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ON SOME PROPERTIES OF CONDITIONAL MOMENTS
IN NONLINEAR FILTERING*

JACOB HAMMER

Abstract. The nonlinear filtering problem of diffusion processes embedded in additive white noise is
considered. It is shown that the paths of all conditional moments of the measurement function can be
causally calculated when the path of its first conditional moment is known. The formulas involved in this
calculation are independent of the specific parameters of the information process.

In addition, asymptotic properties of the nonlinear filter, as the signal to noise ratio approaches infinity,
are also considered. It is shown that, asymptotically, the deviation from Gaussian properties is of the order
of the noise to signal ratio at most.

1. Introduction. The optimal filtering problem of diffusion processes embedded
in additive white noise is stated as follows. Let (1, r, p) be a probability space on
the set 12, with complete or-field , and probability measure P. Further, let R denote
the real numbers, and let [0, T] be the set of all points R satisfying 0 _<-t-< T. We
assume that there exists a Brownian motion B :(, ,P)[0, T]R. Next, let
x :(, , P) [0, T] R be a diffusion process, given by the following stochastic
differential equation"

dxt m (xt, t) dt + o’(xt, t) dBt,

Xt=o XO,

[0, T],

where m, cr:R [0, TIER. We assume that the functions m, o- satisfy, for every
(x, t) R [0, T], the uniform Lipschitz (or linear growth) condition

(1.2) m2(x, t)+ cr2(x, t) <_-K(1 +x2)
for a suitable constant K _-> 0. We also assume that the initial condition Xo is stochasti-
cally independent of Bt for every [0, T] and satisfies, for all integers k >-_ O, E{x2ok}

(where E{.} denotes the expectation). Under these conditions (see
Gikhman and Skorokhod [1972]), the solution xt of (1.1) is almost surely unique,
almost surely continuous in t, and, for every integer k _>-0 and every [0, T], we
have that E{x2k } < c. We shall refer to x as the information process.

Next, let W be a standard Brownian motion on (f, , P) [0, T], and assume
that, for all [0, T], { Wt} is stochastically independent of {Bt}. Also, let g :R R be
a twice continuously differentiable function satisfying, for every [0, T], the following
conditions: (i) E{gEtC(xt)}< o for every integer k->0; (ii) E{[g’(xt)]2}< cx3, and (iii)
E{[g"(xt)]2}< o, where g’ (resp. g") denotes the first (resp. second) derivative of g.
Finally, let h be a positive real number. Then, the measurement process y is defined as

(1.3)
dyt hg(xt) dt + dWt,

Yt=o y0,

t[o,
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498 JACOB HAMMER

where the initial condition y0 is stochastically independent of both Bt and Wt for all
[0, T]. The function g will be called the measurement function. If g is the identity

function (that is, g(x) x), then we say that (1.3) is a linear measurement process.
Having defined the information process x and the measurement process y, we

can now state the classical nonlinear filtering problem. Let f" R R be a twice
continuously differentiable function, and assume .that, for every [0, T], we have
that E{[f(x,)]2} < oe, E{[f’(x,)]} < oe and E{[f"(xt)]} < oe. Also, let y := {y0 l0 [0, t]}
denote a sample of the measurement process during the time interval [0, t]. Then,
given y, an estimate l(xt) for f(x,) is sought such that, for any other estimate f(xt),
the following holds" E{[f(xt)-l(x,)]2} =< E{[f(xt)-l(xt)]2}.

The solution to the nonlinear filtering problem is well known, and is given by
the conditional expectation

f(xt) E{f(xt) yto },

conditioned on the or-field generated by y. This solution can also be represented in
the following form (see Fujisaki, Kallianpur and Kunita [1972])"

(1.4)
fotf(Xt)--i(Xo)-- m(xu, u)f’(x)+r (xu, u)f"(xu) ]du

+ a [f(x)g(x)-f(xu)g(xu)] dvu,

where u is the innovation process and is given by

dr, dyt A(xt) dt.

It is also known (see op. cit.) that the innovation process u is a standard Brownian motion.
Various aspects of the nonline,ar filtering problem are considered in Stratonovich

[1960], Kushner [1967], Zakai [1969] and [1975], Kailath [1969], Jazwinski [1970],
Fujisaki, Kalliapur and Kunita [1972] and others. In the present paper we examine
the nonlinear filtering problem using a linear derivative-type operator, which we call
the martingale derivative. We summarize below the main results.

Ldt ":= E{gk(xt)[yto}, where k is a positive integer, be the kth conditional
moment of the measurement function. Also, assume that the path of a specific
sample of the first conditional moment is known. Then, we show that the paths of all

""other conditional moments (g)o, k 2, 3,. ., (related to the same sample y0) can

be causally calculated using the path only. Moreover, the formulas relating (’)
and ^tgo are independent of the functions m (x, t) and or(x, t) determining the information
process x in (1.1). Thus, this calculation can be performed even in cases where a
detailed description of the information process is not available.

As an additional application of the martingale derivative, we consider the
asymptotic behavior of the nonlinear filter as the constant h in (1.3) approaches
infinity. Informally, this is equivalent to the consideration of filters under conditions
of high signal to noise ratio. We show that, as h o, the conditional probability
measure of g(xt), conditioned on the g-field generated by y o, approaches a Gaussian
measure at the "rate" of 1/h at least.

The paper is organized as follows. In 2 we define the martingale derivative, and
in 3 we.apply it to obtain a representation of all conditional moments in terms of
martingale derivatives of the first one. The paper is concluded in 4 with a
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CONDITIONAL MOMENTS IN NONLINEAR FILTERING 499

consideration of some asymptotic properties as the signal to noise ratio approaches
infinity.

2. The martingale derivative. The martingale derivative is a linear operator
defined on a certain class of functions of unbounded variation. Its properties are
similar to the properties of the usual derivative. First we establish our notation. Let
(f, , P) be a complete probability space. Also, let {:gt}, e [0, T], be an increasing
family of complete it-fields, which is continuous from the right and satisfies :gr c :.
We denote by W a standard Brownian motion on (I, -, P; t), 0N N T. Further,
let ft and ht be square integrable semimartingales of the form

(2.1) t= at + dW, ht= bt + OdW,

where and 0 are well measurable with respect to the family {t}, E{ } ds <
and IN{0} ds < m and, finally, a and b are adapted to and differentiable on
[0, T]. Denote by[, h]t := Io Os ds the cross quadratic variation of and h (e.g.,
Meyer [1975, Ch. 3]). We next state a formal definition of the martingale derivative,
and, immediately afterwards, we give an interpretation of this definition in the
particular case which is of main interest to us. (We note that [h, h] is almost surely
strictly increasing in if and only if 0t 0 almost surely for all [0, T].)

DEFINITION 2.2. Let ft and ht be as in (2.1), and assume that the quadratic
variation [h, h ]t is almost surely strictly increasing in t. Then, the martingale derivative
f) of ft with respect to ht is

[f,h]t-[f,h]t-Af :=
[h, hit-[h, h]r_’

A0

on the optional -field on fl [0, T].
Assume now in (2.1) that, for all [0, T], the processes r and Ot are almost

surely continuous and Ot # 0 almost surely. Then, we have that

f=& and f=&t.Or’
In cases where it is possible to iterate the martingale derivative, we shall adopt

the following notation:

(2.3) +h := (rh), 0,h := ft,

where k 0 is an integer.
Next, we list a series of simple properties of the martingale derivative, showing

that it obeys the usual differentiation rules. To this end, we let f,,..., fn,, ht, It be a
set of semimartingales of the form (2.1), and assume that both of the quadratic
variations [h, hit and [l, l] are almost surely strictly increasing in t. Further, we let ct
be a stochastic process adapted to {t} and almost surely differentiable with respect
to t, for every tel0, T]. Finally, we let H’R" x[0, TIeR be a function twice
continuously differentiable in its first n arguments, and differentiable in the last one.
Then, using the Ito differential formula (e.g., Gikhman and Skorokhod [1972]), the
following (2.4) to (2.8) can readily .verified:

(2.4) (fl + cf2) h h h=fl,+Cf2,,

(2.) (f) "
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500 JACOB HAMMER

(2.6)

(2.7)

(2.8)

if rE, # 0 almost surely for every [0, T] then

fl,h t,

i= Ofi

Thus, the usual rules of calculus apply to the martingale derivative.

3. A representation result for conditional moments. We consider the nonlinear
filtering problem with information process (1.1) and measurement process (1.3). In
this section we let A- 1 in (1.3). As before, we denote by g(x) the measurement

function and, for every integer k >-0,? := E{gk(xt)lyto} is its kth conditional moment.
We examine first the relation between the conditional moments of g(xt) and the
martin_gale derivatives, with respect to the innovation process u, of t. It turns out

that g"" is a polynomial function of the martingale derivatives t, t,..., k-
Moreover, the kth martingale derivative k can also be expressed as a polynomial
function of the conditional moments t, , Thus, we encounter the interesting
situation where an infinite set of polynomial equations has a polynomial solution.

We next define two families of multivariable polynomials, Pk(Xl,’’’, Xk) and
Gk(Xl,’’’, Xk/l), where k -0, 1,.. , by the following recursive formulas:

(3.1)

Pk+x(Xl, X,+I)= xlPk(x, X,)+
i=1 -O-Xi Xi+I,

and

(3.2)
Go(x) x,

[G(x" " x+)](x,+ xx).G+(x,’", x+)
i=1 OXi

Now, we can state the following:
THEOREM 3.3. Given a nonlinear filtering problem with information process (1.1)

and measurement process (1.3) (where h 1), the following hold:
(i) gt Pk(,t,’" _k-l.

",gt

(ii) g, Gk(t, gt ).
Proof. We remark that, since )t 1, it follows by (1.4) that the martingale deriva-

tive of the kth conditional moment is g, g -gtff,t. We use this formula in the
proof of (i) and (ii).

(i) Evidently, gt P0 1, and we assume, by induction, that
P, (fit,’", ffJ"-a}) for an integer n >= 0. Then using (2.8), we obtain that

gtn+l gtgt + g""t tP.(t, n--1}u)... 2. [ .]"

Hence, g’= P,+l(t,""’, ff"), and (i) follows.
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CONDITIONAL MOMENTS IN NONLINEAR FILTERING 501

(ii) Again, identically, 0v t Go(t) and, by induction, we assume that (ii)
holds for an integer n >= 0. Then, still using (2.8), we obtain

i=1 Ogt

,=, t j(g, gtgt)

Hence, (ii) holds for n + 1, and our proof is concluded.
Let ft be a semimartingale of the form (2.1). In general, the calculation of the

martingale derivativef involves the use of both a sample of ft and the corresponding
sample of Wt. However, in case of the nonlinear filtering problem, the situation turns
out to be different. We next show that, for every [0, T], the martingale derivative
g, of gt is completely determined by the sample g0. No explicit information on the
sample o is required. In fact, more is true.

THEOREM 3.4. Let g(x) be the measurementfunction, and the innovation process
for the filtering problem described by (1.1) and (1.3). Then, for every integer k 0 and
for every [0, T] the kth martingale derivative is determined by the sample t--

where 0 t.

Proof. First wc note that Theorem 3.3(ii) implies that all iterated martingale
derivatives g k 0, 1,. ., are almost surely continuous for all 0, T. For the
sake of simplicity, wc shall consider below only continuous samples. The null sets on
which continuity does not hold can bc dealt with by a standard "countable diagonal
set" method.

By the definition of the martingale derivative, wc have that
g "ds. Hence it follows by continuity that, for every s a

It-a, t], the quantity h" := "+"ff; is determined by the paths (ff(,,)t and tt-- t--.

We show next, by recursion, that this fact implies that all martingale derivatives can
be calculated as required.

First, in case n =0, we obtain h (). Now, by (1.4), =A(-)so that,
since A > 0, it follows by the Jenscn inequality that 70 for all [0, T]. Con-
sequently, is determined by h and thus the path (),, t- is determined by the
path "

Further, by recursion, we assume that, for some integer n > 0, the path (,)t
is determined by gt-a. Then, for every s It-a, t], the quantity h is clearly determined
by gt-. Hence, if g, 0, then the martingale derivative "+" is determined by gt-a.
Thus, it remains to consider the case 7 =0, which we next do. By continuity, it
follows that there exists an element > 0 such that either (i) 0 for all u Is ,.s];

(k}or (ii) 0 or all u [s-, s). But then, in subcase (i) we have g =0 or all
u e[s-, s] and k 2, ,.... In subcase (ii), we have already shown that+
determined by

_
for all Is- , s). Hence it follows, by continuity, that

is determined as well.
Combinin Theorems .(i) and .4, we directly obtain the following:
Coaoa .5. Le g(x) be he measremen function for he filterinf problem

of (1.1) ih measremen (1.). Then, for every ineer k 0 and for every [0, T],
he conditional momen is deermined b he path _, here 0 a .

It is interestin to note that the formulas involved in the calculation o the
conditional moment rom the first conditional moment path _, as described in
Theorems . and .4, are independent of the functions re(x, ) and (x, ) which
determine the information process (1.1). In fact, it can be shown that the same
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502 JACOB HAMMER

calculation scheme is valid for information processes more general than (1.1) as well.
Before concluding this section, we note that Corollary 3.5 can be generalized in

the following sense. Let f" R R be a continuous function, measurable with respect
to the tr-field induced by g on R. Then, for every [0, T], (xt) is determined by the
path tt_s, where 0 < a < t.

4. Some asymptotic properties. We start with a closer examination of the poly-
nomials Gn(xl," , Xn/l) o_f (3.2). Let z be a random variable on the probability space
(l), , P). We denote by z’ the ith moment of z. We next show that the polynomials
G are closely related to the Gaussian probability law, as follows.

LEMMA 4.1. A random variable z has a Gaussian distribution junction if and only
if, for every integer n >--2, G(L ", z , z+)=O.

Proof. Assume first that z is a Gaussian random variable. Then, all moments of
z are determined by the first two moments and z--, so that, for every integer i-> 0,
=z’(,). We let crz:=(z-)20, and consider the Gaussian random
variable z defined as follows" + e and (z ) tr2. Then, we have

dz’ (27ro’Z)-/2 d { f7 u exp [(u --e), du (zi+-f-zt)2
de =o e 20-2

=0 O"

Now, since the Gaussian distribution is symmetric, and since G2(2, Z2, Z3)
(z-2)3, we clearly have that G2(Lz--7,7)=0. By induction, we assume now
that there is an integer n->2 such that, for every Gaussian random variable za,

nSlG,(2,...,z )=0. In particular, it follows then that, in the case z=z,
n+l) n+Gn(z?,’..,z =0 for every e. Hence, dG,(2,...,z )/de=O for every e

as well. Now, by a direct calculation, we have 0=dG,ff,,...,zT+r)/del=o
(1/tr2)[G,/l(L zn+2)], which implies the necessity of our assertion.

Conversely, if G,(L."’,zn/a)=O for every n =2,3,... then, since G, is
monic in z n/l, it follows that all moments z of z are determined by the first two
moments and z-:. Moreover, by our previous discussion it is clear that the functions=z (z, 7.) thus obtained are identical to those for the Gaussian case. Hence,
z has a Gaussian characteristic function, and our proof concludes.

Motivated by Lemma 4.1, we shall call the polynomials G of (3.2) the Gaussian
polynomials.

Example. The first Gaussian polynomials are as follows:

Go 2, (71 (2’ 2)2, G2 (2’ e)3, G3 (z e)4- 3E(z 2)2-12.
We return now to the nonlinear filtering problem of the information process (1.1)

with the measurement process (1.3). Let Pt" R [0, 1 denote the conditional probabil-
ity distribution of g.(x,), conditioned on the o--field generated by the measurement
process y. Then, we havet u dt(u). As usual, we shall say that/3t is symmetric
if it satisfies .the following, For every function f’RR that satisfies f(x-t)
-f(t-x) for all xR, one has that f(u)dt(u)=O. As a direct consequence of
Theorem 3.3 and Lemma 4.1, we can now show. that if/3t is .symmetric, then it is
necessarily Gaussian. This is proved in the following:

PROPOSrrlON 4.2. The conditional probability measure t is almost surely sym-
metric ]:or all [0, T] if and only i[ it is almost surely. Gaussian for all [0, T].

Proof. Assume first that /3t is symmetric. Then, evidently, (g,_,)3= 0 almost
surely, so. that G2(,t, gt, g,/)=.0 almost surely for all s [0, T]. But then, since by
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CONDITIONAL MOMENTS IN NONLINEAR FILTERING 503

Theorem 3.3, 2}v 2(g,, g2), we have that g, 0 almost surely for all [0, T].
Hence, also J"}v 0 almost surely for all integers n _-> 2 and all [0, T]. Again, by
Theorem 3.3, this implies that U, (,,. ., gt’) 0 for all n _-> 2 and all to, T], so
that, by Lemma 4.1, Pt is Gaussian. The converse direction is immediate.

We consider next the asymptotic behavior of the conditional probability measure
/, as the constant a in (1.3) approaches in.finity. Explicitly, we shall show that,
as a -+ oo, the probability law determined by P, approaches the Gaussian probability
law at the rate of 1/a at least. To this end, we need the following notation. Let
f:[0, T]-+ R be a function, which implicitly depends on a. We shall say that f---1
if, for almost every [0, T], the following holds: For every a > 0, lima_,o h 1-f(t) O.

As before, we let g(x) be the measurement function, and denote g’t E{g (xt)] y }.
Also, Gn, n-0, 1, 2,..., are the Gaussian pol.ynomials defined in (3.2). Clearly,
as h-+oo, the conditional probability measure P, degenerates into a deterministic
measure. Thus, we expect by Lemma 4.1 that, for n_->l, one should have
limx_,oo E[Gn (t,’", gt;)[--0. In fact, the following stronger result is valid.

THEOREM 4.3. Given the nonlinear filtering problem of the information process
(1.1) with measurement process (1.3), the following holds true: For every 0 <-_ < 1,

where n 1, 2, 3,.. , and [0, T].
Proof. We first note that, if the condition h 1 in Theorem 3.3 is relaxed, then,

for all k =0, 1,... and t[0, T], we have

+ g,-) 1 (OG.\""r,.,=A Gg+I(t,’" ", =a }gti=1 Ogt

where the last equality follows by (3.2) and (1.4). Then, applying the Minkowski
inequality (e.g., Love [1963, Ch. 3]), we obtain that, for every 0 N 8 < 1,

f, := ,, ...,ll+a E’/l+a la-{+n=l*+a

Z E1/(I+) Igt
i=l

Applying now the H/51der inequality (e.g., Love [1963, Ch. 3]), with exponents
2/(1- 8) and 2/(1 + 6), to each summand in the above sum, we obtain

(a) It <= Z E(1-a}/2(+8 1 E
i=1 Ogt

Now, OG/Og’, is a polynomial in ,,..., and, by our assumptions,
E{(xt)}2" < m for all integers n 0 and for every e [0, T]. Also, all relevant quantities
are almost surely continuous functions of on the compact interval [0, T] (and we
also have 1- a > 0). It follows then that there exists a constant M’g 0 such that, for
every 1, , k + 1 and for all e [0, T],

(/) E(1-8)/2(1+a OG1[ 2(1+8)/(1--8)

< M’
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504 JACOB HAMMER

Further, by (1.4), we have

Iot’ , fot[ (.i(i-gsdu=g,- +
2

-)0" (Xs, s)gi-l(Xs)+ ( g")] ds

for all integers -> 1. We now square both sides of the last equation, and consider the
expectation of the resulting quantities. On the left-hand side we obtain E{g"v}2 ds.
Also, by an application of the H61der inequality and in view of our assumptions on
(1.1) and (1.3), it follows that the expectation of the squared right-hand side is
bounded by a constant M"->0. Thus, we have, for all i= 1,..., k+l, that

5o E{’v)2 ds <- M".
But then, for every a > 0, lim_> A zigs ds 0, so that

(3’) lim A-E{g’t"}2 0
A

for almost all [0, T]. Finally, substituting (fl) and (y) into (a), it follows that, for
every a > 0,

lim EI/(I+)IA 1-Gk+(,, ", x+) =< lira M,(A-E/2 }2) 0
A-)o A i=1

for almost every [0, T], proving our assertion. ]
Consider now Theorem 4.3 in the case of linear measurement, that is, when

g(x) x. In this case, substituting n 1 and 8 0, and noting that G 22t, we
obtain that E{(x,- ,)2}.. I/A, which is in accordance with the upper bound of Zakai
and Ziv [1972]. Thus, Theorem 4.3 is a generalization of that result.

We conclude this section by showing that the conditional probability measure/3t
can be replaced by a Gaussian measure, up to an error of the "order" of 1/A. To this
end, we let Ht, for every [0, T], be the Gaussian measure determined by its first
two moments as follows: x dIIt(x)= t and X

2 dHt(x)= g’t. Given a function f" R -->

R, we shall denote byt:= f(x)dlIt(x) its expectation with respect to Hr. We now
have the following:

THEOREM 4.4. Given the nonlinear filtering problem of the information process
(1.1) with measurement process (1.3), the following holds for every 0 <- t < 1"

1
A’

where i=O, 1, 2,..., and [O, T].
Proof. The cases 0, 1, and 2 are clearly implied by the construction of the

probability measure IIt. The proof proceeds by induction. Assume that the theorem
holds for all integers 1,..., n. Now by Lemma 4.1, Gn(gt,’", 0 for all
integers n->2, so that, since Gn is monic in gt we have that gt -g--
Gn(gt, gt,’", t, for all integers n -> 2. The following calculation is intended
to replace the arguments g t, gt in the last expression by gt, gt, and to compute
the error caused by this manipulation. To this end, we represent_G, (gt,

-">
At+gtBt, where At and Bt are suitable polynommls n g, g.t,"’, g,. By our
assumptions on (1.1) and (1.3), it follows that At and Bt have all their moments
bounded.
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Now, let 6’ be such that 6 <6’< 1. Then, using the Minkowski and H61der
inequalities, we obtain:

E/+’ gq’-g1(+ E/(+’ [at + tBt + (t-- ’)Bt (1+)

where y := (1 + 6)(1 + 6’)/(6’-6). Applying now the induction assumption, and the
fact that all moments of Bt are bounded, it follows that

E1/(l+,lg g](1+8, <_ E1/(I+) IA +’B,[ (1+)+ft,
where ft 1/,.

By a similar procedure, we replace, for all 1,..., n, all appearances of gt by
g’t, retaining the corresponding errors ]’, Thus, after a finite number of steps, we obtain

E,/(,+>lg,

_
(I+)=E1/(I+)

where ht- 1/A. But then, it follows by Theorem 4.3, that
l/A, concluding our proof.

Finally, we note that Theorem 4.4 can be directly extended to the case of
polynomials in g(x) and, also, to functions which are limits, in a suitable sense, of
such polynomials.
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