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1. INTRODUCTION 
In this short note we describe, in a simplified 

way, some features of an algebraic theory dealing with 
feedback representation of precompensators. Due to 
space limitations, we shall completely ignore the 
stability aspect (which is, of course, crucial in con-
crete situations), and shall also restrict the class 
of systems under our consideration. Nevertheless, 
some ingredients of the approach will be exposed, and 
the present note can be used as an introduction to the 
more general setup. 

We start with a statement of the problem. Let f 
be the transfer matrix of a strictly causal linear 
time invariant system. Suppose that one is required 
to change f and transform it into a specified transfer 
matrix f', through the employment of certain cornpensa-
tors. Due to practical limitations, the employment of 
postcompensators is not allowed, and the possible com-
pensation scheme is of the following form. 
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In the diagram, vis a causal precompensator, r is a 
causal dynamic output feedback, and I<v,r> is the re-
sulting system. Through a direct block diagram manip-
ulation, one obta~ns 

(1. 2) 

where 

(1. 3) 

f - -· (v, r) 

w - -(v, r) 

fw <-- > , v,r 

The system w(- -) is an equivalent causal precompensa-v,r 
tor. 

Our problem consists of finding causal trans-
fer matrices~ and i such that f~ = f - - wheneve~ (v, r) ' 
this is possible. Evidently, a representation off' 
in the form (1.1) is possible if and only if there 
exists a causal precompensator w such that f' = fw. A 
further essential requirement in our discussion is 
that the precompensator v be of minimal possible dynam-
ical order, that is, as much as possible of the com-
pensation dynamics should be located in the feedback 
system r. 
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Assume now that there exists a causal precompen-
sator w such that f' = fw. (The existence of w can be 
verified through the latency conditions given in 
Hanuner and Heymann [l].) In such case, the calcu-
lation of the class C of all causal precompensators w 
satisfying f' = fw is relatively simple, and can be 
done e.g., through the employment of a suitable gener-
alized left inverse off. In particular, in case f is 
injective (one to one), C contains exactly one element. 
Henceforth we shall assume that f is injective. We 
can then assume that the precompensator w is given, 
and our problem can be equivalently restated as fol-
lows. Given a causal precompensator w, find a pair 
(v,r) of transfer functions such that w = v[I + rfv]-l, 
and where vis of minimal possible dynamical order. 

In Hammer and Heymann [l] section 7, a solu-
tion to this problem was given in the particular case 
when the precompensator w is bicausal. It was shown 
that the solution is closely related to the theory of 
latency, introduced there. In the present note we 
extend this solution to the case where w is (causal, 
but) not necessarily bicausal. 

2. REPRESENTATION OF PRECOMPENSATORS 
This section is a direct continuation of section 

7 in Hammer and Heymann [lJ, and we use the termi-
nology established there. We recall that, for a AK-
linear map f: AU+ AY, the latency module off is 
Ker n-f. In case f is injective, Ker n-f has an 
ordered proper basis d 1 , ... ,dm, and the latency in-
dices v1 , ... ,v off are defined as v. := - ord d. - 1, m 1 1 
i = l, ... ,m (op. cit.). We start with the following: 
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Definition 2.1. Let f: AU+ AY be an injective AK-
linear map, with latency indices v 1 , ... ,vm. The la-

- - - m tency degree v (f) of f is v (f) ·= L v .. 
i=l l 

The explicit calculation of the latency indices 
is described in op. cit. In case of a nonsingular 
transfer matrix v: AU+ AU, the latency degree is 
given by v(v) = ord (det v) - m, where m := dimK U. 
Also, given an injective AK-linear map f: AU+ AY, the 
latency degree of the combination fv is given by 
v(fv) = v(v) + v(f) + m. 

The main result of the present note is the follow-
ing: 

Theorem 2.2. Let£: AU+ AY be an injective linear 
input/output map, and let w: AU+ AU be a nonsingular 
causal precompensator. Denote by v(f') the latency 
degree of the combination f' := fw. Then, there exists 
a causal precompensator v: AU+ AU and a causal feed-
back r: AY + AU such that f' = f(- -) and the MacMilZa~ v,r 
degree µ(v) of v satisfies µ(v) v(f'). 

Our proof depends on the following: 

Lenuna 2.3. Let w: AU+ AU be a Rtrictly causal non-
singular AK-linear map, and let g: AU+ AU be causal. 
Denote h := w-l + g. Then, h is nonsingular, h-l is 

strictly causal, and the latency degrees satisfy 
v(h- 1 ) = v(w). 

Proof. Evidently, Ker n-w = w-l[Q-U]. By 
Hammer and Heymann [l] Theorem 6.11, there exists a 
bicausal AK-linear map£: AU+ AU such that the columns 
of w-1I form an orde~ed proper basis of Ker n-w. Let 
d 1 , ... ,dm be the columns of the matrix w-1I, and let 
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vi, ... ,v~ be the latency indices of w. Then, by defi-
nition, ord di= - vi - 1, i = l, ... ,m. Also, since w 
is strictly causal, we have zn-u c Ker TI-w, so that, 
by op. cit. Proposition 6.9, ord di~ -1 for all 
i = l, ... ,m. Now,let g 1 , ... ,gm be the columns of g£. 
Then, since g£ is still causal, we have, for all 
i = 1, ... ,m, that ord g i 2::: 0. Hence, (d 1 + g 1 ) , .. , 
(dm + gm) have the same leading coefficients as d 1 , ... , 
dm' respectively. Thus, (d 1 + g 1 ) , ... , (dm + gm) are 
still properly independent, and ord (d. + g.) = ord d. 

l l l 
for all i 1, ... ,m. Consequently, by op. cit. Lemma 
4.2, EI ( = w-1I + g£) is nonsingular. Moreover, 
since ord (d. + g.) -1 for all i = l, ... ,m, it fol-

l !_ -1 -- -lows that Ker TI- (ht) ( = hlU"2 U])::, zS1-U, so that 
(h£)-l is strictly causal, and since£ is bicausal, 
E-1 is strictly causal as well. Also, since, as we 
showed, (h£)-l and w have the same latency indices, 

-- -1 -the latency degrees satisfy v[(h£) J v(w). Finally, 
by op. cit. Corollary 6.22, v[ (h£)- 1 J = v(fi-1), so that 
v(E-1) = v(w), and our proof is complete. D 

Proof (of Theorem 2. 2 ). We need to construct a 
representation w = v[I + rfv]-l, or, equivalently, 

w-1 = v-1 + rf, 

where µ(v) v. Now, by Hammer and Heymann [1] 

Theorem 6.19, there exists a strictly polynomial matrix 
D: AU+ AU such that Ker TI-f = D[S1-U]. Let 

- - -t -t L: AU+ S1 U: Lutz Lutz be the truncation 
t2:::0 -1 _ 

operator, and denote by~:=~ (w-lo) the truncated 
matrix. Then, ~: AU+ AU is causal, and, defining 

:= ~o- 1 , we have that Ker TI-~= D[Ker TI~] c D[S1-U] = 
Ker TI-f. Hence, by op. cit. Theorem 5.2, there exists 
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a causal AK-linear map r: AY + AU such that~ rf. 
Next, since fw is strictly causal, and since 

Ker TI-fw Ker TI-0-lw, the map D-l~ is strictly causal 
as well. Also, the latency degree of o-lw is equal to 
the latency degree v of fw. Hence, since ~Dis causal, 
it follows by Lemma 2. 3 that the map P ·= w-lo - <PD is 
nonsingular, has a causal inverse, and its latency 
degree is v. Also, by construction, both P and Dare 
strictly polynomial. Thus, the AK-linear map 
v := DP-l is nonsingular, its MacMillan degreeµ satis-
fiesµ~ deg (deg P} - m = v (where m = dimK U}, and 
w-1 = v-1 + rf. Finally, we show that vis causal as 
well. Indeed, zv-1 = zw-l - zrf, so that, since zrf 
is causal and z-lw is strictly causal, Lemma 2.3 im-
plies that z-lv is strictly causal. Hence, Vis 
causal, and our proof is complete. 0 

The bound on the MacMillan degree of v as given 
in Theorem 2.2 is tight in the following sense. (We 
note that the latency degree of a causal map is always 
greater or equal to - m, where m = dimK U.) 

Theorem 2.4. Let f: AU+ AY be an injective AK-linear 
map, and let v - m be an integer. Then, there exists 
a causal nonsingular AK-linear map w: AU+ AU of 
latency degree v such that the following holds: For 
every representation fw = f(- -) , the MacMillan degree v,r 
µ of v satisfiesµ~ v(fw), where v(fw} is the latency 
degree of fw. 

The proof of Theorem 2.4 is similar to the proof 
of Theorem 7.9 in Hammer and Heymann [l]. 
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