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ABSTRACT
Approximate model matching is the problem of control-

ling a nonlinear system to achieve a response resembling
that of a desired model. This note presents a family of re-
cursive output feedback controllers that achieve approxi-
mate model matching in all cases where it is possible. The
design of these controllers depends on the solution of a set
of algebraic inequalities. This presentation is an extended
summary of HAMMER [1998b].

1. INTRODUCTION
Perhaps one of the most effective ways of specifying the

desired behavior of a nonlinear system is by requiring the
system to resemble a specified model. Consider a nonlinear
plant  Σ  that needs to be controlled to perform a specific
task. Let M  be a model suitable for the required task; M
can be selected through computer simulation or by qualita-
tive considerations. Our objective is to design a controller
C  which, when combined with  Σ, yields a controlled sys-
tem  Σc  that 'resembles' the model  M. The 'resemblance'
must be preserved under disturbances and parameter un-
certainties. We refer to this objective as approximate model
matching.

Let  ℑ  be the class of input signals for which  Σc  needs
to 'resemble' the model  M. Usually, ℑ  consists of all input
signals of amplitude not exceeding a specified bound  θ > 0.
Our objective is to design the controller  C  so that, for
every input signal v ∈ ℑ, the response  Σcv  of the con-
trolled plant is 'close' to the response   Mv  of the desired
model. Let  |u|  denote the amplitude of a signal  u, and let
∆ > 0  be a real number. Then, Σc  is a  ∆-approximant of
M  if

(1) |Σcv - Mv| ≤ ∆
for every input signal  v ∈ ℑ. Thus, for  Σc  to be a  ∆-
approximant of  M, the amplitude of the discrepancy among
the responses of  Σc  and of  M  may not exceed  ∆  for any
input sequence of interest.

We consider here several aspects of the approximate
model matching problem: necessary and sufficient condi-
tions for the existence of a controller  C  that achieves ap-
proximate model matching; the derivation of a template for
such controllers; and the development of computational de-
sign techniques. The basic control configuration is:
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Here, Σ  is the plant to be controlled, and C  is the causal

feedback controller we need to design. The signals  υ1, υ3,
and  υ4  represent disturbance signals. The only a-priori in-
formation available about each disturbance signal  υi  is that
its amplitude does not exceed a specified bound  ni > 0, not
considered infinitesimal. The closed loop system is denoted
by  Σc. Our objective is to find, if possible, a controller  C
for which  Σc  is a  ∆-approximant of  M  in the presence of
the disturbance signals  υ1, υ3, and  υ4.

We consider discrete time nonlinear plants, including
plants whose state is provided as output and plants whose
output is not a state. The first case consists of plants  Σ  de-
scribed by a nominal state representation of the form

(3) yk+1 = f(yk,uk), k = 0, 1, 2, ...
Here, f  is called the recursion function of  Σ. The initial
condition of  Σ  is  y0. A system described by (3) is called
an input/state system. In this case the model  M  that needs
to be approximately matched is also an input/state system,
given by the nominal representation

(4) ξk+1 = ϕ(ξk,vk), k = 0, 1, 2, ...,
where the vector  ξk  is of the same dimension as  yk. The
initial condition  ξ0  of  M  is not assumed identical to  y0.
In this notation, condition (1) takes the form

|yk - ξk| ≤ ∆, k = 0, 1, 2, …
for all input sequences  v ∈ ℑ, for all permissible distur-
bance signals, and for all permissible initial conditions.

To take into account possible inaccuracies of the recur-
sion function  f, we incorporate an additive disturbance  υ2
into the recursive representation of  Σ:

yk+1 = f(yk,uk) + υ2,k, k = 0, 1, 2, ...,
where the amplitude of  υ2  does not exceed a given bound
n2 > 0. The closed loop system  Σc  is still required to be a
∆-approximant of  M  for all disturbances  υ1, υ2, υ3, and
υ4, as long as the disturbance amplitude bounds are not ex-
ceeded. Necessary and sufficient conditions for the exis-
tence of a controller  C  that satisfies this design objective
are discussed in section 2; a technique for the design of   C
is described in section 3. The latter depends upon the solu-
tion of a set of algebraic inequalities derived from the avail-
able recursion functions  f  and  ϕ.

We also derive in HAMMER [1998b] a template for
controllers that solve the approximate model matching
problem. In the notation of (2), this template is

(5) C : 
ª«
©
«̈ζk+1 = ϕ(ζk,wk) + υ5,k,

sk = σ(zk,ζk,wk), k = 0, 1, 2, ...
 

Here, ϕ  is the recursion function of the model  M, and  σ
is a feedback function that is derived as part of the control-
ler design. The term  υ5  represents a disturbance signal that
originates from inaccuracies in the implementation of the
function  ϕ  within the controller. The amplitude of υ5  does
not exceed a given bound  n5 ≥ 0. This template can be used
in all cases where a controller solving the approximate
model matching problem exists. The template has practical
implications, as it vastly reduces the number of controller
candidates that need to be examined in experimental design.
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1.1 Recursive systems and formal realizations.
We turn now to the more general case where the output

of   Σ  is not a state, and  Σ  is nominally described by

(6)   yk+η+1 = f(yk+η,yk+η-1, ...,yk,uk+µ,uk+µ-1, ...,uk),
k = 0, 1, 2, … Here, f  is the recursion function of  Σ, the
output value is  yk, the input value is  uk, and  η  and  µ  are
two non-negative integers satisfying  µ ≤ η. To distinguish
from (3), we use  η ≥ 1. The initial conditions of  Σ  are  y0,
..., yk+η; it is not assumed that the initial conditions are
known accurately. The condition  µ ≤ η  implies that the
system  Σ  is strictly causal.

The model  M  to be approximately matched is given by

(7)  ξk+η+1 = ϕ(ξk+η,ξk+η-1, ...,ξk,vk+µ,vk+µ-1, ...,vk),
k = 0, 1, 2, ... Here, ξk  is of the same dimension as  yk. For
simplicity we assume that  M  and  Σ  share the same value
of η, but this assumption can be released (see HAMMER
[1998b]).

Disturbances and inaccuracies of the recursive repre-
sentation of  Σ  are incorporated via a disturbance signal
υ2:

yk+η+1 = f(yk+η,yk+η-1, ...,yk,uk+µ,uk+µ-1, ...,uk) + υ2,k+η,
k = 0, 1, 2, ... The amplitude of the disturbance  υ2  does not
exceed a specified bound  n2 ≥ 0.

The present more general situation can be reduced to the
case of systems with state output through the notion of a
"formal realization," as follows. For a nominal recursive
representation of the form (6), define the formal state  xk  of
Σ  at the step  k  by the vector

xk := (yk,yk-1, ...,yk-η,uk-η+µ-1, ...,uk-η)T,

where  T  indicates the transpose. The inequality  µ ≤ η  im-
plies that the present value  xk is determined by present and
past output values  yk,yk-1, ...,yk-η  and by past input values
uk-η+µ-1, ...,uk-η  of  Σ. The formal state  xk  contains all the
input and output data necessary for the computation of the
next step  yk+1  of  Σ, except for the latest relevant input
value  uk+µ-η. Combining the formal state with (6), we ob-
tain the recursive representation

xk+1 = F(xk,λk), k = 0, 1, 2, ...,
called a formal realization of the system  Σ. Here  λk :=
uk+µ-η, and the function  F  is given in terms of the compo-
nents  yk,yk-1, ...,yk-η,uk-η+µ-1, ...,uk-η  of  xk  by (8) below.
The requirement  µ ≤ η  implies that the sequence  λ  is ei-
ther equal to the input sequence  u, or is a delay of  u  by  (η
- µ)  steps, guaranteeing causality.

(8)  xk+1 = 
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A formal realization is a realization of the system in the
usual sense, although it may not be a minimal realization.

Formal realizations provide a simple mechanism for de-
riving a realization under very general conditions. Further-
more, since the formal state is a combination of present and
past output and input values of the system, feedback in-
volving the formal state can be directly implemented with-
out the need for an observer.

Formal realizations can be used to solve the approximate
model matching problem for the system  Σ  of (6) and of the
model  M  of (7). After building formal realizations for  Σ
and  M, we can use the controller (5). Noting that  u = s +
υ1  by diagram (2), we obtain a controller  C  of the form
(9)  C :

ª«
©
«̈ζk+η+1 = ϕ(ζk+η,ζk+η-1, ...,ζk,wk+µ,wk+µ-1, ...,wk) + υ5,k, 

sk=σ(zk,...,zk-η,(s+υ1)k-η+µ-1, ...,(s+υ1)k-η,ζk, ...,

ζk-η,wk-η+µ-1, ...,wk-η).
 

In this way, formal realizations provide us with simple
means to generalize results from the theory of state feed-
back to the more general case of input/output control of
nonlinear recursive systems. The calculation of the function
σ  involves the solution of a set of algebraic inequalities de-
rived from the given functions  f  and  ϕ  (see HAMMER
[1998b] for details).

Examining (9), we can distinguish among two constitu-
ents of the controller  C: one, represented by the first row of
(9), is simply a simulation of the model  M  that needs to be
approximately matched; the other, represented by the sec-
ond row of (9), is a dynamic output feedback controller in-
duced by the function  σ. The inequality  µ ≤ η  implies that
C  is strictly causal.

The forms (5) and (9) form universal templates of con-
trollers that solve the approximate model matching problem
for a rather general class of nonlinear systems. Such tem-
plates are valuable in practice, where they can be used as a
basis for numerical experimentation with design parame-
ters.

The material of the present note is a continuation of the
work presented in HAMMER [1989b and 1998a] on the
global theory of nonlinear robust control. Alternative treat-
ments of the global control of nonlinear systems are de-
scribed in HAMMER [1984a and b, 1985, 1989a, 1991,
1994], DESOER and KABULI [1988], VERMA [1988],
SONTAG [1989], CHEN and de FIGUEIREDO [1990],
PAICE and MOORE [1990], VERMA and HUNT [1993],
PAICE and van der SCHAFT [1994], BARAMOV and
KIMURA [1995], the references cited in these papers, and
others.

2. APPROXIMATE MODEL MATCHING
We start with some notation. Let  Rm  be the set of all

m-dimensional real vectors, and let  S(Rm)  be the set of all
sequences  u0, u1, u2, ...  of real vectors  ui ∈ Rm, i = 0, 1, 2,
... . A discrete-time system  Σ  that accepts input sequences
of  m  dimensional real vectors and generates output se-
quences of  p  dimensional real vectors induces a map  Σ :
S(Rm) → S(Rp).

We shall use the  l∞-norm to characterize disturbances
and their effects. For a vector  v = (v1, v2, ..., vm) ∈ Rm,
denote by  |v| := max {|v1|, |v2|, ..., |vm|}  the maximal ab-
solute value of a component. For a sequence  u ∈ S(Rm),

|u| := supi≥0 |ui|
is the  l∞-norm of  u. We denote by  S(θm)  the set of all se-



quences  u ∈ S(Rm)  satisfying  |u| ≤ θ, where  θ > 0  is a
real number; then  S(θm)  is the set of all sequences of am-
plitude not exceeding  θ.

We turn now to the issue of approximate model match-
ing for the case where the systems  Σ  and  M  are given in
terms of state representations. The results can be applied to
the general case of recursive systems through the notion of
formal realization of subsection 1.1. Our discussion is based
on the notion of "relative eigenset," discussed next.

2.1 Relative eigensets.
Let the system  Σ  be given by  yk+1 = f(yk,uk)  and let

the model  M  be given by  ζk+1 = ϕ(ζk,vk). Combine the
two into the function
(10)(f,ϕ) : (Rp×Rm)2 → (Rp)2 : (y,s,ζ,w) a (f(y,s),ϕ(ζ,w)).

On the domain of  (f,ϕ), define the following projections.

Πyζ : (R
p×Rm)2 → (Rp)2 : (y,s,ζ,w) a (y,ζ);

Πy-ζ : (R
p×Rm)2 → Rp : (y,s,ζ,w) a y - ζ;

Πyζw : (Rp×Rm)2 → Rp×Rp×Rm : (y,s,ζ,w) a (y,ζ,w);

Πysζ : (R
p×Rm)2 → Rp×Rm×Rp : (y,s,ζ,w) a (y,s,ζ).

Next, let  δ > 0  be a real number, let  q > 0  be an inte-
ger, and let  z  be a point in  Rq. Denote by

Nδ(z) := {ζ ∈ Rq : |ζ - z| ≤ δ}

the closed neighborhood of radius  δ  around the point  z.
For a subset  S ⊂ Rq, denote by

Nδ(S) := Uz∈S Nδ(z).

The following is the basic concept of our discussion.
(11) DEFINITION. Let  f, ϕ : Rp×Rm → Rp  be two func-
tions, let  δ, ∆ > 0  be real numbers satisfying  ∆ > 2δ, and
let  (f,ϕ)  be as in (10). Then, a non-empty subset  S ⊂
(Rp×Rm)2  is a  (δ,∆)-eigenset of  f  relative to  ϕ  if the
following conditions hold.
(i)   |Πy-ζ[S]| ≤ ∆ - 2δ, and
(ii)  (f,ϕ)[Nδ(S)] ⊂ Πyζ[S].
The number  δ  is called the contraction radius of the rela-
tive eigenset  S. ♦

To discuss the intuitive meaning of Definition 11, con-
sider a  (δ,∆)-eigenset  S  of  f  relative to  ϕ. Since  S  is a
subset of  (Rp×Rm)2, each point of  S  can be regarded as a
twosome  ((y,s),(ζ,w))  of state-input pairs, where  (y,s)  is a
state-input pair of  Σ  and  (ζ,w)  is a state-input pair of  M.
In this way, S  induces a correspondence among such pairs,
where  (y,s)  corresponds to  (ζ,w)  if  (y,s,ζ,w) ∈ S. Now,
let  (y,s)  and  (ζ,w)  be such a corresponding pair. Then,
condition (i) of Definition 11 means that the discrepancy
between y  (the state of  Σ) and  ζ  (the corresponding state
of  M) does not exceed  ∆, even if independent disturbances
of amplitude not exceeding  δ  are added to  y  and to  ζ.
Condition (ii) of Definition 11 indicates that  S  is a condi-
tional invariant subset of the function  (f,ϕ) (compare to
LASALLE and LEFSCHETZ [1961], LEFSCHETZ [1965],
WONHAM [1974]).

To further discuss the significance of condition (ii) of
Definition 11, consider a pair  (y,ζ) ∈ ΠyζS; recall that  y  is
a state value of  Σ  and  ζ  is a state value of  M. Since  (y,ζ)
∈ ΠyζS, there are input values  s  and  w  such that
(y,s,ζ,w) ∈ S. Assume now that  Σ  is at the state  y  and  M
is at the state  ζ; apply the input value  s  to  Σ  and the input
value  w  to  M. Let  y+  and  ζ+  denote the next states of  Σ

and  M, respectively. Then, condition (ii) of Definition 11
implies that  (y+,ζ+) ∈ ΠyζS  (which is the invariance prop-
erty of the set). In view of condition (i) of Definition 11,
this implies that the discrepancy between  y+  and  ζ+  like-
wise does not exceed  ∆. In other words, by using the input
values  s  and  w  indicated by  S, we can maintain a dis-
crepancy not exceeding  ∆  for the next step.

When repeated step after step, the process of the previ-
ous paragraph allows us to construct corresponding input
sequences of  Σ  and of  M  that maintain a discrepancy of
∆  or less among the trajectories of the two systems. We
shall need the following.
(12) DEFINITION. Let  f, ϕ : Rp×Rm → Rp  be two func-
tions, and let  θ, δ, ∆ > 0  be real numbers, where  ∆ > 2δ. A
(δ,∆)-eigenset  S  of  f  relative to  ϕ  is  input complete
with amplitude  θ  if  S ⊃ (Πysζ[S])×[-(θ+δ),(θ+δ)]m.

An input complete eigenset  S  of  f  relative to  ϕ  has
the special property that it includes all input values of  ϕ  of
amplitudes up to  θ+δ.

2.2 Deriving controllers.
In this subsection we describe the process that leads

from an input-complete relative eigenset to an approximate
model matching controller. The derivation of input-
complete relative eigensets is described in HAMMER
[1998b]. Recall that Σ  and  M  are given by (3) and (4), re-
spectively. The controllers we derive are of the form (5), so
that the only quantity that needs to be calculated is the
feedback function  σ.

Let  S ⊂ (Rp×Rm)2  be a (δ,∆)-eigenset  of  f  relative to
ϕ, input complete with amplitude  θ > 0. For each point
(y,ζ,w) ∈ Rp×Rp×Rm, we construct now a subset US(y,ζ,w)
⊂ Rm, called the feedback value set of  S. We show later
that  US(y,ζ,w)  consists of values the feedback function  σ
can take when the system  Σ  is at the state  y, the model  M
is at the state  ζ, and the external input value is  w.
Construction of the feedback value set  US:
(i) When  (y,ζ,w) ∈ Πyζw[S] :
The set  US(y,ζ,w)  consists of all points  s ∈ Rm  satisfying
(y,s,ζ,w) ∈ S.
(ii) When  (y,ζ,w) ∉ Πyζw[S] :
Let  A(y,ζ,w)  be the set of all points  (a,b,c) ∈ Πyζw[S]
satisfying  |y - a| ≤ 2δ/3, |ζ - b| ≤ δ, and  |w - c| ≤ δ. Then,
we distinguish among three cases:
a) If  A(y,ζ,w) ≠ ∅, the set  US(y,ζ,w)  consists of all points
s ∈ Rm  satisfying  (a,s,b,c) ∈ S  for some vector  (a,b,c) ∈
A(y,ζ,w).
b) If  (y,ζ,w) ∈ Nδ(Πyζw[S])  and  A(y,ζ,w) = ∅, the set
US(y,ζ,w)  consists of all vectors  s ∈ Rm  such that
(a,s,b,c) ∈ S  for some vector  (a,b,c) ∈ Πyζw[S]  satisfying
|(a,b,c) - (y,ζ,w)| ≤ δ.
c) If  (y,ζ,w) ∉ Nδ(Πyζw[S]), then  US(y,ζ,w) := 0  is the set
consisting of the zero vector alone.

To examine the qualitative significance of the feedback
value set  US(y,ζ,w), consider the closed loop system (2)
with the controller  C  of (5). Assume for a moment that all
disturbances and errors are zero. Let  y0  be the initial con-
dition of  Σ, let  ξ0  be the initial condition of  M, let  ζ0  be
the initial condition of the controller  C  of (5), and let  v ∈
S(θm)  be the external input sequence of the closed loop
system. Since all disturbances are zero, the initial condi-
tions satisfy  ξ0 = ζ0, and the input sequence of (2) satisfies
w = v. This implies that the output sequence  ξ  of  M  is



equal to the sequence  ζ  generated within the controller  C
of (5).

Assume that  Σ  and  M  start from initial conditions
within the eigenset  S, so that  (y0,ζ0) ∈ Πyζ[S]. Let the
controller  C  of (2) be constructed so that the sequence  s  it
generates satisfies

(13) sk ∈ US(yk,ζk,wk), k = 0, 1, 2, …
It can then be shown (HAMMER [1998b]) that

(yk,ζk) ∈ Πyζ[S]  for all integers  k ≥ 0,

which, by Definition 11(i), implies that

|yk - ζk| ≤ ∆ - 2δ, k ≥ 0.
Thus, the sequence  s  generated by (13) drives  Σ  so as to
maintain a discrepancy of less than  ∆  among the output
sequences of  Σ  and of  M, and the elements of  s  are in the
feedback value set  US.

Most importantly, (13) represents a feedback rule for
generating the sequence  s. Indeed, define a function  σ :
Rp×Rp×Rm → Rm : (y,ζ,w) a σ(y,ζ,w)  by setting

σ(y,ζ,w) := s,
where  s  is a point of  US(y,ζ,w). Our earlier discussion
suggests that with this  σ  the controller  C  of (5) achieves
approximate model matching. The next statement, which is
one of the main results of this theory, shows that this is in-
deed the case.
(14) THEOREM. Let  Σ, M : S(Rm) → S(Rp)  be input/state
systems having the recursion functions  f, ϕ : S(Rp)×S(Rm)
→ S(Rp)  and the initial conditions  y0  and  ξ0, respec-
tively. Let  δ, ∆ > 0  be two real numbers satisfying  ∆ > 2δ.
Assume that there is a  (δ,∆)-eigenset  S  of  f  relative to  ϕ
which  is input complete with amplitude  θ > 0, and that the
initial conditions satisfy  (y0,ξ0) ∈ Πyζ[S]. Let  US(⋅)  be the
feedback value set induced by  S, and build a function  σ :
Rp×Rp×Rm → Rm  by setting  σ(y,ζ,w) := s, where  s  is a
point of  US(y,ζ,w). Then, with this choice of  σ, the con-
troller  C  of (5) solves the approximate model matching
problem, as long as all disturbance amplitudes are bounded
by  δ/3.

Thus, a controller  C  that solves the approximate model
matching problem can be derived from a relative eigenset
S. The calculation of relative eigensets is discussed in
HAMMER [1998b]. As we can see, the permissible distur-
bance amplitudes depend on the contraction radius  δ  of  S.

3. DERIVATION OF CONTROLLERS
Due to space limitations, we only provide here a quali-

tative description of the derivation of controllers for ap-
proximate model matching; see HAMMER [1998b] for
complete details.

Consider a system  Σ  with the nominal representation
(3), starting from the initial condition y ∈ Rp  and driven by
the input sequence  (u0, u1, u2, ...) ∈ S(Rm). Using the
shorthand notation

  f i(y, u0, ..., ui-1) := f(f...f(f(y, u0), u1) ..., ui-1),

the  i-th element of the output sequence of  Σ  is

yi = f i(y, u0, ..., ui-1), i = 1, 2, ...

A state  y' ∈ Rp  is reachable from the state  y ∈ Rp  in  i
steps if there is an input list  u0, ..., ui-1  for which  f i(y, u0,
..., ui-1) = y'. The set of all states that are reachable from  y
in  i  steps is given by

Im f i(y,⋅) := {f i(y, u0, ..., ui-1) : u0, ..., ui-1 ∈ Rm}.

The realization (3) is globally reachable if there is an inte-
ger  n > 0  for which the following is true: every state  y' ∈
Rp  is reachable from every state  y ∈ Rp  in  n  steps; i.e., if
Im f n(y,⋅) = Rp  for all  y ∈ Rp.

The realization (3) is everywhere locally reachable if
there is an integer  q ≥ 1  for which the iterated function
f q(y,⋅)  is an open function for all states  y ∈ Rp.

Let  Σ  be a system with the realization (3), and assume
that  Σ  is globally reachable as well as everywhere locally
reachable. Let  n  be the smallest integer satisfying (i)  Im
f n(y,⋅) = Rp  for all  y ∈ Rp, and (ii)  f n(y,⋅)  is an open
function for all states  y ∈ Rp. Then, we call  n  the reach-
ability integer of the system (see HAMMER [1998a] for a
discussion).

Let  Σ  be globally reachable with the reachability inte-
ger  n, and consider for a moment the nominal case (where
all disturbances are set to zero). Let  ξ0  be the initial con-
dition of the model  M  and let  v  be the input sequence of
M. The output sequence  ξ0, ξ1, ξ2, ... ∈ Rp  of  M  is then
given by the recursion  ξk+1 = ϕ(ξk,vk).

Assume that  Σ  starts from the initial condition  y0 = ξ0,
as does  M. The global reachability of  Σ  implies that there
is an input list  u0(0), ..., un-1(0)  such that

yn = f n(y0, u0(0), ..., un-1(0)) = ξn.

Repeating this process every  n  steps, we obtain for every
integer  j ≥ 0  an input list  u0(j), ..., un-1(j)  for which

y(j+1)n = f n(yjn, u0(j), ..., un-1(j)) = ξ(j+1)n

  = ϕn(ξjn, vjn, ..., v(j+1)n-1).

Concatenating these lists into one sequence

(15) u = u0(0), ..., un-1(0), u0(1), ..., un-1(1), ...,
yields an input sequence that drives  Σ  so that its response
sequence  y  satisfies

(16) yjn = ξjn

for all integers  j ≥ 0. In other words, with this input se-
quence, the output values of  Σ  and of  M  are identical at
all steps that are integer multiples of the reachability integer
n. This sequence  u  can be generated by a feedback con-
troller (see HAMMER [1998b]).

It is important to emphasize that although (16) can be
satisfied in all cases when  Σ  is globally reachable, it is still
possible that there is no input sequence  u  of  Σ  for which

(17) |yk - ξk| ≤ ∆ - 2δ
for all integers  k ≥ 0. Substantial divergence between the
two trajectories  y  and  ξ  may occur at steps that are not
integer multiples of the reachability integer  n. To prevent
that, we impose the first line of (18) below. In this way, the
notion of reachability helps transform the problem of find-
ing the infinite sequence  u  into a problem of solving the  n
inequalities

(18) ª
©
¨|f i(y0, u0, ..., ui-1) - ξi| ≤ ∆ - 2δ, i = 1, 2, ..., n-1,

|f n(y0, u0, ..., un-1) - ξn| = 0.
 

Assume there is a solution  u0(y0,ξ1), u1(y0, u0, ξ2), ...,
un-1(y0, u0, ..., un-2, ξn)  of (18), where we have made ex-
plicit the dependence of  uj  on all relevant variables. Then,
in line with (15), the entire sequence  u  becomes



(19)  
ª«
©
«̈u0(j) = u0(yjn,ξjn+1) = u0(yjn,ϕ(ξjn,vjn))

ui(j) := ui(yjn, ujn, ..., ujn+i-1, ξjn+i+1)

        = ui(yjn, ujn, ..., ujn+i-1, ϕ(ξjn+i,vjn+i))

 

i = 1, ..., n-1, j = 0, 1, 2, ... . This induces a finite computa-
tional process of  n  steps at a time.

To allow for the effects of disturbances, (16) needs to be
weakened to permit some discrepancy among the values of
yjn  and  ξjn. To this end, we introduce a design parameter
given by the real number  ρ > 0, and replace (16) by the re-
quirement

(20) |yjn - ξjn| ≤ ρ, j = 0, 1, 2, ...
Since disturbances of amplitude  δ  can be added to  y  and
to  ξ, the restriction

ρ + 2δ ≤ ∆
is needed to guarantee that the total discrepancy never ex-
ceeds  ∆. With (20), inequalities (18) take the form

(21) ª
©
¨|f i(y0, u0, ..., ui-1) - ξi| ≤ ∆ - 2δ, i = 1, 2, ..., n-1,

|f n(y0, u0, ..., un-1) - ξn| ≤ ρ.
 

In combination with (19), inequalities (21) can be used
to derive an appropriate input sequence  u  of  Σ  that
achieves approximate model matching. The variables listed
in (19) indicate that  u  can be generated by a causal feed-
back controller. This controller solves the approximate
model matching problem for  Σ  and  M. Due to space
limitations, our discussion here is incomplete, and ignores
the effects of some of the disturbances. A complete and
detailed discussion is provided in HAMMER [1998b]. The
main conclusion though remains valid: a controller for ap-
proximate model matching can be derived from the solution
of a set of inequalities. The following example reproduced
from HAMMER [1998b] demonstrates the form of the ex-
act inequalities for a specific case.
EXAMPLE. Consider the model  M  given by the system

ξk+1 = 0.5ξk + wk,
where the initial condition of  M  satisfies  |ξ0| ≤ 1, and the
input amplitude bound is  θ = 1. The system  Σ  that needs
to be controlled is given by

yk+1 = [(yk)2 + 1]sk.
Let the discrepancy bound be  ∆ = 1, and take  ρ = 1/2.
Then, it is shown in HAMMER [1998b] that a controller
that solves the approximate model matching problem in this
case can be derived from the solution of the following set of
inequalities:
[(y+α)2+1](s+β) - [0.5(ζ+γ) + (w+ε)] ≤ 1/2,

|α| ≤ δ, |β| ≤ δ, |γ| ≤ δ, |ε| ≤ δ, |ζ| ≤ 2, |w| ≤ 1, |y - ζ| ≤ 1/2.
From these inequalities and the controller template (5), one
can obtain the controller

C : 
ª«
©
«̈ζk+1 = 0.5ζk + vk,

sk = σ(yk,ζk,vk) = 
0.5ζk + vk

(yk)2 + 1
  .

 

The maximal contraction radius is approximately  δ ≈ 0.048
in this case (see HAMMER [1998b] for details). ♦

To conclude, we demonstrated a rather general theory
for the design of controllers for nonlinear recursive sys-
tems. Complete details are provided in HAMMER [1998b].
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