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Non-linear systems : stability and rationality
JACOB HAMMERY}

The problem of when a non-linear system can be represented as a quotient of two
stable non-linear systems is considered. Attention is mainly directed toward non-
linear discrete-time recursive systems, where recursive means that the relationship
between an input sequence and the corresponding output sequence can be expressed
in terms of a finite number of recursive equations. Necessary and sufficient conditions
are derived for the existence of a fraction representation of a recursive system, where
the numerator and the denominator are stable recursive systems. The explicit
construction of such a fraction representation is described.

1. Introduction

Let £ be a non-linear time-invariant dynamic system, admitting input
values from the finite-dimensional real space R™ and having its output values
in the finite-dimensional real space R”. Our main attention in this paper is
devoted to the following question. Under what conditions (on Z) do there
exist non-linear systems P and ¢, both of which are stable, such that X can be
represented as a quotient of the form Z=P~!Q or Z=PQ~'. When such a
representation is possible, we say that the system X is rational. Furthermore,
for a rational system X, we also wish to find an explicit construction that yields
systems P and @ for which £=P~!Q or £= P@Q ™!, as the case may be.

The question of rationality seems to be pertinent to the problem of
stabilizing a given non-linear dynamic system 2. Roughly speaking, if one
needs to stabilize a non-linear rational system X=P@Q~!, then one has to
‘ cancel ’ the denominator @ which, by virtue of the stability of P, is the sole
cause for instability in 2. Of course, any such ‘ cancellation * has to be done
with due care, so that the resulting system would be not just input—output
stable, but would be internally stable as well. Some insight into this situation
can be gained from the case of linear systems. Though the theory of linear-
system stabilization is not directly related to our discussion in this paper,
familiarity with the works of Rosenbrock (1970), Wonham and Pearson (1974),
Desoer and Chan (1975), Desoer and Vidyasagar (1975) and Hammer (1983 a, b)
may be helpful.

The class of systems that we study in this paper consists of non-linear
dynamic systems which are time-invariant and discrete-time, and which are
recursive in the following sense. The relationship between an input sequence
to the system 2 and the corresponding output sequence from X can be described
in terms of a recursive equation involving only a finite number of input values
and a finite number of output values. More explicitly, the system X is excited

by an input sequence ..., u_,, %,, %,, ..., where, for each integer j, the element
u; is an m-dimensional real vector. For each input sequence, the system %
generates an output sequence ..., y_1, ¥y, Y1, ..., where, for each integer j, the
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2 J. Hammer

element y; is a p-dimensional real vector. The crucial point is that the output
sequence {y;} can be computed recursively from the input sequence {u;} so
that, for each integer k, there is a relationship of the form

yk+n+1=f(yk’ sery yk+1;luks oo Ug ) (1.1)

where 7 and p are fixed integers, and where f: (R?)"*1x (R™)**1 - R? is a
multivariable vector-valued function, which we call the recursion function of X.
The vertical line in f is used to separate between the output variables and the
input variables. Equation (1.1) is called a recursive representation of X. If a
system has a recursive representation, then we say that it is a recursive system.

Given some fixed initial time ?,, the output sequence y,,¥, .}, ..., of the
recursive system X is uniquely determined once an input sequence u,, %, ., ...,
is specified together with a set of initial conditions y,, Y, 15 > Y, 4o We saY

that two recursive systems are input/output equivalent if, when started from
zero initial conditions, they generate the same output sequence when excited
by the same input sequence. The class of recursive systems includes, of course,
the class of finite-dimensional linear systems, but it is much larger and includes
most systems which are of engineering interest. We remark that the assump-
tions of time-invariance and discrete-time are of a technical nature, and our
present theory can be extended to include time-varying or continuous-time
systems as well. However, we will not discuss this point in the present paper.

For our discussion of stability we adopt a somewhat stronger version of the
classical notion of stability due to Liapunov. In qualitative terms, we say that
a recursive system X is stable if a slight change in the input sequence to X or in
the initial conditions of X (or in both) causes only a slight change in the corres-
ponding output sequence from 2. Thus, stability implies that the system X,
when interpreted as a map transforming input sequences into output sequences,
is continuous. Stability, however, is a stronger notion than mere continuity of
the map, since it also involves the initial conditions (continuity of X as a map is
sometimes referred to as ‘ stability in the Liapunov sense ’, though Liapunov
was, of course, aware of the effect of the initial conditions as well). Our
discussion of stability inevitably employs certain notions related to continuity,
all of which can be found in the excellent (and short) treatise by Kuratowski
(1961).

In order to somewhat refine our previous notion of rationality, consider a
system 2. When X is interpreted as a map (transforming input sequences into
output sequences), it can always be factored into a composition of maps
X =PQ, where P is injective and @ is surjective. The map P, being injective,
has a left inverse P*, whereas @, being surjective, has a right inverse @*. We
say that X is left rational if such a factorization exists where P* and @ are
recursive and stable. Similarly, X is right rational if P and @Q* are recursive
and stable. Then, a left rational system can be rendered input/output stable
by connecting it in series with a non-singular stable postcompensator (as in
P*Z =(Q), whereas a right rational system can be made input/output stable by
connecting it in series with a non-singular stable precompensator (as in
2Q*=P). Thus, rationality is equivalent to input/output stabilization
through non-singular and stable compensation connected in series. From the
practical point of view, we would like, of course, not only to make Z input/
output stable, but to transform it into an internally stable system, i.e. into a
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system for which not only the input-output behaviour is stable, but so also is
the internal behaviour. However, input/output stabilization is necessary for
internal stabilization, so that the problem of input/output stabilization (i.e. the
problem of rationality) has to be studied first.

The main point of our discussion in this paper is that one can characterize
rationality of a recursive system directly in terms of certain properties of its
recursion function f. Thus, one can decide whether a recursive system X is
left rational, or right rational, or neither, by checking its recursion function f
in the recursive representation (1.1), which is usually given. More explicitly,
we show in § 5 that the recursive system X is left rational if and only if its
recursion function f can be decomposed into a sum of functions

f=h+/s (1.2)

where the functions f, and f, are required to satisfy certain algebraic and
continuity conditions. In some cases (though, of course, not always), such a
sum decomposition may be obtained by mere inspection. Moreover, once such
functions f; and f, are known, one can directly obtain from them recursive
representations of systems P and @ for which X = P@ is a left rational repre-
sentation. Thus, our characterization of left rationality is constructive. The
case of right rationality is dual.

Interestingly, rational systems have many properties which have previously
been associated with linearity. One such property is the following. A
system X is called BIBO (bounded-input bounded-output)-stable if it responds
with a bounded output sequence to every bounded input sequence. It is well
known that, for a finite-dimensional time-invariant linear system, BIBO-
stability implies stability in the Liapunov sense. Indeed, this fact plays a
fundamental role in the theory of linear systems. As it turns out, this property
is a direct consequence of rationality. Every non-linear left rational system
which is BIBO-stable is also stable in the Liapunov sense (§ 5).

Much of our discussion in this paper depends on the notion of the input/
output space which we associate, in § 2, with each recusive representation of the
form (1.1). Roughly speaking, the input/output space is a subspace of
(RP)"*! x (R™)**! which is invariant under the evolution of the system X. It
is the minimal subspace over which the recursion function f has to be defined,
given that the system X is always started from zero initial conditions at some
finite time in the past. The role of the input/output space in our present
discussion is comparable to the role of the state-space in classical linear system
theory, though the definitions are somewhat different. We introduce the
input/output space in § 2, and we continue to study its significance in the later
sections.

The paper is organized as follows. Section 2, after setting up our basic
framework, is devoted to a discussion of the reduction of non-linear systems,
which refers to the following context. The recursive representation (1.1) is not
uniquely determined by the input-output behaviour of the system 2. Different
recursive representations, differing by the function f and by the integers » and
1, may represent input/output equivalent systems, similar to the situation that
exists in the case of non-canonical realizations of linear systems. It is, of
course, of particular interest to find a minimal recursive representation which
is input/output equivalent to ¥, one for which the integers » and p are as small

A2




4 J. Hammer

as possible. Evidently, a minimal representation is the easiest one to imple-
ment. In §2 we study the problem of constructing a minimal recursive
representation input/output equivalent to a system X, when an arbitrary
recursive representation of X is given.

In § 3 we study the series connection, the sum, and the inversion of non-
linear recursive systems, and related properties. In §4 we define our basic
stability notions. As has been common practice in system theory for the past
few decades, we distinguish between two notions of stability—input/output
stability (or, simply, stability), and internal stability. The notion of internal
stability is a stronger stability notion, indicating that not only is the system
stable with respect to variations of the input sequence, but its ‘ hidden ’
internal degrees of freedom, which do not affect the input-output relationship,
are stable as well. We discuss several questions related to stability and internal
stability. In particular, we consider the question of when an input/output
stable system has an internally stable representation, i.e. when can a non-linear
recursive system be physically implemented as a robust construction. Finally,
the paper is concluded in § 5, where we discuss rationality of non-linear systems,
as mentioned in the opening of this introduction.

Studies into the theory of stability of non-linear systems cover extended
portions of the literature of numerous scientific disciplines, ranging from
mathematics through engineering to economics and social sciences. It is, of
course, outside the scope of this paper to provide a detailed account of the
evolution of non-linear system theory. Much of this evolution has been
inspired by the monumental work of Liapunov (1947), which still forms the
conceptual framework of stability theory.

In the late fifties and the early sixties of the present century, most of the
attention in the non-linear systems literature was directed toward the study of
static non-linear output feedback applied to linear systems, in the context of
the classical Lurie (1951) problem, and toward extensions and refinements of
the Liapunov methods. These studies culminated in a large number of classical
works in non-linear system theory, like those of Popov (1961), Lasalle and
Lefschetz (1961), Kalman (1963), Hale (1963), Sandberg (1964), Yacubovich
(1965), Lefschetz (1965), Zames (1966), the references mentioned in these
works, and many, many others.

2. Recursive systems and their representations

In the present section we introduce the underlying framework and the
notation for our discussion in this paper. Let R be the set of real numbers.
We denote by S(R™) the set of all two-sided infinite sequences of the form
wi= (.or; 0, ooty 0, Uy, Uyy 115 ---) = {u;}, Where u,eR™ for all integers 4, and
where for each sequence u there exists an integer ¢{(u) (depending on u) such
that u;=0 for all j<t(u). Intuitively speaking, for the sequence {u,}, the
integer ¢ can be regarded as the time marker, and ¢(x) can be regarded as the
starting time of the sequence. The symbol 0 will also be used for the zero
sequence in S(R™)—the sequence consisting of only zero elements. Given a
sequence ueS(R™), we denote by u; its jth element, and by ud, where ¢ < j, the
set of elements w;, ;, ..., ;. If i>j then u) denotes the empty set. For
each pair of sequences u, v of S(R™), we define the sum « + v coefficientwise by
(w+v);=u;+v, for all integers 7. Clearly, S(R") is closed under addition.
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We regard a system as a map transforming input sequences into output
sequences, and we require every system under consideration to possess at least
one (possibly unstable) equilibrium point (corresponding, for example, to the
‘ off * state of the system). Formally, by a non-linear system with input space
R" and output space R” we mean a map X: S(R")—S(R”) satisfying the
condition X(0)=0, i.e. mapping the zero sequence in S(R") into the zero
sequence in S(R?). Given two systems %, : S(R")—S(R?) and %, : S(R?)—
S(R"), we denote by Z.X,: S(R™—S(R’) the system represented by the
composite map. As usual, we say that the system X: S(R™)—S(R”) is
invertible if there exists a system X' : S(R?)—S(R") satisfying X' =1 (the
identity S(R?)—S(R”)) and X'E=1 (the identity S(R")—S(R"™)). The sum
Z,+%, of two systems X, %,: S(R")—S(R’) is defined pointwise by
(Z,+Z)u:= Zu+Zu for all ueS(R"). Evidently, the set of systems is
closed under composition and addition.

Conceptually, our main assumption on the non-linear systems that we
discuss in the present paper is the following recursivity assumption which, in
our present framework, is the analogue of the finite-dimensionality assumption
commonly imposed in linear system theory.

Definition 2.1

A system X : S(R™)—S(R?) is recursive if there exist integers n, >0 and a
function f: (R”)"*'x (R")**!— R such that, for every input sequence ueS(R")
to 2, the corresponding output sequence y : = ZueS(R”) from X satisfies

Yroner =T [0h*") (2.2)
for all integers k. The function f is then called a recursion function for the
system 2. Equation (2.2) is called a recursive representation of X. i

We remark that, in view of our assumption that £0=0, it follows that the
recursion function f of (2.2) satisfies the condition f(0, ..., 0|0, ..., 0)=0. We
also note that, by the definition of the spaces S(R") and S(R”), each output
sequence of X starts from zero initial conditions at some finite time in the past.
In case the system X has a recursive representation of the form y; ., =f(u;,1),
then we say that X is a static system. The integer 7 in (2.2) is called the principal
degree of the recursive representation. When the system X is a linear system,
then the function f is linear, and the minimal possible principal degree of a
recursive representation of X is simply (v, — 1), where v, is the maximal observa-
bility index of a canonical realization of X.

Let & : gy =1+ |uf™) and & ¢ ypp =1 (k™" |uf**) be recursive
representations of systems X, ' : S(R")—S(R”), respectively. We say that
the representations & and &' are ifo (input/output)-equivalent (notation
¥ ~F')if £=%'. Evidently, i/o-equivalence is an equivalence relation, and
thus it partitions the set of all recursive representations into i/o-equivalence
classes, where each class consists of all the recursive representations which
represent one and the same system X : S(R")—S(E?).

It is easy to see that a recursive system X : S(R")—S(R”) has infinitely
many different i/o-equivalent recursive representations. Indeed, let
L Ypins1= f(yE+"|uk**) be a recursive representation of X. Then, another
recursive representation of I. differing from & by the parameters n and pu, can

e — Ty



6 J. Hammer

be constructed as follows. By time invariance, we have that ., .=
flyk i1+ uft4*1), and, expressing ;. , ., through &, we obtain

+nl k+p[ L+u+1 AN f k+11+l[,uk+p.+l)

yk+n+2=f(yk+1s- 9!/L+rp yl. uL+1

which is a new recursive representation, ijo-equivalent to . Our main
interest in the present section is, in a sense, to reverse this construction, in
order to obtain a minimal recursive representation of X, one for which the
parameters 5 and p are as low as possible. In addition, we also wish to find out
what properties of a recursive representation are determined by the system X it
represents, and what properties are arbitrary. This will allow us later to
choose the properties which are not determined by X in a convenient way
(in §4).

Input/output-equivalence can be characterized in terms of the recursive
representations alone. For this purpose we need the following concept. Let
&L Ypyne1=/WE " |uf**) be a recursive representation of a system X : S(R™)—
S(R?). Let Si(R™) denote the set of all one-sided infinite sequences g, u,, ...,
U,, ..., With elements u;eR", j=0,1,2, ..., satisfying uy=u;= ... =u,=0.
For each element ueS§(E"), let &(u) denote the output sequence y,, y,, ...,
computed recursively through & under the initial conditions y,=y,= ...

. =y,=0. We define the i/o-space D, of & by
Dy:=_ U U (LB |ut ) (2.3)
ueSH(R™) k>0

so that D, is the subset of (R?)"+! x (R™)**! consisting of all the segments of
“length > (n+1, u+1) of the (input|output) sequences. The i/o-space is the
minimal domain over which the recursion function f has to be defined in order to
characterize the input—output relationship induced by the system 2. It plays
a central role in our present framework serving, in a sense, as the analogue of the
state-space in classical linear system theory. As a simple example, the ijo-
space of ¥, ;= 5(¥;)* +1 is R%, whereas the ijo-space of y;,,=3(¥;)? + (4,)® is
[0, c0) x R.

Next, given a subset 4 < (R?)**1 x (R™)#*!, where « > 7 and B> u, we define
for every integer ¢ > 0 the i-step extension $[A] of 4 by

PYA]:= 4
F[A]:= (zozleg)"aé (Bgs «vss Zs J(2en |98 - F W01 o0 D B) (2.4)
FA]:= L[FA]]

As we see, for every 1> 0, the set #[A] is a subset of (RP)*+i+1x (R™)E+i+1,
and each element of it is an i-step extension along the trajectory of & of an
element in 4, with new input values covering R”. When 4 is the i/o-space
D, of &, then simply
FTDl= U U (L@)E* gt ), i20
ueSM(R™) k=0

which is a subset of (R?)"+i*1x (R™)»*+i+1 For every element (ag*i*|bs+i*?)
in #**'[D,], where >0, we have that a,;,,=f(a?*/|b¢*%), and that b, is
an arbitrary element of R™ Thus, once D, is known, the sets &[D,],
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i=1,2, ..., can be constructed recursively step by step using the recursion
function f. In these terms, i/o-equivalence can be characterized as follows.

Theorem 2.5

Let & Yppp1=f@E"|ui**) and &'y =f G [ui**), where
n'—n=p"—pu, be recursive representations mapping S(R™)—S(R?). Let D,
and Dy be the i/o-spaces of & and &', respectively. Assume that 3’ >7, and
denote y:=n"—7. Then & and &’ are ijo-equivalent if and only if
S+ Dyl= &' [ Dg]-

In view of this theorem, i/o-equivalence of recursive representations can be
verified by checking whether two subsets of (R?)” *%x (R™)* *% are equal.

Proof

If #~ &, then it follows by our construction of the respective sets that
P Dy1= &£'[Dy). Conversely, assume that #**[D |= &£'[D,]. By time
invariance, our proof that %~ %’ will conclude upon showing that
F(u)= & (u) for all elements ucSy(R™) (note that, since w' >pu, we have
Sy (R™) < S4R™). Now, let ueSy(R™) be an arbitrary element. Then,
clearly, [.V'(u) 3'=03'=[.Sf(u)]3'. Further, preparing for induction, assume
that [9"( w)]s=[FL(u)]s for some integer n>%". Then, using the fact that
(L)t |u" rretl) belongs to .9”'“[D J—and whence also to &'[Dy]—we
obtain (L@ ar=F (L@ g 23 = [ )]
Thus, [L) i =[S (w)]3*! so that, by induction, [#(u)]F=[%"(u)]§® for
any ueS4 (R™), and our proof concludes. Il

Theorem 2.5 can be slightly strengthened in the case when %’ is strictly
larger than . This stronger version, which is stated below, is important to our
ensuing discussion.

Corollary 2.6

Let & punsr= {07 W) and & g,y = (Gh*7 k"), where
n'—m=p'—pu, be recursive representations mapping S(R™)—S(R?). Let D,
and Dj be the i/o-spaces of & and &, respectively. Assume that ' >, and
denote y:=%'—7. Then, & and &’ are iJo-equivalent if and only if
&?[Dy] = Dy.

Proof

If & and &' are i/o-equivalent, then the equality ¥*[D,]= Dy is a direct
consequence of the definitions of the involved sets. Conversely, assume that
&?[Dy]= Dy, and consider an arbitrary element (2§ *!|vs *1)e&'[Dy]. Then,
clearly, ( z”'“]v“'“ €D,, and, since Dy= &[D,] with y>1, it follows that
21 =10 _, |04 _ ). Thus, &'[Dg]=[Dy], whence &'[Dg]l=F[F[Dy]]=
F7UD,], and &L ~ .5/" by Theorem 2.5. O

Let X : S(R™—S(R?) be a recursive system. Motivated by Corollary 2.6,
we next construct a recursive representation of £ which is of minimal principal
degree in its i/o-equivalence class. First, we need some preliminary considera-
tions. Let & : y,,,. =f(yi*"|uf**) be any recursive representation of X,
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\ and let D, be its i/o-space. We assume that p>1. (Formally, the value of n
can always be increased without actually changing the function f by defining the
new function f'(y¥*7|uf*#+l):= f(yi*"|uf**).) For each point (25 !|vg~1)e
(R?)"x (R™* we construct a (possibly emptv) projection set P k)
consisting of all points z €R” for which (zj|v§)eD, for some v,eR™ (if n= 0

‘ replace (2§ !|v™ 1) by (vg~ 1) throughout) We say that D, is globally degenerate

if, for every point (zJ7!|vg~1)e(R?)" x (R™)*, the set P(z3~'|vj~!) contains at

most one point (that is, the one step continuation z, of (2§ ~'|v§~!) is uniquely
determined). We then have the following

Theorem 2.7

Let £: S(R™—S(R”) be a recursive system. Let & be any recursive
representation of X, let n be its principal degree, and let D, be its i/o-space.
Then, X has a recursive representation with principal degree less than 7 if and
only if D, is globally degenerate.

We start our proof of Theorem 2.7 by showing that if D, is globally
degenerate, then one can construct a recursive representation of £ having
principal degree (p—1). To this end, assume that D, is globally degenerate,
and let D)< (R?)" x (R™)* be the set of all points (23~ 1}1} ) for which the set
P(z3~'|vg~!) is non-empty. Then, for every point (27~ 1|vg YeD}, the set
Plag= g~ 1 contains exactly one point, so that we can define the function
A D‘——»R” by f1(z3"|vt~") := P(z5~'|vs~!) (as before, if =0, replace
(23~ 1|v“ by  (ws7h), where we always assume that pu>1). Let
]‘1 (R?)"x (R™)*—R? be any extension of f;, and consider the recursive
representation &, of principal degree (n— 1) given by

& yk+n=f1(yll§+n_1|ullg+“_l) (2.8)

We next show that &, is another recursive representation of the system X, thus
proving the ‘if * direction of Theorem 2.7.

Lemma 2.9

The recursive representation &, of (2.8) is i/o-equivalent to &, and has Dj
as its i/o-space.

Proof of Lemma 2.9
Let (23|v§) be any point in Dj, and let z ., := f(2§|v). Then, clearly,
(23*|v4*1eD, for every v,.,€R™, and whence, by our construction of f;, we
obtain z, ;= fl(z |v4) = f(23|vt) for all points (z3|v4)eD,. But this implies that
F1(u)= F(u) for every ueS4(R™), so that (by time invariance) &, and & are
i/o-equivalent. Moreover, the i/o-space D* of &, is given by
D= U U [(£@E"  urth

ueS*'(R™) k=0

= U U@L w

ueS*(R™) k=0

— 1
= Dy
as asserted. ]
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In order to complete the proof of Theorem 2.7 it only remains to prove the
necessity direction.

Proof of Theorem 2.7

Necessity. Assume that X has a recursive representation of principal degree
7' <m, given by yp . =f Wi [uf**), where we choose p'—p=%"—7. Let
(23|v§) be any point of D, 'I:hen we clearly have that z, =f'(z12]_,|v421_,),
and, since n—1—n'=p—1—p’ >0, it follows that z, is uniquely determined by
(2376~ ?) for every point (23|vg)eD,. Thus, D, is globally degenerate, and our
proof concludes. O

Returning now to our construction of (2.8), we have obtained from the
given recursive representation & with principal degree 7, the reduced recursive
representations &, having principal degree (y—1) and i/o-space Dj. Now, if
D} is still globally degenerate, the same procedure can be applied to &,
leading to a new recursive representation &, of X, having principal degree
(n—2) and ijo-space Di. After n such steps, where n is at most 5 + 1, we obtain
a recursive representation &, of X having principal degree (n—n), for which
either n —n = — 1 or its i/o-space is no longer globally degenerate. Ifn—n=—1
then the recursion function of &, does not depend on the output variables, and
is of the form y,=f,(uf**~"). Thus, in view of Theorem 2.7, the principal
degree of &, cannot be further reduced in either case, and n» —n is the minimal
principal degree possible for a recursive representation of X. As we see, the
minimal recursive representation &, can be obtained from an arbitrary given
recursive representation & of X through a step by step reduction procedure.
We summarize this point in the following.

Corollary 2.10

Let & be any recursive representation of a recursive system % : S(R™)—
S(R?), and let & be its i/o-equivalence class. Then, a recursive representation
having minimal principal degree in ¢ can be derived from & in a finite number
of successive reduction steps.

3. Interconnections of recursive systems
In this section we study algebraic properties of recursive systems, related to
the series connection, inversion, and sum of such systems. We start with an
examination of series connections of recursive systems. Let Z,: S(R™)—
S(R?) and Z, : S(R?)—S(R") be recursive systems represented by the recursive
representations
L1t V1 =hOE ™ u ™) (3.1a)

Lot Yprme1=hUETETM),  pe<n, (3.1b)
respectively, and consider the series combination 2, := XX, : S(R")—S(R?).

Y

Vs
recursive representation of the sequence z in terms of the input sequence u to
%, as follows. Let 5 := max {9, n,}, and define the integers ¢;, ¢, >0 (one of

Defining the augmented vector z; : = )ER" x R?, we can directly obtain a
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which is zero) so that n=m,+e¢, =7n,+e,. Then, since u,<7,, we have the
recursive representation
UYLty
Zk+'q+l=

fulekitalugtete)

= 2+ g trate) (3.2)

where f: (R?x R?)"*1x (R™)*a+1 R1x R? and where the output value y,;
of X; can be retrieved from the first ¢ entries of z;, whereas the intermediate
variable v; can be retrieved from the last p entries of z;.

The above procedure is evidently not applicable in cases where there is no
access to the intermediate output sequence {v;}-—the output sequence of the
first system X, in the series connection. It is also not applicable in stabilization
theory, as we shall discuss in a later section. In situations in which the above
procedure is not applicable, one has to require that the series combination
Xy=2,%, possesses a recursive representation involving only the output
sequence {y;} of X, and the input sequence {u;} of ;. Namely, that there exist
integers ¢ and { and a function fy: (R?)¢*!x (R™)**'— R such that y,,,,,=
fs(E+¢|ubt?). If such a representation exists, then we say that the series
combination X,%, is strictly recursive. We next examine the conditions under
which a series combination is strictly recursive. These conditions depend on
the structure of certain invariant subspaces which we discuss first.

Consider the systems X, and %, of (3.1). For given input values u;, %, 1, ...,
g, + 7 @0d for fixed initial conditions v, v, 4, ..., v, of X;, the output values
Vptm+1s Vkam+2 oo Vpen+je1 Of 2, are uniquely determined through the
recursive representation (3.1). Thus, for each integer 7> 0, there is a unique
function F; such that

Fi(wi™™) := Fy(v kﬂ'luheﬂ) 1= (Vpsir Vkait1s -oos Vbtitp,) (3.3)

(the augmented vector), where e : = u; —1+ u, —7,, and where we shall some-
times suppress the variables uf*¢*? for notational convenience. The functions
{F,} directly express the evolution of the output sequence of X, (taking u,
output values at a time) in terms of the initial conditions and the input
sequence. We now choose some integer k and leave it fixed throughout our
present discussion. Denote by D, the subset of S(R”) x S(R") consisting of all
pairs of sequences (y|u), where ueS(R") and y=X,Zu. Also, let D, be the
ifo-space of &, and, for every ueS(R"), let D, ,(u) be the set of all elements
®, ..., o, ER? for which (aft[uf**)eD,. Qualitatively, D, ,(u) is the set of all
inltlal conditions vitm of &, that can appear with the input values uf*®,
(Recall that X, is always started from zero initial conditions at some finite time
in the past.) Now, for each element v§*™eD, ,(u), and for each integer ¢ >0,
we define the equivalence class {v{*™}; , consisting of all elements BgeD, ,(u)
for which
o1 P88 = okt F o)

where y := Z,5u. Then, {vf*™}, , consists of all the initial conditions of X,
which lead to the same output value y, ,,,, ., for the given partial sequences
yeritm uft+e. Finally, for each element (y|u)eD,, we define the following
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decreasing sequence of subsets K ,(y/u) of (R?)m*1:

i

Kylw):= N &}, 1=0,1,2, ..

j=0 (3.4)
K (yfu) := lim K (y|u)
The set K (y|u) consists of all initial conditions v, ..., %, for which the

output sequences of %, (corresponding to the input sequence u°) generate one
and the same output sequence y;° of Z,. Qualitatively, K (y|u) determines a
‘X, invariant subspace in kernel Z,’. The set K (y|u) is non-empty, since
(y|u)eD,, implies that y° was generated by u° for some initial conditions of Z,.

We say that the ordered pair (Z,, Z,) is asymptotically observable if the set
K ,(y|u) contains only one point for each pair (y|u)eD,. When asymptotic
observability holds, the initial conditions v, ..., v, are uniquely determined
by the sequences y° and #;°, and thus can be uniquely expressed in terms of
elements of these sequences. However, this expression may depend on an
infinite number of terms of the sequences. We say that the pair (Z,, Z,) (or
that the pair (f,, f,)) is compatible if there exists an integer »* such that
K., . (y|u)=K,(y|u) for all (y|u)eD,. The minimal value of r* is called the
compatibility degree of (Z,, Z,) (or of (f,, f;)). For a compatible pair of systems
(25, Z,) with compatibility degree r*, one can readily show that K (y|u)=
K..(y|u) for all integers r>r* and all elements (y|u)eD,. In case the pair
(5, Z;) is both compatible and asymptotically observable, then the initial
conditions v, ..., v, of X, are not only uniquely determined by the sequences
y2 and u°, but they can be expressed in terms of a finite number of elements of
these sequences (see (3.8) below). This fact is of crucial importance to our
discussion.

Returning now to series combinations of systems, we can state the following
characterization of strict recursivity.

Theorem 3.5

Let £, : S(R™)—S(R?) and %, : S(R”)—S(R?) be recursive systems. Then
the series combination X,X; is strictly recursive if and only if the pair (Z,, X,) is
compatible.

Remark

In some applications of Theorem 3.5 given below, the system X, has as its
domain not all of S(R™), but only a time invariant (i.e. shift-invariant) subset D
of it. For such a case our discussion here remains unchanged, except for the
obvious fact that the input sequences w to X, have to be restricted to D
throughout the discussion (including the construction of the i/o-space D;). []

Proof

Assume first that the pair (£,, ¥,) is compatible, and let » be its compati-
bility degree. Using time invariance, we obtain from (3.1) for every integer
{ >0 the set of equations

ylc+n¢+i+1_jB(yl’;I:;-*mlex::i:%‘*—#:):O, i=0’ LEay) g (3'6)
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Substituting the relationship (3.3) into (3.6), and defining the functions
U AR U AR RE AU s as ¥ J1CHAadl [T A))
we obtain the equations
Ynnerie1—RGELE W o [0f ™) =0, ©=0,...,( (3.7)

Consider now (3.7) as a set of equations for v, ..., v,,, in terms of given
sequences y;°, ug”, where (y|u)eD,,. A slight reflection shows that the subspace
K (y|u) of (3.4) is the kernel of the set (3.7) for {=j. Let

(Vg -+ vl;+n,)=G(y1’::+r+1|u£+r+c) (3.8)

be any solution of the set (3.7) for {=r, where r is the compatibility degree.
Then, since K ,(y|u) = K ,(y|u), it follows that (3.8) satisfies the set of equations
(3.7) for every integer {>r as well. Finally substituting (3.8) into (3.7) for
t=r+1, we obtain the equation

Veomersa=hro ATt e g ) (3.9)

which is a recursive representation of the series combination £,%,. Thus, 2,5,

is strictly recursive.
Conversely, assume that Z,X, is strictly recursive, and let

yk+,,+1=}‘(y'kf+”luf+“)
be a recursive representation of it (which holds for every (y|u)eD,). Then, for
every integer j, the sequence ¥ is uniquely determined by yJ*" and the input
sequence u}. Whence, every set of elements vf*™ which satisfies (3.7) for
{=mn, also satisfies (3.7) for {>7. Consequently, when (3.7) is solved for v¥*™
in terms of y° and u°, the solution is determined by the first » equations, and
thus K (y|u) =K, (y|u) for all (y|u)eD, and (Z,, Z,) is compatible. O

We give now an example of a pair of recursive systems for which the series
combination is not strictly recursive.

Example 3.10
Let f(xz,y): R*>>R be the ®staircase’ function defined by f(x,y):=
(nly)signa for (n—1)ly<|z|<nly, n=1,2,...,y>1, and by f(z,y):=0
for y<1. Notice that when y— oo this function tends to the identity function
for a, but that, for any finite value of y, it is non-injective in 2. Now, let
2 : S(R*)—S(R?) be the system represented by
ZI:'+1 f(vl’c’ UZ)
Tz, = I .,
%41 Vi
Combine this system in series with the system X' : S(R)—S(R?) given by

e\ [t
Z : vk+1 := ” - n
Vrt1 vp+1
to obtain the system X" := XX’ : S(R)—S(R?). From the definition of the
function f(z, y) it follows then that in this case the set of equations (3.7) for the
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intermediate variable v, becomes injective when {— oo (since then v;— o), but
this set of equations is non-injective for all finite values of {. Therefore, v;
cannot be expressed in terms of any finite number of elements of the sequences
2P and w°, so that a function of the form (3.8) does not exist here. Thus, X’
is not strictly recursive. ]

As a consequence of the proof of Theorem 3.5 we obtain the following
corollary, which is directly implied by (3.9).

Corollary 3.11

Let 2, : S(R™)—S(RP?) and %, : S(R?)—S(R?) be recursive systems having
recursive representations with principal degrees 7, and 7,, respectively.
Assume that the pair (Z,, Z,) is compatible, and let r be its compatibility degree.
Then, the strictly recursive combination X,%; has a recursive representation
with principal degree n <%,+7+1.

We turn now to a discussion of inverse systems. Let X : S(R"™)—S(R?)
be a non-linear recursive system. By restricting the range of X to the image
of X, we obtain a map X" : S(R™)—Im X which is evidently surjective, and
whence possesses a right inverse £* : Im Z—S(R™). Let X¢: S(R?)—S(R™)
be any extension of 2* from Im X to the whole space S(R?). Then, for every
element yelm X, we evidently have that ZXfy=3X*y=y. We call X¢ a
generalized right inverse of X. As usual, if ¥ is not an isomorphism, then a
generalized right inverse of £ is non-unique. The main question that interests
us here is whether a recursive system has a recursive generalized right inverse.
The following statement provides an affirmative answer to this question.

Theorem 3.12

A recursive system X: S(R"™)—S(R”?) has a recursive generalized right
inverse 3¢ : S(R?)—S(R™).

Proof

We construct a recursive generalized right inverse for £. Assume that =
is represented by ;.. =f(y*"|uf**), and let yeIm X be an output sequence.
We now construct recursively for every integer k the sets S%, S%, ..., S¥ as
follows. The set Sk(yff“*7+!) consists of all elements zeR™ for which there
exist elements z,, ..., 2,eR" satisfying ¥, ,. .1 =fWET4" "0, 20, ..., 2,) for
every j=1,...,u and for every combination of elements ., e85/,
Wy i1 €85 TIH, L gy 16857, the set Sk(yftrz 47+ |uk k1) consists of all
elements zeR™ for which there exist elements z,,...,z,_ ;eR™ satisfying
Yesumjamer =TUETEZ I Uy ooy Wiy 1, @, 2y, -, 2, ;) 3 and, finally, for
any combination of elements weS§™*, wu,, e85+, .., u,, e8], the set
Skyp* "+ uf*#~!) consists of all elements zeR™ for which w,,,,=
f(Z//’ﬁ”]%: e Uy 1o ). n

Define now the intersection set S¥(yk***7+!uf**~1):= [ S% and note

i=0

that whenever u is an input sequence generating y, then the set S* is non-
empty for every k. Let D denote the set of all points (yf***7+!|uf**~1) for
which S$* is non-empty. For each point in D we choose an element
glugtemtypretntheSkgktuta+l|yk+u-1) and we let T* : Im T—S(R™) be the
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recursive system represented by
Etu—1],k
Up o = glu ™" llyk+“+7’+1) (3.13)

We next show that £* is a right inverse of the restriction X" of X to its own
image. To this end, let w, ..., w,,,_,€R" be fixed elements, and let Y, denote
the set of all output sequences from X generated by input sequences which are
continuations of the partial sequence uy, ..., u;,, ;. Using the uf**~1 as
initial conditions, we next show that (3.13) yields for every sequence yeY, a
sequence {u}}, 1>k, where uf=u; for i= o k+p—1, which satisfies
By s =W ]u*‘ T+ fop all mtegers > O Indeed, by our construction
of the function ¢ of (3.13) and the fact that yeY,, it follows that for each
©=0,1,2,... and for each j=1, ..., u, there exist elements z,, ..., z2;e R" such
that gy =fEETI"u*pi o Wi u s %15 ooy 2;). Moreover, since
UWepirps j2a€8FT T m=1, ..., j, one can actually choose z, =u*; ;. ,_;,, for
eachn. Thus,y; ;. ,.1 =f(1/k*'+" |u*ktite) for all integers ¢ > 0, so that ZX*y =
for all yeIm X.

Finally, in order to extend the domain of £* from Im X to all of S(R?), let
gt: (R"#*x (R’y"*#+*2 5 R" be any extension of the function g. Then, the
recursive system ¥ : S(R”)—S(R") represented by u,, =g (uf** 7 |yftrrntT)
is a generalized right inverse of X. O

We illustrate the construction of the generalized right inverse described in
the proof of Theorem 3.12 through the following example.

BExample 3.14
Consider the single-input single-output recursive system % : S(R)—S(R)
represented by
Yos2 =R 1)+

where : R—R is a function. In this case, n=p=1, and the sets S are as
follows : Sk(y*3) consists of all elements 2 R for which there exists an element
zeR satisfying y;,;=h(z)+a. For each element u eS§~!, the set S¥(yf*?|w,)
consists of all elements xveR satisfying v, ., =h(x)+ . 1nally, Sk “3|fu

SkNS%.  In particular, if A=0, then S‘(y“l) Yiss and SEyh+? [u,~ R (all
real numbers). Thus, for =0, we have Sk 3 |wp) =Y 4 5, SO that the function

of (3.13) is simply w,,=g(u |[yi*3®)=y,,5. Whence, the right inverse
X*: S(R)—-8(R) of Z is given by quzyk+3, which is indeed the expected
solution for the case h=0. [

If the recursive system X: S(R"™)—S(R”) is an isomorphism, then its
inverse map X7': S(R?)—>S8(R") is, of course, uniquely determined. But
then Theorem 3.12 implies that £~! is a recursive system. We state this fact
in the following.

Corollary 3.15
Let X: S(R")—>S(R”) be a recursive isomorphism. Then, its inverse
E-1: S(R")—S(R™) also is a recursive isomorphism.

Finally, we shall need a certain refinement of Theorem 3.12 for the case
when the domain of X is not all of S(R"), but only a subset of it. Consider a
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recursive system X : D—S(R?”), where D is a subset of S(R™). It can be shown
that, for some choices of D, the system X may not have a recursive right inverse
2*: Im Z—D, so that Theorem 3.12 cannot be generalized to the case of an
arbitrary domain D. Nevertheless, Theorem 3.12 can be generalized to the case
when the domain D is of the following particular form, which is of main interest
to us below. A subset D<S(R™) is recursive if there exists an integer ¢ and a
function o assigning to each point (a, ..., a;)e(R™)¢*! a subset o(af) = R™ such
that D consists of exactly all sequences ueS(R™) satisfying u, , ., o(uf*¢) for
all integers k. The function o is called the gemerating function of D. For
instance, if Il : S(R?%)—S8(R™) is a recursive system, then Im II is a recursive
subset of S(R™). Indeed, letting w,,,,,=f(u*¢|vi*) be a recursive repre-
sentation of II, we clearly have for Im Il the generating function
ouf*€) := {ueR™: u=fub*¢|vt*?) for some v¥*¢ for which (uf*¢|vf*%)eD,},
where D, is the i/o-space of II.

Corollary 3.16

A recursive system X : D—S(R?), where D is a recursive subset of S(R™),
has a recursive right inverse £* : Im X—D.

Proof

We only have to modify the function ¢ of (3.13) so as to guarantee that the
sequences it generates are in D. To this end, let o(uf*¢) be a generating
function of D, and, using the notation of the proof of Theorem 3.12, let
e:= max {§—(u—1),0}. Then, we choose an element g'(uffs=1|yk*tr+n+l)e
Shg et uf e No(ufteol_,), and (3.13) will be replaced by ., ,=
g (uE = 1yk+r+tn+1y (50 that there is an increase by e of the principal degree of
the inverse). O

We conclude this section with a brief discussion of the sum of two systems,
which we defined earlier in the section. Let X, 3,: S(R™)—S(R?) be
recursive systems represented by

2y Vpsn 41 =f1(”£+m|u£+“')

Do B, =Fold T |ug )

and let X := X, +2%, By definition, the output sequence yeS(R?) of X is
given by y=v+=z2. As before, we are interested in the recursivity properties of
the system X. Using an approach similar to the one employed in the derivation
of (3.2), we can obtain a recursive representation as follows. Define the
augmented vector w; : = (;‘) ; let n := max {n;, 7.} ; let ¢,, e;> 0 be integers

4

satisfying n =7, +e;=7,+¢,; and let 8§ := max {e,+pu,, €, +us}. Then

G Atate)

W 41 = =: flwg " [ug*’)  (3.17)
folly—vReia g tot ) + fio 0 [ugiot™)

As in the case of the series connection, this representation has the disadvantage

of not eliminating the intermediate variable ». We say that the sum X is

strictly recursive if it has a recursive representation of the form ., ,=

h(yE*¢luf*?), involving only the input sequence u and the output sequence ¥.
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Explicit conditions for strict recursivity of a sum of recursive systems can be
derived from (3.17) and Theorem 3.5. Here, we omit a general discussion of
this point. We consider only the following particular case, which is encountered
in our discussion in the later sections.

Proposition 3.18

Let X, Z, : S(R")—S(R”) be recursive systems, and assume that X, has a
recursive representation of the particular form z, ., ,,=f,(uf**). Then, the
sum X, + %, is strictly recursive.

Proof

Let v, .1 =/f(vf*"|uf**) be a recursive representation of X, and let
yeS(R?) be an output sequence of X, + X, corresponding to the input sequence
ueS(R™). Then, denoting e : = 7, —7,, we obtain

Yrtn+1= Vkan, 41T b, +1
= ok Uk ) + foluf 25t )
=fillyn—F (e ZE2 21 oo [Yhn, — ol 20212 a1}

+ fo(uf 2 )
which is a (strictly) recursive representation of X, + X,. O

4. Stability and internal stability

As was pointed out in the classical work of Liapunov, our intuitive notions
of system stability can be accommodated in a formal mathematical framework
through the concept of continuity. Continuity here is understood in a strong
sense, referring to continuous dependence of the system’s output sequence on
the input sequence and on the initial conditions. Intuitively, a system is
stable if ‘small’ changes in the input sequence and in the initial conditions
cause only ‘ small ’ changes in the output sequence. Before stating the formal
definition of stability that we shall use in our present discussion, we set up the
necessary notation.

First, we define a conventional metric p on our spaces of sequences, starting
with a metric of R™ For any pair of elements o:= (o, ...,a™),
B:= (B ..., B") of R, we define p(a, B):= max |o'—pB!|. Next, given

i=1,..,m
two sets of elements o} := (y,, ..., y,) and & := (8, ..., §,), where y;, 6,cR"
foralli=1, ..., n, we let p(y%, 87) := max {p(y;, §,), =1, ...,n}. Also for two
elements (z7|v), (z'3[v"4)E(R?)" ! x (R™)**!, we define p[(ZF|vh), (Z'5|v'4)] :=
max {p(2}|2'7), p(vh, v'4)}. Given two sequences w,veS(R"), we let
polu, v) 1= sup p(u;, v;), p(u, v) := sup 2~ Vlp(n;, v;), and p(u) : = p(w, 0). Sum-
) i

marizing, p is the conventional metric used in stability considerations. Our
discussion can be easily adapted to alternative definitions of metrics.

Much of our discussion in the present section is related to studies of
continuity properties of functions. When talking about continuity, we shall
always refer to continuity with respect to the topology induced by the metric
p- Asis usually the case when studying properties related to continuity, it is
convenient to restrict attention to bounded sets (of inputs). From the practical
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point of view, boundedness of the inputs is not a severe limitation, since all
signals in a physical system are necessarily bounded. From the theoretical
point of view, bounded sets offer some advantages, mainly because they
frequently allow the use of the notion of uniform continuity, which is techni-
cally easier to treat than the more general notion of continuity. So motivated,
we introduce, for every real 6> 0, the set S(6™), which consists of all sequences
ueS(R™) for which py(u)< 8. We denote by S4(6™) the set of all sequences
ueS§(R™) satisfying py(u)< 6. Thus, we have sets of bounded (by 6) input
sequences. Given a recursive representation & : y.,,;=/(y*"|uf**) of a
system X2 : S(R™—S(R?), the set S(8") induces the restricted i/o-space
Dic (RPy"+1x (R™)»+1, defined by
Di:= U U (@)
ueSyH(8m) >0

which is a subset of the ijo-space D,. As we see, Dj is the i/o-space obtained
from & when the input sequences are bounded by 6. The set S§(8™), being a
closed and bounded subset of the space of (one-sided) infinite sequences S&(R™),
is compact. However, the set D{ is in general neither closed nor bounded.
We shall denote by &, the restriction of & to §(6"). For example, consider
the single-variable system y,.,=3(4)*+ (w,)> Here, for 6=/, a simple
computation shows that Dy*=[0, 1) x [~ /1, 1/}], whereas for 6> 4/%, the
set Df is not bounded.

Finally, let D<(R?)"*!x (R"™)**! be a non-empty subset. For every
element d : = (2}|vj)eD and for every sequence u : = u, ,,, of elements of R™,
we denote by #(d, u) : = ¥, ., the output sequence generated by & from the
initial conditions d and the input sequence u, thatis, y; , ;.1 =kt i |[ufti+#)
for all integers j>0, where w,, ;:=v; for i=0,...,pu, and y,,,;:= z; for
t=0, ...,m7. We now define the notion of stability.

Definition 4.1

Let & :yp 1 =/yi*"|k**) be a recursive representation of a system
Z: S(R™—S8(R?), let D be a non-empty subset of (R?)7+!x (BR™)**1  and let
6> 0 be a real number. Then, &, is stable over D if, for every element deD
and for every sequence u := u% ,,; < RB™ with p,(u) < 8, the following holds :

For every ¢>0 there exists a 8(d, u, €)>0 such that, for all elements
d'eD and w' := u'5 ., < R" where py(u’)< 6, which satisty (i) p(d,d’) <
8(d, u, €), and (ii) p(u, »') < 8(d, u, €), one has that p(L(d, u), L(d', u')) <e.

If the number 8(d, u, €) can be chosen independently of d and u, i.e. if
3(d, u, €)= 38(¢), then &, is uniformly stable over D. 1If &, is stable over D
for any 6> 0, then we say that & is stable over D. ]

Qualitatively speaking, &, is stable over D if, when started from initial
conditions within D, it is continuous with respect to (i) variations of initial
conditions within D and with respect to (ii) variations of the input sequence (as
long as it remains bounded by ). The present definition is in the spirit of the
classical Liapunov definition of stability.

When considering control problems, it is common practice to adopt the so
called ‘ input/output point of view ’, under which one assumes that the system
was started (at some finite time in the past) from zero initial conditions. In
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such case, the domain of & will always remain confined to the i/o-space D,,.
Then, we say that &, is i/o-stable if it is stable over its restricted i/o-space D§.
We say that & (or'X) is i/o-stable if &, is i/o-stable for all §> 0.

When conditions (i) and (ii) of Definition 4.1 are taken separately, they
respectively imply the following two statements (where Proposition 4.3 also

depends on the fact that 0eD§).

Proposition 4.2

Let & : ypop.1=fi*"|uf**) be a recursive representation of a system
X : S(R™—S(RP), let D< (RP)"*1 x (R™)**! be a subset, and let >0 be a real
number. If &, is stable over D, then the function f is continuous over D.

Proposition 4.3

Let & : Yy, =fyk*"|ui**) be a recursive representation of a system
Z: S(R™—S8(R?), and let 6> 0 be a real number. If &, is i/o-stable, then =
represents a continuous map S§(0")—S(R?).

We remark that the converse directions of Propositions 4.2 and 4.3 are
not true, namely, the continuity of f is not a sufficient condition for the stability
of &, and neither is the continuity of ¥ as a map S5(6")—S(E?).

Proposition 4.4

Let & : ypynr1=/(yk*"|ui**) be a recursive representation of a system
Z: S(R")—>S(R?), let 6>0 be a real number. If &, is i/o-stable, then
Z[84(6™)] is a p-bounded set.

Proof

Assume that &, is ifo-stable. Then, by Proposition 4.3, the map
Z: 8(0™)—S(R?) is continuous. Whence, since S%(0™) is a compact subset of
S(0™), it follows that the image X[S%(0")] is compact (see, for example,
Kuratowski (1961, ch. 15)). Consequently, Z[S4(6™)] is bounded. O

Regarding the notion of uniform stability, we have the following analogue
of a classical theorem on continuous functions.

Proposition 4.5

Let & : yprn.1=fyE*"|uf**) be a recursive representation of a system
% : S(R™)—S(R?), let D<= (R?)"*!x (R™)**1 be a bounded set, and let § >0 be
a real number. If &, is stable over the closure D, then it is uniformly stable
there.

Proof

Let 8,(6™) denote the set of all sequences u:= w5, ,,, < R" satisfying
po(w) < 8. Then, the recursive representation & induces a map &* from
D x 8,(8™) to the set of sequences, given by (d, u)— &(d, u) for all deD and
ueS,(6™). Itiseasy to see that & ,is uniformly stable over D if and only if &~
is uniformly continuous over D x 8,(6™). Now, assume that &, is stable over
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D. Then, %7 is clearly continuous over D x 8,(6"). But, since D x S,(6") is
compact, the latter implies that #* is uniformly continuous over D x 8,(6™)
(see, for example, Kuratowski (1961)), so that, by our opening remarks, &, is
uniformly stable over D. 0

As we have discussed before, the notion of i/o-stability refers to the stability
of the system in a situation where it was started from zero initial conditions at
some finite time in the past. Though this situation is the most common one
encountered in the practice of control engineering, it is nevertheless well
established that the notion of i/o-stability is too weak to have any direct
practical implications. The reason for this fact is that inevitable errors in
measurement, and noises in the systems environment, actually preclude any
possibility of fixing the initial conditions at any prescribed values with an
absolute degree of accuracy. What is really known is that the initial conditions
are ‘ close ’ to their prescribed value. Thus, due to noise and measurement
error, a system can never be confined exclusively to its i/o-space, and this
inevitable deviation from the idealized input/output approach has to be taken
into account. Such considerations have lead to the introduction of the already
classical concept of internal stability, which, in our present framework, is
defined as follows.

Let & yprne1=FyE""|uf™*) be a recursive representation of a system
% : S(R™—S8(R?), and let DS, where 6 > 0, be the restricted i/o-space of &. For
a real number {> 0, denote by Dj , the set of all elements de(R”)"+* x (R")**!
satisfying p(d, D§) < { (i.e. a {-neighbourhood of D§). Then, we say that &,
is internally stable if there exists a (>0 such that &, is stable over Df ,.
Qualitatively speaking, %, is internally stable if any small deviations (possibly
outside the i/o-space) in its initial conditions do not destroy stability. We say
that & is internally stable if &, is internally stable for all §>0. Clearly,
Dj< D{., for any >0, so that an internally stable system is i/o-stable as well.
‘ As we have seen in § 3, a recursive system 2 : S(R™)—S(R?) determines a

class C(Z) of ijo-equivalent recursive representations of itself. When the
system X is stable, then each one of the recursive representations in C(2) will
be i/o-stable. The main question in this context is whether C(2) also contains
an internally stable representation (when X is stable). The interest in this
question stems from our above observation that only internally stable repre-
sentations are ‘really ’ stable from the engineering point of view. To state
things in somewhat more exact terms, we are interested in the following
question.

Problem 4.6

Given an i/o-stable recursive representation &, when does there exist an
internally stable recursive representation &, which is ifo-equivalent to <.
And, if &, exists, how does one construct it from the given representation <.

In the particular case of time-invariant finite-dimensional linear systems,
the answer to Problem 4.6 is always in the affirmative, namely, every stable
linear system has an internally stable recursive representation. Indeed, it is
well known that the minimal (i.e. reachable and observable) representation of
a stable linear system exhibits a stable response for any set of initial conditions.
Thus, the minimal representation of a stable linear system also is internally
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stable. However, in the general case of non-linear recursive systems, the
situation is somewhat more delicate, and it deserves a detailed discussion. The
statement that we have in our mind in this context is that, if a recursive
representation & (of a system X : S(R™)—S(R?)) is stable over the closure D,
of its i/o-space D, then it can be extended into an internally stable representa-
tion. (Recall from § 2 that & is uniquely determined by X on D, but it is
arbitrary outside D,.) That there is a connection between the system X, the
stability of & over D, and the existence of an internally stable representation
of 2, is seen as follows.

Consider a recursive representation & : y;,..,=f(ys""|ui™*) of a system
2 : S(R")—S(R?). Let 6>0 be a real number, and let D} be the restricted
ijo-space of &. If & is 1nternally stable then, since evidently Dj< D§ , for
any {>0, it follows tha‘o & |0 1s stable over Dj. Thus, the condltlon that & 10
is stable over Df is a necessary condition for the internal stability of &. We
now claim that thls condition depends directly on the system X, and not on the
particular representation & that we consider. Indeed, in view of Theorem 2.5,
we have that, for every point deDf, the value y : = f(d) is uniquely determined
by the input/output map 2, so that the function f is uniquely determined by X
on D§. Furthermore, if %, is stable over D§, then, by Proposition 4.2, the
functlon f is continuous over DJ. In such case, the values of f on D are
uniquely determined by its values on Df through the continuity requirement
that, for any point de D]

(@)= lim f(z,) (4.7)
n—>

where {z,} < D{ is any sequence converging to d. Thus, if f has a continuous
extension to D$, then its values there are uniquely determined by 2. In
summary, the condit;ion that &, be stable over D} is a necessary condition for
internal stability, and it depends directly on the system X, and not on the
particular representation &. The question is, of course, whether this necessary
condition also is sufficient. Below, we give an affirmative answer to this
question under a certain assumption on the system X, which we use in order to
simplify our discussion.

We start with an examination of the restricted i/o-space Dj, showing that,
for a stable system, the restricted i/o-space is a connected set.

Proposition 4.8

Let & : ypip1=/(ys*"|uf**) be a recursive representation of a system
Z: S(R™—S8(R?), let >0 be a real number, and let D§ be the restricted i/o-
space of &. If &, is ijo-stable, then Df is a connected set.

Proof

Assume that &, is i/o-stable, and recall that then the function f is
continuous over D§ by Proposition 4.2. Define the set

Ad;:= U U ([ &)t |uite)

: ueSMH(8m) =0
o]
so that Df= J 4;. Evidently, 4,4, , for all integers j>0. Assume
j=0
now, for a moment, that (x)4; is a connected set for all integers j>0. Then
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it follows by the previously mentioned facts that D is a connected set as well.
Thus, our proof will conclude upon proving (*), which we now do by induction.
First, we note that 4,=(07|04) consists of only one point, and whence is
connected. Further, assume that, for some n > 0, the set 4, is connected, and
define the function F: (R?)"*!x (R™)**'—(RPy"*!x (R™)* by F(y3|up):=
(Y15 -oes Yoy (yB|ub) %y, ..., w,). Then since f is continuous, so is also F. Let
B;,,:= F[4,], and notice that 4;,,=B;,, x[—#0, §]" (i.e. adjoining u,,, to
the input coordinates). By the continuity of F and the fact that 4, is con-
nected by the induction assumption, it follows that B, ., is connected (since it
is the continuous image of a connected set (see Kuratowski 1961)). But then,
since 4,,,=B,,.,x[—0, 8]" is the cross product of two connected sets, we
obtain that A4,,, is connected, so that (x) holds by induction, and proof
concludes. O

As we see from Proposition 4.8, the restricted ijo-space D of a stable
system is always a connected set. The proof of our following statement
becomes simpler if we assume that D is not only connected, but also convex.
Recall that a set S < R" is convex if, for any pair of points s;, s,€8, the straight
line segment connecting s; and s, is in §. For example, consider the single-
input single-output system y,,,=3(v,)*+w, with 6=}. Here, a simpaz
computation shows that D{*=[—1,1)x[—$, ], which clearly is a convex
set. The closure of the restricted 1/0 space here is D{?=[—1%,11x[—$, 3.
Below, we denote by & |o the recursive representation obtained from &, by
extending the recursion function f from D{ to D§ through (4.7), whenever such
an extension exists.

Theorem 4.9

Let & : ypyne1=/(Wk""|uf**) be a recursive representation of a system
% : S(R™—S8(R?), and assume that, for some 6> 0, the restricted i/o-space D§
of & is a bounded convex set. If the extension &, of &, exists and is stable
over D, then there is a recursive representation &’ for which &/ o~ &g and
&1 is internally stable. ~

Proof

We assume that Dj is bounded convex, and that &, is stable over Dj.
Now, choose some (>0. We construct a recursive representation &' :
Yesns1 =/ WE*"|uf**) defined over Dj ,, which satisfies (i) for all elements
deDf and ueS,(8") (where S,(6") was <efined in the proof of Proposition 4.5),
one has &'(d, u)= #(d, u); and (ii) there is a fixed integer J >0 such that,
for all elements deDj , and ueS,(6"), one has that ([%'(d, u)]i*"|ui**)eD} for
all j>x+J, where « is the time when the system is started from the initial
conditions d. Namely, &’ coincides with & after at most J steps. Assume,
for a moment, that we have constructed a representation &’ satisfying
conditions (i) and (ii), for which the function /' is continuous over D§ - Then,
using the facts that Df , is compact ; that any finite iteration of f' is continuous
(since f' is continuous) over D ,; and that &, is stable over D}, it can be
readily shown that (i) and (ii) imply that the representation %, is stable over
D} ¢~ Thus, our proof will conclude upon constructing a continuous function
f’ satisfying (i) and (ii).
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In order to make the construction of /' more transparent, we divide it into
two stages, where in the first stage we extend only the domain of the initial
conditions g} to a {-neighbourhood, and in the second stage we extend the
domain of the initial input values u§ to a {-neighbourhood (for all points of the
previous stage). For the first stage, we construct an extension D, of D}
given by

Dy = {(s3]v5) : plsh A} <{ and (|ot)eDY

that is, including neighbourhoods of radius { of all the initial conditions zJ.
Let d := (sj|vs) be any point of D;. We now assign to d a point d*eDj§ as
follows : Let ay, as, ..., a,,,,, be the real numbers such that a;,.,, a;, .5, --.,
a are the entries of the vector s,_jeR”, i=0,...,n (note the reverse

ip+p
ordering). For notational convenience, we identify (a,, ..., a@,,.;) With sj
through the above ordering. Now, for each j=1, 2, ..., p(n+1), let a} be the
closest real number to a; for which there exist numbers x; , ,, ..., %, , 1, satisfying
* * *® no
(af, @, .o0s GF, ®j01s ooy Ty any|VB)EDR
Let s*3:= (a}, a3, ..., a%,.1), and denote d* := (s*}|v4). Since Df is non-

empty, d* always exists. We next show that d* is unique.

Let o;, j=1,...,p(n+1)—1, be the set of all elements (z;,;, ..., Ty 1))
for which (af, ..., a¥, 2,4, ..., Ty, )EDG, and let o,:= Dj. Then, o; is
non-empty for all j. In view of our assumption that Dj is convex, it follows
that all of the sets o;, j=0, ..., p(n+1)—1, are connected. Whence, for each
Jj=0,...,p(n+1)—1, the set y; of all elements xeR such that (z,z;,,, ...,
Ty, 4 1))€0; for some x; o, ..., 2, 1, is an interval [o;, B;] in B (we note that
[«;, B;] is the projection of o; on its first coordinate). But then, for each
J=0,...,p(n+1)—1, either a,;,,€l«;, B;], or a;,,>pB;, or a;,,<a;, in which
case the unique value for o}, is a},,=a;, ,, or af,, =B, or aj,,=o;, Tes-
pectively. Thus, d* is uniquely determined by d, and we have obtained a
function ¢: D,;—D}: d—d*. Moreover, it can be readily seen that ¢ is
continuous.

Still using the above notation, we define the function f, : D,— R? by

Sy fr(s3|vg) 1= f(s*3|v) (=[-¢) (4.10)

for all points (sj|v4)eD;. Then, by the continuity of f (see Proposition 4.2) and
the continuity of ¢, the function f; is continuous over D,. Also, by our
construction of f, and of s*], we obtain that, for every deD, and ueS,(6™), the
output sequence y*%, ., := &;(d, u) (where, as before, « is the starting time
from the initial conditions d) satisfies y¥,,.1+i=Y.4n+14; for all £>7. Thus,
conditions (i) and (ii) hold for &, over D,. In view of the continuity of f,,
this completes the first stage of our extension (going from D to D,).

The second and final stage of our extension of & (extending from D, to Dj ?)
is done similarly to the first stage, by interchanging the roles of 2§ and v} ; by
replacing D§ by D, ; and by replacing D, by D§ ,. O

5. Rational systems

In the present section we study the representation of a given non-linear
system as a quotient of two stable systems. More specifically, let
¥ : S(R™)—S8(R") be a recursive system. Regarding Z as a map, it is known
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(for example, Maclane and Birkhoff (1979, ch. 1)) that it can be factored into
2 =PQ, where P: S—S(R?)is an injective map,  : S(R™)—S is a surjective
map, and where S is a suitable space. Now, every injective map has a left
inverse, and every surjective map has a right inverse. Thus, there are maps
P*: S(R")—S8 and Q* : S—S(R™)such that P*2 =@ and £Q*=P. From the
control theoretic point of view, the cases of interest are those where either P*
and @ are both stable, or @* and P are both stable. In the first case, the
system X can be stabilized by non-singular (on Im X) stable postcompensation,
whereas in the latter case, the system X can be stabilized by non-singular
stable precompensation (here, by non-singular we mean injective). The
solution to the problem of stabilizing through non-singular stable compensation
forms the first stage of the solution to the problem of internally stabilizing a
non-linear system, in close analogy to the situation in the case of linear systems
(see Desoer and Chan 1975, Hammer 1983 a, ¢). Of course, we are particularly
interested in cases where P* and @Q* are recursive systems. Formally, we
devote the present section to the construction of so called °stability
representations ’, which are defined as follows.

Definition 5.1

Let X: S(Rj;)—S(R?) be a non-linear recursive system. Assume that
there is a factorization X =P where, for some integer ¢>0, the system
Q: S(R™—S, S<S(R?), is a surjective recursive system, and P : S—S(R?) is
an injective recursive system. Then, X = PQ is a left stability representation of
X if g=p, and if @ is stable and P has a recursive stable left inverse P*:
Im 2-8; Z=PQ is a right stability representation of £ if ¢g=m and if P is
stable and ¢ has a recursive stable right inverse @* : S—S(R™). The system X
is left (respectively, right) rational if it has a left (respectively, right) stability
representation. M

As is well known, a finite-dimensional time-invariant linear system always
has both right and left stability representations. One such representation is
induced by the usual polynomial matrix fraction representation of the transfer
matrix of the system. However, in the non-linear case there are recursive
systems which do not possess stability representations. In our discussion
below we give necessary and sufficient conditions for the existence of left and
of right stability representations. We also describe the construction of such
representations whenever they exist. We start with a brief investigation of the
discontinuities of a rational system. In the following statement we show that a
left rational system cannot have finite jump discontinuities. The only type of
discontinuity that it can have is divergence, namely, it may transform a
bounded input sequence into an unbounded output sequence. Thus we see
that, in contrast to the case of linear systems where rationality is a mild
requirement, for non-linear systems rationality is a rather strong condition, and
the class of non-linear rational systems is substantially smaller than the whole
class of non-linear recursive systems. Let X: S(R™—S(R?) be a recursive
system. Adhering to classical terminology, we say that X is BIBO (bounded-
input bounded-output)-stable if, for every 6> 0, there exists an M(6)> 0 such
that, whenever an input sequence ucS(R™) satisfies py(u) < 6, then the output
sequence satisfies py(Zu) < M(6) (where M(6) and 6 are both finite).
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Theorem 5.2 @l (Som Shn .
Let 2 : S(R™)—S(R”) be a recursive left rationalVes . If ¥ is BIBO-
stable, then X : S4(R™)—S(R?) is a continuous map.

Proof

Let & : ypy,.1=/yE*"|uf**) be a recursive representation of X, and let
Z=P@ be a left stability representation. Then, P: Im @—Im X is both
injective and surjective, and, since its inverse P! is stable, it follows by
Proposition 4.3 that P~'is continuous on 84(6”). For an arbitrary 6 > 0, define
the sets 4 := Q[S4(6")] and B := Z[S4(6™)], so that B=P[d4]. Now, since
S§(8") is compact and since ¢ is continuous by Proposition 4.3, it follows that
the set 4 is compact. Whence, 4 is closed and, since P~! is continuous and
B=(P~')"1[4], we have that B is closed as well. Also, by our assumption
that 2 is BIBO-stable, B is a bounded set. Thus B, being bounded and closed,
is compact. But then, since P~[B]= 4, since P! is continuous, and since
every continuous injective and surjective function over a compact domain is a
homeomorphism (for example, Kuratowski (1961, ch. 15)), it follows that P is
continuous over 4, and whence X = PQ is continuous over S4(6™). Finally,
since our argument holds for any 6> 0, the assertion follows. ]

Theorem 5.2 is a manifestation of a very interesting analogy between non-
linear rational systems and finite-dimensional time-invariant linear systems.
It is well known that such a linear system £, : S(R”)—S(R”) has the important
property that it is BIBO-stable if and only if it is continuous as a map
(Kwakernaak and Sivan 1972). As we now see, this property is a direct
consequence of left rationality, and it is shared by any recursive non-linear left
rational system. The proof of Theorem 5.2 can be used to prove the following
slightly stronger statement.

Corollary 5.3

Let £ : S(R™)—S(R”) be a recursive left rational system, with recursive
representation & : y,, ., =f(yf*"|ug**). Let C<S§(R") be a compact set.
If 3[C] is a bounded set, then X is continuous over C.

Our next objective is to obtain a characterization of rationality in terms of
the recursive representation of the system. This characterization will elucidate
the connection between rationality and certain properties of the (given)
recursion function of the system. To state things somewhat more precisely,
let ¥ : S(R™)—S8(R”) be a recursive system, and let & : y,, . =fyE""|uf*)
be a recursive representation of it. We show that Z is left rational if and only
if the function f can be decomposed into a sum of functions f=/f+ f,, where f,
and f, are required to satisfy certain conditions discussed below. Once the
functions f; and f, are computed, they directly determine recursive representa-
tions for systems P and @ in a left stability representation X=P@. One
interesting feature of this characterization is the fact that its basic ingredients
are valid for numerous definitions of the notion of stability, not just for the
one adopted in Definition 4.1. Thus, it will also be suitable for application in
situations in which a different notion of stability is used, for example, in cases
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where one is specifically interested in BIBO-stability, or in other notions of
stability, as we discuss after stating the next theorem. In the meanwhile, we
proceed with an introductory discussion, explaining some features of this
characterization and giving an indication as to its origin.

Consider again the system X and its recursive representation &%. We
denote by D, the subset of (Im X)x S§(R™) consisting of all elements (y|u)
such that y=Zu. Let X = PQ be any factorization of X, where @ : S(R")—S,
S<S8(R?), and P: S—S(R?) are recursive systems, and where P is injective
and @ is surjective. Then, clearly, the kernel of @ is equal to the kernel of X.
Now, by Corollary 3.16, the system P~!: Im X—S§ also is recursive, so let

L1t Zppapr=hy (2T |uitP) }

. (Bt e|yk+B)
Fot By opr=hol2f (Y

(5.4)

be recursive representations of @ and P!, respectively. (Note that, since the
principal degree can always be increased by shifting, we can assume that &,
and %, have the same principal degree.) Let

&Lyt yk+y+1=h;(y£+y|zl£+8)

be a recursive representation of P. Now, since by assumption £ = P and X
is recursive in w and y, it follows by Theorem 3.5 that the pair (k¥ &,) is com-
patible. Whence, using (3.8) and the fact that P is injective, one can express
2= Gyt luf*?), k=..., —1,0,1, ..., where ¢ and d are suitable integers.
Substltutlng now the function G(-) for z, ..., #;,, into the right hand sides of
(5.4), we obtain the systems

4: D,—S(R7): zk+a+1=f3(yii+nlullg+b) (5.5 a)
B: Doo_’S(Rp) : zk+a+1=/;(yllﬁ+a[ullg+b) (5-5 b)

where the functions f, and f; are the respective compositions of 4, and of h, with
Gy, and where a, b are suitable integers. We note that the systems 4 and B
are trivially recursive in the sense that the functions f, and f; do not depend on z.
Equating (5.5 a) and (5.5 b), we obtain the equation

~ )+ 0k ) =0 5.0

which holds for every element (y|u)eD,. From the recursive representation
of £ we also have y, ., ., —f(yi*"|uf**)=0 for every element (y|u)eD,,.
Defining f,(yf**|uf*’) 1= 4y, 01— [1(WET*|uf *?), where e : = max {a, n+ 1}, and
equating the latter two zero-expressions, we finally obtain the sum decom-
position

f L+n[uk+u f4 A+cluk+b +,‘3(yllg+a»lug+b) (5.7)

which is valid for all elements (y|u)eD..

Some further properties of the sum decomposition (5.7) are of interest to us.
First, let h: (R?)"*!x (R™**'-R” be a function. We say that the pair
(h, f) is adapted if, for all pairs of elements u, u’'eS(R™) for which Tu=3u" =:y,
one has h(y§ ™7 [ub*#) = h(yE+" |u'k*+) for all integers k (that is, a kernel contain-
ment condition). Then, in view of the fact that Ker @ = Ker Z, it follows that
the pair (f;, f) is adapted. and, using (5.7), this implies that also (i) the pair
(f,, 1) is adapted.
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Further, let &*: w,,, =g(uft*~*|yk*"*#*1) be a recursive representation
of a generalized right inverse * of X (see Theorem 3.12), and consider the
augmented system [[y, Z*]: Im X—(Im X) x S(B™) given by

( I ) ( 1 )
Upy gluf*#—Lyptetatl)

where, for brevity and clarity, we denote the right-hand side function by
[Iy,9). Then, P~1=B[ly, *] (the series combination, which, by (i), is not
affected by the non-uniqueness of £*), so that, by Theorems 3.5 and 3.18, the
fact that P~! is recursive in z, y implies that (ii) the pair (f,, [Iy, ¢]) is com-
patible. Next, let the system [X, I;] : S(B™)—(Im X) x S(R™) be given by

Ye+n+1 f(?/llg+n|ullg+“)
Uy, iy Uy,

and denote the right-hand side function by [f, Iy]. Then, @ =A4[%, I], and
whence, as before, it follows that (iii) the pair (f;, [f, I;]) is compatible. Thus
we conclude that the existence of a sum decomposition (5.7) satisfying (i), (ii)
and (iii) is necessary for any factorization of the system X into a composition of
recursive systems X = PQ, where P is injective and  is surjective.

Of course, in our present discussion we are interested not just in plain
factorizations = P@), but in such factorizations where the systems P~! and @
are stable. Adding the latter requirement to our previous considerations leads
to the following.

Theorem 5.8

Let 2 : S(R™)—S(R”) be a recursive system with a recursive representation
L Yy =FYE |uf* ). Let u,, , =g(ubt*~1|yf++**7+1) be a recursive repre-
sentation of a generalized right inverse £* of £. Then, X is left rational if and
only if the recursion function f can be decomposed into a sum

e ) = Filgk 1) + kg ), (y|w)eDy (5.9)

where u'>0 is an integer, and where the functions f, and f, satisfy the
conditions :

(o) The pair (f,, f) is adapted, and the pairs (f;, [f, Iy]) and (fs, [Iy, g]) are
compatible.
(B) For every pair of elements (y|u), (y'|u')eDy, the equality

Yisns1—Fo(UE |uk**) =Yprns1— T E" [wE+ )
for all integers k, implies that y=v".
(y) The series combination A[Z, Iy]: S(R™)—S(R?), where A4 is the
trivially-recursive system wy,=7,(ys*"|uf**), is i/o-stable.
(8) The series combination B[Iy, X*]: Im Z—S(R?), where B is the
trivially-recursive system v, = f,(yk*7|uf**), is i/o-stable.

The proof of Theorem 5.8 will be stated later in this section. As we can see,
condition («) of the theorem is a restatement of the algebraic conditions (i), (ii)
and (iii) of our previous discussion, while condition (B) originates from the
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invertibility of the system P: Im @—Im X in the above used factorization
X =P@. The topology-related conditions (y) and (6) come to secure the
stability of the systems P~! and . It is worthwhile to note that the systems
A and B are trivially-recursive, a fact that facilitates the verification of
conditions (y) and (8).

There are numerous occasions of practical interest in control engineering
for which Theorem 5.8 provides a convenient tool for the verification of
rationality as well as for the construction of left stability representations. We
now demonstrate a few such occasions. Let X : S(R™)—S(RP”) be a recursive
system. We say that X is separable if it has a recursive representation of the
form y,,,.1=a(yf*")+b(ui**), where a: (R?)"*'—-R? and b: (R™**'—R?
are continuous functions. For example, the system S(R?%)—S(R?) described
by the representation

Z/l:-+3> 2(Yr 4 2)*Wp 1 +SIN Y+ 3+ (uy, ) ug

Yira cos (g 1) + 5 sin (uz, )3+ 1

4 e\ .
where y,= ( yff > and .= <uf5>, is a separable system. The class of
Y k
separable systems includes such common classes of systems as the linear time-
invariant systems, systems described by Ricatti equations with time-invariant
coefficients, and, of course, many others. It is an easy consequence of Theorem

5.8 that every separable system is left rational, as we next show.

Corollary 5.10
A separable recursive system X : S(R™)—S(R?) is left rational.

Proof

In view of our separability assumption, let y, ,, ., =a(yk*")+b(uf **), where
e and b are continuous functions, be a recursive representation of 2. In the
notation of Theorem 5.8, let f, := b(uf**) and f,:= a(yt*"). Then, since f,
does not depend on y and since f, does not depend on u, it follows that the pair
(fs, f) is adapted, and that the pairs (f,, [f, Iy]) and (fs, [Iy, g]) are compatible
(since every function is evidently compatible with the identity). Thus, («)
holds. To show that (B) holds, we note that the unique inverse of z,=
Ypsni1—@(yE™") is clearly given by y,.,.;=a(yf*")+2%, whence we have
injectivity. Finally, turning to (y) and (§), we have that v,=a(yf*") is a
recursive representation of the system B[ly, £*], and that w,=b(uf**) is a
recursive representation of the system A[Z, I;]. But then, using our assump-
tion that @ and b are continuous functions, and noting that (by compactness)
the functions @ and b are uniformly continuous over the sets S3(6?) and S§(6™),
respectively, for all §>0, a direct verification of Definition 4.1 shows that
conditions (y) and (8) are satisfied. Thus, all conditions of Theorem 5.8 hold,
and X is left rational. O

As we have already mentioned before, it is easy to see that Theorem 5.8
continues to hold under a variety of different notions of stability, not only
under the one of Definition 4.1. Actually, the only stability related property
that we use in the proof of Theorem 5.8 is the following.
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Property 5.11

IET: vpyor=hE |yf™%) is an i/o-stable recursive representation, then the
system F having input sequence y and output sequence z given, for all integers &,
by 2, =Y 1,41 — U also is ifo-stable.

We show in Lemma 5.16 that Property 5.11 holds for the notion of stability
defined in Definition 4.1. For the other notions of stability that we discuss
below, it is readily seen that it holds as well.

A common notion of stability extensively employed in the control theoretic
literature is the notion of BIBO-stability that we have mentioned earlier,
where the class of BIBO-stable systems consists of all recursive systems for
which every bounded input sequence generates a bounded output sequence.
We say that a recursive system X : S(R™)—S(R?) is left BIBO-rational if
there exists a factorization X = P@, where P and @ are recursive, P is injective,
Q is surjective, and P! and @ are both BIBO-stable systems. Theorem 5.8
yields the following characterization of BIBO-rationality.

Corollary 5.12

Let £ : S(R™)—S(R?) be a recursive system with a recursive representation
S Yprner1=F@E " |uf**). Then, X is left BIBO-rational if and only if the
recursion function f can be decomposed into a sum

e ) =Fily ) + B [, (y]w)eDy

where the functions f, and f, satisfy conditions («) and (8) of Theorem 5.8
together with the following conditions :

(y') Forevery real > 0 there exists an 2/(6) > 0 such that p(f, (¥ *7|ub*+)) <
M () whenever p,(u)< 8, for all (y|u)eD,,, and all integers £.

(8") For every real 6> 0 there exists an N(6) > 0 such that p(fo(yE+7|ub*+)) <
N(6) whenever py(y) < 6, for all (y|u)eD,, and all integers k.

Thus we see that, for BIBO-rationality, conditions () and (8) of Theorem
5.8 reduce to the simple requirement that the functions f, and f, be bounded
over respective regions in their domains. We shall state the proof of Corollary
5.12 later in this section. In the meanwhile, we give an example of its
application.

Example 5.13
Consider the single-input single-output system given by

Z: g =Y+ (Wi+1) [exp (—yp)+1]-2

(here the superscript 2 indicates square). This system is evidently not BIBO-
stable (its response to u;=1, £>0, is unbounded). We now choose the
functions

fii= (u%.+1)[exp(—y,2c)+l]—2; f2 1= ui

Then, conditions (y') and (8') are evidently satisfied, and, since the system
% =Y;.1—Y; has the unique inverse y,,,=2z,+y; condition (B) holds too.
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Also, since f, does not depend on u, the pair (f,, f) is adapted, and the pair
(fs, [Iy, g]) is compatible. Finally, in order to show that the pair (f,, [f, Iy])
is compatible, we directly express the sequence z, := f,(y|w), k=..., —1,
0, 1, ..., recursively in terms of u and z. Such an expression can be obtained
(in this case) simply by eliminating %7 in terms of w, and z,, computing ¥, ,
from this expression by using the recursive representation of Z, and substituting
the result into z,,,. One thus obtains

; Z2+2 2
1= (U1 +1) {eXP [—(Zk—Lan (1:%_'_1—1)) :|+1}—2 (5.14)

(This expression is, of course, defined only over its i/o-space.) Whence, all
conditions of Corollary 5.11 are satisfied, and X is BIBO-rational. O

An additional common notion of stability is continuity. We say that a
system X: S(R™)—S(R?) is C-stable if it constitutes a continuous map
Si(R™)—S8(R?). Again, C-stability is a weaker notion of stability than the one
used in Definition 4.1. We say that a recursive system X : S(R")—S(R?)
is left C-rational if it has a factorization X = P@), where P and @ are recursive
systems, P isinjective, @ is surjective, and P~! and @ are both C-stable systems.
For C-rationality, conditions (y) and (8) of Theorem 5.8 can be reduced to
certain continuity requirements on the functions f, and f,, as follows. Let
T : S(R™)—S(RP”) be arecursive system, and, as before, let D < (Im X) x S§(R™)
be the set of all pairs (y|u) where y=Zu. We now induce on D, two different
topologies. First, let Cy; be the class of all subsets Cy(8) < D,,, where 8§ varies
over all positive reals, and where Cy(6) consists of all elements (y|u)eD,
satisfying po(u)< 6. We regard Cy as a base of a topology on D, which we
call the U-topology. Symmetrically, let C; be the class of all subsets
Cy(9)<= D, where 8 varies over all positive reals, and where Cy(8) consists of all
elements (y|u)eD,, satisfying py(y)<6. Again, we regard Cy as a base of a
topology on D, which we call the Y-fopology. Using this terminology, we
obtain the following characterization of left C-rationality, the proof of which
will be stated later in this section.

Corollary 5.15

Let ¥ : S(R™)—S(R?) be a recursive system with a recursive representation
& Ypyner1 =1 uf*#). Then, 2 is left C-rational if and only if the recursion
function f can be decomposed into a sum

fE [upt#) = f(yE 7 |ub ) + falyk T [uk ), (y|u)eDy

where the functions f, and f, satisfy conditions («) and (8) of Theorem 5.8
together with the conditions

(") The trivially recursive map F,: D, —S(R?): w,=f (yE*"|uk**),
k=...,—1,0,1, ..., is continuous with respect to the U-topology on

D,

(8") The trivially recursive map F,: D —S(R?): v,=[o(yr*"|uf**),
k=..., —-1,0,1, ..., is continuous with respect to the Y-topology on
D

w0
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Thus we see that, in the case of left C-rationality, conditions (y) and (8) of
Theorem 5.8 reduce to suitable continuity requirements (y”) and (8") on the
functions f, and f,. The verification of these requirements is simplified by the
fact that the maps F, and F, are trivially recursive.

Theorem 5.8 also provides a method of actually constructing a left stability
representation of a system, whenever one exists. The functions f, and f,
defined in the theorem play a crucial role in this construction. The explicit
construction of a left stability representation is described in the proof of
Theorem 5.8 stated below. We shall demonstrate this construction on some
examples immediately following the proof. The first step of our proof of
Theorem 5.8 consists of the following auxiliary result.

Lemma 5.16
Property 5.11 holds for the notion of stability of Definition 4.1.

Proof

We use the notations of Property 5.11 and of Definition 4.1. By Proposition
3.18, the system F is recursive, so let & : 2z, ,=h(zf"¢|yi**) be a recursive
representation of ¥, where we choose £ >c¢, and let D, be the i/o-space of &.
Then, by the definition of F, we obtain for any points d : = (2£*¢|yt*!) and
d 1= (2F |yt ?) of Dy and y, y'eS5(6”)

pled,y), L@, y)I<ply, y)+p{TIOETE_ kT e, yl,
Tt lyEtizet ), v'l}
where v, 1=y, ., —g and v := g, ., —%. Also
pftf vt ) <py, ) +pkTi . 255 )

Combining these facts with the stability of 7', the stability of & follows
through a standard ‘ e— 8’ argument. |

Proof of Theorem 5.8

Necessity. We have already shown that the existence of a factorization
2 =PQ, where P and @ are recursive, P is injective and @ is surjective, implies
the existence of the sum decomposition (5.7) which satisfies conditions («) and
(B) (where (B) is implied by the invertibility of P). In order to reconciliate the
slight difference between (5.7) and (5.9), we recall that over D, one has
Yesnr1=[@E 7 |uf**). Whence, we can express in (5.7) the variables y;, , .1, ...,
Y+, in terms of y, ..., 4, and w, ..., w4, ., . When these expressions are
substituted in (5.7), the equivalent form (5.9) follows. Thus, it only remains
to consider conditions (y) and (8). Recalling the left stability representation
X =PQ from which (5.7) was derived, it follows by our construction of f, that
Q=A[Z, Iy], so that (y) follows by the ijo-stability of @. Finally, let
E: S(R")—-S(RP?) be the system represented by z =y;,,.,. Then, by our
construction of the function f,, we have P~'=FE— B[l,, £*], so that
B[Iy, Z*] (= E— P™") is stable by the stability of P~' and Lemma 5.16, and
(8) is necessary.
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Sufficiency. Assume that the functions f; and f, satisfy the conditions
stated in the theorem. We show that in such case one can construct from f,
and f, a pair of systems P and @ so that X = PQ is a left stability representation.
To this end, we first induce a slight transformation on the functions f, and f, to
obtain the following functions ff and f¥ (for the purpose of guaranteeing that
P0=0 and Q0=0).

R g ™™) o= fly ) — 0|0k ), i=1,2

In view of the fact that f(0¥*7|05+#)=0, it follows that we still have a sum
decomposition

f ’”“’[u’“’" f1 +fl|uk+ﬂ)+f;‘<yz+nlu£+u') (5.17)

and, since fl and fy differ from f, and f,, respectively, only by an additive

constant, it is evident that /¥ and f; also satisfy conditions (a), (B), (y) and (8)
of the theorem. We define now the systems
A% 1 D—S(RY): u=f1yk*|uk*)

B*: D,—S(R?): wk=yk+,7+1—f;"(y,f"'"lu,’:*“')
and we combine them into
Q: A*%, Iy]: S(R™M—S(R?), W := B*[ly,2*]: Im 2-S(R?) (5.18)

In view of (a), Theorem 3.5 and Proposition 3.18, the systems @ and W are
strictly recursive. By (B), the system W : Im Z—Im W is injective (and,
whence, invertible), by (y) the system @ is stable, and by (8) and Lemma 5.16,
the system W is stable. Furthermore, since by (5.17) we have

?/Ic+n+1"'f; +nluk+“ ]‘i“(y,ﬁ*”|u"+"') over -Doo

it follows in particular that Im 4* =Im B*, so that Im W=1Im . Whence,
letting P:= W~!, we have that Im @ =Domain P, and we can define the
system X' := PQ (where P: Im W—Im X). We next show that ¥’ is i/o-
equivalent to 2. To this end, let ueS(R™) be any element, let y := Xu, and
assume for a moment that Wy=Qu for all ueS(R™). Then, clearly,
y= W 'Qu= PQu=2Z"u, so that £ and X’ are i/o-equivalent. Thus, our proof
will conclude upon showing that Wy =Qu, which we now do. Let u’' := Z*y,
so that Zu'=y=2Xu. Then, denoting v:= Qu and w:= Wy, we have
u=fFE " ub ) and wp =y, ., — A (5" |w's+¥) for all integers k. Since the
pair (f}, /) is adapted and Zu=3u', we have that fF(yE+7|us+¥) =¥y +7|[uf**)
for all integers k, so that w,=y;,,,,—f3(@E*"|uf**). But then, recalling that
Yerns1 =1k +1”|u““) it follows by (5.17) that w,=v, for all integers k. Thus,
Wy =Qu, and our proof concludes. O

We now demonstrate the explicit construction of left stability representa-
tions using (5.18) for the examples that we have considered earlier in the
section. First, consider a separable system X: S(R™)—S(R”) represented
by Yerns1=0YE+") +b(uf**), where a and b are continuous functions. In
view of the proof of Corollary 5.10, we can choose the functions f; and f, of
Theorem 5.8 as

fui= b@E™), foi= alght)
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Following the proof of Theorem 5.8, and denoting b,:= b(0i**) and
@y := a(0f*") (note that ay= —b,), we define

o= b ) =by, fF:= alyi*") ~a

In this case, f{ is independent of y and f¥ is independent of u, so we
immediately obtain the recursive representations of W and @ as

W w=yp p i — @i ) +ay, @Q: v=buf**)—b,

Then, y, ., .1 =a(yf*") —ay+w, is a recursive representation of P (=W~!), and
Y =PQ is a left stability representation of £. We note that in the case of
separable systems, the systems P~! and @ are trivially recursive. This is, of
course, not necessarily the case in general, as we can see from the next example.

Example 5.19

Consider the BIBO-rational system of Example 5.13. We have already
found there the functions f, and f, for this case, and, since here f,(0|0)=0 and
f2(0)=0, we have that f¥=f, and f¥=/f,. The recursive representation for the
system Q= A*[Z, I] is given by (5.14). The recursive representation of the
system W of (5.18) is, in view of the fact that f¥ does not depend on u, given by
% =Yp+1—Y;. For P (=W~1!) we have the recursive representation v, =
yi+v,. Then, L= PQ is a left BIBO-stability representation of X. O

We conclude our discussion of Theorem 5.8 with the proofs of its corollaries.

Proof of Corollary 5.12

We have to show that, for BIBO-rationality, conditions (y) and (8) of
Theorem 5.8 are equivalent to conditions (y’) and (8") of Corollary 5.12. We
note the following facts :

(i) [Z, Ig}{S(B")} =D, and [y, S*}{Im £} D, ;
(ii) The system A[X, I;] is BIBO-stable if and only if for every > 0 there
exists an M (f) > 0 such that for all (y|u)eD,, for which py(u) < 6 one has
polA(y|u) < M(6) ; and
(iii) The system B[ly, £*]: Im X—S(R?) is BIBO-stable if and only if for
every 0>0 there exists an N(6)>0 such that for all elements
(y|Z*y)e Dy, for which py(y) < 6 one has py(B(y|Z*y) < N(6).

Now, in view of the fact that the pair (f,, f) is adapted, we can replace in
(iii) the phrase ‘ all (y|Z*y)’ by ‘all (y|u)eD,, ’. Then, (y') and (') are just a
rewording of (ii) and (iii), respectively, and our proof concludes. O

The proof of Corollary 5.15 is analogous to the proof of Corollary 5.12.

Up to this point we have concentrated on the characterization of left
rationality. A theory of right rationality can be obtained by, in a sense,
dualizing our previous discussion. We conclude this paper with a brief study
of right rationality. Let X : S(R™)—S(R?) be a recursive system, and, as
before, let D, be the set of all pairs (y|u) where ueS5(R™) and y := Zu. Let
S Yprne1=FyET"|uf**) be a recursive representation of £. Assume that X
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has a right stability representation X=P@, where @Q: S(R"™)—S(R™),
P : Im @Q—S(R?), and let

L1t Yprarr=FHWET|2E*P)
Lot Wiyur1=1a( r+ )

be recursive representations of P and of a recursive right inverse
@* : Im Q—S(R™) of @, respectively. (Since the principal degree of a recursive
representation can always be increased by shifting, we assumed that &; and
&, have the same principal degree.) In view of the facts that P and @ are
recursive, that P@Q (=2) is clearly strictly recursive, and that P is injective, it
follows by (3.8) that there exists a function % such that, for some integers
y, >0, we can express z,=h(yf*7|uf*?) for all elements (y|u)eD,. The fact
that P is injective implies that Ker @ =Ker X, whence, for any pair of elements
(y|u), (y'|u')eDy, the equality A(yS+Y|u%*®)=h(yt*?|u*?) for all integers k&
implies that Xu=ZXu’. Define now the trivially-recursive system
Zo: Dp—S(R™): z=h(yt*7|ut*?). Then, using our earlier notation, we have
that @ =2%,[Z, Iy], and, since @ is recursive in u, z, we obtain that the pair

(h, [f, Iy]) is compatible. Define now the augmented vector wj := (%‘)
and the recursive representation b

L+alz

AN AL
FH Wy =Pt By = ] ImEg—D,, (5.20)
folug ™ |2k *F)

Then, we clearly have that &* is a right inverse of the trivially-recursive system
Zy. Of crucial importance is the particular form of the recursion function F
of #*, namely, that its first p entries depend only on the first p entries of the
vector w (i.e. y), whereas its other m entries depend only on the last m co-
ordinates of w (i.e. #). We call a recursive representation having this particular
form (p, m)-divided. These arguments prove the necessity direction of the
following characterization of right rationality.

Theorem 5.21

Let £ : S(R™)—S(R?) be a recursive system with a recursive representation
St Yprne1=FyE*"|uf**). Then, X is right rational if and only if, for some
integers y, 8 >0, there exists a function & : (R?)**!x (R™)**'— R™ such that
the trivially-recursive system Z,: D,—S(B™): z,=h(yf*?|uf*?) satisfies the
following conditions :

(a) The pair (h, [f, Iy]) is compatible, and, for any pair of elements
(y|u), (y'|w')eDy, the equality h(y ’"+V|u""+5) =h(ys*r|uf*?) for all
integers k implies that Zu'=Xu.

(B) The system X, has a right inverse X§ : Im X,— D having a (p, m)-
divided recursive representation &%* of the form (5.20).

(y) The system P: Im X;—Im X (derived from &*) having the recursive
representation y, ., , =f,(yE+*|2E*#) is i/o-stable.

(8) The system 7': Im Z;—S(R™) (derlved from &*) having the recursive
representation w,, ., , =/f.(ul**|zk*P) is i/o-stable.

As in the case of Theorem 5.8, the conditions of Theorem 5.21 consist of
algebraic conditions ((«), (8)), and of topological conditions ((y), (6)).

CON. B




34 J. Hammer

Proof

We have already shown that conditions («), (8), (y) and (8) are necessary
conditions for right rationality. In order to show that they are also sufficient,
assume that (a), (8), (y) and (8) hold. After possibly substructing a constant,
we can assume without loss of generality that £,0=0 (see proof of Theorem
5.8). Using the (m, p)-divided representation of (3), we construct the recursive
systems P and T of (y) and (8), and the system @ : = Z([Z, Iy]: S(B™)—Im Z,.
Then, by («), @ is recursive, Ker @ =Ker %, and @ is surjective by its definition.
Also, by (B), T is a right inverse of . The systems P and T are i/o-stable by
(y) and (8). Further, the image of ¢ is the domain of P, so we can define the
system X' := PQ. Now, let ueS(R™) be an arbitrary element, let y := Zu,
and let z := Zy(y|u) =2 [Z, IyJu=Qu. Also, let (y'|u’) := Xz, where Z¥ is
the right inverse of X, defined in (8). Then, Zy(y’|u') =2=Zy(y|u), so that, by
(«), Zu=2Zu', and consequently y'=Xu'=Zu=y. Thus, recalling the definition
of P, we obtain £'u= PQu= Pz=y =y =3u for all ueS(R™), so that £’ and X
are i/o-equivalent. Whence, Z = PQ, and, since Ker @ =Ker X, it follows that
P is injective. Finally, having already shown that P is stable and that 7' is a
recursive stable right inverse of (), we obtain that X = P@ is a right stability
representation, and X is right rational. OJ

For the case of BIBO-rationality, Theorem 5.21 takes the following form.

Corollary 5.22

Let £ : S(R™)—S(R”) be a recursive system with a recursive representation
St Ypon1=f@ET"|ug*#). Then, ¥ is right BIBO-rational if and only if, for
some integers y, 8 > 0, there exists a function & : (R?)**!x (R™)®*!— R™ such
that the trivially-recursive system X, : D —S(R™): z,=h(yi*”|uk*?) satisfies
conditions («) and (B) of Theorem 5.21 together with the condition :

(y") The system Z¥ of (B) is BIBO-stable.

Corollary 5.22 is a direct consequence of the proof of Theorem 5.21 and the
definition of BIBO-stability.

Remark 5.23

In case the system X of Corollary 5.22 is injective, then it can readily be seen
that condition (y’) can be stated directly in terms of the function % as follows :

(y1) For every real §> 0 there exists a real M(6)>0 such that, whenever
p(h(yE* Y [ub*?)).< 6 for all integers k, then py(y) < M(6) and py(u) < M(6),
for all (y|u)eD. ]

We demonstrate the application of Corollary 5.22 (and Remark 5.23) by the

following simple numerical case.

Example
Consider the recursive system X : S(R)—S(R) represented by

Yr+1=0Xp [+ 4] -1
(defined on its ijo-space). Here, we can choose

Ry |we) = [+ 4] =: %
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An easy computation then gives the inverse 2§ : A[D]— D as

Ye+1 exp (%) —1

Up 41 Zpe1—€Xp (%) +1

which is BIBO-stable. Whence, the system P of (y) is given by P: y,,,=
exp (z,) — 1, and the system 7' of (8) is given by T': w,,,=2,,,—exp (%)+1.
The inverse of 7' is @ := T ': 2z, ,=u,,,+exp(z)—1, and E=PQ is a
right BIBO-stability representation. 0

Finally, turning to the case of C-stability, we obtain the following conse-
quence of the proof of Theorem 5.21.

Corollary 5.24

Let Z: S(R™)—S(R?) be a recursive system with a recursive representation
& Yprnse1 =1 " |uf™*). Then, X is right C-rational if and only if, for some
integers vy, 8 >0, there exists a function A : (R?)**!x (R™)3*1— R™ such that
the trivially-recursive system ZX;: D,—S(R™): z,=h(yi*”|ut*?) satisfies
conditions («) and (B) of Theorem 5.21 together with the condition :

(") The system Z¥ of (B) is C-stable.
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