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Abstract 
An algebraic theory on the stabilization of discrete 
and continuous time nonlinear systems by static state 
feedback is presented. The theory includes necessary 
and sufficient conditions for the existence of stabiliz-
ing feedback functions, as well as methods for their 
computation. 

1. Introduction 
The purpose of the present note is to indicate that sev-
eral fundamental issues in the theory of stabilization 
of nonlinear systems are of an algebraic nature. We 
consider the stabilization of discrete-time and of con-
tinuous-time nonlinear systems by static state feed-
back. In both cases, we show that the existence of stabi-
lizing feedback controllers can be completely charac-
terized through certain algebraic properties of the 
functions determining the state representation of the 
system. Those properties permit the computation of all 
stabilizing feedback functions. Furthermore, an in-
herent resemblance between the discrete-time and the 
continuous-time cases is elucidated. 
Stabilization here is understood in the strong sense of 
internal stability, meaning that stability is preserved 
under various small perturbations and noises. In this 
context, we also adopt the realistic assumption that the 
input signals of the closed loop systems must all be 
bounded and of an amplitude not exceeding a pre-spec-
ified, but otherwise arbitrary, fixed bound. Thus, we 
shall deal with internal stabilization over bounded 
domains. 

In the discrete-time case, we consider systems pos-
sessing a 'state representation' of the form 
(1.1) xk+l = ftxk,uk), k = 0, 1, 2, ... 

where (uk) is the input sequence, and (xk) is the output 
sequence. The function f is assumed to be continuous. 
In complete analogy, the continuous-time systems we 
consider possess a state representation of the form 

(1.2) x(t) = ftx(t),u(t)), t 0, 

where, again, u(t) is the input function, and x(t) is the 
output function. Here, the function f is assumed to be 
continuously differentiable. In both cases, we shall re-
fer to the function f as the state representation func-
tion of the system. 

Throughout, p shall denote the dimension of x, and m 
the dimension of u. The initial condition x0 or x(O) 
is assumed specified, while perturbations of the initial 
condition are permitted. 
We consider stabilization by static state-feedback, 
i.e., by a configuration of the form , 

V u x ___ 
--- cr(x,v) ... :E .. ... .. 

(1 .3) .j 

where cr : RPxR m Rm is a continuous function 
(continuously differentiable in the continuous-time 
case). For the sake of simplicity of the presentation, we 
shall assume that the external input v is not present, 
i.e., that the control is achieved entirely through the 
feedback, with no operator present. Then, cr becomes a 
function cr(x) of x only, and the closed loop is de-
scribed by the equations 
(1.4) xk+l = ftxk,cr(xk)) (discrete-time), 

(1.5) i(t) = ftx(t),cr(x(t))) (continuous-time). 

In either case, the closed loop system induced by the 
configuration (1.3) is denoted by :Ea. We describe nec-
essary and sufficient conditions for the existence of 
feedback functions cr that internally stabilize the 
closed loop system. The condition .s are stated directly 
in terms of certain algebraic properties of the state rep-
resentation function f. Despite the fundamental dif-
ferences between discrete-time and continuous-time 
systems, the conditions for the existence of stabilizing 
feedback functions take on a rather similar form in 
both cases. The conditions we present also permit the 
computation of stabilizing feedback functions. 
In addition to its own interest, the stabilization theory 
presented here also plays a fundamental role in the 
theory of fraction representation of nonlinear sys-
tems. It provides means for the construction of right 
coprime fraction representations for nonlinear sys-
tems, even in cases where the state of the system is not 
available as output. The resulting fraction representa-
tions can then be used to derive stabilizing dynamic 
compensators which achieve desirable design objec-
tives, like dynamics assignment. For a more detailed 

Proceedings of the IEEE Conference on Decision and Control, Brighton, England, December 1991

Proceedings of the IEEE Conference on Decision and Control, Brighton, England, December 1991



discussion of this topic, see HAMMER [1989b and 
1988]. 

The material presented in this note is a perspective on 
some recent work by the author (HAMMER [1989a] and 
[1991]). Alternative recent studies on the theory of sta-
bilization of nonlinear systems can be found in 
HAMMER [1984] and [1986], DESOER and KABUL! 
[1988], VERMA [1988], MOORE and TAY [1988], SON-
TAG [1989], PAICE and MOORE (1990], CHEN and de 
FIGUEIREDO [1990], the references cited in these pa-
pers, and others. 

2. The discrete-time case 
Let S(Rm) be the set of all sequences (Uo, u 1, ... ) of m-
dimensional real vectors e Rm, i = 0, 1, 2, .... Adopt-
ing the input/output point of view, a system is simply a 
map L : S(Rm) --+ S(RP), transforming m-dimensional 
input sequences into p-dimensional output sequences. 
The set L[S] is the image of a subset S c S(Rm) through 
L. 

In preparation for a discussion of stability, we review 
some norms. First, given a vector u e Rm, let I u I := 
max ( I I , i = 1, ... , m) be the maximal absolute value 
of its coordinates. For a sequence u e S(Rm), denote 
I u I := supi~o I I , so that I · I becomes the usual 00 

-

norm. When discussing the continuity of systems, we 
shall employ a weighted 00 -norm p, given by 
(2.1) p(u) := sup20 2-i I llj I 

for all u e S(Rm). By S we denote the closure of a set S 
c S(Rm), with respect to the topology induced by p. 

To deal with bounded sequences, let S(0m) be the set of 
all u e S(Rm) satisfying I u I 0, where 0 > 0. Then, a 
system L : S(Rm) --+ S(RP) is BIBO (Bounded-Input 
Bounded-Output)-stable if, for every real number 9 > 
0, there is a real number M > 0 such that L[S(em)] c 
S(MP). 

A system L : S(Rm) --+ S(RP) is stable if (i) it is BIBO-
stable, and (ii) for every real number 8 > 0, the restric-
tion L : seem) --+ S(RP) is a continuous map. This no-
tion of stability conforms with the qualitative notion of 
stability of the (input/output) Lyapunov theory. 

In order to examine the stability of the closed loop sys-
tem (1.3), we need to account for the effect of inaccura-
cies and noises within the configuration. Let f : 
RPxRm --+ RP be the state representation function of the 
system L, and let cr : RP Rm be the feedback function 
(recall that we discuss a pure feedback configuration 
with no external input). Inaccuracies within the state 
representation of 1: can be taken into account by in-
troducing a noise sequence n e S(RP) in the form 

(2.2) xk+l = f(xk ,uk) + nk+l' k = 0, 1, 2, ... , 
Xo = Xoo + no, 

where x00 is the nominal initial condition. In a simi-
lar fashion, the feedback is represented by 
(2.3) Uk = cr(xk) + 'l>t, k = 0, 1, 2~ ... , 

where u e S(Rm) is a noise sequence. We denote by 
Lan '\) the closed loop system with the noises n and u 
p;e~en t. The system Lan '\) can be regarded as a system 
having the input sequ~n'.ces n and u, so that Lan'\) : 
S(RP)xS(Rm) --+ S(RP), where the first term of the ~r~ss 
product represents the noise n and the second term 
represents the noise u. As is customary, the noises n 
and u are assumed to have 'small' amplitudes, not 
exceeding a bound which is denoted by E. We assume 
that the initial condition Xoo is restricted to a subset S 
c RP. The notion of internal stability is then defined 
as follows. 
(2.4) DEFINITION. The configuration (1.3) is inter-
nally stable (for initial conditions within S) if there 
is a real number E > 0 such that Lan'\) : S(eP)xS(em) --+ 
S(RP) is a stable system for initia'.l 'conditions x00 e 
S.+ 
In qualitative terms, internal stability means that the 
output of the closed loop system is bounded and depends 
continuously on the noise signals n and u, where 
continuity is with respect to the topology induced by the 
metric p. According to our setup, this also implies 
continuous dependence on the initial condition, via 
the noise element n 0 • All feedback configurations 
derived in the present note are internally stable. 
Before continuing with our discussion of internal sta-
bility, we need some notation. Let e > 0 be a real num-
ber. For a point x e Rn, let !Ee(x) be the open ball of ra-
dius e around the point x; namely, the set of all points 
y E Rn satisfying I y - x I < e. Given a subset S c Rn, 
denote 

(2.5) !Be(S) := UxeS !EeCx). 

The set Be(S) is clearly an open neighborhood of the 
set S, consisting of all points y E Rn for which there is 
a point x e S satisfying I y - x I < e. Finally, let IIP : 
RPxRm RP be the standard projection onto the first p 
coordinates, so that IIPz := (z1, •.. , zP) for all z = (z1, ... , 

Zp+m) E RPxRm. 
(2.6) DEFINITION. An eigenset E of a function f: 
RPxRm RP is a subset E c RPxRm satisfying f[E] c 
IliEJ. 
An e-eigenset 'E of the function f is a subset 'E c 
RPxRm satisfying the condition f[B/ 'E)] c Ili'E], where 
E > 0 is a real number.• 
In qualitative terms, an eigenset E consists of pairs 
(x,u) of states and inputs having the following prop-
erty. For every state x e IIplE], and for every input u 
for which (x, u) e E, the next state f(x, u) of the system 
stays within IIplE]. In other words, an eigenset E as-
sociates with every state x e ~[E] a set of inputs u for 



which the next step also belongs to I\,[E]. Thus, by us-
ing only pairs (x,u) e E, we can generate an entire 
output sequence all o( whose elements are within 
IIiEJ. 
The notion of an E-eigenset is a somewhat stronger 
notion to this effect, guarantying that small inaccura-
cies (not exceeding E) in x and in u will still leave 
the next step within I\,IB]. 
Eigensets and E-eigensets of a function f can be com-
puted by solving an appropriate set of inequalities in-
volving the function. 
Eigensets have simple properties; For instance, one 
can create new eigensets from available ones as de-
scribed in the following statement. Given a subset S c 
RPxRm, let S(x) be the set of all elements u e Rm for 
which (x,u) E S. In the case of an eigenset E and a 
point x E I1pEE], the set E(x) consists of input vectors u 
for which the next step of the system is still within 
IIP[E]. 
(2. 7) PROPOSITION. Let ii;1 and ii;2 be two e-
eigensets of the function f : RPxRm RP. Then, the 
following hold true. 
(i) The union ii;1 U 'Li is an E-eigenset of the function 
f. 
(ii) The intersection ii;1 n is an E-eigenset of the 
function f. 
(iii) For any real number a > 0, the intersection ii;1 n 
RPx[-a,a]m is an E-eigenset of the function f. 
(iv) Let ii; c RPxRm be any subset satisfying the condi-
tions IIiii;] = 11/~J and tix) c ~(x) for all x e II/ii;]. 
Then ii; is an e-eigenset of the function f. • 
Recall that the graph of a function g : RP Rm is sim-
ply a subset of RPxRm, consisting of all points of the 
form (x,g(x)), x e RP. 

Based on the concept of a graph, we next define a no-
tion critical to our theory. A subset S c RPxRm is a 
uniform graph if there is a continuous function g : RP 

Rm and a real number C > 0 such that ~~(g(x)) c 
S(x) for all x e IIpES]. The function g is called a 
graphing function for the set S. The notion of a uni-
form graph is quite simple on an intuitive level. 
Clearly, a uniform graph S contains the graph of the 
continuous function g. Furthermore, it also contains 
the graph of any continuous function g' which differs 
from g by less than C, namely, any continuous func-
tion g' satisfying I g'(x) - g(x) I < C for all x e IIpES]. 
The notion of a uniform graph is a natural tool for the 
description of functions whose values may be cor-
rupted by noise. 

We can now state our main result on the stabilization 
of discrete-time systems by state feedback (HAMMER 
[1989a]). (A set S c R0 is bounded if there is a real 
number a. > 0 such that S c [-a,a] 0

• ) 

(2.8) THEOREM. Let :E : S(Rm) S(RP) be a system 
represented by the recursion xk+l = ftxk ,uk) with the 
initial condition x00 , where f : RPxRm RP is a con-
tinuous function. Then, the following two statements 
are equivalent. 
(i) There exists a continuous state feedback function cr 
: RP~ Rm for which the closed loop system (1.3) is in-
ternally stable. 
(ii) The state representation function f has a bounded 
e-eigenset 'E for which the set ~£( ii;) is a uniform 
graph, and Xoo E IIP[ii;]. • 
We comment that condition (ii) of the Theorem can be 
stated in terms of the existence of a solution to a simul-
taneous set of inequalities involving the given state 
representation function f of the system that needs to be 
controlled. The solution of this set of inequalities also 
provides the means for the computation of feedback 
functions cr that internally stabilize the system. For 
more details on this, as well as for a proof of the Theo-
rem see HAMMER [1989a]. Thus, we have derived a 
complete characterization of internal stabilizability 
by static state feedback for discrete-time systems, ex-
pressed directly in terms of properties of the given 
state representation function f. From a practical point 
of view, this result yields a procedure for the computa-
tion of stabilizing feedback functions, as mentioned 
before. Examples on the computation of stabilizing 
state feedback functions are provided in the reference. 
Finally, we comment that condition (ii) of the Theo-
rem is in fact necessary and sufficient for the exis-
tence of a reversible state feedback function that in-
ternally stabilizes the system, as discussed in HAM-
MER [1989a]. We chose not to include this stronger re-
sult in the present note due to space limitations. 

3 The continuous-time case 
We consider now the stabilization of a nonlinear con-
tinuous-time system described by a differential equa-
tion of the form x(t) = ftx(t),u(t)), using the state feed-
back configuration (1.3). In the present case we are 
able to solve a stronger version of the stabilization 
problem. We characterize the feedback functions cr 
that internally stabilize the system, while guaranty-
ing that the output trajectory remains confined within 
a prescribed box. The latter permits the designer to sat-
isfy various amplitude constraints imposed by the 
physical characteristics of components. 
Explicitly, denoting by p the dimension of x, we seek 
feedback functions cr which provide internal stabi-
lization, and for which the output trajectory x(t), t 0, 
of the closed loop system satisfies < ~(t) < ~i for all 
i = 1, ... ,p and all t 0, where a 1, ... ,<Ip, ~1, ... ,~P are 
specified real numbers with < ~i for all i = 1, ... ,p. 
We provide necessary and sufficient conditions for 



the existence of such feedback functions cr. The condi-
tions can be employed to compute the feedback func-
tions. 
As before, we consider pure feedback configurations 
with no external input, namely, of the form u = cr(x). 
The differential equation describing the closed loop 
system is then x(t) = f(x(t),cr(x(t))), x(O) = x0 • We 
shall require both functions f and cr to be continu-
ously differentiable. It will be convenient to introduce 
some notation. 
Let R+ be the set of all non-negative real numbers, 
which will serve as our time set. The response of a 
system .'E is then simply a function x : R+ RP. De-
note by C(RP) the set of all continuous functions h : R+ 

RP. For a real number a > 0, let C(8P) be the set of 
all functions u e C(RP) satisfying I ~(t) I a for all t 

0 and all i = 1, ... ,p, namely, the set of all continuous 
functions bounded by 8. 
Next, denote by xT the transpose of a vector x e RP. 
Given two vectors a, x e RP, where a = (a 1, ... ,ap? 
and x = (x1, ... ,xp?, let x a (respectively, x > a) 
indicate that (respectively, > ~) for all i = 1, 
... ,p. For two vectors a,~ E RP, where a<~' denote by 
[a.,~] (respectively, (a,~)) the set of all vectors x e RP 
satisfying ~i (respectively, °'i < < ~i) for all i 
= 1, ... ,p. Also, denote by C((a,~)) the set of all func-
tions x e C(RP) satisfying x(t) e (a,~) for all t 0. 
For future reference, it is convenient to define the fol-
lowing. 

The Ca 6}-confinement Problem by pure state feed-
back. Let .'E be described by the differential equation 
(1.2), where the function f: RPxRm RP is continu-
ously differentiable. Let a,~ E RP, where a<~' be two 
prescribed fixed vectors. Find a continuous feedback 
function cr : [a.,~] Rm, x cr(x), which is continu-
ously differentiable over (a,~), and for which the fol-
lowing holds. The closed loop differential equation 
(1.5) has a unique solution x(t), t 0, for any initial 
condition x0 e (a,~), and this solution satisfies a < 
x(t) < for all t 0. • 

A critical ingredient of the problem of (a,~)-con-
finement is the fact that the initial condition x0 of the 
system .'E is not known in advance, and may be any 
vector within the domain (a,~). For any such initial 
condition, a unique solution of the differential equa-
tion describing the closed loop system is required to 
exist, and this solution must be confined to the domain 
(a.,~) at all times. We present below necessary and 
sufficient conditions for the existence of a solution cr 
to the problem of (a,~)-confinement by pure state feed-
back. These conditions are stated entirely in terms of 
certain algebraic properties of the given feedback 
function f, and they can be used to compute appropriate 
feedback functions cr, whenever they exist. Further-
more, the solution of the (a,~)-confinement problem 

also yields internal stabilization of the given system 
1:. 

In general, the existence of a solution to the 
(a,~)-confinement problem for a system 1: depends, 
among others, on the choice of the bounds a and ~; a 
solution may exist only for some choices of these 
bounds. The necessary and sufficient conditions 
derived below can also be used to find the set of bounds 
a and for which a solution exists, if there are such 
bounds. 
In order to discuss the notion of stability, we introduce 
some norms, which are analogous to the norms we 
used in the discrete-time case. The usual L - -norm on 
RP is denoted by I· I , and is given by the maximal ab-
solute value of the coordinates I x I := max ( I x1 I , 
... , I ~I}, where x e RP is a vector with the components 
x 1, ... ,xP. The 1°0 -norm on C(RP) is also denoted by 
1 ·I, and is given by I h I := Supt~ 0 I h(t) I for a function 
h E C(RP). 

On C(RP) we also induce the following weighted L--
norm 
(3.1) p'(h) := Supt~ 0 z-t I h(t) I 

for a function h E C(RP). This norm will be used when 
dealing with the continuity of systems. 
Consider a system 1: described by the differential 
equation (1.2). Assume the equation has a unique so-
lution x(t), t 0, for any relevant initial condition x0 
and input function u. Formally, we regard .'E as a 
map l:: RPxC(Rm) C(RP) which assigns to each pair 
(x0,u) E RPxC(Rm) an output function x E C(RP), where 
x0 E RP is the initial condition and u E C(Rm) is the 
input function. Then, given a subset Ac RPxC(Rm), 
let 1:(~} be the image of the set A through 1:, namely, 
the set of all output functions generated by the system l:: 
from elements of A. 
(3.2) DEFINITION. A system l: : RPxC(Rm) C(RP) 
described by the differential equation (2.1) is BIBO 
(Bounded-Input Bounded-Output)-stable if the follow-
ing conditions hold: (i) For every initial condition x0 
e RP and every input function u E C(Rm), the equation 
(1.2) has a unique solution x(t), t O; and (ii) For ev-
ery pair of real numbers co, 8 > 0, there exists a real 
number M > 0 such that l:[[-co,co]PxC(8m)] c C{M°). • 

Thus, our notion of BIBO-stability includes the exis-
tence of a unique solution of the differential equation 
describing the system. Next, define a norm p on 
product RPxC(Rm) by setting 
(3.3) p(x,u) := Ix I + p'(u) 

for all x E RP and all u E C(Rm). We can now intro-
duce our notion of stability. 
(3.4) DEFINITION. A system 1: : RPxC(Rm) C(RP) 
is stable if it is BIBO-stable, and if, for every pair of 
real numbers co, 8 > 0, its restriction 1: : [-co,co]PxC(8m) 



C(RP) is a continuous function (with respect to the 
norm p).+ 

When dealing with closed-loop systems, we need to 
take into account the effects of in-loop noises and 
inaccuracies on the performance. In order to represent 
noises related to the variable x and inaccuracies in 
the representation of the function f, we introduce a 
noise signal u1 E C(RP) into the differential equation 
in the form 

(3.5) x(t) = ftx(t),u(t)) + U1(t). 

We assume that u 1 is a continuous function of t, 
bounded by E > 0 in the L - sense, i.e., that u 1 E C(eP). 
We also permit the values of the feedback function cr 
to be corrupted by noise and inaccuracies, so that the 
input u seen by I, is given by 
(3.6) u(t) = cr(x(t)) + u2(t), 

where u 2 E C(em) is a continuous noise function 
bounded again by E > 0. 

When the noises u1 and u2 are incorporated into the 
configuration (1.3) (with cr a function of x only), they 
may be regarded as external inputs (over which no 
control is provided). Then, the closed loop system be-
comes a map I,cr : RPxC(eP)xC(em) C(RP), where the 
terms in the cross product represent the initial condi-
tion Xo, the noise u 1, and the noise u 2, respectively. 
The differential equation describing the closed loop 
system l:cr with the noises u1 and u2 present is given 
by 

(3.7) iet) = ftx(t),cr(x(t))+u2(t)) + u1(t), x(O) = Xo· 

(3.8) DEFINITION. Let co > 0 be a real number, and 
let Sc [-ro,ro]P be a subset.The closed loop system (1.3) 
is internally stable (over the domain S of initial con-
ditions) if there is a pair of real numbers e, N > 0 such 
that the following hold. 

(i) l:cr {SxC(eP)xC(em)} c C(NP), and 

(ii) The map I.a : SxC(eP)xC(em) C(RP) is con-
tinuous (with respect to p). 
The number e is referred to as the noise level. • 

When the noises u1 and u2 are present, we shall 
refer to our (a,~)-confinement problem as the dis-
turbed ( a,/3)-confinement problem with pure feedback. 
In precise terms, the problem consists of finding a 
continuous function cr : [a,~] Rm which is continu-
ously differentiable over (a.,~), and for which the fol-
lowing holds true: there is a real number e > 0 such 
that l:cr[(a,~)xC(eP)xC(em)] c C((a,~)). In addition to 
that, we shall require the closed loop system to be in-
ternally stable. 

We describe now the solution of the disturbed 
(a.,~)-confinement problem with internal stability. 

First, some notation. Let a, e RP be two fixed vectors 
satisfying a < ~' and let r(a,~) denote the boundary of 
the rectangular box [a.,~]. In explicit terms, the bound-
ary consists of 2p faces given by 

ri(a,~) := {(x17 ••• ,xP) E [a,~] : = a.i ) 
(3.9) 

r;ca,~) := {Cx1, ... ,xp) E [a,~] : = ~i }, 

i = 1, ... ,p, and 

(3.10) 

Ignoring for a moment the noises, the closed loop sys-
tem I.er is represented by the differential equation x( t) 
= f(x(t),cr(x(t))), x(O) = x0 • The state representation 
function f has p components f1, ... ,fp, each of which 
represents the derivative of the corresponding coordi-
nate ~' i = 1, ... ,p, along the system's trajectory. We 
shall reach the solution of our confinement problem by 
constructing a feedback function cr which meets the 
following requirements for some real number C > 0: 
for each i = 1, ... ,p, the composed component function 
fi(x,cr(x)) satisfies ~(x,cr(x)) -c for all X E r;(a,~) 
and fi(x,cr(x)) for all X E r;ca,~). A slight reflec-
tion shows that these properties guaranty that the tra-
jectory of the closed loop system cannot exit the set 
[a,~]. In fact, these conditions also provide for internal 
stability. 
To continue with our discussion, recall that a subset S 
c RPxRm is the graph of a function g : RP Rm if S = 
{(x,u) E RPxRm: u = g(x)}; and IIP: RPxRm RP is the 
standard projection onto the first p coordinates. 
Given two subsets S c RPxRm and X c RP, we say that 
S is a uniform graph on X if there is a continuous 
function g : X Rm and a real number I; > 0 such that 
S = ((x,u) E XxRm : u E 1J~(g(x))}. The function g is 
then called a graphing function on X of the set S, and 
the number l; is called a graphing radius. We have 
already mentioned earlier that .a uniform graph is 
simply a 'thickened' graph of a continuous function. 
Finally, for a function h : Rn R, a subset A c R0

, 

and a real number ~' the notation h(A) indicates 
that h(x) for all x E A 
Returning to our disturbed (a,~)-confinement prob-
lem, let C > 0 be a real number. For each point x of the 
boundary r(a,~), construct the set Ur.~(a.,~,x) of input 
values 

~(x,u) 
for all i E {1, ... ,p) 
for which x E ri(a,~), 

Uti<X,~,x) := ue Rm and 
fi(x,u) ~-c 
for all i E {1, ... ,p) 
for which x e r[(a,~). 



Note that Ur.~(cx,~,x) is obtained simply by solving a 
set of inequalities determined by the given state repre-
sentation function f of the system l:. We can some-
what condense the notation by listing each subset 
Ur.~(a.,~,x) side by side with the point x, which yields 
the following subset of RPxRm characterizing all sets 
U r.~(a.,~,x) 
(3.11) 
Sr(o.,~,~) := ((x,u) e RPxRm : x e r(a.,~), u e Ur.~(a.,~,x)}. 

Of particular interest is the situation when there is a 
real number > 0 for which the set Sr(o.,~,~) contains 
a uniform graph on the boundary r(a.,~). In intuitive 
terms, the significance of this case is quite simple. It 
means that a continuous function g: r(a.,~) Rm de-
fined on the boundary r(a.,~) exists for which the fol-
lowing holds for all i = 1, ... ,p: There is a real number 

> 0 such that .~(x,1vg(x))) whenever X E r;(a.,~), 
and fi(x,13;(g(x))) $ -~ whenever x E rica.,~). The 
function g, when used as feedback on the boundary 
r(a.,~), will guaranty that the trajectory can not 
emerge from the box (a.,~), even when appropriately 
small disturbances are present. When g is extended 
to the entire domain [a.,~] (and such an extension is 
always possible here; see HAMMER [1991]), we obtain 
a feedback function that confines the system as de-
sired. Furthermore, this function also provides for 
internal stabilization. A refinement of these argu-
ments leads to the following result (HAMMER [1991]), 
which is a close analog of the situation in the discrete 
time case discussed earlier. 
(3.12) THEOREM. Let l: be a system described by the 
differential equation x(t) = f(x(t),u(t)), x(O) = Xo, where 
f: RPxRm RP is continuously differentiable, and let 
a. < be two fixed vectors in RP. Then, the following 
two statements are equivalent. 

(i) There exists a feedback function cr : [a.,~] Rm 
solving the disturbed (a,~)-confinement problem for 
the system r, with the closed loop system r(J being in-
ternally stable for all initial conditions x0 e (a,~). 

(ii) The given state representation function f of l: 
has the following property: There is a real number C > 
0 such that the set Sr(a,~,~) contains a uniform graph 
on the boundary r(a,~). • 
Condition (ii) of the Theorem can be reduced to the so-
lution of a set of simultaneous inequalities, which are 
derived directly from the given state representation 
function f of the system l:. This set of inequalities 
also permits the construction of stabilizing feedback 
functions (see HAMMER [1991] for details and exam-
ples). 

Note that the solution depends on the amplitude bounds 
a. and ~; a solution may exist only for some choices of 
these bounds. The values of a and for which a solu-
tion exists can be derived through the Theorem, by 

finding the bounds a, for which condition (ii) can be 
satisfied. 
To conclude, we have derived algebraic conditions 
that govern the existence of stabilizing state feedback 
functions for nonlinear systems. For both discrete 
and continuous time systems, the conditions reduce to 
the solution of a set of inequalities directly determined 
by the given state representation function f of the sys-
tem that needs to be controlled. In both cases, the theory 
permits the computation of all stabilizing state feed-
back functions. 
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