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Abstract 
The paper deals with the control of a sequential 

machine whose model is not precisely known. The ob-
jective is to design a controller that assigns to the ma-
chine a prescribed steady-state behavior. The results 
include necessary and sufficient conditions for the exis-
tence of a controller, as well as algorithms for its de-
sign. This work is motivated by potential applications 
in biology. It is an abridged version of HAMMER 
[1994]. 

I. Introduction 
Many of the basic processes that govern the oper-

ation of (biological) cells have a natural sequential 
structure. Some examples are the Krebs cycle; the tran-
scription of DNA into RNA; the translation of RNA into 
protein; and others. The modeling of various biological 
phenomena within the general framework of automata 
theory has been documented in the literature for quite 
some time (e.g., RASHEVSKY [1948], M. SUGITA 
[1963], von NEUMANN [1966], LINDENMAYER 
[1968], KAUFFMAN [1969], ROSENB~RG and 
SALOMAA [1975], IEEE [1974], the references cited in 
these works, and many others). 

The present paper deals with the development of 
methods for the control of sequential machines that" are 
incompletely described. The basic motivation is to for-
mulate controllers that correct impaired function of 
biological cells. Control techniques off er the prospect of 
providing new insight into the regulation of unaccept-
able behavior of cells, such as the unrestrained division 
associated with pre-cancerous or cancerous transfor-
mations, or other malfunctions of the genetic system. 
Sequential models of cells are empirically derived in-
put/output models of cell function; they may include 
discrete-event approximations of continuous models, to 
facilitate simulation or control via digital computers. 

The sequential machines we consider are defined 
so as to be suitable for modeling chemical or biochemi-
cal reaction systems within a medium. Here, each reac-
tant molecule (or molecular complex) in the medium is 
regarded as a variable, called a word. The sequential 
machine implements the rules of chemistry that govern 
the reaction steps, changing the molecular population 
within the medium as the reaction evolves. Molecules 

that are externally injected into the medium are re-
garded as input words, whereas molecules (or com-
plexes) present within the medium at the end of a reac-
tion step are regarded as output words. The number of 
molecules within each category varies with reaction, 
step, and circumstance, and may, of course, be quite 
large. However, in many systems of interest in molecu-
lar biology, the number of significant kinds of 
molecules seems manageable. For instance, the func-
tioning of an E-coli bacterium probably involves no 
more than a few thousand kinds of significant 
molecules; and the operation of a mammal cell proba-
bly involves no more than a few hundred thousand 
kinds of significant molecules (e.g., ALBERTS, BRAY, 
LEWIS, RAFF., ROBERTS, and WATSON [1994]). 

An important consideration in molecular biology 
is the fact that detailed models of cell function are not 
available. The lack of exact models originates from the 
lack of complete data, as well as from the differences 
between individual specimens. Thus, it is critical to dis-
cuss the control of a sequential machine I: whose 
model is only partly known. The information available 
about I: is given in the form of a family M of potential 
models; the real model of I: is one of the members of 
M. . 

An important concern is to reduce the amount of 
data that needs to be collected about the sequential ma-
chine I:. This data can be divided into two broad cate-
gories: a-priori data, which determines the class M of 
potential models; and real-time data, which consists of 
data the controller requires during its operation for 
feedback. It is particularly important to reduce the real-
time data requirements, so as to avoid complex mea-
surements in real time. In molecular biology, one must 
strive to reduce the number of real-time chemical tests, 
and entirely avoid lengthy chemical tests. 

We consider sequential machines L that can be 
described by models of the form 

O'k+l = cp( crk,u k), 
Yk = h 0 (crk,uk), k = 0, 1, 2, ... 

(1.1) 

Here, cp and h O are functions; crk is the state; u k is the 
input value, and Yk is the output value. The initial con-
dition cr0 is given. The class M of potential models of 
L consists of a finite family {~, hio, crw}i=l, 2, ... offunc-
tions and initial conditions. 
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The output value Yk of L signifies the 'outcome' 
of the machine's operation, and is not necessarily avail-
able for feedback use. The real-time feedback data for 
the controller is created by a monitoring function hm 
that generates a monitoring sequence µ given by 
(1.2) µk =hm( ak,uk), k = 0, 1, 2, ... 

The function hm indicates measurements that need to 
be performed in real-time to generate a feedback signal 
for the controller. It is designed together with the con-
troller, so as to create all the feedback data necessary 
for the closed loop. 

y .... 
u .... .... 

.... I: µ 

(1.3) 

C 
_..... 

--
Here, the controller C uses the feedback signal µ to 
create the input signal u of :I:, and no external refer-
ence signal is used. Such a controller is called an au-
tonomous controller. 

In biological applications, where the monitoring 
process requires the detection of chemical compounds, 
itis of great importance to design hm so as to reduce 
the complexity of measurements required in real time. 
In general, it is not possible to characterize mathemati-
cally a monitoring function that calls for a 'minimal' 
measurement complexity. For instance, the presence of 
certain compounds may be relatively easy to deter-
mine, whereas the presence of other compounds may 
be difficult, or even impractical, to establish. The m~ni-
toring complexity is not necessarily determined by the 
number of measurements, but rather by the nature of 
each individual measurement. Consequently, it seems 
preferable to characterize all possible pairs (hm, C) of 
monitoring functions and controllers that achieve the 
control objective; This facilitates the selection of a sim-
ple pair, and, in particular, of a simple monitoring func-
tion hm. In our framework, hm can be selected prior to 
the selection of C, allowing reduction of measurement 
complexity (see section 4). 

The controllers considered in the paper comprise 
all possible controllers, including controllers that ex-
hibit "adaptive" or "learning" characteristics. 

The present paper is an abridged version of 
HAMMER [1994] and [1993], which contain detailed 
proofs of all statements. Background on topics related 
to automata theory and discrete-event systems can be 
gained from GINSBURG [1962 and 1966], 
EILENBERG [1974], HOARE [1976], MILNER [1980], 
ARNOLD and NIV AT [1980], RAMADGE and 

WONHAM [1987], and the references listed in 
HAMMER [1993]. 

2. Basic notions and properties 
2.1. Interpreters and controllers. 

Let A be a non empty alphabet, and let A* be the 
set of all words over A. A sentence over A is any 
(possibly empty) collection of words from A*, which 
may include multiple copies of words. For applications 
in molecular biology, multiple copies of words repre-
sent multiple copies of molecules. The set of all sen-
tences over the alphabet A is denoted by SA. The car-
dinality #s of a sentence s is the total number of 
words in s, counting each word according to its multi-
plicity. When combining two sentences s 1, s2 e SA into 
a union, all copies of similar words need to be pre-
served. This is accomplished by the use of the disjoint 
union s1t)s2, which includes all copies of all words con-
tained in s1 or in s2. 

Let S(SA) be the set of all sequences of sentences 
So, si, 52, ... , where si e SA for all integers i 0. For a se-
quence s e S(SA), we denote by si the i-th element of 
the sequence, i = 0, 1, .... The index i serves as a step 
counter; a step may or may not be linked to a sp~cific 
time duration. It is convenient to use the notation for 
the list of sentences si, 5i+l, ... , Sj,j ~i. 

The machines considered in the paper are defined 
as follows. Let D c S(SA) be a subset. An interpreter is 
a map L: D S(SA)xS(SA); It accepts input sequences 
u e D, and generates pairs of output sequences (y,µ) e 
S(SA)xS(SA). The sequence y is the output sequence, 
and µ is the monitored sequen'?e of L. The monitored 
sequence describes quantities that are measured at 
each step, and are available for feedback use in (1.3). 
For brevity, we set SSA:= S(S A)xS(SA). 

In order to control a causal interpreter L : D _ 
SSA, we combine it with a controller C: Im Lm D, us-
ing the scheme 

(2.1.1) 
(y,µ) = fo, 
u=Cµ, 

depicted in (1.3). We denote the resulting input/output 
map by Le· The system Le has no input sequence, and 
is therefore called an autonomous interpreter Le : 0 
SSA. We require the controller C to be strictly causal. 
This simplifies the discussion as well as the implemen-
tation. 

2.2. Recursive models of interpreters. 
The interpreters we consider are described by re-

cursive models 



(sk+l>Xk+l) = fI(siJ.:Juk),xk], 
(2.2.1) Yk = ho(sktJuk), 

µk =hm(siJ,:Juk),k=O, 1,2, ... 

Here, f: SAxX S AxX is the recursion function, h 0 : SA 
--? SA is the output function, and hm: SA--?~ is the 
monitoring function; The sets X and are finite and 
non-empty. The recursion is started from a given initial 
condition cr0 := (s 0,x0) e SAxX, and induces an inter-
preter L: D--? SSA. An interpreter so induced is said to 
be a recursive interpreter. 

The set X consists of the states of L, and the pair 
(sk,xk) constitutes the status of L at the step k, and sk 
is the internal value; The medium value at the step k is 
sktJuk. For applications in molecular biology, sk de-
scribes molecules present in the medium as a result of 
step k-1, and uk describes the molecules externally 
injected into the medium at step k (the input). The 
medium value describes the set of all molecules in the 
medium at step k. We denote by II 8 : SAxX--? SA: (s,x) 

s the standard projection onto the internal value. 
We consider an interpreter L having a family M 

= {(f1,h10 ,cr10), (f2,h20 ,cr20), ... , (fq,hqo,O"cp)} of potential 
models; Here, {f i} are potential recursion functions, 
{hio} are potential output functions, and {O"iQ} are po-
tential initial conditions. The monitoring function for L 
is computed as part of the controller design, and is the 
same for all potential models. In operation, only one of 
the potential models M of L is present; We refer to this 
model of L as the active model. The identity of the ac-
tive model is not known in advance. 

Our objective is to develop techniques for the de -
sign of controllers that assign a prescribed steady-state 
response to a family of machines, so we need to discuss 
what constitutes a 'steady-state response'. 

The complete tail set T(S) of a set of sequences S 
c S(SA) is 

T(S) := Uses L.kn ~-
For the autonomous interpreter Ic : 0 S(S A), denote 
by T(:Ec) the complete tail set of its (single) output se-
quence. 

The intersection T 1 n T 2 of two complete tail sets 
T 1 and T2 consists of all sequences z := z0, Zi, ... that 
satisfy the following property: there is a pair of integers 
t, 't~ 0 such that the sequence Vt:= zo, Vt+l := zi, Vt+2 := 
z2, ... belongs to T 1, and the sequence W-r := zo, Wn1 := 
z1, wn 2 := z2, ... belongs to T 2 . In other words, shifted 
versions of the sequence z are found in T 1 and in T2. 

Finally, a periodic tail set is a complete tail set of a 
finite set of periodic sequences. 

2.3. Statement of the problem. 
Consider again the interpreter I having the fam-

ily M = {(f1,h10 ,cr10 ), ... ,(fq,hqo,O"cp)} of potential models; 

denote by Li the interpreter having the model 
(~,hio,O"iQ), i = 1, ... , q. With the potential model Li we as-
sociate a periodic tail set Ti that forms the prescribed 
steady state behavior of :E in case model number i is 
the active model. We shall refer to Ti as the target tail 
set of the potential model i. We denote by 

T := T1xT2X ... xTq 
the cross product of all individual target tail sets, and 
refer to it as the target tail set of the interpreter I. The 
main question discussed in this paper is as follows. 
(2.3.l)Autonomous control of the interpreter :E having 
the family M of potential models: Find a monitoring 
function hm and a strictly causal autonomous con-
troller C such that the closed loop system Lie satisfies 
TCLic) n Ti*-0 for all i = 1, ... , q.+ 

A controller C satisfying (2.3.1) is said to steer :E 
to the target tail set T; It achieves the control objective 
without regard as to which potential model of :E is ac-
tive. 

A set of sequences D c S(S A) is a uniform set if 
there is a set of sentences V(D) c SA such that D is the 
set of all sequences of elements of V(D). We call then 
V(D) the value . set of D (see HAMMER [1993] for de -
tails). 

We consider only recursive interpreters :E: D 
S(S A) that satisfy the following requirements: (i) D is 
a uniform set with a finite value set V(D); (ii) All poten-
tial recursion functions of :E have a finite image; and 
(iii) The target tail set of :E consists of a finite number 
of periodic sequepces. Interpr-eters that satisfy these 
conditions are called bounded interpreters. 

3. Existence of monitoring functions and con-
trollers 

3 .1. Target sets in status space. 
Let M = {(f1,h 10 ,0"10), ... , (f q,hqo,O"cp)} be the family 

of potential models of the bounded interpreter :E : D --? 
S(S A), and let V(D) be the value set of D. Recall that 
with each potential model (fi,hio,O"iQ), there is associated 
a periodic target tail set Ti. We now translate the in-
formation contained in the target tail sets Ti, ... , T q into 
quantities in status space. For this purpose it will be 
convenient to regard the functions fi and hio as func-
tions over the domain SAxV(D)xX (rather than SAxX 
or SA only), and we shall write fi(sk,xk,uk) rather than 
fi[(siJ:.luk),xk], and hi0 (sk,uk,xk) rather than hio(s\Juk)· 

We have then hio: SAxV(D)xX--? SA, and we de-
-1 note by P(S A) the set of all subsets of SA. Let : 

P(SA) --? SAxV(D)xX be the inverse-set function of the 
output function hio· Given a set of lists Sc S(SA), we 
denote by h~\S) the set of all ·lists (b0 , bi, ... ) for 
which (hi0 (b 0), hi0 (b 1), ... ) e S. We construct the sets of 
sequences 



(3.1.1) -1 . Si:= q0 [Ti], 1 = 1, ... , q. 

The set Si is called the internal target set of the model 
(~,hic>,criO). Let Ilu :SAxV(D)xX V(D): (s,u,x) Hu be 
the standard projection onto the input value. For a se-
quence 8 = (sk,u k,xk), (sk+bu k+l,xk+l), .. :, we denote by 
Ilu8 the sequence uk, uk+h .... 

Given r internal target sets Si(l), ... , Elj(r), re {1, ... , 
q}, we denote by ( Si(l), ... ,ei(r))u the set of all lists of se-
quences (Si, ... ,Sr) e si(l)X ... xsi(r) for which Ilu 81 = 
Ilu8.i = ... = Ilu8r, i.e., the set of all r-tuples of sequences 
that share a common input sequence; for r = 1, set 
(Si(l))u := Si(l)· We call (E>i(l), ... ,Si(r))u thejoint target 
ta i l of the class c := {(fi ( 1) ,hi(l)o,cri(l)O ), ... , 
("f;(r),hi(r)o,cri(r)O)} of potential models, and denote it by 
Su(c). An element (81, ... ,Sr) e (Si(l), ... ,ei(r))u is peri-
odic if the sequences 81, ... , Sr are all periodic. A non 
empty joint target tail always contains a periodic ele-
ment (HAMMER [1994]). 

Next, for an integer r e {1, ... , q}, let Nr be the 
class of all subsets {(fi( 1 ),hi(l)o,cri(l)O), ... , 
(fi(r),hi(r)o,cri(r)o)} c M of r models for which (8i(l), 
... ,ei(r))u "¢' 0. Each element of Nr consists of r models 
that share a common input sequence along certain 
paths within their internal target sets. Finally, define 
the target compatibility class .M. of M by 

.M. := Ui = 1, ... ,qN i· 

Let <I> = {(fi(l) ,hi(l)o,cri(l)O ), · ··, (fi(r),hi(r)o ,cri(r)o)} e .M. 
be a family of models, and consider an element 0 := (81, 
... ,9r) e (Si(l), ... ,Sj(r))u. Note that each ei, i = 1, ... , r, is a 
sequence Si = (sk(i),xk(i),uk(i)), (sk+1(i),xk+i(i),uk+l(i)), 
(sk+2Ci),xk+2Ci),uk+2Ci)), ... that starts at a step k 0, and 
that uk(l) = uk(2) = ... = uk(r) =: u(S). Let 

(s(0i),x(0i),u(0)) := (sk(i),xk(i),uk(i)) 

be the first element of the sequence Si. Construct the set 
of vectors 
T(<J>) := 

U a e (ei(l), .. , ei(r)>u (s(81),x(81),s(82), ... , s(Sr),x(Sr),u( 8)), 

and set T( q>) := 0 if <I> e: .M.. The set T(q>) is called the 
point target set of the family <I>, and it is a subset of 
(SAxX)rxV(D). Once the members of the family <I> are 
brought to a point belonging to T(<j>), they can all be 
kept within their respective target- tail sets by the same 
common input sequence. 

3.2. Jointly reachable sets. 
Let M= {(f1,h 10,cr10), ••• , (fq,hqo,Cicp)} be the family 

of potential models of the bounded interpreter L 
Denote by a0 := ( cr10, ... , crq0) the initial status vector of 
the family M. For a point p := (pi, ... , Pq,u) e 
(SAxX)qxV(D), let (f1, ... , fq)p be the point (f1(p 1,u), ... , 
fq(Pq,u)) e (SAxX)q, i.e., the result of applying the re-
cursion function vector to the point p. 

Now, let roe (SAxX)q be a fixed point. We con-
struct recursively a sequence of subsets R 0(M, co), 
R1(M, ro), ... of the space (SAxX)qxV(D) as follows. 
(i) R 0(M, ro) := roxV(D), i.e., the set of all vectors of the 
form ( ro,u), u e V(D). 
(ii) Assume that RjCM, ro) has been constructed for 
some integer j O; The set R.i+i (M, ro) is then given by 
(3.2.1) R.i+1 (M,ro) := (Lp e Rj(M,ro)(fi, ... , fq)p}xV(D). 

(iii) The jointly reachable set R(M,co) of the family M 
at the point ro is defined by 
(3.2.2) R(M, ro) := Uj 0 R_j(M, ro). 

The jointly reachable set R(M,ro) consists of all 
points in (S AxX)qxV(D) that can be reached by apply-
ing common input sequences to all potential models of 
I:, starting from the status vector ro. When co = cr0, the 
initial status vect.or, we simply write R(M) := R(M,cr0), 

and refer to R(M) as the jointly reachable set of the 
family M. The jointly reachable set is computable (see 
HAMMER [1994]). 

Given a subfamily <I> = {Ci;cl),hi(l)o,cri(l)O), ... , 
(fi(r),hi(r)o,cri(r)O)} c M of_Potential models of I:, let Ilq,: 
(SAxX)qxV(D) d (SAxX)1

: (p1, P2, ... , Pq,u) H (Pi(l), Pi(2), 
... , Pi(r)) be the standard projection. Then, 
R(q>,ro) = [Ilq,R(M,co)]xV(D), R(q>) = [ITq,R(M)]xV(D) . 

We induce now a partial order on the jointly 
reachable set R(M). For two points r 1, r2 e R(M), we 
say that r 1 is a predecessor of r 2 (written r1 < r2) if r2 
e R(M,r 1), i.e., if there is an input list that leads the en-
tire family M from r 1 to r2. 

3.3. Feedback control. 
Let <I> c M be a subset of potential models of I:. A 

partition p of <I> is a family p = {ci, ... , ck} of disjoint 
subclasses of <I> whose union is <p. A partition P of the 
partition p = {c1, ... , ck} of <I> is a set of partitions P = 
{p 1, ••• , Pk}, where Pi is_ a partition of the class ci,i = 1, ... , 
k. The combined partition Pp consists of the classes 
Pp= ({p1}, {p ~, ... , {pk}}· 

Given two partitions p and q of <I>, the partition 
q is finer than the partition p (written p $ q) if there is 
a partition P of the partition p such that q = Pp. A 
partition chain eP(<!>) of <I> is simply an ordered list of 
partitions Po$ p 1 S ... S Pm of <I>, with Po:= <I> being the 
identity partition. 

Let eP( q>) = {po S p 1 S ... Sp ml be a partition chain, 
and let c e Pi be a member of the partition Pi· We de-
note by Pi+l (c) the partition of the class c induced by 
the partition Pi+l; i.e., letting Pi+l = {ci+l,1' ... , Ci+l,k}, the 
partition Pi+l (c) consists of all non empty intersections 
c nCi+lj,j = 1, ... , k. A path of a partition chain q> $ p 1 $ •.• 

S pm of <I> is an ordered list {<!>, c1, c 2, ... , c ml of subsets 
of <I>, where q e pj(q_ 1), i = 1, ... , m, and co:= q>. 



Let C = {("4(1),hi(l)o,O'i(l)O), ···, (fi(r),hi(r)o,O'i(r)o)J, 1 Sr 
S q, be a subset of the family M of potential models of 
I:. For a point p =(pi, ... , Pq,u) e R(M), denote 

(3.3.1) r(c)p := Uj = i, ... , r{[IlsPi(i)]tJul, 

i.e., the set of all medium values corresponding to the 
members of c at the point p. 

Now, let <I> c M be a subfamily of potential mod-
els, let P = {c 1, ... , c ml be a partition of <I>, and let h : SA 

!!. be a function. We say that h is compatible with 
the partition P of <I> at the point p e R(M) if the fol-
lowing holds for all i, j = 1, ... , m. 
(3.3.2) h[r(ci)p] nh[r(cj)p] = 0 whenever h=j, 

i.e., the function h assumes a distinct set of values over 
each one of the classes c1, ... , cm. 

The following statement, taken from HAMMER 
[1994], provides necessary and sufficient conditions for 
the existence of a controller that steers the bounded 
interpreter I: to its target tail set. It is one of the main 
results of the paper, and we discuss its intuitive mean-
ing immediately. 
(3.3.3) THEOREM. Let I:: D S(S A) be a bounded in-
terpreter having the family M of potential models, and 
let T be the target tail set of I:. Denote by T(c) the 
point target set of a subfamily c c M. Then, (i) and (ii) 
are equivalent. 
(i) There is a strictly causal autonomous controller C 
and a monitoring function hm: SA~ !l that steer I: to 
its target tail set. 
(ii) There is a partition chain el>(M) = {M S p 1 S ... S p ml 
of M, every path {co, c 1, ••• , c ml of which satisfies the 
following. 

(iia) There are points p1 < ... <Pm of R(M) and a 
function h: SA~ !l such that h is compat~ble 
with the partition Pi(ci_1) at the point Phi = 1, ... , 
m,and 
(iib) T(cm) n II(cm)R(M,pm) -::t 0 when m 1, or 
(iic) T(M) n II(M)R(M) -:t 0 when m = 0. 
In qualitative terms, the Theorem suggests a con-

troller C that acts through a hierarchical identification 
scheme, using the function hm : SA~ !l as the monitor-
ing function. At each step, the controller attempts to 
narrow the set of possible models of I: by checking the 
values submitted by the monitoring function through 
the feedback channel. The controller starts by provid-
ing I: with an input list that takes the family M from 
the initial condition to the point p1 e R(M). At p1 con-
dition (iia) means that the controller can identify the 
class c 1 e p 1(M) to which the active model belongs. 
The controller then supplies a continuation of the input 
list that leads from p 1 to p2. At this point, condition 
(iia) shows that the controller can identify the class c2 
e P2Cc1) to which the active model belongs. And so on, 

up to the point Pm at which the class Cm c M to which 
the active model belongs is identified. In view of (iib), 
more detailed identification of the active model is not 
necessary, since all members of cm can be kept within 
their respective target tail sets by the same continuation 
of the input sequence. Through this technique, 
Theorem (3.3.3) induces an algorithm for the design of 
all controllers that steer I: to its control objective. The 
complete algorithm, called the controller design algo-
rithm, is provided in HAMMER [1994]. 

The controller C performs inter-related control 
and identification processes. It steers the system along 
a list of points pi, P2, ... , Pm, so that at each successive 
point finer and finer identification of the active model is 
possible. An algorithm that yields the points Pi, ... , Pm e 
R(M) is described in HAMMER [1994]. The selection of 
a monitoring function is discussed in section 4 below. 

4. Common divisors and the search algorithm. 
Consider a sequence u e S(S A) and a (finite or in-

finite) non empty list A= (Ao, ... , Azi) e (SA)n+l. We say 
that A. is a left divisor of u if u~ = A.. The length I A I of 
A is the number of elements in its list, i.e., I A I = n+l 
here. Also, A is· a common left divisor of a set Sc S(S A) 
whenever A. is a left divisor of every element of S. The 
list A is a longest common left divisor of the set S if A. 
is a left divisor of every common left divisor of S. We 
induce an equivalence relation L on the set S(S A) by 
writing uLv whenever the two sequences u, v e S(S A) 
have a common left divisor. 

Next, let S(l), 8(2), ... , S(q) c S(SA) be a family of 
non empty subsets of sequences. A comb of the family 
{S(i)l{:1 is any set X of sequences that contains exactly 
one sequence from each one of the sets S(l), ... , S(q). 

Consider now a bounded interpreter I: : D 
S(S A) having the family M = {I:1, ••• , I:q} of potential 
models, and let Ti be the target tail set associated with 
the model I:j. For a sequence u e D, let T(I:ju) be the 
complete tail set of the output sequence I:ju. The set 
l(I:i) of successful input sequences of the potential 
model I:j is the set of all ultimately periodic input se-
quences u e D for which T(LjU) n Ti -:t 0; i.e., all ulti-
mately periodic input sequences that steer I:j to its tar-
get tail set. We shall assume throughout that l(I:j) -::t 0 
for all i = 1, ... , q, since otherwise the control objective is 
not achievable. For bounded interpreters, the sets l(Lj) 
can all be computed in a finite number of steps 
(HAMMER [1994]). 

We now describe in qualitative terms a computa-
tional algorithm that determines whether or not there is 
an autonomous controller that achieves the desired 
control objective (HAMMER [1994]). 

First, select a comb x of the class {l(I:i)} i:1 · 
Compare the initial segments of the sequences of X el-



ement by element to determine whether they have a 
common left divisor. If there is no common left divisor, 
choose another comb; if none of the combs of {I( l:j)}f:1 
has a common left divisor, then no appropriate con-
troller exists. This is due to the srrict causality of the 
controller, which implies that all sequences generated 
by it have the same first element. 

If the sequences of x have a common left divisor, 
let cx.11 be their longest common left divisor. Assign 
cx.1 1 the output list of the controller C for the steps 
0, 1, ... , I cx.11 I ; This list is appropriate for all models of 
the family

1 

M, irrespective of which one is active. If 
I cx.1,1 I = oo, we obtain an open loop controller C, com-
pleting the process. Otherwise, if I a 1,1 I -=t= 00 , proceed as 
follows. 

Delete the initial segment au from all sequences 
of X, and denote by Xi the res:ilting family of se-
quences. Using the equivalence relation L on X1, in-
duce a partition P 1 of the family :YI of potential mod-
els of l:, by grouping into each cls.ss of P 1 all models 
whose corresponding sequences ir: x1 have a common 
left divisor. Then, all potential mocc?ls that belong to the 
same class of P 1 require the sar.:e input value at the 
step I cx.1,1 I +1; And potential models from different 
classes of P1 require different inpm values at this step. 
Since these input values are generated by the controller 
C, the strict causality of C implies that it must be pos-
sible by the step I cx.1,1 I to determine to which class of 
P1 the active model belongs. This determination is 
made based on the monitored values for the steps 0, ... , 
I a.1,1 I, and the monitored values a.-re determined by the 
medium values through the moniwring function. Thus, 
it is possible to select a monitoring function that facili-
tates such determination if and only if the determina-
tion can be made from the medium values for these 
steps. 

Let ~(i), µ1(i), ... , a11 i(i) be the medium list for 
steps 0, ... , I cx.1,1 I generate'd when model number i is 
driven by the input list cx.11 from its initial status Pio, i = 

U h . '1 ' . lcx11l(.) 1, ... , q. se t e eqmva ence reiat10n µ 0 ' 1 = 
cx1,

11(j), i,j e {1, ... , q}, to induce a partition Pµ,1 of the 
family M of potential models: Eac:i class of P µ,I con-
sists of all potential models whose medium lists 
µ~ cxi,I 

1
( •) are identical. A slight reflection shows then 

that the class of P 1 to which the active model belongs 
can be identified by a strictly cau..sal controller if and 
only if Pµ,1 P 1. Using analogous steps, one then con-
tinues in this manner until the ac::ive model is identified 
to within a class of potential m0c.els that has a non 
empty target point set. A contro11e!" exists if and only if 
this process is successful for a: least one comb of 
{I(l:j)} {:1 • 

The complete algorithm, c~:ed the search algo-
rithm, is given in HAMMER [1994]. It fulfills the 
following objectives. 

(i) It determines whether or not the control objective 
can be achieved for the family M of potential models 
of l:. 

(ii) In case the control objective is achievable, the algo-
rithm characterizes all possible monitoring functions. 

An important aspect of the algorithm is that it 
does not depend on the controller choice. The design 
process is started with the search algorithm to deter-
mine whether or not the control objective is achievable; 
if it is, an appropriate monitoring function is selected. 
Once the monitoring function has been selected, the 
controller design algorithm derives a design for an ap-
propriate controller. 
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