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Robust internal stabilization is a strong notion of stabilization, whereby stability is main-
tained regardless of small disturbances, noises, and uncertainties. In this paper, simple
tools are developed for achieving robust internal stabilization of a rather large family of
nonlinear systems. The main notion is that of a strict observer function, a function char-
acterized by the following feature: subtracting a strict observer function from the differ-
ential equation of the controlled system results in an asymptotically stable differential
equation. Strict observer functions are relatively easy to derive, and they directly yield
robust asymptotic observers; the latter can be combined with robust state feedback
controllers to achieve robust internal stabilization. [DOI: 10.1115/1.4029886]

1 Introduction

The observer–controller configuration—a configuration in which
an asymptotic observer is combined with a static state feedback
controller as depicted in Fig. 1—has played an important role in
the development of modern control theory. To restate the well
known, the asymptotic observer in the configuration uses the input
and output signals of the controlled system to generate an estimate
of the controlled system’s state. This state estimate is fed into a
state feedback controller, replacing the unknown true state of the
controlled system and resulting in an asymptotically stable
closed-loop configuration. The present paper revisits the efforts to
develop a simple methodology for building observer–controller
configurations to stabilize nonlinear control systems.

The observer–controller configuration involves the notion of
“state” as part of its conceptual makeup, since the observer
estimates the state of the controlled system. As a result, the
observer–controller configuration is relevant only to systems
given in terms of a state representation. To describe such systems,
let R denote the real numbers and, for an integer q> 0, let Rq be
the set of all q-dimensional real vectors. We concentrate on time-
invariant systems with a state representation

R :
_xðtÞ ¼ f ðxðtÞ; uðtÞÞ; xð0Þ ¼ x0

yðtÞ ¼ hðxðtÞÞ
(1.1)

where xðtÞ 2 Rn is the state, uðtÞ 2 Rm is the input, and yðtÞ 2 Rp

is the output of the system R at a time t� 0; here, n, m, and p are
positive integers. The function f : Rn � Rm ! Rn is the recursion
function and h : Rn! Rp is the output function. The initial state x0

of R is not known. For the sake of convenience, we assume that R
has a (not necessarily stable) stationary point at the origin, so that

f ð0; 0Þ ¼ 0; hð0Þ ¼ 0 (1.2)

As we will be dealing with stability, we need to adopt some
norms on our spaces. In Rn, we use the ‘1� norm j � j: for a scalar
a 2 R, it is the absolute value |a|; and, for a vector
a ¼ ða1; :::; anÞ 2 Rn, it is the largest coordinate magnitude

jaj ¼ maxi¼1;2;:::;n jaij: Further, denoting by Rþ the set of non-
negative real numbers, let F(Rn) be the set of all functions
u : Rþ ! Rn : t 7!uðtÞ, namely, all functions of time with values
in Rn. As usual, for u 2 FðRnÞ, the ‘1� norm is juj
¼ supt�0 juðtÞj: The function u is bounded if |u|<1.

Considering that an asymptotic observer provides a close esti-
mate of a system’s state asymptotically, namely, potentially after
a long time, asymptotic observers are relevant in situations in
which the state of the observed system is well defined at all times.
Thus, we restrict our attention to systems subject to the following
(standard) requirements; these conditions are satisfied in most
practical applications.

ASSUMPTION 1.1. For a system R of the form (1.1), the functions
f and h are continuous; the input signal u(t) is piecewise continu-
ous and bounded; and the system is operated with input signals
and initial conditions under which the differential equation (1.1)
has a unique solution for all times t� 0. (

Note that, if R does not freely satisfy the last requirement of
Assumption 1.1 for all input signals and all initial conditions, it
may be possible to satisfy the requirement by operating R under
some constraints on the input signals and the initial conditions, or
by operating it within a stabilizing closed-loop configuration.

The first line of (1.1) is the input/state part Rs of R

Rs : _xðtÞ ¼ f ðxðtÞ; uðtÞÞ; xð0Þ ¼ x0 (1.3)

A static state feedback controller for the input/state system Rs is
formed by a function u : Rn ! Rm that generates the system’s
input u(t) according to uðtÞ ¼ uðxðtÞÞ: This results in the closed-
loop autonomous input/state system Rsu of Fig. 2, given by

Fig. 1 The observer–controller configuration
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Rsu : _xðtÞ ¼ f ðxðtÞ;uðxðtÞÞÞ; xð0Þ ¼ x0

Static state feedback controllers are the simplest state feedback
controllers, but they are nonetheless powerful. In fact, a system
that can be asymptotically stabilized by dynamic state feedback
can also be so stabilized by static state feedback [1,2]. Thus, con-
centrating on static state feedback is not overly restrictive.

The process of stabilizing a system R of the form (1.1) through
an observer–controller configuration consists of two steps:

Step 1: Use an observer to generate an estimate z(t) of the state
x(t) of R.

Step 2: Feed the estimate z(t) as input to a static state feedback
controller that asymptotically stabilizes the input/state part Rs

of R.
The first question is, of course, how accurate must the estimate

z(t) be. As there is no information available about the initial state
x0 of R, the estimate z(t) is inevitably inaccurate near the initial
time t¼ 0. For an asymptotic observer, we must have that
limt!1½zðtÞ � xðtÞ� ¼ 0, irrespective of the discrepancy between
the initial values z(0) and x(0); no restrictions are imposed on the
initial state z(0) of the observer. When attempting to implement
this requirement, we are faced with two basic questions:

(i) How does one build an asymptotic observer for a system R
of the form (1.1)?

(ii) If an asymptotic estimate of the state of R is fed into a non-
linear static state feedback controller u that asymptotically
stabilizes the input/state part Rs of R, would the resulting
closed-loop system be asymptotically and internally
stable?

We start our discussion by examining the possible structure of
an asymptotic observer O for a system R of the form (1.1). To
construct and operate an asymptotic observer for R, we must use
all the information available about R. This includes the recursion
function f, the output function h, the input signal u(t), and the out-
put signal y(t). The last two will serve as the input signals of the
observer O. Denoting by z(t) the asymptotic estimate of the state
x(t) of R generated by O, we obtain the operational environment
of Fig. 3. For z(t) to be an asymptotic estimate of x(t), we must
have for all initial conditions

limt!1½zðtÞ � xðtÞ� ¼ 0 (1.4)

An asymptotic observer O for R is an input/state system with
state z(t) and input signals u(t) and y(t) represented by the differ-
ential equation

O : _zðtÞ ¼ sðzðtÞ; uðtÞ; yðtÞÞ; t � 0; zð0Þ ¼ z0 (1.5)

Here, zðtÞ 2 Rn is the estimate of the state of R generated by O.
There is no relationship between the initial state z0 of O and the
initial state x0 of R, since x0 is not known; no restrictions are
imposed on the initial state z0 of the observer. The function
s : Rn � Rm � Rp ! Rn is the recursion function of the observer.
Our main objective in this paper is to develop a simple methodol-
ogy for deriving s, when s exists.

Given a system R with recursion function f and output function
h, we show in Sec. 2 that the recursion function s of an asymptotic
observer O for R is determined by a function x : Rp � Rm ! Rn

that has the following feature:

The difference j(x, u):¼ f(x, u) – x(h(x), u) is the recursion
function of an asymptotically stable differential equation.

Once x is found, the recursion function s of an asymptotic
observer for R can be assembled with no further ado. In this way,
finding the recursion function of an asymptotic observer boils
down to finding a function x which, when subtracted from f,
yields the recursion function of an asymptotically stable differen-
tial equation. We refer to such a function x as a “strict observer
function” (see Sec. 2 for an exact definition). Strict observer func-
tions can be derived from the given functions f and h of Eq. (1.1)
through Lyapunov’s second method (see Sec. 8).

Once an asymptotic observer O has been derived for R, it can
be combined with a static state feedback controller to obtain the
observer–controller configuration depicted in Fig. 4. In the figure,
the estimated state z(t) generated by O is fed into a state feedback
function u : Rn ! Rm, instead of the (unknown) true state x(t) of
R. Here, u forms a static state feedback controller that
asymptotically stabilizes the input/state part Rs of R, when the
true state x(t) of R is provided as input to u. The closed-loop
system of Fig. 4 is denoted by ROu . Techniques for the derivation
of state feedback functions u that asymptotically stabilize a given
nonlinear input/state system are discussed by Refs. [1,2] for
general nonlinear systems, by [3] for affine systems, by the
references cited in these publications and by many others.

An important issue arises in this context. Recall that O, being
an asymptotic observer, may initially provide a crude estimate z(t)
of the state x(t) of R. True, the state estimate z(t) does converge to
the state x(t) of R in time, but initially—at the initial time t¼ 0
and for some time thereafter, there is no specific relationship
between the estimate z(t) and the state x(t). It is important there-
fore to clarify under what conditions the estimate z(t) is sufficient
to induce asymptotic stabilization of R, when fed into the state
feedback function u. In addition, practical application of these
results is feasible only when the configuration ROu is immune to
small errors, noises, and disturbances that may affect its constitu-
ents. These issues are addressed in Sec. 7, where we show that,
for the observers we construct, ROu is asymptotically and internally
stable.

Another interesting aspect of the observer–controller
configuration is the well-known classical separation theorem,
which states that any combination of an asymptotic observer and a
stabilizing static state feedback can be used to stabilize a system

Fig. 2 Static state feedback

Fig. 3 An asymptotic observer O for the observed system R

Fig. 4 The observer–controller configuration
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under appropriate conditions. In Sec. 7, we revisit the separation
theorem for the observers we construct. We show that, as long as
the static state feedback controller asymptotically and robustly
stabilizes the input/state part Rs of R, the separation theorem
remains valid for our observers, and the resulting closed-loop sys-
tem can tolerate small errors, noises, and disturbances.

Generally speaking, the class of controllers obtained from the
observer–controller configuration is restricted; it includes only
controllers formed by a combination of an asymptotic observer and
a static state feedback. As a result, the behavior that can be assigned
to a closed-loop system via the observer–controller configuration is
restricted as well. Nevertheless, the observer–controller
configuration does play an important role. First, it provides a rather
general technique for stabilizing nonlinear systems. Second, a
stabilizing controller obtained through the observer–controller
configuration can be used to derive a fraction representation of the
system R. This fraction representation can then be utilized to obtain
more general stabilizing controllers for R (see Ref. [4]). In this way,
the observer–controller configuration offers an opening for the
derivation of stabilizing controllers of a more general nature.

Asymptotic observers have received considerable attention in
the control theoretic literature of the past half a century or so, and
this paper does not intend to provide a literature survey on the
topic of asymptotic observers. Early developments of asymptotic
observers can be found in the works of Refs. [5] and [6]. More
recently, asymptotic observers for nonlinear systems were investi-
gated by Refs. [7] and [8], by the papers cited by these authors, by
their references, and by many others.

Alternative investigations into the stabilization of nonlinear
systems can be found in Refs. [4,9–22] and many others.

The paper is organized as follows: Section 2 presents the basics
of our formalism, while Sec. 3 introduces a strict notion of
Lyapunov stability used in the derivation of strict asymptotic
observers. Strict asymptotic observers and strict observer func-
tions are introduced in Sec. 4, where it is also shown how to con-
struct a strict asymptotic observer from a strict observer function.
Section 5 examines the robustness of strict asymptotic observers.
A simplified method for deriving strict observer functions is
described in Sec. 6. Section 7 considers the separation theorem for
observer–controller configurations that employ strict asymptotic
observers, showing that such configurations are internally stable.
Section 8 briefly describes the use of Lyapunov’s second method
to derive strict observer functions. The paper concludes in Sec. 9
with examples that demonstrate the construction of strict
asymptotic observers.

2 The Structure of Asymptotic Observers

Consider the system R of (1.1), where f and h are continuous
functions. The input signal u(t) and the output signal y(t) of R are
both available for use as inputs to an observer, while the initial
condition x0 of R is unknown. Our objective is to devise an
asymptotic observer O of the form (1.5) to generate an asymptotic
estimate z(t) of the state x(t) of R, namely, an estimate satisfying
(1.4). To simplify our discussion, we assume that R is a reachable
system as follows:

ASSUMPTION 2.1. The system R of (1.1) is reachable, namely, for
every pair of states x0; x

0 2 Rn, there is a time t0 � 0 and an input
signal u(t), t 2 ½0; t0�, such that x(0)¼ x0 and xðt0Þ ¼ x0. �

We also assume that the initial state x0 of R can be any vector
in Rn. Similarly, we impose no restrictions on the input signal u(t),
other than requiring it to be a piecewise continuous and bounded
function of time. Thus, u(t) can take any value in Rm at a time
t� 0.

As the main feature of an asymptotic observer O is the asymp-
totic convergence requirement (1.4), our interest concentrates on
the difference z(t)� x(t). To obtain a differential equation of this
difference, combine Eq. (1.5) with Eq. (1.1) to obtain

_zðtÞ � _xðtÞ ¼ sðzðtÞ; uðtÞ; yðtÞÞ � f ðxðtÞ; uðtÞÞ (2.1)

The requirement (1.4) implies that, for every e> 0, there is a
time T(e)> 0 such that zðtÞ � xðtÞj j < e for all t� T(e). Bearing in
mind that all systems under consideration are time invariant, we
can start R from the initial condition x0 :¼ x(T(e)); start O from
the initial condition z0 :¼ z(T(e)); and apply the input signal
u0ðtÞ :¼ uðtþ TðeÞÞ; t � 0. This will shift the original behavior
over the time interval [T(e),1) to the time interval [0,1). Let us
denote by x0ðtÞ and z0ðtÞ the states at the time t of R and of O,
respectively, after this shift. Then, the paths of the two systems
satisfy z0ðtÞ � x0ðtÞj j < e for all t� 0. As this process can be
accomplished for any input signal u(t), the following is valid for
any input signal: if R and O start from certain initial conditions
that are close to each other, then their trajectories remain close at
all times.

From this conclusion, it is just a small additional step to impos-
ing the following general requirement: if the asymptotic observer
O starts from the same initial condition as the system R, then the
state trajectories of O and of R should remain identical at all
times. This requirement is, actually, at the root of the asymptotic
observer concept: we expect that, when a system and its asymp-
totic observer are operated under identical conditions, the two sys-
tems should exhibit identical behavior. From here, we reach the
following formal definition of an asymptotic observer.

DEFINITION 2.2. Let R be a system of the form (1.1) with input
signal u(t), state x(t), and initial condition x(0)¼ x0, and let O be
a system of the form (1.5) with the state z(t) and the initial condi-
tion z(0)¼ z0. Then, O is an asymptotic observer of R if it satisfies
the following:

(i) limt!1½zðtÞ � xðtÞ� ¼ 0 for any input signal u(t) and for
any initial conditions x0; z0 2 Rn; and

(ii) z(t)¼ x(t) for all t� 0 and all input signals u(t), when
z0¼ x0.

The observer error is the difference

nðtÞ :¼ zðtÞ � xðtÞ ( (2.2)

Considering the observer error n(t) of Eq. (2.2), it follows by
Definition 2.2(i) that limt!1 nðtÞ ¼ 0 for all initial conditions
x0; z0 2 Rn and for all input signals u(t). From Eq. (2.2), we have
z(t)¼ n(t)þ x(t); substituting this into Eq. (2.1), and recalling
from Eq. (1.1) that y(t)¼ h(x(t)), we obtain

_nðtÞ ¼ s nðtÞ þ xðtÞ; uðtÞ; hðxðtÞÞð Þ � f xðtÞ; uðtÞð Þ;
n0 : ¼ nð0Þ ¼ z0 � x0 (2.3)

We can regard Eq. (2.3) as a differential equation for the observer
error n(t), where the signals u(t) and x(t) are formally interpreted
as input signals of Eq. (2.3).

Consider now the special case when the asymptotic observer O
and the system R start from the same initial condition z0¼ x0;
then, n0¼ 0. By Definition 2.2(ii), we must have then z(t)¼ x(t)
for all t� 0 and for any input signal u(t). In other words, if

n(0)¼ 0, then n(t)¼ 0 for all t� 0, and hence also _nðtÞ ¼ 0 for all
t� 0. Considering Eq. (2.3), this implies that, when n(0)¼ 0, we
must have sðxðtÞ; uðtÞ; hðxðtÞÞÞ � f ðxðtÞ; uðtÞÞ ¼ 0 for all t� 0. In
view of Assumption 2.1, any state of R can be reached from every
initial condition, so the last equality leads to

sðx; u; hðxÞÞ ¼ f ðx; uÞ for all x 2 Rn and all u 2 Rm (2.4)

Define now the function

rðz; u; yÞ :¼ sðz; u; yÞÞ � f ðz; uÞ (2.5)

where z is the state of the observer O and y¼ h(x) is the output of
the observed system R. Then, when z¼ x, namely, when the state
of O is identical to the state of R, it follows from Eq. (2.4) that
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rðx; u; hðxÞÞ ¼ 0 for all x 2 Rn and all u 2 Rm. Changing variable
names, we can also write

rðz; u; hðzÞÞ ¼ 0 for all z 2 Rn and all u 2 Rm (2.6)

Rewriting Eq. (2.5) in the form

sðz; u; yÞ ¼ f ðz; uÞ þ rðz; u; yÞ

the asymptotic observer equation (1.5) becomes

O : _zðtÞ ¼ f ðzðtÞ; uðtÞÞ þ rðzðtÞ; uðtÞ; yðtÞÞ; zð0Þ ¼ z0 (2.7)

An important fact about Eq. (2.7) is that the dependence of r on z
factors over the output function h of the observed system R, as fol-
lows (Im h denotes the image of the function h).

LEMMA 2.3. Let h: Rn! Rp be the output function of the system
R of Eq. (1.1), let y¼ h(x) be the output of R, let O be an asymp-
totic observer for R, and let z be the state of O. Then, referring to
Eq. (2.7), there is a function l : Rp � Rm � Rp ! Rn such that
rðz; u; yÞ ¼ lðhðzÞ; u; yÞ for all z 2 Rn, u 2 Rm, and y 2 Im h.

Proof. First, if h is injective, then it has a left inverse function
h�1 : Im h! Rn, so that z¼ h�1(h(z)). Substituting into r, we get
rðz; u; yÞ ¼ rðh�1ðhðzÞÞ; u; yÞ ¼: lðhðzÞ; u; yÞ, and the Lemma is
valid in this case. More generally, when h is not injective, let
z; z0 2 Rn be states at which hðzÞ ¼ hðz0Þ ¼ y; let x 2 Rn be the
true state of R generating the output value y, namely, y¼ h(x).
Now, if x¼ z, then, by Eq. (2.6), it follows that r(z, u, y)¼ 0. Fur-
ther, as R is reachable by Assumption 2.1, we can also have the
case where x ¼ z0, namely, the true state of R is z0 when the output
is y. Then, the same argument entails that rðz0; u; yÞ ¼ 0 as well.
Thus, rðz0; u; yÞ ¼ rðz; u; yÞ whenever hðzÞ ¼ hðz0Þ, and our proof
concludes. �

Lemma 2.3 yields the following general form of an asymptotic
observer.

COROLLARY 2.4. Let R be a system of the form (1.1) with the
recursion function f and the output function h, and let O be an
asymptotic observer for R. Then, there is a function l : Rp � Rm

�Rp ! Rn such that O is given by

O : _zðtÞ ¼ f ðzðtÞ;uðtÞÞ þ lðhðzðtÞÞ;uðtÞ;yðtÞÞ; zð0Þ ¼ z0 ( (2.8)

Substituting y¼ h(x) into Eq. (2.8), we get

_zðtÞ ¼ f ðzðtÞ; uðtÞÞ þ lðhðzðtÞÞ; uðtÞ; hðxðtÞÞÞ (2.9)

Using Eqs. (2.9) and (2.1), the differential equation of the
observer error becomes

_nðtÞ ¼ _zðtÞ � _xðtÞ ¼ f ðzðtÞ; uðtÞÞ � f ðxðtÞ; uðtÞÞ
þ lðhðzðtÞÞ; uðtÞ; hðxðtÞÞÞ (2.10)

Substituting z(t)¼ n(t)þ x(t) into Eq. (2.10) yields

_nðtÞ ¼ f ðnðtÞ þ xðtÞ; uðtÞÞ � f ðxðtÞ; uðtÞÞ þ
lðhðnðtÞ þ xðtÞÞ; uðtÞ; hðxðtÞÞÞ (2.11)

The system (2.11) is globally asymptotically stable since the
observer error n(t) of an asymptotic observer asymptotically con-
verges to zero under all operating conditions, as discussed earlier.

3 Strict Lyapunov stability

In Eq. (2.11), the signals x(t) and u(t) both serve as input sig-
nals. To guarantee robustness, we must allow uncertainties in the
recursion function f of R. As x(t) and u(t) are related through the
differential equation (1.3), uncertainties in f will prevent any pre-
dictable exact relationship between the values of x(t) and of u(t),

especially at times t not close to the initial time t¼ 0. To accom-
modate this situation, it is prudent to go a step further and require
that limt!1 nðtÞ ¼ 0 be valid for all functions x(t) and u(t), not
only for functions x(t) and u(t) related through the exact differen-
tial equation (1.3). This brings us to a stronger notion of an as-
ymptotic observer, which is the main topic of this paper. We start
by introducing the following terminology.

DEFINITION 3.1. Let

_hðtÞ ¼ gðhðtÞ;wðtÞÞ; t � 0; hð0Þ ¼ h0

KðtÞ ¼ /ðhðtÞÞ (3.1)

be a system, where hðtÞ 2 Rn;wðtÞ 2 Rm, and KðtÞ 2 Rp for all
t� 0, and where g : Rn � Rm ! Rn and / : Rn ! Rp are continu-
ous functions satisfying g(0, 0)¼ 0 and /ð0Þ ¼ 0. Assume that
Eq. (3.1) has a unique solution h(t), t� 0, for every initial condi-
tion h0 and for every piecewise continuous and bounded input
function w(t). A strict Lyapunov function for Eq. (3.1) is a function
V: Rn! R that satisfies the following:

(i) V(h)> 0 for all h 6¼ 0 and V(0)¼ 0;
(ii) @V/@h exists and is a continuous function;
(iii) The set fh : VðhÞ � Ag is a bounded subset of Rn for every

real number A� 0;
(iv) _VðhðtÞÞ < 0 for every solution h(t) of Eq. (3.1), as long as

h(t) 6¼ 0; and _Vð0Þ ¼ 0.

The system (3.1) is strictly Lyapunov stable if there is a strict
Lyapunov function for it. �

In the special case when Eq. (3.1) is an autonomous system,
namely, when g does not depend on w, strict Lyapunov stability
reduces to the standard notion of Lyapunov stability. However,
when an input signal w(t) does appear in Eq. (3.1), strict Lyapu-
nov stability is a rather strong notion of stability, as the next state-
ment shows: the solution of a strictly Lyapunov stable differential
equation always decays to zero, irrespective of the input signal.

PROPOSITION 3.2. Let h(t) be the state of a strictly Lyapunov sta-
ble differential equation of the form (3.1) with a piecewise contin-
uous and bounded input function w(t). Then, h(t) is a bounded
function and limt!1 hðtÞ ¼ 0, regardless of the input signal w(t).

Proof. We show first that h(t) is a bounded function of time. To
this end, define the function g(t):¼V(h(t)). Then, according to
Definition 3.1(i) and (iv), we have

gðtÞ � 0 (3.2)

and

_gðtÞ < 0 as long as gðtÞ 6¼ 0 (3.3)

for all t� 0. Now, as V(h) is defined for all h 2 Rn, the initial
value g(0) is bounded; invoking Eqs. (3.2) and (3.3), we conclude
that g(0)� g(t)� 0 for all t� 0. Thus, g(t) is a bounded function.
By Definition 3.1(iii), the latter implies that h(t) is also a bounded
function, proving the first part of the proposition.

Next, we show that limt!1 VðhðtÞÞ ¼ 0. Indeed, by Eq. (3.3),
the function g(t) is bounded, strictly monotone decreasing, and
continuous. Using these facts, it can be shown that
limt!1 gðtÞ ¼ 0, or that limt!1 VðhðtÞÞ ¼ 0. But then, using
Definition 3.1(i), it can be further shown that limt!1 hðtÞ ¼ 0,
and our proof concludes. �

In view of Proposition 3.2, strict Lyapunov stability of an equa-
tion of the form (3.1) is a rather strong notion of asymptotic stabil-
ity, since it implies convergence to zero of the solution h(t) for all
input signals w(t) (and for all initial conditions h0). This leads to
the following property that we will utilize in our ensuing
discussion.

PROPOSITION 3.3. Let h(t) be the state of a strictly Lyapunov sta-
ble differential equation of the form (3.1) with a piecewise contin-
uous and bounded input signal w(t). If h(0)¼ 0, then h(t)¼ 0 for
all t� 0, regardless of the input signal w(t).
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Proof. Using the notation of Definition 3.1, let V be a strict
Lyapunov function for Eq. (3.1). Considering the function
l(t) :¼V(h(t)) with h(0)¼ 0, it follows by Definition 3.1(i) and
(iv) that l(0)¼ 0 and _lð0Þ ¼ 0. We also have that l(t)� 0 by Def-
inition 3.1(i) and that l(t) is a monotone decreasing function by
Definition 3.1(iv). These facts imply that 0�l(t)� 0 for all t� 0,
namely, that l(t)¼ 0 for all t� 0. But then, by Definition 3.1(i), it
follows that h(t)¼ 0 for all t� 0. �

The following notion is central to our discussion.
DEFINITION 3.4. A strict asymptotic observer for the system R

of Eq. (1.1) is an asymptotic observer O of the form (2.8)
whose observer error (2.11) is strictly Lyapunov stable, with
w(t):¼ (u(t), x(t)) being regarded as the input signal. �

It is easy to see that the traditional linear asymptotic observer
[6] is a special case of a strict asymptotic observer. Indeed, con-
sider a linear time-invariant system described by

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ

where A, B, and C are constant matrices of appropriate dimen-
sions. For this system, a traditional linear asymptotic observer
exists if and only if there is a matrix L for which all eigenvalues
of the matrix (A� LC) have strictly negative real parts. Then, the
traditional linear asymptotic observer takes the form

_zðtÞ ¼ AzðtÞ þ L½yðtÞ � CzðtÞ� þ BuðtÞ

The observer error equation in this case is _nðtÞ ¼ ðA� LCÞnðtÞ,
and, since all eigenvalues of (A� LC) are in the open left half of
the complex plane, the observer error equation is strictly Lyapu-
nov stable. Hence, the traditional linear observer is a special case
of a strict asymptotic observer.

4 Building Strict Asymptotic Observers

Consider a strict asymptotic observer O for the system R of Eq.
(1.1). Applying Definition 3.4 to the observer error equation
(2.11) implies that there must be a strict Lyapunov function V
such that _VðnðtÞÞ ¼ @V=@nð Þ _nðtÞ < 0 for all n(t) 6¼ 0. Substituting
_nðtÞ from Eq. (2.11), we obtain the inequality

@V

@n
f ðnðtÞ þ xðtÞ; uðtÞÞ � f ðxðtÞ; uðtÞÞ½

þ lðhðnðtÞ þ xðtÞÞ; uðtÞ; hðxðtÞÞÞ� < 0 for all nðtÞ 6¼ 0 (4.1)

As indicated in Sec. 3, there is no strict correlation between the
values of x(t) and u(t) at a time t> 0, due to uncertainties about
the recursion function f of the observed system R. Furthermore,
considering that u(t) is a piecewise continuous function, we can
change the value of u(t) arbitrarily, irrespective of the value of
x(t). In view of these facts, inequality (4.1) must remain valid for
any pair of values (x(t), u(t)). In particular, we can take x(t)¼ 0
and set u(t) at an arbitrary value, without violating the inequality.
Substituting this into Eq. (2.11) and using the fact that h(0)¼ 0 by
Eq. (1.2) yields the strictly Lyapunov stable differential equation

_nðtÞ ¼ f ðnðtÞ; uðtÞÞ þ lðhðnðtÞÞ; uðtÞ; 0Þ � f ð0; uðtÞÞ½ � (4.2)

Defining the function

xðhðnÞ; uÞ :¼ � lðhðnÞ; u; 0Þ � f ð0; uÞ½ � : Rn � Rp ! Rn

we can rewrite Eq. (4.2) in the form

_nðtÞ ¼ f ðnðtÞ; uðtÞÞ � xðhðnðtÞÞ; uðtÞÞ (4.3)

As this equation is strictly Lyapunov stable, it follows by Proposi-
tions 3.2 and 3.3 that limt!1 nðtÞ ¼ 0 for any input signal u(t);

and, when started from zero initial conditions, the solution
becomes n(t)¼ 0 for all t� 0, again irrespective of the input signal
u(t).

Rewriting Eq. (4.3) twice with differently named variables, we
obtain two strictly Lyapunov stable equations

_fðtÞ ¼ f ðfðtÞ; uðtÞÞ � xðhðfðtÞÞ; uðtÞÞ
_vðtÞ ¼ f ðvðtÞ; uðtÞÞ � xðhðvðtÞÞ; uðtÞÞ (4.4)

so that limt!1 fðtÞ ¼ 0 and limt!1 vðtÞ ¼ 0 for all input func-
tions u(t) and for all initial conditions. But then, the difference

_fðtÞ � _vðtÞ ¼ ½f ðfðtÞ; uðtÞÞ � xðhðfðtÞÞ; uðtÞÞ�
� ½f ðvðtÞ; uðtÞÞ � xðhðvðtÞÞ; uðtÞÞ� (4.5)

satisfies limt!1½fðtÞ � vðtÞ� ¼ 0 for all input functions u(t) and
for all initial conditions. Denoting #ðtÞ :¼ fðtÞ � vðtÞ, we obtain
that limt!1 #ðtÞ ¼ 0 for any input function u(t) and for any initial
conditions.

Using these facts, and recalling that the output signal of the
observed system R of Eq. (1.1) is given by y(t)¼ h(x(t)), we show
now that one can assemble a strict asymptotic observer O for R in
a rather simple way by using the equation

O : _zðtÞ ¼ f ðzðtÞ; uðtÞÞ
� xðhðzðtÞÞ; uðtÞÞ � xðyðtÞ; uðtÞÞ½ �; zð0Þ ¼ z0 (4.6)

Indeed, for such an observer, the observer error n(t)¼ z(t)� x(t)
satisfies the equation

_nðtÞ ¼ _zðtÞ � _xðtÞ ¼ ½f ðzðtÞ; uðtÞÞ � xðhðzðtÞÞ; uðtÞÞ�
� ½f ðxðtÞ; uðtÞÞ � xðhðxðtÞÞ; uðtÞÞ�:

This equation is identical to Eq. (4.5) when setting f(0) :¼ z(0) and
v(0) :¼ x(0). Consequently, recalling our discussion of Eq. (4.5), we
conclude that the observer error satisfies limt!1 nðtÞ ¼ 0 for all
input functions u(t) and for all initial conditions.

Furthermore, for equal initial conditions z(0)¼ x(0), we have
f(0)¼ v(0), and the two equations (4.4) clearly have the same
solution f(t)¼ v(t), t� 0, which, by our earlier observations,
implies that n(t)¼ 0 for all t� 0. These considerations lead to the
following statement, which is one of the main results of this
paper.

THEOREM 4.1. Let R be a system of the form (1.1) with recursion
function f and output function h. The following two statements are
equivalent:

(i) There is a strict asymptotic observer for R.
(ii) There is a continuous function x : Rp � Rm ! Rn for

which the differential equation _fðtÞ ¼ f ðf; uÞ � xðhðfÞ; uÞ
is strictly Lyapunov stable. �

Proof. The discussion preceding the theorem shows that (i)
implies (ii). Conversely, assume that (ii) is valid. Then, let V be a
strict Lyapunov function for the equation given in (ii), and setup
an observer as described in Eq. (4.6), where z(t) is the observer
state. Referring to Eq. (4.4) and recalling that x(t) is the state of
the observed system R, it follows from the discussion preceding
the theorem that

nðtÞ ¼ zðtÞ � xðtÞ ¼ fðtÞ � vðtÞ (4.7)

Consider now the sum V(f(t))þV(v(t)); as both of these functions
are non-negative, so is their sum. In view of Eq. (4.7), we can
rewrite this sum in the form

V1ðnðtÞ; vðtÞÞ :¼ VðnðtÞ þ vðtÞÞ þ VðvðtÞÞ (4.8)
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As V is a strict Lyapunov function, it follows directly from
Eq. (4.8) that V1(n(t),v(t)) is a strict Lyapunov function for the
pair (n(t),v(t)). This implies that Eq. (4.6) is a strict asymptotic
observer for R, and our proof concludes. �

In view of Theorem 4.1, we can characterize the general form
of a strict asymptotic observer as follows.

COROLLARY 4.2. With the function x of Theorem 4.1, a strict
asymptotic observer for the system R of Eq. (1.1) is given by
Eq. (4.6). �

From an implementation perspective, Corollary 4.2 shows that
finding a strict asymptotic observer boils down to finding a func-
tion x for which the combination f(x, u)�x(h(x), u) is the recur-
sion function of a strictly Lyapunov stable differential equation.
This fact is very convenient in practice, since it provides a recipe
for finding strict asymptotic observers through a relatively stand-
ard calculation, as we discuss in Sec. 7. In the meanwhile, it is
convenient to introduce the following terminology.

DEFINITION 4.3. A continuous function x that satisfies the
requirements of Theorem 4.1 is a strict observer function for R. �

5 Accounting for the Effects of Disturbances

When an observer is used in practice, one must take into
account various disturbance and noise signals that may affect the
observer’s inputs. Specifically, recall that an observer O of a sys-
tem R employs two input signals: the output signal y(t) and the
input signal u(t) of the observed system R. Generally, these sig-
nals are corrupted by small additive disturbances and noises.
Denoting by tðtÞ the disturbance signal that affects y(t) and by
t0ðtÞ the disturbance signal that affects u(t), the situation is
depicted in Fig. 5. The following assumption, which is valid for
disturbance and noise signals that appear in practice, simplifies a
few mathematical arguments.

ASSUMPTION 5.1. All disturbance and noise signals are piecewise
continuous and bounded functions of time. �

The next feature helps evaluate the quantitative impact of dis-
turbances and noises on strict asymptotic observers.

LEMMA 5.2. Let R be a system of the form (1.1) with recursion
function f and input signal u(t), and assume that there is a strict
observer function x : Rp � Rm ! Rn for R. Then, for every pair
of real numbers A,a> 0, there is a real number d> 0 such that the
following is true for all input signals satisfying |u|�A: for every
pair of functions t : Rþ ! Rp and t0 : Rþ ! Rm of magnitudes
jtj; jt0j < d, the solution f(t) of the equation

_fðtÞ ¼ f ðfðtÞ; uðtÞ þ t0ðtÞÞ � xðhðfðtÞÞ þ tðtÞ; uðtÞ þ t0ðtÞÞ

is a bounded function of time, and it satisfies
lim supt!1 jfðtÞj < a.

Proof. Let V be a strict Lyapunov function for the equation
_hðtÞ ¼ f ðhðtÞ; uðtÞÞ � xðhðhðtÞÞ; uðtÞÞ, and use the initial condi-
tion h(0)¼ f(0) 6¼ 0. In view of Definition 3.1(iii) and (i) and
the continuity of V, the domain N1 :¼ fh : VðhÞ � Vðhð0ÞÞg is
compact in Rn, and therefore so is the intersection
N0 :¼ N1 \ fjhj � ag. Also, N1 is a connected set that includes the
origin, since it is the inverse image through the continuous func-
tion V of the nonempty connected set ½0;Vðhð0ÞÞ� � R. As a
result, the intersection N0 is not empty for a sufficiently small pos-
itive number g< a, namely,

N0 ¼ N1 \ fjhj � gg 6¼ [ (5.1)

Further, denote c :¼ infjhjfh : VðhÞ ¼ Vðhð0ÞÞg. Then, consider-

ing that h(0) 6¼ 0, Definition 3.1(iii) implies that c> 0. We can
choose g so that 0< g< c and use such value of g below.

Denote by [�A, A]m the set of all vectors v 2 Rm satisfying
|v|�A, where A is given in the statement of the Lemma. Then,
N :¼ N0 � ½�A;A�m is a compact subset of Rn � Rm. By Definition
3.1(ii) and the continuity of f, x, and h, the derivative

_V ¼ ð@V=@hÞ½f ðh; uÞ � xðhðhÞ; uÞ� is a continuous function of

(h, u). Hence, _V attains a minimal value b over N, and b< 0 by
Definition 3.1(iv). Denote c :¼�b, so that c> 0.

Next, by Definition 3.1(ii) and the compactness of N0, there is a
maximum

b :¼ max j@V=@hj : h 2 N0f g (5.2)

and b 6¼ 0 by Eqs. (5.1), (5.2), and Definition 3.1(iv). Thus, there
is a real number d> 0 satisfying bd< c/3. As the continuous func-
tion f is uniformly continuous over the compact domain N, there is

a real number d0 > 0 such that jf ðf; uþ t0Þ � f ðf; uÞj < d for all

ðf; uÞ 2 N and all t0 2 Rm satisfying jt0j < d0. Similarly, the conti-
nuity of the functions x and h implies that there is a real numbers

d00 > 0 such that jxðhðfÞ þ t; uþ t0Þ � xðhðfÞ; uÞj < d for all

ðf; uÞ 2 N and all t 2 Rp; t0 2 Rm satisfying jtj; jt0j < d00. Setting

d :¼ minfd0; d00g, the solution f(t) of Eq. (6.10) satisfies

_VðfÞ ¼ @V

@f
½f ðfðtÞ; uðtÞ þ t0ðtÞÞ � xðhðfðtÞÞ þ tðtÞ; uðtÞ þ t0ðtÞÞ�

<
@V

@f
½f ðfðtÞ; uðtÞÞ � xðhðfðtÞÞ; uðtÞÞ þ 2d�

<
@V

@f
½f ðfðtÞ; uðtÞÞ � xðhðfðtÞÞ; uðtÞÞ� þ 2

3
c < �cþ 2

3
c < 0

whenever ðfðtÞ; uðtÞÞ 2 N and jtj; jt0j < d. Thus, _V < 0 whenever
jfj � g. Consequently, V(f(t))<V(h(0)) as long as jf(t)j � g, so
that, by Definition 3.1(iii), the function f(t) is bounded. This argu-
ment also implies that lim supt!1 jfðtÞj < g, and, as g< a, the
proof concludes. �

Lemma 5.2 provides tools we need to examine the impact of
small disturbances and noises on a strict asymptotic observer.
Consider the situation depicted in Fig. 5, where t(t) and t0ðtÞ are
disturbance and noise signals that may affect an observer. The
following statement shows that a strict asymptotic observer can
tolerate such disturbances and noises.

THEOREM 5.3. Let R be a system of the form (1.1) with input sig-
nal u(t), state x(t), and output signal y(t), and assume that there is
a strict asymptotic observer O for R. Let z(t) be the estimate of
x(t) produced by O in the presence of the disturbance signals t(t)
and t0ðtÞ of Fig. 5. Then, for every pair of real numbers A, e> 0,
there is a real number d> 0 such that lim supt!1 jzðtÞ � xðtÞj < e
as long as jtj; jt0j < d and juj �A. In particular, if x(t) is bounded,
then so is z(t).

Proof. Refer to Eq. (4.7), where x(t) and z(t) are given in the
theorem, and f(t) and v(t) are solutions of Eq. (4.4). Let e> 0 be a
real number. Apply Lemma 5.2 to f(t) and v(t) using a¼ e/2 and the
disturbance signals t(t) and t0ðtÞ of the present theorem, and let d> 0
be as described in Lemma 5.2. Then, Lemma 5.2 implies that
lim supt!1 jfðtÞj < e=2 and lim supt!1 jvðtÞj < e=2 as long as
jtj; jt0j < d and juj�A. Thus, lim supt!1 jzðtÞ � xðtÞj ¼ lim supt!1
jfðtÞ � vðtÞj � lim supt!1 jfðtÞjþ lim supt!1 jvðtÞj< e=2þ e=2¼ e
proving the first part of the theorem.

Fig. 5 Observer with disturbances
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Further, Lemma 5.2 states that f(t) and v(t) are both bounded
functions; as jnðtÞj ¼ jfðtÞ � vðtÞj � jfðtÞj þ jvðtÞj, it follows that
n(t) is bounded as well. Finally, by Eq. (4.7), we have
jz(t)j ¼ jn(t)j þ jx(t)j; thus, if x(t) is bounded, so is z(t). �

We have seen in this section that a strict asymptotic observer
fulfils two fundamental requirements: it provides an asymptotic
estimate of the observed system’s state, and this estimate is
affected only slightly by small disturbances and noises. We have
also seen that a strict asymptotic observer can be readily con-
structed from a strict observer function x found from the recur-
sion function f of the observed system R. Section 6 concentrates
on simplifying the construction of strict observer functions.

6 Remainder Functions

The process of deriving strict observer functions can often be
simplified by reducing the observed system’s recursion function
into a simpler form. To this end, let R of Eq. (1.1) be the observed
system, where f : Rn � Rm ! Rn is its recursion function and
h : Rn ! Rp is its output function. Denote by Im h the image of h,
namely, the set of all values of h. To simplify notation, we also
use the symbol h for the surjective function h : Rn ! Im h induced
by h. Then, there is a right inverse function h	 : Im h! Rn of the
surjective function h : Rn ! Im h, so that hh	 ¼ I : Im h! Im h
is the identity function. Assume that h* can be chosen as a contin-
uous function. Then, the function

p :¼ h	h : Rn ! Rn (6.1)

is continuous. Note that p is akin to a projection, since
p2 ¼ ðh	hÞðh	hÞ ¼ h	h ¼ p. Recalling that hh*¼ I, we obtain

hðpðfÞÞ ¼ hh	hðfÞ ¼ hðfÞ for all f 2 Rn (6.2)

Consequently, pðfÞ represents a part of the state f that determines
the output value. Define a function k : Rn ! Rn by

kðfÞ :¼ f� pðfÞ; f 2 Rn (6.3)

so that

f ¼ pðfÞ þ kðfÞ for all f 2 Rn (6.4)

Applying the function h to Eq. (6.4) yields hðfÞ ¼ hðpðfÞ þ kðfÞÞ;
together with Eq. (6.2), this yields

hðpðfÞ þ kðfÞÞ ¼ hðpðfÞÞ for all f 2 Rn

Thus, k(f) is a part of the state f that does not affect the output
value.

Referring to Theorem 4.1, the function

Dðf; uÞ :¼ f ðf; uÞ � xðhðfÞ; uÞ

is the recursion function of a strictly Lyapunov stable differential
equation; consider the difference

qðf; uÞ : ¼ Dðf; uÞ � DðpðfÞ; uÞ
¼ ½f ðf; uÞ � xðhðfÞ; uÞ� � ½f ðpðfÞ; uÞ � xðhðpðfÞÞ; uÞ�

By Eq. (6.2), the last expression becomes qðf; uÞ ¼ ½f ðf; uÞ
�xðhðfÞ; uÞ� � ½f ðpðfÞ; uÞ � xðhðfÞ; uÞ�; so that

qðf; uÞ ¼ f ðf; uÞ � f ðpðfÞ; uÞ (6.5)

Using Eq. (6.1), we can write f ðpðfÞ; uÞ ¼ f ðh	hðfÞ; uÞ; conse-
quently, there is a function g : Rn � Rm ! Rn satisfying

gðhðfÞ; uÞ ¼ f ðpðfÞ; uÞ (6.6)

and g is continuous by the continuity of h*. Substituting into
Eq. (6.5) yields

qðf; uÞ ¼ f ðf; uÞ � gðhðfÞ; uÞ (6.7)

DEFINITION 6.1. The function q of Eq. (6.7) is the remainder func-
tion of the system R. (

To examine the significance of the remainder function q,
assume that there is a function w : Rp � Rm ! Rn for which the
differential equation

_fðtÞ ¼ qðfðtÞ; uðtÞÞ � wðhðfðtÞÞ; uðtÞÞ (6.8)

is strictly Lyapunov stable. Then, adding and subtracting
g(h(f),u), we can write

_fðtÞ ¼ ½qðfðtÞ; uðtÞÞ þ gðhðfðtÞÞ; uðtÞÞ�
� ½wðhðfðtÞÞ; uðtÞÞ þ gðhðfðtÞÞ; uðtÞÞ�

Defining the function

xðhðfÞ; uÞ :¼ wðhðfÞ; uÞ þ gðhðfÞ; uÞ (6.9)

and using Eq. (6.7), it follows that Eq. (6.8) takes the form

_fðtÞ ¼ f ðfðtÞ; uðtÞÞ � xðhðfðtÞÞ; uðtÞÞ

This differential equation is strictly Lyapunov stable, since, hav-
ing been derived from Eq. (6.8) by adding and subtracting the
same term, is identical to Eq. (6.8). Consequently, when seeking
strict observer functions for R, we can replace the recursion func-
tion f of R by the remainder function q of Eq. (6.7). Often, as in
the example below, q is simpler than f, and this makes it simpler
to find a strict observer function. It leads to the following alterna-
tive form of Theorem 4.1.

THEOREM 6.2. Let R be a system of the form (1.1) with the recur-
sion function f and the output function h. Assume that h, when
considered as a surjective function h : Rn ! Im h, has a continu-
ous right inverse function h*; let q be the corresponding remain-
der function of R. Then, the following two statements are
equivalent:

(i) There is a strict asymptotic observer for R.
(ii) There is a continuous function w : Rp � Rm ! Rn such that

q(f,u)�w(h(f),u) is the recursion function of a strictly
Lyapunov stable differential equation. �

Example 6.3. Consider the system R of the form (1.1), where

f ðx1; x2; uÞ ¼
x2 þ x2

1 þ u

x3
1

 !
: R2 � R! R2

hðx1; x2Þ ¼ x1 : R2 ! R

The function f can be construed as a third-order approximation of
a more general nonlinear recursion function, thus pointing to a
broader family of practical examples. Assume that this system is
operated within a stabilizing closed-loop configuration, so that its
state is well defined at all times, in compliance with Assumption
1.1. Referring to Eqs. (6.1) and (6.3), we can select here

h	ðx1Þ :¼ ðx1; 0ÞT (the transpose of (x1, 0)); then, pðx1; x2Þ
:¼ ðx1; 0ÞT and kðx1; x2Þ :¼ ð0; x2ÞT. Applying Eq. (6.6), we have

gðhðx1; x2Þ; uÞ ¼ f ðpðx1; x2Þ; uÞ ¼ f ðx1; 0; uÞ ¼
x2

1 þ u
x3

1

� �
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By Eq. (6.7), we obtain

qðx1; x2; uÞ ¼ f ðx1; x2; uÞ � gðhðx1; x2Þ; uÞ ¼
x2

0

� �
(6.10)

which is simpler than f. In fact, q is a linear function here, and we
can use

wðx1Þ :¼
x1

x1

� �
(6.11)

to get

Dðx1; x2; uÞ :¼ q� w ¼ x2 � x1

�x1

� �

A direct calculation shows that the equation _zðtÞ ¼ DðzðtÞ; uÞ is
strictly Lyapunov stable. Consequently, by Eq. (6.9), a strict
observer function for R is given by

x ¼ wþ g ¼ x1 þ x2
1 þ u

x1 þ x3
1

� �

and, by Corollary 4.2, a strict asymptotic observer for R is given
by

_zðtÞ ¼ z2ðtÞ � z1ðtÞ þ yðtÞ þ y2ðtÞ þ uðtÞ
�z1ðtÞ þ yðtÞ þ y3ðtÞ

� �
; zð0Þ ¼ z0 (

7 The Separation Theorem

We connect now a strict asymptotic observer O and a static
state feedback function u around a system R of the form (1.1) to
obtain the observer–controller configuration of Fig. 4. Our
objective is to determine whether the closed-loop system ROu is
stable, when O is a strict asymptotic observer and u is a static
state feedback function that robustly and asymptotically stabilizes
the input/state part Rs of R. As ROu is a composite system, we
must turn our attention to internal stability (e.g., Ref. [11]).

7.1 Internal stability. The notion of internal stability comes
to guarantee that small disturbances and noises that may appear in
a composite system do not destroy stability. Specifically, signals
that travel between subsystems in a composite system may pick
up disturbances and noises represented in our case by the signals
t1, t2, t3, and t4 of Fig. 6. Internal stability guarantees that, as
long as these disturbances and noises are sufficiently small, their
impact on ROu is small as well.

DEFINITION 7.1. Let R be a system of the form (1.1), let u be a
state feedback function that asymptotically stabilizes the input/
state part Rs of R, and let O be a strict asymptotic observer for R.
Referring to Fig. 6, let xðt1; t2; t3; t4; tÞ be the state of R and let
zðt1; t2; t3; t4; tÞ be the state of O at a time t� 0. Denote by x0

and z0 the initial conditions of R and of O, respectively. Then, the
observer–controller configuration ROu of Fig. 6 is internally and
asymptotically stable if, for every pair of real numbers e, A> 0,

there is a real number d> 0 such that the following are true
whenever jx0j, jz0j �A and jtij< d, i¼ 1,2,3,4:

(i) xðt1; t2; t3; t4; tÞ and zðt1; t2; t3; t4; tÞ are both bounded
functions; and

(ii) lim supt!1 jxðt1; t2; t3; t4; tÞj < e. �

Internal asymptotic stability guarantees that small disturbances
would not spoil the two main features of an asymptotically stable
configuration: boundedness of all internal signals and tendency of
the controlled system’s state to approach the vicinity of the origin.

7.2 State Feedback. To obtain internal stability of ROu , the
state feedback function u must possess certain robustness
features. Consider the static state feedback configuration Rsu of
Fig. 7, where the feedback function u is connected around the
input/state part Rs of the controlled system R in the presence of
disturbance signals t(t) and t0ðtÞ. In order to be of practical use,
Rsu must tolerate these disturbance signals in the following sense.

DEFINITION 7.2. Let R be a system of the form (1.1) with input/
state part Rs and initial state x0. Referring to Fig. 7, let
u : Rn ! Rm be a state feedback function, let t(t) and t0ðtÞ be dis-
turbance signals, and let by xðt; t0; tÞ be the state of the closed-
loop system. Then, u internally and asymptotically stabilizes Rs if

(i) u is a piecewise continuous function; and
(ii) For every pair of real numbers e, A> 0, there is a real num-

ber d> 0 such that (a) and (b) are valid whenever jx0j �A
and jtj; jt0j < d:
(a) xðt; t0; tÞ is a bounded function, and
(b) lim supt!1 jxðt; t0; tÞj < e. �

The following statement shows that the main implications of
Definition 7.2 remain valid when the bound d on the disturbance
signals is valid only asymptotically.

PROPOSITION 7.3. In the notation of Definition 7.2, let
u : Rn ! Rm be a state feedback function that internally and
asymptotically stabilizes the input/state part Rs of R. Then, for
every pair of real numbers A, e> 0, there is a real number d> 0
such that the following are valid whenever lim supt!1 jtðtÞj < d
and lim supt!1 jt0ðtÞj < d:

(i) xðt; t0; tÞ is a bounded function, and
(ii) lim supt!1 jxðt; t0; tÞj < e.

Proof. Since lim supt!1 jtðtÞj < d and lim supt!1 jt0ðtÞj < d,
there is a time s� 0 such that jt(t)j< d and jt0ðtÞj < d for all t� s.
As xðt; t0; tÞ is a continuous function, there is a maximum
B0 :¼ maxt2½0;s� jxðt; t0; tÞj. Start R from the initial state

x0 :¼ xðt; t0; sÞ and apply the disturbance signals t1ðtÞ :¼ tðtþ sÞ
and t2ðtÞ :¼ t0ðtþ sÞ; t � 0. Then, jt1ðtÞj < d and jt2ðtÞj < d for
all t� 0. Also, by time invariance, the response of Rs is
x0ðt1; t2; tÞ ¼ xðt; t0; tþ sÞ, t� 0. As u internally and asymptoti-
cally stabilizes Rs, there is a real number B00 � 0 such that
jx0ðt1; t2; tÞj � B00 for all t� 0 and lim supt!1 jx0ðt1; t2; tÞj < e.
Finally, setting B :¼ maxfB0;B00g and observing that

Fig. 7 Robust state feedbackFig. 6 Internal stability of the observer–controller configuration
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lim supt!1 jxðt; t0; tÞj ¼ lim supt!1 jx0ðt1; t2; tÞj < e, the proof
concludes. �

We are ready now to combine state feedback with observer.

7.3 The Separation Theorem. Like all composite systems,
the observer–controller configuration may be affected by noises
and disturbances as depicted in Fig. 6; here, t1, t2, t3, and t4 are
noises or disturbances. Referring to Definition 7.1, we can state
the following form of the separation theorem, which shows that a
nonlinear system can be stabilized by any combination of a strict
asymptotic observer and a stabilizing state feedback.

THEOREM 7.4. Let R be a system of the form (1.1) with a strict
asymptotic observer O, and assume that there is a state feedback
function u : Rn ! Rm that internally and asymptotically stabilizes
the input/state part of R. Then, the observer–controller
configuration ROu is internally and asymptotically stable.

Proof. Referring to Fig. 6, let xðt1; t2; t3; t4; tÞ be the state of R
at the time t, let x0 be the initial condition of R, let
zðt1; t2; t3; t4; tÞ be the estimated state generated by O, and let z0

be the initial condition of O. Let A> 0 be a real number satisfying
jx0j, jz0j �A, and let l> 0 be a real number. By Theorem 5.3,
there is a real number dA> 0 such that lim supt!1 jzðt1; t2;
t3; t4; tÞ � xðt1; t2; t3; t4; tÞj < l whenever jt3j; jt4j < dA.

Next, set t00ðtÞ :¼ zðt1; t2; t3; t4; tÞ � xðt1; t2; t3; t4; tÞ and,
referring to Fig. 7, define the signals t(t):¼ t2(t) and t0ðtÞ :¼ t00ðtÞ
þ t1ðtÞ; t � 0. Then,

xðt; t0; tÞ ¼ xðt1; t2; t3; t4; tÞ for all t � 0 (7.1)

Choose a real number e> 0. According to Proposition 7.3, there is

a real number d0A > 0 such that the following are valid whenever

lim supt!1 jtðtÞj < d0A and lim supt!1 jt0ðtÞj < d0A:

(a) There is a real number B0 > 0 such that jxðt; t0; tÞj � B0 for
all t� 0, and

(b) lim supt!1 jxðt; t0; tÞj < e.

Now, take 0 < l < d0A=2; jt1j < d0A=2, and jt2j < d0A. This
yields lim supt!1 jt0ðtÞj ¼ limsupt!1jt00ðtÞþt1ðtÞj� limsupt!1
ðjt00ðtÞjþjt1ðtÞjÞ¼ limsupt!1jt00ðtÞjþ limsupt!1jt1ðtÞj< l
þd0A=2< d0A=2þd0A=2¼d0A. Defining d :¼minfdA;d

0
A=2g, we

obtain that limsupt!1jxðt1;t2;t3;t4;tÞj<e whenever |ti|<d for
all i¼1, 2, 3, 4, verifying condition (ii) of Definition 7.1. Finally,
(a), Eq. (7.1), and Theorem 5.3 imply that zðt1;t2;t3;t4;tÞ is a
bounded function, verifying condition (i) of Definition 7.1. �

Thus, strict asymptotic observers form a handy tool for achiev-
ing asymptotic stabilization of nonlinear systems, when combined
with state feedback functions that internally and asymptotically
stabilize the input/state part of the controlled system. Recalling
that a strict asymptotic observer is determined by a strict observer
function, we point out next a simple method of finding such
functions.

8 Finding Strict Observer Functions

As we have seen, a strict asymptotic observer is easily obtained,
once a function w : Rp � Rm ! Rn satisfying Theorem 6.2 is
available. Such functions w can be derived by using the well
known principles of Lyapunov’s second method. In our case, we
must search simultaneously for two functions: a strict Lyapunov
function V: Rn ! R and a function w. In detail, let q be the
remainder function of Theorem 6.2. Then, w must turn Eq. (6.8)
into a strictly Lyapunov stable differential equation. In particular,
the requirement of Definition 3.1 (iv) becomes dVðfðtÞÞ=dt
¼ ð@V=@fÞ _f ¼ ð@V=@fÞ½qðf; uÞ � wðhðfÞ; uÞ� < 0, or

ð@V=@fÞqðf; uÞ < ð@V=@fÞwðhðfÞ; uÞ for all

0 6¼ f 2 Rn and all u 2 Rm (8.1)

For future reference, we summarize this point as follows.

THEOREM 8.1. Let R be a system of the form (1.1) with the recur-
sion function f, output function h, and remainder function q.
Assume that the surjective function h : Rn ! Im h has a continu-
ous right inverse function h*. Then, there is a strict asymptotic
observer for R if and only if there is a strict Lyapunov function
V(f) and a continuous function w : Rp � Rm ! Rn satisfying
Eq. (8.1). �

9 Examples

Example 9.1. For the system of Example 6.3 with q of
Eq. (6.10) and w of Eq. (6.11), Eq. (6.8) becomes

_f1ðtÞ
_f2ðtÞ

� �
¼ f2ðtÞ

0

� �
� f1ðtÞ

f1ðtÞ

� �
(9.1)

To examine Lyapunov’s second method, take the strict Lyapunov

function V ¼ ðf2
1 þ f2

2Þ=2. This yields @V=@f1 ¼ f1;
@V=@f2 ¼ f2, and Eq. (8.1) takes the form ð@V=@f1Þf2

< ð@V=@f1Þf1 þ ð@V=@f2Þf1, or 0 < f2
1. Thus, dV (f(t))/dt< 0

whenever f1(t) 6¼ 0. Finally, if f1(t)¼ 0 over an interval of time,

say t 2 ðt1; t2Þ; t2 > t1 � 0, then also _f1ðtÞ ¼ 0 over (t1, t2); by
Eq. (9.1), this implies that f2(t)¼ 0 over (t1, t2), and the system is
resting at the origin. As all other requirements of Definition 3.1
hold for Eq. (9.1), we conclude that w is indeed an appropriate
choice in this case, as noted in Example 6.3. �

Example 9.2. Consider a system R of the form (1.1), where

f ðx1; x2; uÞ ¼
x3

2 þ x2
1 þ u

x3
1 þ ux1

 !
: R2 � R! R2

hðx1; x2Þ ¼ x1 : R2 ! R

The function f can be construed as a third-order approximation of
a more general nonlinear recursion function, thus pointing to a
broader family of practical examples. Assume that this system is
operated within a stabilizing closed-loop configuration, so that its
state is well defined at all times, in compliance with Assumption
1.1. Referring to Eq. (6.1), we can use here

h	ðf1Þ ¼
f1

0

� �
; pðf1; f2Þ ¼

f1

0

� �

Then, in Eq. (6.6), we have

gðhðf1; f2Þ; uÞ ¼ f ðf1; 0; uÞ ¼
f2

1 þ u
f3

1 þ uf1

� �

Using Eq. (6.7), this yields

qðf; uÞ ¼ f ðf; uÞ � gðhðfÞ; uÞ

¼ f3
2 þ f2

1 þ u

f3
1 þ uf1

 !
� f2

1 þ u

f3
1 þ uf1

 !
¼ f3

2

0

 !

Let us choose the strict Lyapunov function

V ¼ f2
1=2þ f4

2=4

with the function

w ¼ w1

w2

� �
¼ f1

f1

� �
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Substituting into Eq. (6.8), we get

_f1
_f2

� �
¼ f3

2ðtÞ � f1ðtÞ
�f1ðtÞ

� �
(9.2)

Further, substitution into Eq. (8.1) yields

ð@V=@fÞq ¼ f1f
3
2

ð@V=@f1Þw1 þ ð@V=@f2Þw2 ¼ f2
1 þ f3

2f1

so that ð@V=@fÞq < ð@V=@fÞw for all f1 6¼ 0. Finally, if f1(t)¼ 0
over an interval of time, say t 2 ðt1; t2Þ; t2 > t1 � 0, then also
_f1ðtÞ ¼ 0 over (t1,t2); by Eq. (9.2), this implies that f2(t)¼ 0 over
(t1, t2), so that Eq. (9.2) is resting at the origin, and we have
asymptotic stability of EQ. (9.2). Thus, w is appropriate for this
case. Then, using Eq. (6.9), we get the strict observer function

xðhðfÞ; uÞ ¼ xðf1; uÞ ¼
f1 þ f2

1 þ u
f1 þ f3

1 þ uf1

� �

By Eq. (4.6), a strict asymptotic observer for R is then given by

_zðtÞ ¼ z3
2ðtÞ � z1ðtÞ þ y1ðtÞ þ y2

1ðtÞ þ uðtÞ
�z1ðtÞ þ y1ðtÞ þ y3

1ðtÞ þ uðtÞy1ðtÞ

� �
; zð0Þ ¼ z0 (
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