the total num-
ber of zeros of the system. The easiest way to under-
stand the intuitive significance of the number of 
zeros at ::.nfinity is to consider its implications for 
a discrete time system. For such system, the struc-
ture of zeros at infinity determi:1es the internal de-
lay of the system, i.e.,the number of sampling per-
iods that one has to wait between the occurence of 
the first nonzero sample of an input sequence, and 
the occurence of the first nonzero sample of the col'-
responding output sequence. For instance, the sing.le 
variabl.e system z/(z+l)3 has two zeros at i :1finity, 
and this is also the number of delay-steps between 
the start of an input sequence and the start of the 
corresponding output sequence. Since the internal de-
lay of any significant approximation of ! evidently 
has to match the internal delay of ! for any in9ut 
sequence, any such approximation will, in particular, 
have the same number of zeros at infinity. We then 
conclude that the number of zer:Js at infinity is a 
structural invariant. 

In su'l'IIIlary, intuitive control-engineering consi-
derations lead us to the conclusion that the nwnber 
of u.,stable poles, the number of unstable zeros, and 
the number of zeros at infinity are structural inva-
riants of a system. They have to be equal.ly represen-
ted in any significant approximating model of the 
system. even though these models may widely vary in 
their MacMil.1an degree - the state space dimension. 

3 •. POLE ASSIGNMENT 
We now describe one of the pole assignment results 

derived in [3] for the control configuration (1.1). 
M::>tivated by our previous discussion, we would_ like 
to express the conditions for pole assignment in 
terms of structural invariants of the system Z, like 
the number of its tmstable poles, the number of its 
unstable zeros, and the number of its zer.,s at infi-

nity. Such conditions will then rigidly depend on the 
system Z, and not on the particular model at hand 
used to approximate it. Of course, our discussion here 
was very qualitative, and therefore it cannot lead us 
to the exact ma~hematical definition of the structural 
invariants of the system. In [3] we defi~e several 
structural invariants of the system i which relate 
to various versions of the pole assignment problem. 
For our present case we need two of these invariants: 
the stability index e, and the maximal left oole index 
Pi- To explai:1 these invariants., co.,sider first the 
case when ! is a sing.le-input single-output system. 
Let , be the number of unstable zeros of z:., let Tl 
be the number of its zeros at infinity, and let p 
be the number of its unstable poles. Then,we have [3] 

e ='+Tl, Pl= P • 
Thus, the building blocks of e and p1 are indeed 
the structural invariants that we have cu.scussed be-
fore. In the general case of multi-input multi-output 
systems, the integers e and p1 are also related 
to the same structural invariants. An exact mathema-
tical definition of these invariants in general is 
outside the scope of our present qualitative note, 
and it is given in [3]. Using these invariants, the 
following can be shown [3, section 5]. (For an integer 
q, we denote [q]+ := q if q:.::: o., and [q]+ := o 
otherwise.) 
(3.1) THEOREM. Let ¢(z) be a m::mic nolvnomial with 
stable roots. ~deg¢~ e + [p 1 - 1]+, then there 
exis~s a causal feedback corrroensator r such tha~ 
¢ is a characteristic polynomial of !r, and ir is 
internally stable. 
EXAf.U>LE. In order to avoid unnecessarJ complications, 
we consider a single-input single-output case. Let 
! be represented by the transfer f'unction f = 
(z-l)(z+1)4/[(z-2)2(z+2)6]. Here we have p = 2, = 1, 
Tl= 3, so that e = 4 and p1 = 2. Clear~,µ= 8 
and µ1 = 8. Now, let ¢ be a 1D0nic p:>lynomial with 
stable roots. The different conditions for assignning 
¢ as a characteristic polynomial of !r , with rr 
internal..ly stable, are: 
Condition (3.l) [3] 
Condition (1.3) [l] 

deg ¢ 5. 
deg ¢ 15. 
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