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Non-linear systems : stability and rationality 

JACOB HAMMERt 

The problem of when a non-linear system can be represented as a quotient of two 
stable non-linear systems is considered. Attention is mainly directed toward non
linear discrete-time recursive systems, where recursive means that the relationship 
between an input sequence and the corresponding output sequence can be expressed 
in terms of a finite number of recursive equations. Necessary and sufficient conditions 
are derived for the existence of a fraction representation of a recursive system, whne 
the numerator and the denominator are stable recursive systems. The explicit 
construction of such a fraction representation is described. 

1. Introduction 
Let L be a non-linear time-invariant dynamic system, admitting input 

values from the finite-dimensional real space Rm and having its output values 
in the finite-dimensional real space RP. Our main attention in this paper is 
devoted to the following question. Under what conditions (on L) do there 
exist non-linear systems P and Q, both of which are stable, such that L can be 
represented as a quotient of the form L = p- 1Q or L = PQ- 1• When such a 
representation is possible, we say that the system L is rational. Furthermore, 
for a rational system L, we also wish to find an explicit construction that yields 
systems P and Q for which L = p- 1Q or L = PQ- 1

, as the case may be. 
The question of rationality seems to be pertinent to the problem of 

stabilizing a given non-linear dynamic system L. Roughly speaking, if one 
needs to stabilize a non -linear ration al system L = PQ- 1

, then one has to 
' cancel ' the denominator Q which, by virtue of the stability of P, is the sole 
cause for instability in L. Of course, any such ' cancellation ' has to be done 
with due care, so that the resulting system would be not just input-output 
stable, but would be internally stable as well. Some insight into this situation 
can be gained from the case of linear systems. Though the theory of linear
system stabilization is not directly related to our discussion in this paper, 
familiarity with the works of Rosenbrock (1970), Wonham and Pearson (1974), 
Desoer and Chan (1975), Desoer and Vidyasagar (1975) and Hammer (1983 a, b) 
may be helpful. 

The class of systems that we study in this paper consists of non-linear 
dynamic systems which are time-invariant and discrete-time, and which are 
recursive in the following sense. The relationship between an input sequence 
to the system L and the corresponding output sequence from ~ can be described 
in terms of a recursive equation involving only a finite number of input values 
and a finite number of output values. More explicitly, the system ~ is excited 
by an input sequence ... , 'U_ 1, it 0 , it 1, ... , where, for each integer j, the element 
'lti is an m-dimensional real vector. For each input sequence, the system L 
generates an output sequence ... , y _ 1, y 0 , y 1, ... , where, for each integer j, the 
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2 J. Hammer 

element y j is a p-dimensional real vector. The crucial point is that the output 
sequence {y J can be computed recursively from the input sequence {u J so 
that, for each integer k, there is a relationship of the form 

( 1.1) 

where TJ and µ, are fixed integers, and where f: (RP)71+1 x (R 111y,.+1-+RP is a 
multivariable vector-valued function, which we call the recursion function of L. 
The vertical line inf is used to separate between the output variables and the 
input variables. Equation ( 1.1) is called a recursive representation of L. If a 
system has a recursive representation, then we say that it is a recursive system. 
Given some fixed initial time t0 , the output sequence Yt., Yt. + 1, .•. , of the 
recursive system L is uniquely determined once an input sequence ut., ut. + 1, •.. , 

is specified together with a set of initial conditions Yt., Yt.+1, ••• , Yt.+T/· We say 
that two recursive systems are input/oiltput equivalent if, when started from 
zero initial conditions, they generate the same output sequence when excited 
by the same input sequence. The class of recursive systems includes, of course, 
the class of finite-dimensional linear systems, but it is much larger and includes 
most systems which are of engineering interest. We remark that the assump
tions of time-invariance and discrete-time are of a technical nature, and our 
present theory can be extended to include time-varying or continuous-time 
systems as well. However, we will not discuss this point in the present paper. 

For our discussion of stability we adopt a somewhat stronger version of the 
classical notion of stability due to Liapunov. In qualitative terms, we say that 
a recursive system L is stable if a slight change in the input sequence to L or in 
the initial conditions of L (or in both) causes only a slight change in the corres
ponding output sequence from L. Thus, stability implies that the system L, 
when interpreted as a map transforming input sequences into output sequences, 
is continuous. Stability, however, is a stronger notion than mere continuity of 
the map, since it also involves the initial conditions ( continuity of L as a map is 
sometimes referred to as ' stability in the Liapunov sense ', though Liapunov 
was, of course, aware of the effect of the initial conditions as well). Our 
discussion of stability inevitably employs certain notions related to continuity, 
all of which can be found in the excellent (and short) treatise by Kuratowski 
(1961). 

In order to somewhat refine our previous notion of rationality, consider a 
system L. When L is interpreted as a map (transforming input sequences into 
output sequences), it can always be factored into a composition of maps 
L = PQ, where Pis injective and Q is surjective. The map P, being injective, 
has a left inverse P*, whereas Q, being surjective, has a right inverse Q*. We 
say that L is left rational if such a factorization exists where P* and Q are 
recursive and stable. Similarly, L is right rational if P and Q* are recursive 
and stable. Then, a left rational system can be rendered input/output stable 
by connecting it in series with a non-singular stable postcompensator (as in 
P*L = Q), whereas a right rational system can be made input/output stable by 
connecting it in series with a non-singular stable precompensator (as in 
LQ* = P). Thus, rationality is equivalent to input/output stabilization 
through non-singular and stable compensation connected in series. From the 
practical point of view, we would like, of course, not only to make L input/ 
output stable, but to transform it into an internally stable system, i.e. into a 
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system for which not only the input-output behaviour is stable, but so also is 
the internal behaviour. However, input/output stabilization is necessary for 
internal stabilization, so that the problem of input/output stabilization (i.e. the 
problem of rationality) has to be studied first. 

The main point of our discussion in this paper is that one can characterize 
rationality of a recursive system directly in terms of certain properties of its 
recursion function /. Thus, one can decide whether a recursive system L is 
left rational, or right rational, or neither, by checking its recursion function f 
in the recursive representation (1.1 ), which is usually given. More explicitly, 
we show in § 5 that the recursive system L is left rational if and only if its 
recursion function f can be decomposed into a sum of functions 

(1.2) 

where the functions / 1 and /2 are required to satisfy certain algebraic and 
continuity conditions. In some cases (though, of course, not always), such a 
sum decomposition may be obtained by mere inspection. Moreover, once such 
functions / 1

1 and / 2 are known, one can directly obtain from them recursive 
representations of systems P and Q for which L = PQ is a left rational repre
sentation. Thus, our characterization of left rationality is constructive. The 
case of right rationality is dual. 

Interestingly, rational systems have many properties which have previously 
been associated with linearity. One such property is the following. A 
system L is called Bl BO (bounded-input bounded-output)-stable if it responds 
with a bounded output sequence to every bounded input sequence. It is well 
known that, for a finite-dimensional time-invariant linear system, BIBO
stability implies stability in the Liapunov sense. Indeed, this fact plays a 
fundamental role in the theory of linear systems. As it turns out, this property 
is a direct consequence of rationality. Every non-linear left rational system 
which is BIBO-stable is also stable in the Liapunov sense ( § 5). 

Much of our discussion in this paper depends on the notion of the inpilt/ 
output space which we associate, in § 2, with each recusive representation of the 
form (1.1). Roughly speaking, the input/output space is a subspace of 
(RP)11+1 x (Rm)µ+ 1 which is invariant under the evolution of the system L. It. 
is the minimal subspace over which the recursion function f has to be defined, 
given that the system L is always started from zero initial conditions at some 
finite time in the past. The role of the input/output space in our present 
discussion is comparable to the role of the state-space in classical linear system 
theory, though the definitions are somewhat different. We introduce the 
input/output space in § 2, and we continue to study its significance in the later 
sections. 

The paper is organized as follows. Section 2, after setting up our basic 
framework, is devoted to a discussion of the reduction of non-linear systems, 
which refers to the following context. The recursive representation ( 1.1) is not 
uniquely determined by the input-output behaviour of the system L. Different 
recursive representations, differing by the function f and by the integers 'Y/ and 
µ, may represent input/output equivalent systems, similar to the situation that 
exists in the case of non-canonical realizations of linear systems. It is, of 
course, of particular interest to find a minimal recursive representation which 
is input/output equivalent to L, one for which the integers 'YJ andµ are as small 
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as possible. Evidently, a minimal representation is the easiest one to imple
ment. In § 2 we study the problem of constructing a minimal recursive 
representation input/output equivalent to a system ~' when an arbitrary 
recursive representation of ~ is given. 

In § 3 we study the series connection, the sum, and the inversion of non
linear recursive systems, and related properties. In § 4 we define our basic 
stability notions. As has been common practice in system theory for the past 
few decades, we distinguish between two notions of stability - input/output 
stability (or, simply, stability), and internal stability. The notion of internal 
stability is a stronger stability notion, indicating that not only is the system 
stable with respect to variations of the input sequence, but its ' hidden ' 
internal degrees of freedom, which do not affect the input - output relationship, 
are stable as well. We discuss several questions related to stability and internal 
stability. In particular, we consider the question of when an input/output 
stable system has an internally stable representation, i.e. when can a non-linear 
recursive system be physically implemented as a robust construction. Finally, 
the paper is concluded in § 5, where we discuss rationality of non-linear systems, 
as mentioned in the opening of this introduction. 

Studies into the theory of stability of non-linear systems cover extended 
portions of the literature of numerous scientific disciplines, ranging from 
mathematics through engineering to economics and social sciences. It is, of 
course, outside the scope of this paper to provide a detailed account of the 
evolution of non-linear system theory. Much of this evolution has been 
inspired by the monumental work of Liapunov (1947), which still forms the 
conceptual framework of stability theory. 

In the late fifties and the early sixties of the present century, most of the 
attention in the non-linear systems literature was directed toward the study of 
static non-linear output feedback applied to linear systems, in the context of 
the classical Lurie (1951) problem, and toward extensions and refinements of 
the Liapunov methods. These studies culminated in a large number of classical 
works in non-linear system theory, like those of Popov (1961), Lasalle and 
Lefschetz (1961), Kalman (1963), Hale (1963), Sandberg (1964), Yacubovich 
(1965), Lefschetz (1965), Zames (1966), the references mentioned in these 
works, and many, many others. 

2. Recursive systems and their representations 
In the present section we introduce the underlying framework and the 

notation for our discussion in this paper. Let R be the set of real numbers. 
We denote by S(Rm) the set of all two-sided infinite sequences of the form 
11, := ( ... , 0, ... , 0, ut(u), ut<u>+i, ... )={ui}, where u .iERm for all integers i, and 
where for each sequence u there exists an integer t(u) (depending on u) such 
that ui = 0 for all j < t(u). Intuitively speaking, for the sequence {uJ, the 
integer i can be regarded as the time marker, and t(11,) can be regarded as the 
starting time of the sequence. The symbol O will also be used for the zero 
sequence in S(Rm)- the sequence consisting of only zero elements. Given a 
sequence uES(R 111

), we denote by 11, j its jth element, and by u{, where i ~ j, the 
set of elements 'lti, ui+I' ... , ui. If i>.i then u{ denotes the empty set. For 
each pair of sequences u, v of S(Rin), we define the sum u + v coefficientwise by 
(u+v); = 1t;+v; for all integers i. Clearly, S(Rm) is closed under addition. 
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We regard a system as a map transforming input sequences into output 
sequences, and we require every system under consideration to possess at least 
one (possibly unstable) equilibrium point (corresponding, for example, to the 
'off' state of the system). Formally, by a non-linear system with input space 
R 111 and output space RP we mean a map '2:, : S(R 111)-S(RP) satisfying the 
condition '2:,(0) = 0, i.e. mapping the zero sequence in S(R 111

) into the zero 
sequence in S(RP). Given two systems '2:,1 : S(R 111)-S(RP) and '2:,2 : S(RP)
S(Rq), we denote by L2L 1 : S(R 111)-S(Rq) the system represented by the 
composite map. As usual, we say that the system '2:, : S(R 111)-S(RP) is 
invertible if there exists a system '2:,' : S(RP)-S(R 111

) satisfying LL'= I (the 
identity S(RP)-S(RP)) and '2:,''2:.=I (the identity S(R 111)-S(R 111

)). The sum 
'2:.1 + '2:.2 of two systems '2:.1, '2:.2 : S(R 11')-S(RP) is defined pointwise by 
('2:.1 + L~)u: = L 1'u + ~2u for all 1tES(R111

). Evidently, the set of systems is 
closed under composition and addition. 

Conceptually, our main assumption on the non-linear systems that we 
discuss in the present paper is the following recursivity assumption which, in 
our present framework, is the analogue of the finite-dimensionality assumption 
commonly imposed in linear system theory. 

Definition 2.1 

A system L : S(R 111)-S(RP) is rewrsive if there exist integers Y/, µ ~ 0 and a 
function f: (RP)71+ 1 x (R 111t+ 1-R such that, for every input sequence 1tE8(R 111

) 

to L, the corresponding output sequence y : = LitES(RP) from L satisfies 

(2.2) 

for all integers k. The function f is then called a rewrsion fimction for the 
system L. Equation (2.2) is called a rewrsive representation of L. D 

We remark that, in view of our assumption that '2:.0 = 0, it follows that the 
recursion function f of (2.2) satisfies the condition /(0, ... , OIO, ... , 0)=0. We 
also note that, by the definition of the spaces 8(R 111

) and S(RP), each output 
sequence of '2:, starts from zero initial conditions at some finite time in the past. 
In case the system Lhasa recursive representation of the form Yk+i=f(itk+i), 
then we say that '2:, is a static system. The integer 7J in (2.2) is called the principal 
degree of the recursive representation. When the system '2:, is a linear system, 
then the function f is linear, and the minimal possible principal degree of a 
recursive representation of Lis simply (v 1 -1), where v1 is the maximal observa
bility index of a canonical realization of L. 

Let !/ : Yk+
71 

+ 1 = f(yi+ 71 luf + µ) and !/' : Yk+TJ· + 1 = /' (yf +71' liif + µ') be recursive 
representations of systems L, L': 8(R 111)-S(RP), respectively . We say that 
the representations !/ and !/' are i/o (input/output)-eqitivalent (notation 
!/"' !/') if L = '2:.'. Evidently, i/o-equivalence is an equivalence relation, and 
thus it partitions the set of all recursive representations into i/o-eqitivalence 
classes, where each class consists of all the recursive representations which 
represent one and the same system L : S(R 1")-S(RP). 

It is easy to see that a recursive system L : S(R 111)-S(RP) has infinitely 
many different i/o-equivalent recursive representations. Indeed, let 
!/: Y1.:+

71
+1 =/(yt+ 71luf+µ) be a recursive representation of L. Then, another 

recursive representation of L. differing from !/ by the parameters T/ and µ,, can 
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be constructed as follows. By time invariance, we have that Yk+ri+2 = 
/(y%!7+1 lut!f+ 1

), and, expressing Yk+ri+I through f/, we obtain 

Yk+ri +2 = f(Yk+ 1, .•. 'Yk+TJ' f(yz+ri luZ+ µ) Jut!r+ 1
) =: /' (yz+ri+ 1 1,ut+ µ+ 1) 

which is a new recursive representation, i/o-equivalent to f/. Our main 
interest in the present section is, in a sense, to reverse this construction, in 
order to obtain a minimal recursive representation of ~' one for which the 
parameters TJ and µ, are as low as possible. In addition, we also wish to find out 
what properties of a recursive representation are determined by the system~ it 
represents, and what properties are arbitrary. This will allow us later to 
choose the properties which are not determined by ~ in a convenient way 
(in § 4). 

Input/output-equivalence can be characterized in terms of the recursive 
representations alone. For this purpose we need the following concept. Let 
fl': Yk+ri+i = f(yt+ri Ju,Z+µ) be a recursive representation of a system~ : S(R 111

)~ 

S(RP). Let SIJ(Rm) denote the set of all one-sided infinite sequences 11,0 , u 1, ••• , 

u,ii ... , with elements uiER 111
, j = 0, 1, 2, ... , satisfying u0 =it 1 = ... ='llµ = 0. 

For each element uES6(R 111
), let f/'(u) denote the output sequence y 0 , y1, ... , 

computed recursively through f/ under the initial conditions y 0 = y1 = .. . 
... =yri=O. We define the i/o-space D 0 off/ by 

Do:= LJ LJ ([f/(u)]i+riluf+µ) (2.3) 
UES 0 µ(Rm) k;;i:O 

so that Do is the subset of (RJ1r+ 1 X (R 111t+ 1 consisting of all the segments of 
'length' (TJ+ I,µ+ 1) of the (inputJoutput) sequences. The i/o-space is the 
minimal domain over which the recursion function f has to be defined in order to 
characterize the input-output relationship induced by the system~- It plays 
a central role in our present framework serving, in a sense, as the analogue of the 
state-space in classical linear system theory. As a simple example, the i/o
space of Yk+i=!(yk)2+1ik is R2

, whereas the i/o-space of Yk+i=i(yJ 2+(uk) 2 is 
[O, 00) X R. 

Next, given a subset Ac (R 11)rz+ 1 x (R 111
)
13+ 1, where ex~ TJ and /3 ~ µ, we define 

for every integer i ~ 0 the i-step extension f/i[A] of A by 

Y
0

[A] := A ) 
f/[A] := LJ (z0 , ... , za, f(z:-riJv~_)lv 0 , ... , v13, b) 

(z0a I Vof>)e.4 
beJlm 

gi[A]: = f/'[f/'i-1[A]] 

(2.4) 

As we see, for every i ~ 0, the set fl'fd] is a subset of (RP)rz+i+I x (Rm)l3+i+I, 
and each element of it is an i-step extension along the trajectory of f/ of an 
element in A, with new input values covering Rm. When A is the i/o-space 
D0 of fl', then simply 

gi[Do] = LJ LJ ([f/(u)]t+ri+ilut+µ+t i ~ O 
ueS 0µ(Jlm) k;;i:O 

which is a subset of (RPr+i+I X (R 111t+i+l. For every element (ai+i+llbb+i+l) 
in gi+ 1[D 0 ], where i ~ 0, we have that ari+i+I = f(a7+iJbt+t and that bµ+i+l is 
an arbitrary element of Rm. Thus, once D0 is known, the sets Y'i[D 0 ], 
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i = 1, 2, ... , can be constructed recursively step by step using the recursion 
function /. In these terms, i/o-equivalence can be characterized as follows. 

Theorem 2.5 

Let f/: Yk+71+1 =f(y%+711u%+µ) and f/': Yk+71·+i =/'(y%+ 71'lu%+µ'), where 
71' -71=µ,' -µ,, be recursive representations mapping S(R 111)-+S(RP). Let D 0 

and D~ be the i/o-spaces of f/ and f/', respectively. Assume that r,' "';:!; 'YJ, and 
denote y: = 71' -71. Then f/ and f/' are i/o-equivalent if and only if 
f/Y+l[Do] = f/'[D~]. 

In view of this theorem, i/o-equivalence of recursive representations can be 
verified by checking whether two subsets of (RP}71'+2 x (Rmt'+ 2 are equal. 

Proof 

If f/"' f/', then it follows by our construction of the respective sets that 
f/Y+ 1[D 0 ] = f/'[D~]. Conversely, assume that f/Y+ 1[D ] = f/'[D~]. By time 
invariance, our proof that f/- f/' will conclude upon showing that 
f/(u)= f/'(u) for all elements uESt{(Rm) (note that, since µ,'"';:!;µ,, we have 
St{(Rm) c Sb(Rm)). Now, let uESt{(Rm) be an arbitrary element. Then, 
clearly, [ f/' (u) ]a'= 06' = [ f/(il) ]f Further, preparing for induction, assume 
that [f/'(u)] 0=[f/(u)l 0 for some integer n"';:!;71'. Then, using the fact that 
([f/(u)J:~~.ju;:=~:+µ+l) belongs to f/Y+ 1[D 0]-and whence also to 9''[D~]-we 

obtain [ rP( )] -f' ([ rP( )]n I n- 71' + µ') _ [ rP'( )] 
r7 U n+l - r7 U n-71' Un-71' - r7 U n+I 

Thus, [f/(um+ 1 = [f/' (u)Ja+1 so that, by induction, [f/(11,)Jr = [9''(u)Jr for 
any uES~'(Rm), and our proof concludes. · D 

Theorem 2.5 can be slightly strengthened in the case when 'YJ' is strictly 
larger than 71. This stronger version, which is stated below, is important to our 
ensuing discussion. 

Corollary 2.6 

Let f/ : Yk+71 + 1 = f(y%+71 lu%+ 1<) and f/' : Yk+
71

, + 1 = /' (y%+71' lut+ µ'), where 
71' -71 = µ,' - µ,, be recursive representations mapping S(Rrn)-+S(R 1}). Let D 0 

and D~ be the i/o-spaces of f/ and f/', respectively. Assume tliat r,' > 'YJ, and 
denote y : = 'YJ' -71. Then, f/ and f/' are i/o-equivalent if and only if 
f/Y[ Do]= D~. 

Proof 

If f/ and f/' are i/o-equivalent, then the equality f/Y[D 0 ] = D~ is a direct 
consequence of the definitions of the involved sets. Conversely, assume that 
f/Y[D 0 ] = D~, and consider an arbitrary element (z3'+1 jv1(+1)Ef/'[D~]. Then, 
clearly, (zj'.'+1 jvf+ 1)ED~, and, since D~= f/Y[D 0 ] with y"';:!; 1, it follows that 
Z71,+ 1 =f(z~:_

71
jv~:_µ). Thus, f/'[D~]= f/[D~], whence f/'[D~]= f/[f/Y[D 0 ]]= 

f/Y+ 1[D 0 ], and f/"' f/' by Theorem 2.5. D 
Let ~ : S(Rm)-+S(RP) be a recursive system. Motivated by Corollary 2.6, 

we next construct a recursive representation of~ which is of minimal principal 
degree in its i/o-equivalence class. First, we need some preliminary considera
tions. Let f/: y,..+

71
+ 1 =f(yz+ 71lil}.+µ) be any recursive representation of ~ . 
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and let D 0 be its i/o-space. We assume thatµ~ l. (Formally, the value ofµ 
can always be increased without actually changing the function/ by defining the 
new function /'(yf+TJJuz+,-<+l) := /(yt+TJJilf+µ).) For each point (z3- 1 Jvo-1)E 
(RP)TJ X (Rm)µ we construct a (possibly empty) projection set P(z3- 1 Jvo-1) 
consisting of all points zTJERP for which (z6 Jv0)ED0 for some vµER111 (if 77 = 0, 
replace (z6- 1 Jv0- 1 ) by (v0- 1) throughout). We say that D 0 is globally degenerate 
if, for every point (z3- 1 Jvo-1)E(RP)TJ X (R 111)µ, the set P(z3- 1 Jva- 1) contains at 
most one point (that is, the one step continuation ZTJ of (z3- 1 Jv0- 1

) is uniquely 
determined). We then have the following 

Theorern 2. 7 

Let l: : S(Rm)-+S(R 1)) be a recursive system. Let f/ be any recursive 
representation of 1:, let 17 be its principal degree, and let D0 be its i/o-space. 
Then, l: has a recursive representation with principal degree less than 77 if and 
only if D0 is globally degenerate. 

We start our proof of Theorem 2.7 by showing that if D 0 is globally 
degenerate, then one can construct a recursive representation of l: having 
principal degree (77 - I). To this end, assume that D0 is globally degenerate, 
and let D5c (RP)TJ X (R 111t be the set of all points (z3- 1 Jva- 1) for which the set 
P(z3- 1 Jva- 1

) is non-empty. Then, for every point (z3- 1 Jvo- 1)ED5, the set 
P(z6- 1 Jv0- 1) contains exactly one point, so that we can define the function 
/~ : D5-+RP by I~ (z3- 1 Jvo-l) : = P(z3- 1 Jva- 1) (as before, if 77 = 0, replace 
(z3- 1 Jva- 1) by (vo- 1), where we always assume that µ~ I). Let 
/ 1 : (RP)TJ x (R 111)µ-+RJJ be any extension of /~, and consider the recursive 
representation f/ 1 of principal degree (77- l) given by 

rP • -f ( k+7J-ll k+µ-1) 
J l . Yk+TJ - ] Yk Uk (2.8) 

We next show that !:/\ is another recursive representation of the system 1:, thus 
proving the ' if ' direction of Theorem 2. 7. 

Lemma 2.9 

The recursive representation f/ 1 of (2.8) is i/o-equivalent to f/, and has D5 
as its i/o-space. 

Proof of Lemma 2.9 

Let (z3Jvo) be any point in Do, and let ZTJ+l: = f(zZlva)- Then, clearly, 
(zy+1 Jvr+1)ED0 for every Vµ+lERm, and whence, by our construction of /1, we 
obtain ZTJ+l =/1(zyJvt)=/(z3Jvo) for all points (zZlva)EDo. But this implies that 
f/ 1(u) = f/(u) for every uES0(Rm), so that (by time invariance) f/ 1 and f/ are 
i/o-equivalent. Moreover, the i/o-space D* of f/ 1 is given by 

D* = U U ([f/1(u)]f+TJ-l Juf+µ-l) 
ues 0v.- 1(Rm) k ;;i:, 0 

U U ( [ f/ ( u) Jf + T/ -
1 I uf + µ -

1 ) 
ueS 0 V.(Rm) k ;;i:, 0 

as asserted. D 
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In order to complete the proof of Theorem 2. 7 it only remains to prove the 
necessity direction. 

Proof of Theorem 2. 7 

Necessity. Assume that Lhasa recursive representation of principal degree 
TJ

1 < TJ, given by Yk+.,,· + 1 = /' (y%+.,,· iu%+ µ'), where we choose µ,' - µ, = TJ, -TJ· Let 
(z6iv~j) be any point of D 0 • Then we clearly have that z.,,=/'(z~=L 11,lv~=~-µ'), 
and, since 77- l -TJ' = µ,-1 - µ,' ~ 0, it follows that z.,, is uniquely determined by 
(zz- 1 1i;-1 ) for every point (z6lv1J}ED0 . Thus, D 0 is globally degenerate, and our 
proof concludes. D 

Returning now to our construction of (2.8), we have obtained from the 
given recursive representation !/ with principal degree TJ, the reduced recursive 
representations !/ 1, having principal degree (TJ-1) and i/o-space D5. Now, if 
D5 is still globally degenerate, the same procedure can be applied to !/ 1, 

leading to a new recursive representation !/ 2 of L, having principal degree 
(TJ-2) and i/o-space D5. After n such steps, where n is at most TJ + l, we obtain 
a recursive representation !/n of L having principal degree (TJ-n), for which 
either TJ - n = - l or its i/o-space is no longer globally degenerate. If 77- n = - l 
then the recursion function of !/n does not depend on the output variables, and 
is of the form Yk = f

11
(uz+ µ-n). Thus, in view of Theorem 2. 7, the principal 

degree of !/n cannot be further reduced in either case, and TJ-n is the minimal 
principal degree possible for a recursive representation of L. As we see, the 
minimal recursive representation !/n can be obtained from an arbitrary given 
recursive representation !/ of L through a step by step reduction procedure. 
We summarize this point in the following. 

Corollary 2.10 

Let !/ be any recursive representation of a recursive system L : S(Rm)---+ 
S(RP), and let r-c be its i/o-equivalence class. Then, a recursive representation 
having minimal principal degree in r-c can be derived from !/ in a finite number 
of successive reduction steps. 

3. Interconnections of recursive systems 
In this section we study algebraic properties of recursive systems, related to 

the series connection, inversion, and sum of such systems. We start with an 
examination of series connections of recursive systems. Let L1 : S(Rm)---+ 
8(RP) and L2 : S(RP)---+S(RfJ) be recursive systems represented by the recursive 
representations 

rP v -f (vk+.,,1Juk+µ1) 
J 1 : k + T/1 + 1 - 1 k k 

rP y -f (yk+712lvk+µ2) 
J 2 : ( k + T/2 + 1 - 2 k k ' 

(3.la) 

(3.1 b) 

respectively, and consider the series combination L3 : = L2L1 : S(Rm)---+S(Rq). 

Defining the augmented vector zi : = (y~)ERq x RP, we can directly obtain a 
v-i 

recursive representation of the sequence z in terms of the input sequence u to 
L 1 as follows. Let 'r/ : = max {TJ1, TJ2 }, and define the integers e1 , e2 ~ 0 (one of 
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which is zero) so that TJ = TJi + e1 = YJ2 + e2 . Then, smce µ 2 ~ YJ2 , we have the 
recursive representation 

(3.2) 

where f: (Rq x RP)TJ+I x (R 111t•+e,+ 1~Rq x R 11, and where the output value Yi 
of L3 can be retrieved from the first q entries of zi, whereas the intermediate 
variable vi can be retrieved from the last p entries of zi. 

The above procedure is evidently not applicable in cases where there is no 
access to the intermediate output sequence {vd- the output sequence of the 
first system L1 in the series connection. It is also not applicable in stabilization 
theory, as we shall discuss in a later section. In situations in which the above 
procedure is not applicable, one has to require that the series combination 
L3 = L2L1 possesses a recursive representation involving only the output 
sequence {yd of L2 and the input sequence {uJ of L 1• Namely, that there exist 
integers t and , and a function / 3 : (Rq)!+l x (R 111){+ 1~Rq such that Yk+!+l = 
f 3(y%+ ! luZ+ {). If such a representation exists, then we say that the series 
combination L2L 1 is strictly recursive. We next examine the conditions under 
which a series combination is strictly recursive. These conditions depend on 
the structure of certain invariant subspaces which we discuss first. 

Consider the systems L1 and L2 of (3.1). For given input values uk, uk+l• ... , 
uk+µ,+j and for fixed initial conditions vk, vk+i, ... , vk+TJ, of L 1, the output values 
vk+TJ,+1, Vk+11,+ 2 , ••• , vk+11,+i+I of L 1 are uniquely determined through the 
recursive representation (3.1 ). Thus, for each integer i ~ 0, there is a unique 
function Fi such that 

(the augmented vector), where e : = µ 1 - 1 + µ 2 -YJ 1, and where we shall some
times suppress the variables uz+e+i for notational convenience. The functions 
{ F J directly express the evolution of the output sequence of L 1 (taking µ 2 

output values at a time) in terms of the initial conditions and the input 
sequence. vVe now choose some integer k and leave it fixed throughout our 
present discussion. Denote by D 00 the subset of S(RP) x S(R 111

) consisting of all 
pairs of sequences (yju), where itES(Rm) and y=L 2L 1u. Also, let D 0 be the 
i/o-space of !/\, and, for every uES(Rm), let Dv,k(u) be the set of all elements 
o:0 , ••• , cxTJ,ERP for which (0:61 juZ+µ')ED 0 • Qualitatively, Di,,k(u) is the set of all 
initial conditions vt+11, of !/1 that can appear with the input values ut+µ .. 
(Recall that L 1 is always started from zero initial conditions at some finite time 
in the past.) Now, for each element vt+ 111EDv,k(it), and for each integer i ~ 0, 
we define the equivalence class {vt+ 11'h. u consisting of all elements /331EDv,k(u) 
for which 

where y : = L 2L 11t. Then, {vz+11, t. u consists of all the initial conditions of L 1 

which lead to the same output value Yk+i+
11
,+ 1 , for the given partial sequences 

yf+i+TJ,, uf+i'.+P. Finally, for each element (yju)ED
00

, we define the following 
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decreasing sequence of subsets Kiy/it) of (RJJy,,+1 : 

11 

(3.4) 

The set K 00 (y!1t) consists of all initial conditions vk, ... , vk+
11

, for which the 
output sequences of L; ( corresponding to the input sequence uf) generate one 
and the same output sequence yf of L2• Qualitatively, K 00 (ylu) determines a 
'L 1 invariant subspace in kernel L2 '. The set K 00 (ylu) is non-empty, since 
(y lu)ED 00 implies that yf was generated by uf for some initial conditions of L1. 

We say that the ordered pair (L2 , L 1) is asymptotically observable if the set 
K 00 (ylu) contains only one point for each pair (y!u)ED 00 • When asymptotic 
observability holds, the initial conditions vk, ... , vk+

11
, are uniquely determined 

by the sequences yf and u[>, and thus can be uniquely expressed in terms of 
elements of these sequences. However, this expression may depend on an 
infinite number of terms of the sequences. We say that the pair (L2 , L1) (or 
that the pair (/2 , / 1 )) is compatible if there exists an integer r* such that 
Kr•+ 1(ylit)=K 7.(yju) for all (y!u)ED 00 • The minimal value of r* is called the 
compatibility degree of (L2, L1) (or of (/2 , / 1 )). For a compatible pair of systems 
(L2 , L 1) with compatibility degree r*, one can readily show that Kr(ylu)= 
K 7 .(y lu) for all integers r ~ r* and all elements (y !1t)ED00 • In case the pair 
{L2 , Li) is both compatible and asymptotically observable, then the initial 
conditions v,.., ... , V1,:+

11
, of L; are not only uniquely determined by the sequences 

yf and 11,'f, but they can be expressed in terms of a finite number of elements of 
these sequences (see (3.8) below). This fact is of crucial importance to our 
discussion. 

Returning now to series combinations of systems, we can state the following 
characterization of strict recursivity. 

Theorem 3.5 

Let L 1 : S(Rm)-+S(RP) and LJ2 : S(RP)-+8(Rq) be recursive systems. Then 
the series combination LJ2L 1. is strictly recursive if and only if the pair (L2 , L1) is 
compatible. 

Remark 

In some applications of Theorem 3.5 given below, the system ~ 1 has as its 
domain not all of S(R 111

), but only a time invariant (i.e. shift-invariant) subset D 
of it. For such a case our discussion here remains unchanged, except for the 
obvious fact that the input sequences 'l( to ~ 1 have to be restricted to D 
throughout the discussion (including the construction of the i/o-space D0 ). D 

Proof 

Assume first that the pair (~ 2 , LJ1) is compatible, and let r be its compati
bility degree. Using time invariance, we obtain from (3.1) for every integer 
{ ~ 0 the set of equations 

(3.6) 
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Rubstituting the relationship (3.3) into (3.6), and defining the functions 

hi(YZ! ::+112 jilt+ i+e lvf +11,) : = /.jyf ! ~+11., Fi(vt+11, lilf + i+e)) 

we obtain the equations 

i=O, ... ,' (3.7) 

Consider now (3. 7) as a set of equations for v,.., ... , vk+11, in terms of given 
sequences yf, il'J:, where (y ju)ED 00 • A slight reflection shows that the subspace 
Ki(yjil) of (3.4) is the kernel of the set (3.7) for ,=j. Let 

( ) G( k+r+lj k+r+e) vk,···,vk+11, = Yk il1,: (3.8) 

be any solution of the set (3. 7) for , = r, where r is the compatibility degree. 
Then, since K 00 (y jil) = KAy jil), it follows that (3.8) satisfies the set of equations 
(3. 7) for every integer , ~ r as well. Finally substituting (3.8) into (3. 7) for 
i = r + I, we obtain the equation 

Y =h (yk+r+l+11•lilk+r+l+ejG(yk+r+ljuk+r+e)) (3.9) k+112+r+2 r+l k+r+l k k k 

which is a recursive representation of the series combination I: 2I: 1 • Th us, I: 2I: 1 

is strictly recursive. 
Conversely, assume that I: 2I: 1 is strictly recursive, and let 

Yk+11+ 1 = f(yf +11 jut+µ) 

be a recursive representation of it (which holds for every (ylu)ED 00 ). Then, for 
every integer j, the sequence yf is uniquely determined by yt 11 and the input 
sequence itf. Whence, every set of elements vt+ 11, which satisfies (3. 7) for 
'= 'Y/, also satisfies (3. 7) for '> 'Y/· Consequently, when (3. 7) is solved for vz+11, 
in terms of yf and uf, the solution is determined by the first 'Y/ equations, and 
thus K 00 (yjit)=K 11(ylu) for all (ylit)ED 00 , and (I: 2 , I: 1) is compatible. D 

,v e give now an example of a pair of recursive systems for which the series 
combination is not strictly recursive. 

Exmnple 3.10 

Let f(x, y) : R2~R be the 'staircase ' function defined by f(x, y) : = 
(n/y)signx for (n -1)/y<lxl~n/y, n=l,2, ... ,y>l, and by f(x,y):= 0 
for y ~ I. Notice th at when y~ oo this function tends to the identity function 
for x, but that, for any finite value of y, it is non-injective in x. Now, let 
I: : S(R 2)~S(R 2

) be the system represented by 

Combine this syst ,em in series with the system I:' : S(R)~S(R 2) given by 

, . . _ (v;+1)-(v;+ u,..) 
L.Vk+I·- -v;+1 v;+ 1 

to obtain the system I:" : = I:I:' : S(R)~S(R 2). From the definition of the 
function f(x, y) it follows then that in this case the set of equations (3. 7) for the 
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intermediate variable v{ becomes injective when (-+oo (since then v;-+oo ), but 
this set of equations is non-injective for all finite values of '- Therefore, v{ 
cannot be expressed in terms of any finite number of elements of the sequences 
zf and uf, so that a function of the form (3.8) does not exist here. Thus, LL' 
is not strictly recursive. D 

As a consequence of the proof of Theorem 3.5 we obtain the following 
corollary, which is directly implied by (3.9). 

Corollary 3.11 

Let ~ 1 : S(Rm)-+S(RP) and L2 : S(RP)-+S(Rq) be recursive systems having 
recursive representations with principal degrees 771 and 772, respectively. 
Assume that the pair (L2 , L1) is compatible, and let r be its compatibility degree. 
Then, the strictly recursive combination ~ 21:1 has a recursive representation 
with principal degree 77 ~ 772 + r + I. 

We turn now to a discussion of inverse systems. Let I: : S(Rm)-+S(RP) 
be a non-linear recursive system. By restricting the range of L to the image 
of I:, we obtain a map 1:r: S(Rm)-+Im I: which is evidently surjective, and 
whence possesses a right inverse L* : Im 1:-+S(Rm). Let l:g : S(RP)-+S(Rm) 
be any extension of I:* from Im I: to the whole space S(RP). Then, for every 
element yEim I:, we evidently have that LL~y=~L*y=y. We call ~g a 
generalized right inverse of I:. As usual, if I: is not an isomorphism, then a 
generalized right inverse of I: is non-unique. The main question that interests 
us here is whether a recursive system has a recursive generalized right inverse. 
The following statement provides an affirmative answer to this question. 

Theorem 3.12 

A recursive system I: : S(Rm)-+S(RP) has a recursive generalized right 
inverse Lg : S(RP)-+S(Rm). 

Proof 

We construct a recursive generalized right inverse for I:. Assume that L 
is represented by Yk+.,,+l = f(y%+.,, luf+µ), and let yEim I: be an output sequence. 
We now construct recursively for every integer k the sets S~, St, ... , S! as 
follows. The set S~(YZ!~+.,,+1) consists of all elements xER 111 for which there 
exist elements z1, ... , zµERm satisfying Yk+µ+.,,+l = f(y%!~+.,, Ix, z1, ... , zµ); for 
every j = I, ... , µ, and for every combination of elements uk+µ-jESt-i, 
1lk+µ-j+1ES1-j+I, ... , uk+µ-IES5=L the set Sj(y%!~=?.,,+ 11uz!~=}) consists of all 
elements xERm for which there exist elements z1, ... , zµ-jERm satisfying 
Yk+µ-j+.,,+I =f(yU~=J+.,,luk+µ-j, ... , uk+µ-I, x, z1, ... , zµ-j); and, finally, for 
any combination of elements UkEst-µ, Uk+1Est-µ+1, ... , uk+µ-lES!=L the set 
S!(y%+.,,+1 l1t%+µ-I) consists of all elements xERm for which Yk+.,,+I = 
j(yz+.,,,uk, ... , 'Uk+µ-I, X). µ 

Define now the intersection set Sk(yf+µ+71+1 lui+µ- 1) : = n St and note 
i=O 

that whenever u is an input sequence generating y, then the set Sk is non-
empty for every k. Let D denote the set of all points (yf+µ+77+1 1uz+µ- 1) for 
which Sk is non-empty. For each point in D we choose an element 
g(uf.+µ- 1Jyz+µ+71+1)ESk(yz+µ+.,,+1Juf+µ- 1 ), and we let L*: Im ~-+S(R 111

) be the 
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recursive system represented by 

Uk+µ= g( '1.l% + µ - 1 I yf + µ + 7) + l) (3.13) 

We next show that L* is a right inverse of the restriction L,. of L to its own 
image. To this end, let uk, ... , uk+µ-iER 111 be fixed elements, and let Y0 denote 
the set of all output sequences from ~ generated by input sequences which are 
continuations of the partial sequence uk, ... , uk+µ-J· Using the uf+µ-l as 
initial conditions, we next show that (3.13) yields for every sequence yE YO a 
sequence {iti}, i~k, where u't=ui for i=k, ... ,k+µ,-1, which satisfies 
Yk+i+77+l = f(yz!f+1) lit*Z!::+µ) for all integers i ~ 0. Indeed, by our construction 
of the function g of (3.13) and the fact that yEY 0 , it follows that for each 
i = 0, 1, 2, ... and for each j = 1, ... , µ,, there exist elements z1, ... , z iER 111 such 
that Yk+i+TJ+l =/(yf!}+TJj11\+i• ... , it\+i+µ-j, z1, ... , z). Moreover, since 
* Sk + i - j + 11 - 1 . t 11 h ' - * f 'l.l k+i+µ-j+uE , n- , ... , J, one can ac ua y c oosez 11 -u k+i+µ-j+n or 

each n. Thus, Yk+; +1J+ 1 = f(yf ! f +77 jit*f!f +µ) for all integers i ~ 0, so that "L"L*y =y 
for all yEll"n "L. 

Finally, in order to extend the domain of "L* from Im "L to all of S(RP), let 
ge: (R 111)µ X (RP)77+µ+'!.-R 111 be any extension of the function g. Then, the 
recursive system "LI.!: S(R 1i)-S(R 111

) represented by u,..+µ=t(1t~:+µ- 1 jyf+µ+ 77+1
) 

is a generalized right in verse of "L. D 

We illustrate the construction of the generali~ed right inverse described in 
the proof of Theorem 3.12 through the following example. 

Exarnple 3.14 

Consider the single-input single-output recursive s~rstem "L : S(R)-S(R) 
represented by 

Yk + 2 = h( '1.lk + 1) + it,.. 

where h : R-R is a function. In this case, YJ = µ, = 1, and the sets S1 are as 
follows: St(yf!i) consists of all elements xER for which there exists an element 
zER satisfying Yk+3=h(z)+x. For each element u ESt- 1

, the set St(yf+ 2 !11k) 
consists of all elements xER satisfying Yk+'2 = h(x) + it,... Finally, Sk(yf + 3 j11,..) = 
stnsr In particular, if h=O, then S~(YZ!r)=Yk+3• and Sf(yz+ 2 1uk)= R (all 
real numbers). Thus, for h= 0, we have Sk(yf:+3 111,d =Yk+ 3, so that the function 
of (3.13) is simply '1.lk+I =g(u IYZ+3)=Yk+ 3. Whence, the right inverse 
"L*: S(R)-S(R) of L is given by 'l.lk+l =y,..+3, which is indeed the expected 
solution for the case h = 0. D 

lf the recursive system L : S(R 111)-S(RP) is an isomorphism, then its 
inverse map "L- 1 : S(RP)-S(Rn 1

) is, of course, uniquely determined. But 
then Theorem 3.12 implies that "L- 1 is a recursive system. We state this fact 
in the following. 

Corollary 3.15 

Let "L : S(R 111)-S(RP) be a recursive isomorphism. Then, its inverse 
"L- 1 : S(RP)-S(R 111

) also is a recursive isomorphism. 

Finally, we shall need a certain refinement of Theorem 3.12 for the case 
when the domain of "L is not all of S( R1n), but only a subset of it. Consider a 
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recursive system L : D--+S(RP), where Dis a subset of S(Rm). It can be shown 
that, for some choices of D, the system L may not have a recursive right inverse 
L* : Im "£--+D, so that Theorem 3.12 cannot be generalized to the case of an 
arbitrary domain D. Nevertheless, Theorem 3.12 can be generalized to the case 
when the domain Dis of the following particular form, which is of main interest 
to us below. A subset D c S(Rm) is recursive if there exists an integer ~ and a 
function a assigning to each point (cx0 , ... , cxf)E(Rml+ 1 a subset a(cx3) c Rm such 
that D consists of exactly all sequences uES(Rm) satisfying uk+ e+1Ea(uZH) for 
all integers k. The function a is called the generating function of D. For 
instance, if n : S(Rq)--+S(Rm) is a recursive system, then Im n is a recursive 
subset of S(Rm). Indeed, letting uk+Hl = f(uZH)vZ+ ') be a recursive repre
sentation of TI, we clearly have for Im n the generating function 
a(uZH) : = {uERm : u = f(uZH lvz+ ') for some vz+' for which (utH )vt+ ')EDo}, 
where D0 is the i/o-space of TI. 

Corollary 3.16 
A recursive system L : D--+S(RP), where D is a recursive subset of S(Rm), 

has a recursive right inverse L* : Im L--+D. 

Proof 

We only have to modify the function g of (3.13) so as to guarantee that the 
sequences it generates are in D. To this end, let a(u%+ f) be a generating 
function of D, and, using the notation of the proof of Theorem 3.12, let 
e: = max ff-(µ-1), O}. Then, we choose an element g'(itZ::- 11yz+IL+11+1)E 

Sk(y%+µ+11+1 1uz+µ- 1)na(uZ!~=~-e), and (3.13) will be replaced by Uk+µ= 
g'(ut::- 1 1yz+µ+11+1

) (so that there is an increase bye of the principal degree of 
the in verse). D 

We conclude this section with a brief discussion of the sum of two systems, 
which we defined earlier in the section. Let L 1, L2 : S(Rm)--+S(RP) be 
recursive systems represented by 

~ v -f (vk+111 juk+ µ1) "'-'1: k+111+1-1 k k 

"" z -f (zk+11•juk+µ,) "'-'2: k+112 +l - 2 k k 

and let L: = L 1 + L2• By definition, the output sequence yES(RP) of L is 
given by y = v + z. As before, we are interested in the recursivity properties of 
the system L. Using an approach similar to the one employed in the derivation 
of (3.2), we can obtain a recursive representation as follows. Define the 

augmented vector w,: = (;:) ; let '1 : = max {'li, 712 }; let e., e2 ;;, 0 be integers 

satisfying 77 = 771 + e1 = 772 + e2 ; and let S : = max {e1 + µ 1, e2 + µ 2}. Then 

( 
f 1 (v%!J1 lu1!:: + µ1) ) 

lv - - • f(wk+11 juk+ ll) k+1J+I- -. k k 

f 2([y- v]Z!J. )itf !::+µ,) + f1 (vf !J1 ju%!!: +µ1
) 

(3.17) 

As in the case of the series connection, this representation has the disadvantage 
of not eliminating the intermediate variable v. We say that the sum L is 
strictly recursive if it has a recursive representation of the form Yk + e + 1 = 
h(y%Hjuf+'), involving only the input sequence u and the output sequence y. 



16 J. Hammer 

Explicit conditions for strict recursivity of a sum of recursive systems can be 
derived from (3.17) and Theorem 3.5. Here, we omit a general discussion of 
this point. We consider only the following particular case, which is encountered 
in our discussion in the later sections. 

Proposition 3 .18 

Let ~ 1, ~ 2 : S(R 111)----+S(R11) be recursive systems, and assume that ~ 2 has a 
recursive representation of the particular form zk+T1,+l = /2(itf+µ.•). Then, the 
sum ~ 1 + ~2 is strictly recursive. 

Proof 

Let Vk+11, + 1 = /1 (vf +11• juf + µ.,) be a recursive representation of ~], and let 
yES(RP) be an output sequence of ~ 1 + ~2 corresponding to the input sequence 
itE8(R 111

). Then, denoting e : = 7J2 -7J 1, we obtain 

Yk+T/1 + 1 = Vk+11, + 1 + Zk+11, + I 

= l1M+ 11• li1f+µ.,) + /2(itf=:+µ..) 

= '1{[yk - '2(uf ===~: = i + µ•) ], .. ·, [Yk+11, - /2(itf =:= ~ + µ.•)] juz+ µ,} 

+ /2(itf=:+µ.) 
which is a (strictly) recursive representation of ~ 1 + ~2 • 

4. Stability and internal stability 

D 

As was pointed out in the classical work of Liapunov, our intuitive notions 
of system stability can be accommodated in a formal mathematical framework 
through the concept of continuity. Continuity here is understood in a strong 
sense, referring to continuous dependence of the system's output sequence on 
the input sequence and on the initial conditions. Intuitively, a system is 
stable if ' small ' changes in the input sequence and in the initial conditions 
cause only ' small ' changes in the output sequence. Before stating the formal 
definition of stability that we shall use in our present discussion, we set up the 
necessary notation. 

First, we define a conventional metric p on our spaces of sequences, starting 
with a metric of Rm. For any pair of elements o: : = (o:1, ... , o:m), 
/3: = (/31, ... , /3'1') of R1n, we define p(o:, /3) : = max jo:i- f3i j. Next, given 

i=1, ... , m 

two sets of elements Y1: = (y 1, ... , y,J and 81: = (81, ... , 81J, where Yi, 8iERm 
for all i = 1, ... , n, we let p(y~, S~): = max {p(yi, Si), i = 1, ... , n}. Also for two 
elements (zJjv~D, (z'cJlv'~)E(RP)11+1 x (Rm)l1-+1, we define p[(zJlvlJ), (z'Jlv'b)l: = 
max {p(zcl jz'3), p(vlJ, v'b) }. Given two sequences u, vES(R 111

), we let 
p0 (u, v) : = sup p(ui, vJ, p(u, v) : = sup 2- lilp(iti, vJ, and p(u) : = p(u, 0). Sum-

i i. 

marizing, p is the conventional metric used in stability considerations. Our 
discussion can be easily adapted to alternative definitions of metrics. 

Much of our discussion in the present section is related to studies of 
continuity properties of functions. When talking about continuity, we shall 
always refer to continuity with respect to the topology induced by the metric 
p. As is usually the case when studying properties related to continuity, it is 
convenient to restrict attention to bounded sets (of inputs). From the practical 
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point of view, boundedness of the inputs is not a severe limitation, since all 
signals in a physical system are necessarily bounded. From the theoretical 
point of view, bounded sets offer some advantages, mainly because they 
frequently allow the use of the notion of uniform continuity, which is techni
cally easier to treat than the more general notion of continuity. So motivated, 
we introduce, for every real {) ~ 0, the set S( om), which consists of all sequences 
uES(Rm) for which p0(u) ~ 0. We denote by Sb(Om) the set of all sequences 
uESb(Rm) satisfying p0 (u) ~ 0. Thus, we have sets of bounded (by 0) input 
sequences. Given a recursive representation !/: Yk+

71
+1 =/(y%+71ju%+µ) of a 

system ~ : S(Rm)~S(RP), the set swn) induces the restricted i/o-space 
Dgc (RP)71+1 X (Rmt+ 1, defined by 

Dg: = U U ([!/(u)]%+T/1uz+µ) 
UES 0 µ(8m) k ;;i, 0 

which is a subset of the i/o-space D0 • As we see, Dg is the i/o-space obtained 
from !/ when the input sequences are bounded by 0. The set Sb(Om), being a 
closed and bounded subset of the space of (one-sided) infinite sequences Sb(Rm), 
is compact. However, the set Dg is in general neither closed nor bounded. 
We shall denote by !/ 18 the restriction of !/ to S(Om). For example, consider 
the single-variable system Yk+i=!(Yk) 2 +(ud. Here, for 0=vl, a simple 
computation shows that Df i = [O, 1) x [ - vi, vi], whereas for {) > v!, the 
set Dg is not bounded. 

Finally, let De (RP)71+1 x (R711)µ+l be a non-empty subset. For every 
element d: = (z6jvb}ED and for every sequence u: = u~µ+l of elements of Rm, 
we denote by !/(d, u) : = y~

71
+1 the output sequence generated by !/ from the 

. ·t· 1 d't· d d h · t th t· /( k+i+71j k+j+µ) 1m ia con 110ns an t e1npu sequenceu, a 1s,Yk+i+71+1 = Yk+i uk+i 
for all integers j ~ 0, where itk+-i: = vi for i = 0, ... , µ,, and Yk+i: = zi for 
i=O, ... , TJ· We now define the notion of stability. 

Definition 4.1 

Let !/: Yk+71+1 =f(y%+71j%+µ) be a recursive representation of a system 
~ : S(R 111)~S(RP), let D be a non-empty subset of (RP)71+1 x (R111)µ+1, and let 
{) ~ 0 be a real number. Then, !/ 18 is stable over D if, for every element dED 
and for every sequence u : = u~ µ + 1 c Rm with p0 ( u) ~ {), the following holds : 

For every E > 0 there exists a S(d, it, E} > 0 such that, for all elements 
d'ED and u': = u':+µ+l c R 1U., where p0(u') ~ {), which satisfy (i) p(d, d') < 
S(d, 'U, E), and (ii) p(it, u') < S(d, it, E), one has that p( !/(d, u), !/(d', u')) < E. 

If the number S(d, u, E} can be chosen independently of d and u, i.e. if 
S(d, u, E) = S(E}, then !/ 18 is uniformly stable over D. If !/ 18 is stable over D 
for any {) ~ 0, then we say that !/ is stable over D. D 

Qualitatively speaking, !/ 18 is stable over D if, when started from initial 
conditions within D, it is continuous with respect to (i) variations of initial 
conditions within D and with respect to (ii) variations of the input sequence (as 
long as it remains bounded by 0). The present definition is in the spirit of the 
classical Liapunov definition of stability. 

When considering control problems, it is common practice to adopt the so 
called ' input/output point of view ', under which one assumes that the system 
was started (at some finite time in the past) from zero initial conditions. In 
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such case, the domain of f/ will always remain confined to the i/o-space D 0 • 

Then, we say that f/ 18 is i/o-stable if it is stable over its restricted i/o-space Dg. 
We say that f/ (or'L) is i/o-stable if f/ 18 is i/o-stable for all 8~0. 

When conditions (i) and (ii) of Definition 4.1 are taken separately, they 
respectively imply the following two statements (where Proposition 4.3 also 
depends on the fact that OEDg). 

Proposition 4. 2 

Let f/: Yk+
71
+1 =f(y%+71ju%h) be a recursive representation of a system 

L: S(Rm)~S(RP), let De (RJJr+ 1 x (Rm)JJ.+1 be a subset, and let 8~ 0 be a real 
number. If f/ 18 is stable over D, then the function f is continuous over D. 

Proposition 4.3 

Let f/: Yk+
71

+ 1 =f(yz+ 71jut+µ) be a recursive representation of a system 
L : S(Rrn)~S(RP), and let 8 > 0 be a real number. If f/ 18 is i/o-stable, then L 
represents a continuous map S0(8m)~S(RP). 

We remark that the converse directions of Propositions 4.2 and 4.3 are 
not true, namely, the continuity off is not a sufficient condition for the stability 
of f/ 18, and neither is the continuity of L as a map St( 8111)~S(RP). 

Proposition 4. 4 

Let f/: Yk+
71
+1 =f(~+ 71juf+µ) be a recursive 

L : S(R 111)~S(RP), let 8 > 0 be a real number. 
L[S:i(8'11

)] is a p-bounded set. 

Proof 

representation of a system 
If f/ 18 is i/o-stable, then 

Assume that f/ 18 is i/o-stable. Then, by Proposition 4.3, the map 
L : S(8m)~S(RP) is continuous. Whenre, since S6(8m) is a compact subset of 
S(8m), it follows that the image L[S 6(8111

)] is compact (see, for example, 
Kuratowski (1961, ch. 15)). Consequently, L[S 6(8m)] is bounded. D 

Regarding the notion of uniform stability, we have the following analogue 
of a classical theorem on continuous functions. 

Proposition 4.5 

Let f/: Yk+
71
+ 1 = f(yf+ 71 juf h) be a recursive representation of a system 

L: S(Rm)~S(RP), let De (RP)71+1 x (Rm)JJ.+1 be a bounded set, and let 8 > 0 be 
a real number. If f/ 18 is stable over the closure JJ, then it is uniformly stable 
there. 

Proof 

Let Sx(8m) denote the set of all sequences u: = u~µ+l e Rm satisfying 
p0(u) ~ 8. Then, the recursive representation f/ induces a map gz from 
JJ x S.i:(8111

) to the set of sequences, given by (d, u)Hf/(d, u) for all dED and 
'UES;r( em). It is easy to see that f/ 18 is uniformly stable over JJ if and only if gx 
is uniformly continuous over JJ x Sx(8m). Now, assµme that f/ 18 is stable over 
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D. Then, gu is clearly continuous over D x Sx(8 111
). But, since D x Sx(8m) is 

compact, the latter implies that g.r is uniformly continuous over D x Sx( em) 
(see, for example, Kuratowski (1961)), so that, by our opening remarks, f/ 18 is 
uniformly stable over D. D 

As we have discussed before, the notion of i/o-stability refers to the stability 
of the system in a situation where it was started from zero initial conditions at 
some finite time in the past. Though this situation is the most common one 
encountered in the practice of control engineering, it is nevertheless well 
established that the notion of i/o-stability is too weak to have any direct 
practical implications. The reason for this fact is that inevitable errors in 
measurement, and noises in the systems environment, actually preclude any 
possibility of fixing the initial conditions at any prescribed values with an 
absolute degree of accuracy. What is really known is that the initial conditions 
are ' close' to their prescribed value. Thus, due to noise and measurement 
error, a system can never be confined exclusively to its i/o-space, and this 
inevitable deviation from the idealized input/output approach has to be taken 
into account. Such considerations have lead to the introduction of the already 
classical concept of internal stability, which, in our present framework, is 
defined as follows. 

Let !/ : Yk+
71
+ 1 = f(y;.+ 71 luf + µ) be a recursive representation of a system 

l: : S(Rm)-+S(RP), and let ng, where 8 > 0, be the restricted i/o-space of!/. For 
a real number ( > 0, denote by ng,, the set of all elements dE(R 11)71+1 x (R 111t+ 1 

satisfying p(d, Dg) < ( (i.e. a (-neighbourhood of Dg). Then, we say that f/ 18 
is internally stable if there exists a ( > 0 such that f/ 18 is stable over Dt ,. 
Qualitatively speaking, !/ 18 is internally stable if any small deviations (possibly 
outside the i/o-space) in its initial conditions do not destroy stability. We say 
that !/ is internally stable if f/ 18 is internally stable for all 8 > 0. Clearly, 
ng c ng,., for any ( > 0, so that an internally stable system is i/o-stable as well. 

As we have seen in § 3, a recursive system l: : S(Rm)-S(RP) determines a 
class O(l:) of i/o-equivalent recursive representations of itself. When the 
system l: is stable, then each one of the recursive representations in O(l:) will 
be i/o-stable. The main question in this context is whether O(~) also contains 
an internally stable representation (when l: is stable). The interest in this 
question stems from our above observation that only internally stable repre
sentations are ' really ' stable from the engineering point of view. To state 
things in somewhat more exact terms, we are interested in the following 
question. 

Problem 4.6 

Given an i/o-stable recursive representation !/, when does there exist an 
internally stable recursive representation !/ * which is i/o-equivalent to !/. 
And, if !/*exists, how does one construct it from the given representation !/. 

In the particular case of time-invariant finite-dimensional linear systems, 
the answer to Problem 4.6 is always in the affirmative, namely, every stable 
linear system has an internally stable recursive representation. Indeed, it is 
well known that the minimal (i.e. reachable and observable) representation of 
a stable linear system exhibits a stable response for any set of initial conditions. 
Thus, the minimal representation of a stable linear system also is internally 
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stable. However, in the general case of non-linear recursive systems, the 
situation is somewhat more delicate, and it deserves a detailed discussion. The 
statement that we have in our mind in this context is that, if a recursive 
representation ff (of a system L : S(Rm)-+S(R 1))) is stable over the closure D0 

of its i/o-space D~, then it can be extended into an internally stable representa
tion. (Recall from § 2 that ff is uniquely determined by L on D0, but it is 
arbitrary outside D0 .) That there is a connection between the system L, the 
stability of ff over D0 , and the existence of an internally stable representation 
of L, is seen as follows. 

Consider a recursive representation ff: Yk+
71

+ 1 =/(y%+71lu%+µ) of a system 
L : S(R 111)-+S(RP). Let (} > 0 be a real number, and let Dg be the restricted 
i/o-space of ff. If ff 18 is internally stable ~en, since evidently Dgc Dg, { for 
any ( > 0, it follows that ff 1 8 is stable over Dg. Thus, the condition that ff 18 

is stable over Dg is a necessary condition for the internal stability of ff. We 
now claim that this condition depends directly on the system L, and not on the 
particular representation ff that we consider. Indeed, in view of Theorem 2.5, 
we have that, for every point dEDg, the value y: = /(d) is uniquely determined 
by the input/output map L, so that the function/ is uniquely determined by L 
on Dg. Furthermore, if ff 18 is ~table over ng, then, by Proposition 4~, the 
function / is continuous over Dg. In such case, the values of / on Dg are 
uniquely determined by its values on Dg through the continuity requirement 
that, for any point dED8 

/(d) = lim /(x 11) (4. 7) 
U-HX) 

where {x,J c Dg is any sequence converging to d. Thus, if / has a continuous 
extension to 158, then its values there are uniquely determined by L. In 
summary, the condition that ff 18 be stable over D8 is a necessary condition for 
internal stability, and it depends directly on the system L, and not on the 
particular representation ff. The question is, of course, whether this necessary 
condition also is sufficient. Below, we give an affirmative answer to this 
question under a certain assumption on the system L, which we use in order to 
simplify our discussion. 

We start with an examination of the restricted i/o-space Dg, showing that, 
for a stable system, the restricted i/o-space is a connected set. 

Proposition 4. 8 

Let ff: Yk+
71
+1 = f(yz+71 luf+µ) be a recursive representation of a system 

L : S(Rm)-+S(R1'), let, (} > 0 be a real number, and let Dg be the restricted i/o
space of ff. If ff 18 is i/o-stable, then Dg is a connected set. 

Proof 

Assume that ff 18 is i/o-stable, and recall that then the function / 1s 
continuous over Dg by Proposition 4.2. Define the set 

j 

Ai : = U U ([ ff (it) t + 71 I u~ + µ) 
ueS 0 µ(0m) i=O 

ct:) 

so that Dg= U Ai. Evidently, AjcAj+l for all integers .i~O. Assume 
j = O 

now, for a moment, that (*)A j is a connected set for all integers .i ~ 0. Then 
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it follows by the previously mentioned facts that ng is a connected set as well. 
Thus, our proof will conclude upon proving ( * ), which we now do by induction. 
First, we note that A 0 =(OJI 06) consists of only one point, and whence is 
connected. Further, assume that, for some n ~ 0, the set An is connected, and 
define the function F: (RJJy,+1 x (Rmt+ 1----+(RPy,+1 x (Rm)µ. by F(y 6ju6): = 
(y1, ••• , y

71
, f(yJju:i)lu 1, ••• , uµ.). Then since/ is continuous, so is also F. Let 

Bi+l := F[Aj], and notice that Ai+l =Bi+l x [-8, B]m (i.e. adjoining uµ.+l to 
the input coordinates). By the continuity of F and the fact that An is con
nected by the induction assumption, it follows that Bn+ 1 is connected (since it 
is the continuous image of a connected set (see Kuratowski 1961)). But then, 
since A 11+1 = B11+1 x [ - 8, B]m is the cross product of two connected sets, we 
obtain that An+I is connected, so that (*) holds by induction, and proof 
concludes. D 

As we see from Proposition 4.8, the restricted i/o-space ng of a stable 
system is always a connected set. The proof of our following statement 
becomes simpler if we assume that ng is not only connected, but also convex. 
Recall that a set Sc R11 is convex if, for any pair of points s1, s2ES, the straight 
line segment connecting s1 and s2 is in S. For example, consider the single
input single-output system Yk+i=!(yk)2+uk with B=f. Here, a sim:ri3 
computation shows that D5'2 = [ - !, 1) x [ - !, ! ], which clearly is a convex 
set. The closure of the restricted i/o-space here is D5'2 = [ - !, 1] x [ - !, ! ]. 
Below, we denote by .9518 the recursive representation obtained from 9' 18 by 
extending the recursion function/ from ng tong through (4. 7), whenever such 
an extension exists. 

Theorem 4.9 

Let ff: Yk+
71
+1 = f(y%+71 juz+µ.) be a recursive representation of a system 

~ : S(R 111)----+S(RP), and assume that, for some 8 > 0, the restricted i/o-space ng 
of 9' ~abounded convex set. If the extension .9518 of Y 18 exists and is stable 
over D8, then there is a recursive representation 9'' for which 9' 18"' ff 18 and 
.9'18 is internally stable. 

Proof 

We assume that ng is bounded convex, and that .9518 is stable over ng. 
Now, choose some ( > 0. We construct a recursive representation ff' : 
Yk+.!]_+ I= f' (yz+T/ j11,f + µ.) defined over D8, ,, which satisfies (i) for all elements 
dED8 and uES;r( 8111

) (where S;r( 8111
) was ·defined in the proof of Proposition 4.5), 

one has ff' (d, u) = 9'(d, 11,) ; and (ii) there is a fixed integer J ~ 0 such that, 
for all elements dEDg,, and uES.c(8111

), one has that ([9''(d, u)H+ 71juJ+µ.)EDg for 
all j ~ K +J, where K is the time when the system is started from the initial 
conditions d. Namely, 9'' coincides with .95 after at most J steps. Assume, 
for a moment, that we have constructed a representation 9'' satisfying 
conditions (i) and (ii), for which the function f' is continuous over ng. ,. Then, 
using the facts that ng,, is compact; that any finite iteration off' is continuous 
(since j' is continuous) over ng, t ; and that 9'10 is stable over ng, it can be 
r~adily shown that (i) and (ii) imply that the representation 9' 18 is stable over 
D8. ,. Thus, our proof will conclude upon constructing a continuous function 
/' satisfying (i) and (ii). 
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In order to make the construction off' more transparent, we divide it into 
two stages, where in the first stage we extend only the domain of the initial 
conditions y6 to a (-neighbourhood, and in the second stage we extend the 
domain of the initial input values itlj to a (-neighbourhood (for all points of the 
previous stage). For the first stage, we construct an extension D 1 of 15g 
given by 

D 1 := {(sZlvlJ): p(sZ, zZ)< ( and (zZlvlJ)E15g} 

that is, including neighbourhoods of radius ( of all the initial conditions z6. 
Let d: = (sZlvlJ} be any point of 151. We now assign to d a point d*E15g as 
follows: Let a 1, a2 , ••• , aJJ<

71
+1> be the real numbers such that aip+l' aip+2 , ••• , 

aip + P are the entries of the vector sc71- 0ER1\ i = 0, ... , YJ (note the reverse 
ordering). For notational convenience, we identify (a1, ••• , aJJ(T/+1)) with sz 
through the above ordering. Now, for each j = 1, 2, ... , p(YJ + 1), let aj be the 
closest real number to aj for which there exist numbers xi+l' ... , xJJ<

71
+o satisfying 

(at, at, ... , ar, Xj+l' ... , XJJ(71+l)lv1J}E15g 

Let s*6:= (at,at, ... ,aJ!',71+1>), and denoted*:= (s*6lv1J). Since 15g is non
empty, d* always exists. We next show that d* is unique. 

Let aj, j = 1, ... , p(YJ + 1)-1, be the set of all elements (xj+I' ... , xJJ(71+1>) 
for which (at, ... , aj, xi+l' ... , xJJ<

71
+n)E15g, and let a 0 : = 15g. Then, aj is 

non-empty for all j. In view of our assumption that ng is convex, it follows 
that all of the sets a j, j = 0, ... , p( YJ + 1) - 1, are connected. Whence, for each 
j=O, ... ,p(YJ+l)-1, the set yj of all elements xER such that (x,xj+ 2 , ••• , 

xP(
71
+1>)Eaj for some xi+ 2 , ••• , xP(T1+l) is an interval [aj, ,Bj] in R (we note that 

[aj, ,Bj] is the projection of aj on its first coordinate). But then, for each 
j=O, ... ,p(YJ+l)-1, either ai+ 1E[aj,,BJ, or aj+ 1 >,8j, or aj+ 1 <aj, in which 
case the unique value for aJ+l is aJ+l =ai+l' or aj+ 1 =,Bj, or aJ+I =aj, res
pectively. Thus, d* is uniquely determined by d, and we have obtained a 
function <p : 151

1---415g : d---4d*. Moreover, it can be readily seen that <p is 
continuous. 

Still using the above notation, we define the function / 1 : 151---4RP by 

!/\: / 1(s6lv1J): = /(s*6lv1J) (=I O </>) (4.10) 

for all points (s6!vlJ)E151. Then, by the continuity off (see Proposition 4.2) and 
the continuity of <p, the function / 1 is continuous over 151• Also, by our 
construction of f 1 and of s*z, we obtain that, for every dE151 and UESx( {Jin}, the 
output sequence y*;+ 71+1 : = 9\(d, u) (where, as before, K is the starting time 
from the initial conditions d) satisfies Y!+71+ 1 +i = yK+

71 
+ 1 +i for all i °?:-YJ. Thus, 

conditions (i) and (ii) hold for 9\ over 151. In view of the continuity of / 1, 

this completes the first stage of our extension (going from 15g to 151). 

The second and final stage of our extension of !/ (extending from 151 to 15g, ,) 
is done similarly to the first stage, by interchanging the roles of z6 and vt ; by 
replacing 15g by 151 ; and by replacing 151 by 15g. ,. D 

5. Rational systems 
In the present section we study the representation of a given non-linear 

system as a quotient of two stable systems. More specifically, let 
~ : S(Rm)---4S(RP) be a recursive system. Regarding ~ as a map, it is known 
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(for example, Maclane and Birkhoff (1979, ch. 1)) that it can be factored into 
~ = PQ, where P : s~S(RP) is an injective map, Q : S(Rm)~S is a surjective 
map, and where S is a suitable space. Now, every injective map has a left 
inverse, and every surjective map has a right inverse. Thus, there are maps 
P* : S(RP)~S and Q* : s~S(Rm) such that P*~ = Q and ~Q* = P. From the 
control theoretic point of view, the cases of interest are those where either P* 
and Q are both stable, or Q* and P are both stable. In the first case, the 
system~ can be stabilized by non-singular (on Im~) stable postcompensation, 
whereas in the latter case, the system ~ can be stabilized by non-singular 
stable precompensation (here, by non-singular we mean injective). The 
solution to the problem of stabilizing through non-singular stable compensation 
forms the first stage of the solution to the problem of internally stabilizing a 
non-linear system, in close analogy to the situation in the case of linear systems 
(see Desoer and Chan 1975, Hammer 1983 a, c). Of course, we are particularly 
interested in cases where P* and Q* are recursive systems. Formally, we 
devote the present section to the construction of so called 'stability 
representations ', which are defined as follows. 

Definition 5.1 

Let ~ : S(R:)~S(RP) be a non-linear recursive system. Assume that 
there is a factorization ~ = PQ where, for some integer q ~ 0, the system 
Q : S(Rm)~S, Sc S(Rq), is a surjective recursive system, and P : s~S(RP) is 
an injective recursive system. Then, ~ = PQ is a left stability representation of 
~ if q = p, and if Q is stable and P has a recursive stable left inverse P* : 
Im ~~s ; ~ = PQ is a right stability representation of ~ if q = m and if P is 
stable and Q has a recursive stable right inverse Q* : s~S(Rm). The system~ 
is left (respectively, right) rational if it has a left (respectively, right) stability 
representation. D 

As is well known, a finite-dimensional time-invariant linear system always 
has both right and left stability representations. One such representation is 
induced by the usual polynomial matrix fraction representation of the transfer 
matrix of the system. However, in the non-linear case there are recursive 
systems which do not possess stability representations. In our discussion 
below we give necessary and sufficient conditions for the existence of left and 
of right stability representations. We also describe the construction of such 
representations whenever they exist. We start with a brief investigation of the 
discontinuities of a rational system. In the following statement we show that a 
left rational system cannot have finite jump discontinuities. The only type of 
discontinuity that it can have is divergence, namely, it may transform a 
bounded input sequence into an unbounded output sequence. Thus we see 
that, in contrast to the case of linear systems where rationality is a mild 
requirement, for non-linear systems rationality is a rather strong condition, and 
the class of non-linear rational systems is substantially smaller than the whole 
class of non-linear recursive systems. Let ~ : S(Rm)~S(RP) be a recursive 
system. Adhering to classical terminology, we say that ~ is Bl BO (bounded
input bounded-output)-stable if, for every 8 > 0, there exists an M( 8) > 0 such 
that, whenever an input sequence uES(Rm) satisfies p0 (u) ~ 8, then the output 
sequence satisfies p0(~u) ~ M(8) (where M(8) and 8 are both finite). 
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Theorem 5.2 

Let L : S(R 111)---+S(RP) be a recursive left rationalla!•
stable, then L : Sfi(Rm)---+S(RP) is a continuous map. 

Proof 

If~ is BIBO-

Let ff : Yk+T/ + 1 = f(yz+T/ Jnz+ µ) be a recursive representation of L, and let 
L = PQ be a left stability representation. Then, P: Im Q---+Im L is both 
injective and surjective, and, since its inverse p- 1 is stable, it follows by 
Proposition 4.3 that p- 1 is continuous on S6(8P). For an arbitrary 8 > 0, define 
the sets A:= Q[Sfi(8111

)] and B: = L[Sfi(8111
)], so that B= P[.d 1- Now, since 

S0(8111
) is compact and since Q is continuous by Proposition 4.3, it follows that 

the set A is compact. Whence, A is closed and, since p- 1 is continuous and 
B=(P- 1)- 1lA], we have that Bis closed as well. Also, by our assumption 
that , Lis BIBO-stable, Bis a bounded set. Thus B, being bounded and closed, 
is compact. But then, since p- 1[B]=A, since p- 1 is continuous, and since 
every continuous injective and surjective function over a compact domain is a 
homeomorphism (for example, Kuratowski (l 961, ch. 15)), it follows that Pis 
continuous over A, and whence L = PQ is continuous over S0(8m). Finally, 
since our argument holds for any 8 > 0, the assertion follows. D 

Theorem 5.2 is a manifestation of a very interesting analogy between non
linear rational systems and finite-dimensional time-invariant linear systems. 
It is well known that such a linear system LL : S(Rm)---+S(RP) has the important 
property that it is BIBO-stable if and only if it is continuous as a map 
(Kwakernaak and Hivan 1972). As we now see, this property is a direct 
consequence of left rationality, and it is shared by any recursive non-linear left 
rational system. The proof of Theorem 5.2 can be used to prove the following 
slightly stronger statement. 

Corollary 5.3 

Let L : S(R 111)---+S(RP) be a recursive left rational system, with recursive 
representation ff : Yk+T/ + 1 = f(yz+T/ liiz+ µ). Let CC S1j(R111

) be a compact set. 
If L[C] is a bounded set, then L is continuous over C. 

Our next objective is to obtain a characterization of rationality in terms of 
the recursive representation of the system. This characterization will elucidate 
the connection between rationality and certain properties of the (given) 
recursion function of the system. To state things somewhat more precisely, 
let L : S(Rlli)---+S(R11) be a recursive system, and let [/7: Yk+T1+l = f(yz+T/ liiz+µ) 
be a recursive representation of it. We show that Lis left rational if and only 
if the function f can be decomposed into a sum of functions /=/ 1

1+/ 2 , where / 1 

and / 2 are required to satisfy certain conditions discussed below. Once the 
functions / 1 and / 2 are computed, they directly determine recursive representa
tions for systems P and Q in a left stability representation L = PQ. One 
interesting feature of this characterization is the fact that its basic ingredients 
are valid for numerous definitions of the notion of stability, not just for the 
one adopted in Definition 4.1. Thus, it will also be suitable for application in 
situations in which a different notion of stability is used, for example, in cases 
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where one is specifically interested in BIBO-stability, or in other notions of 
stability, as we discuss after stating the next theorem. In the meanwhile, we 
proceed with an introductory discussion, explaining some features of this 
characterization and giving an indication as to its origin. 

Consider again the system L and its recursive representation !/. We 
denote by D 00 the subset of (Im L) x S:i(Rm) consisting of all elements (y ju,) 
such that y = Lit. Let L = PQ be any factorization of L, where Q : S(R 111)---+S, 
Sc S(RP), and P : S---+S(RJJ) are recursive systems, and where P is injective 
and Q is surjective. Then, clearly, the kernel of Q is equal to the kernel of L. 
Now, by Corollary 3.16, the system p-i : Im L---+S also is recursive, so let 

!/ 1 : Zk+ tx+ 1 = h1 (z%+tx 111r .8) } 

!/2: Zk+tx+l =h2M+txjy%+.B) 
(5.4) 

be recursive representations of Q and p- 1, respectively. (Note that, since the 
principal degree can always be increased by shifting, we can assume that !/ 1 

and !/ 2 have the same principal degree.) Let 

!/3: Yk+y+I =ht(y%hlz%H) 

be a recursive representation of P. Now, since by assumption L = PQ and L 
is recursive in u and y, it follows by Theorem 3.5 that the pair (ht, h1) is com
patible. Whence, using (3.8) and the fact that P is injective, one can express 
Zk= Go(yz+rjuf+d), k= ... , - I, 0, I, ... , where c and d are suitable integers. 
Substituting now the function G0 ( ·) for zk, ... , zk+tx into the right hand sides of 
(5.4), we obtain the systems 

A : D 00 ---+S(RP) : Zk+ tx+ 1 = /3(y%+a ju%+b) (5.5 a) 

B: Doo---+S(RP) : Zk+tx+l = f~(yz+a lut+b) (5.5 b) 

where the functions / 3 and/~ are the respective compositions of h1 and of h2 with 
G0 , and where a, b are suitable integers. We note that the systems A and B 
are trivially recitrsive in the sense that the functions / 3 and/~ do not depend on z. 
Equating (5.5 a) and (5.5 b), we obtain the equation 

(5.6) 

which holds for every element (ylit)ED 00 • From the recursive representation 
of L we also have Yk+

71
+1 -f(yz+ 711uz+µ)=O for every element (y!it)ED 00 • 

Defining f.i(yz+e1uz+1i) := Yk+
71
+1 -/~(yz+ajuf+b), where e := max {a, 17+ I}, and 

equating the latter two zero-expressions, we finally obtain the sum decom
position 

(5.7) 

which is valid for all elements (y j1t)ED 00 • 

Some further properties of the sum decomposition (5.7) are of interest to us. 
First, let h: (R 11)71'+1 x (Rmy+ 1---+RP be a function. We say that the pair 
(h, /) is adapted if, for all pairs of elements u, u' ES(R 111

) for which ~u = Lu' =: y, 
one has h(yz+71' luz+ µ') = h(yz+71' lu't+ µ') for all integers k (that is, a kernel contain
ment condition). Then, in view of the fact that Ker Q = Ker L, it follows that 
the pair (/8 , /) is adapted. and, using (5.7), this implies that also (i) the pair 
(/!t, /) is adapted. 



26 J. Hammer 

Further, let Y*: uk+µ=g(uf+µ- 1 jyf+ 11+µ+ 1) be a recursive representation 
of a generalized right inverse L* of L (see Theorem 3.12), and consider the 
augmented system [ly, L*] : Im L~(Im L) x S(Rm) given by 

(u~:J = Cuz+,-1~:+,+,+1)) 

where, for brevity and clarity, we denote the right-hand side function by 
[ly,g]. Then, p- 1 =B[ly,L*] (the series combination, which, by (i), is not 
affected by the non-uniqueness of L*), so that, by Theorems 3.5 and 3.18, the 
fact that p- 1 is recursive in z, y implies that (ii) the pair (/4 , [ly, g]) is com
patible. Next, let the system [L, lu] : S(Rm)~(Im L) x S(Rm) be given by 

(::+') = cyZ+:uf+")) 
and denote the right-hand side function by [/, I u]. Then, Q = A [L, I u], and 
whence, as before, it follows that (iii) the pair (/3 , [/, lu]) is compatible. Thus 
we conclude that the existence of a sum decomposition (5.7) satisfying (i), (ii) 
and (iii) is necessary for any factorization of the system L into a composition of 
recursive systems L = PQ, where Pis injective and Q is surjective. 

Of course, in our present discussion we are interested not just in plain 
factorizations L = PQ, but in such factorizations where the systems p-i and Q 
are stable. Adding the latter requirement to our previous considerations leads 
to the following. 

Theorem 5.8 

Let L: S(Rm)~S(RP) be a recursive system with a recursive representation 
g: Yk+11+l =f(yz+ 11juf+µ). Let Uk+µ=g(uz+µ- 11yz+µ+11+1) be a recursive repre
sentation of a generalized right inverse L* of L. Then, Lis left rational if and 
only if the recursion function f can be decomposed into a sum 

f(yf +11 juf +µ) = f 1 (yf +11 ju%+µ')+ f 2(YZ+11 juz+ µ'), (y ju)EDoo (5.9) 

where µ' ~ 0 is an integer, and where the functions f 1 and f 2 satisfy the 
conditions : 

(a:) The pair (/2 , I) is adapted, and the pairs (/1, [I, lu]) and (/2 , [ly, g]) are 
compatible. 

(/3) For every pair of elements (y ju), (y' ju 1 )ED 00 , the equality 

Yk+11+l - f 2(Yf+11 luz+µ') = Y;+11+l -My'z+1) lu't+µ') 

for all integers k, implies that y = y'. 
(y) The series combination A[L, lu]: S(Rm)~S(RP), where A 1s the 

trivially-recursive system Wk=f1(YZ+111uz+µ'), is i/o-stable. 
(S) The series combination B[ly, L*] : Im L~S(RP), where B is the 

trivially-recursive system Vk=Myz+ 111uz+µ'), is i/o-stable. 

The proof of Theorem 5.8 will be stated later in this section. As we can see, 
condition (a:) of the theorem is a restatement of the algebraic conditions (i), (ii) 
and (iii) of our previous discussion, while condition (/3) originates from the 
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invertibility of the system P: Im Q~Im ~ in the above used factorization 
~ = PQ. The topology-related conditions (y} and (S) come to secure the 
stability of the systems p- 1 and Q. It is worthwhile to note that the systems 
A and B are trivially-recursive, a fact that facilitates the verification of 
conditions (y) and (S). 

There are numerous occasions of practical interest in control engineering 
for which Theorem 5.8 provides a convenient tool for the verification of 
rationality as well as for the construction of left stability representations. We 
now demonstrate a few such occasions. Let ~ : S(Rm)->S(RP) be a recursive 
system. We say that ~ is separable if it has a recursive representation of the 
form Yk+71+l =a(yz+ 71) +b(uf+µ), where a: (RJJp+1~RP and b: (R 111)µ+l~RP 
are continuous functions. For example, the system S(R 2)~S(R 2

) described 
by the representation 

(

Y;+3) = (2(y;+2)3Y;+1 + sin y;+ 3 + (u;+4)2u;) 

Y;+3 cos (y;y;+1}+5 sin (u;+ 1)3+ 1 

where Yk = ( y~) and uk = ( u~), is a separable system. The class of 
Yk Uk 

separable systems includes such common classes of systems as the linear time-
invariant systems, systems described by Ricatti equations with time-invariant 
coefficients, and, of course, many others. It is an easy consequence of Theorem 
5.8 that every separable system is left rational, as we next show. 

Corollary 5.10 

A separable recursive system ~ : S(Rm)~S(RP) is left rational. 

Proof 

In view of our separability assumption, let Yk+TJ+l =a(y%+71)+b(uZ+µ), where 
a and b are continuous functions, be a recursive representation of ~. In the 
notation of Theorem 5.8, let f1 : = b(uz+µ) and f2 : = a(y%+71). Then, since f1 

does not depend on y and since f2 does not depend on u, it follows that the pair 
(/ 2, f) is adapted, and that the pairs (/1, [/, lu]) and (/2 , [ly, g]) are compatible 
(since every function is evidently compatible with the identity). Thus, (a) 
holds. To show that (fJ) holds, we note that the unique inverse of zk = 
Yk+71+ 1 -a(y%+ 71) is clearly given by Yk+TJ+l =a(y%+ 71)+zk, whence we have 
injectivity. Finally, turning to (y) and (S), we have that vk=a(yf+ 71) is a 
recursive representation of the system B[ly, ~*], and that wk=b(1t%+µ) is a 
recursive representation of the system A[~, I u]. But then, using our assump
tion that a and b are continuous functions, and noting that (by compactness) 
the functions a and b are uniformly continuous over the sets S6( ()JJ) and Sb( ()m), 
respectively, for all () > 0, a direct verification of Definition 4.1 shows that 
conditions (y) and (S) are satisfied. Thus, all conditions of Theorem 5.8 hold, 
and ~ is left rational. D 

As we have already mentioned before, it is easy to see that Theorem 5.8 
continues to hold under a variety of different notions of stability, not only 
under the one of Definition 4.1. Actually, the only stability related property 
that we use in the proof of Theorem 5.8 is the following. 
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Property 5 .11 

If T : vk+r+ 1 = h(vf.+c lyf +d) is an i/o-stable recursive representation, then the 
system F having input sequence y and output sequence z given, for all integers k, 
by zk=Yk+TJ+l -vk, also is i/o-stable. 

We show in Lemma 5.16 that Property 5.11 holds for the notion of stability 
defined in Definition 4.1. For the other notions of stability that we discuss 
below, it is readily seen that it holds as well. 

A common notion of stability extensively employed in the control theoretic 
literature is the notion of BIBO-stability that we have mentioned earlier, 
where the class of BIBO-stable systems consists of all recursive systems for 
which every bounded input sequence generates a bounded output sequence. 
We say that a recursive system I: : 8(R 111)->S(R 11

) is left Bl BO-rational if 
there exists a factorization I: = PQ, where P and Qare recursive, Pis injective, 
Q is surjecti ve, and p- t and Q are both BIBO-stable systems. Theorem 5.8 
yields the following characterization of BIBO-rationality. 

Corollary 5.12 

Let I: : S(Rm)->8(RP) be a recursive system with a recursive representation 
ff: Yk+TJ+i = f(yf+TJ l·uf+µ). Then, I: is left BIBO-rational if and only if the 
recursion function f can be decomposed into a sum 

f(yf +TJ I uf.+ µ) = f 1 (yf +TJ l·uf + µ') + f .jyf.+TJ jil%+µ'), (y lu)EDoo 

where the functions f 1 and / 2 satisfy conditions (Cl'.) and (/3) of Theorem 5.8 
together with the following conditions : 

(y') For every real 8 > O there exists an 111(8) >Osuch that p(/ 1 (yf+TJ lilz+µ')) ~ 
JJ(8) whenever p0(u) ~ 8, for all (y iil)ED 00 , and all integers k. 

(S') For every real 8 > 0 there exists an N(8) > 0 such that p(f2(y%+TJl11%+µ')) ~ 
N(8) whenever p0 (y) ~ 8, for all (y ln)ED 00 , and all integers k. 

Thus we see that, for BIBO-rationality, conditions (y) and (S) of Theorem 
5.8 reduce to the simple requirement that the functions f 1 and / 2 be bounded 
over respective regions in their domains. We shall state the proof of Corollary 
5.12 later in this section. In the meanwhile, we give an example of its 
application. 

Example 5.13 

Consider the single-input single-output system given by 

I: : Yk+ 1 = yf + (uf + 1) [ exp ( -yf) + 1] - 2 

(here the superscript 2 indicates square). This system is evidently not BIBO
stable (its response to uk = l, k ~ 0, is unbounded). We now choose the 
functions 

/ 1 := (uf+l) [exp (-yf)+l]-2; / 2 := yf 

Then, conditions (y') and (S') are evidently satisfied, and, since the system 
zk=Yk+l -yi has the unique inverse Yk+i =zk+y;., condition (/3) holds too. 
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Also, since f 2 does not depend on u, the pair (/2 , /) is adapted, and the pair 
(/ 2 , [ly, g]) is compatible. Finally, in order to show that the pair (/1 , [/, lu]) 
is compatible, we directly express the sequence zk: = f 1(ykJiik}, k= ... , -1, 
0, 1, ... , recursively in terms of u and z. Such an expression can be obtained 
(in this case) simply by eliminating yi in terms of uk and zk, computing Yk+ 1 

from this expression by using the recursive representation of~' and substituting 
the result into zk+ 1. One thus obtains 

(5.14) 

(This expression is, of course, defined only over its i/o-space.) Whence, all 
conditions of Corollary 5.11 are satisfied, and ~ is BIBO-rational. D 

An additional common notion of stability is continuity. We say that a 
system ~ : S(Rm)~S(R 11) is 0-stable if it constitutes a continuous map 
SfiR 111)~S(RP). Again, C-stability is a weaker notion of stability than the one 
used in Definition 4.1. We say that a recursive system ~ : S(R 111)~S(RP) 
is left C-rational if it has a factorization ~ = PQ, where P and Q are recursive 
systems, Pis injective, Q is surjective, and p- 1 and Qare both C-stable systems. 
For C-rationality, conditions (y} and (S) of Theorem 5.8 can be reduced to 
certain continuity requirements on the functions f 1 and /2 , as follows. Let 
~ : S(Rm)~S(R 11) be a recursive system, and, as before, let D 00 c (Im~) x St(Rm) 
be the set of all pairs (yJii) where y=~u. We now induce on D 00 two different 
topologies. First, let Ou be the class of all subsets Ou( 8) c D 00 , where 8 varies 
over all positive reals, and where Ou(8) consists of all elements (yJit}ED00 

satisfying p0 (u) < 8. We regard Ou as a base of a topology on D 00 , which we 
call the U-topology. Symmetrically, let Ou be the class of all subsets 
Ou(B) c D 00 , where 8 varies over all positive reals, and where Oy(8) consists of all 
elements (yJu)ED 00 satisfying p0 (y) < 8. Again, we regard Cy as a base of a 
topology on D 00 , which we call the Y-topology. Using this terminology, we 
obtain the following characterization of left C-rationality, the proof of which 
will be stated later in this section. 

Corollary 5.15 

Let~: S(Rm)~S(RP) be a recursive system with a recursive representation 
f/: Yk+TJ+i = f(y%+TJ Jiiz+µ). Then,~ is left C-rational if and only if the recursion 
function f can be decomposed into a sum 

f(y%+TJ Jut+µ)= f 1(Y%+TJ Ju%+µ')+ f 2(YZ+TJ Ju%+µ'), (y Ju}ED00 

where the functions / 1 and / 2 satisfy conditions (ex} and (/3) of Theorem 5.8 
together with the conditions 

(y") The trivially recursive map F 1 : D 00 ~S(RP): wk= f1(y%+TJJu%+µ'), 
k= ... , -1, 0, 1, ... , is continuous with respect to the U-topology on 
Doo. 

(S") The trivially recursive map F2: Doo~S(RP): Vk=f2(Y%+TJJuz+µ'), 
k= ... , -1, 0, 1, ... , is continuous with respect to the Y-topology on 
Doo. 
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Thus we see that, in the case of left C-rationality, conditions (y) and (S) of 
Theorem 5.8 reduce to suitable continuity requirements (y") and (S") on the 
functions f 1 and f 2. The verification of these requirements is Rimplified by the 
fact that the maps .F1 and F 2 are trivially recursive. 

Theorem 5.8 also provides a method of actually constructing a left stability 
representation of a system, whenever one exists. The functions f1 and f 2 

defined in the theorem play a crucial role in this construction. The explicit 
construction of a left stability representation is described in the proof of 
Theorem 5.8 stated below. We shall demonstrate this construction on some 
examples immediately following the proof. The first step of our proof of 
Theorem 5.8 consists of the following auxiliary result. 

Lemma 5.16 

Property 5.11 holds for the notion of stability of Definition 4.1. 

Proof 

We use the notations of Property 5.11 and of Definition 4.1. By Proposition 
3.18, the system Fis recursive, so let f/: zkH+l =h(z;.HjyzH) be a recursive 
representation of F, where we choose f ~ c, and let D 0 be the i/o-space of !/. 
Then, by the definition of F, we obtain for any points d : = (z;.+ s jyz+ {) and 
d': = (z't+fjy'f.H) of D0 and y, y'ESfiBP) 

p[ f/(d, y), f/(d'' y')] ~ p(y, y') + p{ T[(vz! i-r IYZ! i=~+<t y], 

T[(v'z! i-r. ly'z! i=~+d), y']} 

Also 

( k+s 'k+s )~ ( ') ( k+s 'k+s ) p Vk+s-c' V k+f-c "p y, y + p Zk+s-<'' z k+f-c 

Combining these facts with the stability of T, the stability of !/ follows 
through a standard 'E- S' argument. D 

Proof of Theorem 5.8 

Necessity. We have already shown that the existence of a factorization 
L = PQ, where P and Qare recursive, Pis injective and Q is surjective, implies 
the existence of the sum decomposition (5. 7) which satisfies conditions (o:) and 
(/3) (where (/3) is implied by the invertibility of P). In order to reconciliate the 
slight difference between (5.7) and (5.9), we recall that over D 00 one has 
Yk+

11
+ 1 = f(yt+ 11 jut+µ.). ·whence, we can express in (5. 7) the variables Yk+

11
+1 , ... , 

Yk+e in terms of Yk, ... , Yk+11 and uk, ... , uk+ µ+e- i · When these expressions are 
substituted in (5.7), the equivalent form (5.9) follows. Thus, it only remains 
to consider conditions (y) and (S). Recalling the left stability representation 
L=PQ from which (5.7) was derived, it follows by our construction of f1 t,hat 
Q = A[L, lu], so that (y) follows by the i/o-stability of Q. Finally, let 
E: S(RP)~S(RP) be the system represented by zk=Yk+

11
+i· Then, by our 

construction of the function f2 , we have p- 1 = E-B[f 1, L*], so that 
B[ly, L*] (=E-P- 1

) is stable by the stability of p- 1 and Lemma 5.16, and 
( S) is necessary. 
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Sufficiency. Assume that the functions / 1 and /2 satisfy the conditions 
stated in the theorem. We show that in such case one can construct from f1 

and / 2 a pair of systems P and Q so that L = PQ is a left stability representation. 
To this end, we first induce a slight transformation on the functions f1 and / 2 to 
obtain the following functions ft and t: (for the purpose of guaranteeing that 
PO=O and QO=O). 

tt(y%+11 lu%+ µ') : = f jyz+ 11 lut+µ') - f i(of +11 I of+µ'), i = 1, 2 

In view of the fact that /(0%+11 IO%+µ)= 0, it follows that we still have a sum 
de com position 

(5.17) 

and, since /i and n differ from /1 and /2, respectively, only by an additive 
constant, it is evident that ft and ft also satisfy conditions (a), (/3), (y) and (S) 
of the theorem. We define now the systems 

A* : Doo~S(RP) : Vk= ft(yz+11 lui+µ') 

B*: Doo~S(RP): 'Wk=Yk+11+1 -f:(y%+ 11lui+µ') 

and we combine them into 

Q: A *[L, lu] : S(R'm)~S(RP), W: = B*[ly, L*] : Im ~~S(RP) (5.18) 

In view of (a), Theorem 3.5 and Proposition 3.18, the systems Q and W are 
strictly recursive. By (/3), the system W : Im L~Im W is injective (and, 
whence, invertible), by (y) the system Q is stable, and by (S) and Lemma 5.16, 
the system Wis stable. Furthermore, since by (5.17) we have 

Yk+11+1 -fl(yz+ 11 lui+µ') = ft(yz+ 11 lui+µ') over Doo 

it follows in particular that Im A*= Im B*, so that Im W = Im Q. Whence, 
letting P: = w- 1, we have that Im Q=Domain P, and we can define the 
system L 1 := PQ (where P: Im W~Im L). We next show that L 1 is i/o
equivalent to ~- To this end, let uES(Rm) be any element, let y: = LU, and 
assume for a moment that Wy=Qu for all uES(Rm). Then, clearly, 
y= w-1Qu=PQu=L 1u, so that~ and L' are i/o-equivalent. Thus, our proof 
will conclude upon showing that Wy = Qu, which we now do. Let u' : = L*y, 
so that LU1 =y=~u. Then, denoting v := Qu and w := Wy, we have 
vk = /t(y%+11 lu,X+ µ') and wk= Yk+11+ 1 - ft(yf +11 lu'f + µ') for all integers k. Since the 
pair(!;,/) is adapted and ~U=Lu 1

, we have that /;(yf+ 11lu'Z+µ')=/;(y%+ 11luf+µ') 
for all integers k, so that Wk=Yk+11+1-f:(yz+111uf+µ'). But then, recalling that 
Yk+11+1 =f(y%+11lu%+µ), it follows by (5.17) that wk=vk for all integers k. Thus, 
W y = Qu, and our proof concludes. D 

We now demonstrate the explicit construction of left stability representa
tions using (5.18) for the examples that we have considered earlier in the 
section. First, consider a separable system L : S(Rm)~S(RP) represented 
by Yk+.,,+l =a(yf +11) + b(uf+µ), where a and b are continuous functions. In 
view of the proof of Corollary 5.10, we can choose the functions / 1 and / 2 of 
Theorem 5.8 as 
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Following the proof of Theorem 5.8, and denoting b0 : = b(Oi+µ) and 
a0 : = a(Oi+ 77) (note that a0 = -b 0 }, we define 

rt:= b(u%+µ}-b 0 , t: := a(y%+77}-a 0 

In this case, rt is independent of y and t: is independent of u, so we 
immediately obtain the recursive representations of Wand Q as 

Then, Yk+71+1 = a(yf +77}-a 0 + wk is a recursive representation of P ( = w- 1 
), and 

LJ = PQ is a left stability representation of LJ. We note that in the case of 
separable systems, the systems p- 1 and Q are trivially recursive. This is, of 
course, not necessarily the case in general, as we can see from the next example. 

Example 5.19 

Consider the BIBO-rational system of Example 5.13. We have already 
found there the functions / 1 and / 2 for this case, and, since here / 1 ( 0 IO)= 0 and 
/ 2(0) = 0, we have that rt= / 1 and ft= / 2 . The recursive representation for the 
system Q=A*[LJ, Iv] is given by (5.14). The recursive representation of the 
system W of (5.18) is, in view of the fact that ft does not depend on u, given by 
vk=Yk+l -yz. For P ( = w- 1

) we have the recursive representation Yk+I = 
y~ + vk. Then, LJ = PQ is a left BIBO-stability representation of LJ. D 

We conclude our discussion of Theorem 5.8 with the proofs of its corollaries. 

Proof of Corollary 5.12 

We have to show that, for BIBO-rationality, conditions (y} and (S) of 
Theorem 5.8 are equivalent to conditions (y') and (S') of Corollary 5.12. We 
note the following facts : 

(i) [LJ, Iv]{S(Rin)}=D 00 and [Iy, LJ*]{Im LJ}cD ,:o; 
(ii) The system A[LJ, Iv] is BIBO-stable if and only if for every 8 > 0 there 

exists an M(P.) > 0 such that for all (ylu)ED 00 for which p0(il} ~ 8 one has 
p0(A(ylu)) ~ .1JII(8); and 

(iii) The system B[Iy, LJ*] : Im LJ--+S(R1i) is BIBO-stable if and only if for 
every 8 > 0 there exists an N( 8) > 0 such that for all elements 
(YILJ*y}ED00 for which p0(y) ~ 8 one has p0 (B(ylLJ*y) ~ N(8). 

Now, in view of the fact that the pair (/2 , /) is adapted, we can replace in 
(iii) the phrase' all (YILJ*y) 'by' all (ylu)ED 00 '. Then, (y') and (S') are just a 
rewording of (ii) and (iii), respectively, and our proof concludes. D 

The proof of Corollary 5.15 is analogous to the proof of Corollary 5.12. 
Up to this point we have concentrated on the characterization of left 

rationality. A theory of right rationality can be obtained by, in a sense, 
dualizing our previous discussion. We conclude this paper with a brief study 
of right rationality. Let LJ : S(Rm)--+S(RP) be a recursive system, and, as 
before, let D 00 be the set of all pairs (ylu) where uESb(Rm) and y: = LJU. Let 
f/ : Yk+

77
+1 = /(yf+ 77 luf +µ) be a recursive representation of LJ. Assume that ~ 
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has a right stability representation i: = PQ, where Q : S(Rm)-+S(Rm), 
P : Im Q-+S(RP), and let 

9\: Yk+a.+1 =/1(Yf+a.jzf+.B) 

ff 2: uk+a.+1 = f2(uf+a.jz%+.B) 

be recursive representations of P and of a recursive right inverse 
Q* : Im Q-+S(R 111

) of Q, respectively. (Since the principal degree of a recursive 
representation can always be increased by shifting, we assumed that f/ 1 and 
f/ 2 have the same principal degree.) In view of the facts that P and Q are 
recursive, that PQ ( = i:) is clearly strictly recursive, and that P is injective, it 
follows by (3.8) that there exists a function h such that, for some integers 
y, 8 ~ 0, we can express Zk=h(yz+Yluf+ 8

) for all elements (yju)EDCX). The fact 
that P is injective implies that Ker Q = Ker i:, whence, for any pair of elements 
(yju), (y'ju')EDco, the equality h(y't+Ylu'z+ 8)=h(yz+Y1uz+s) for all integers k 
implies that i:u = i:u'. Define now the trivially-recursive system 
i:o: DCX)-+S(Rm): Zk=h(yz+Y1uz+ 8). Then, using our earlier notation, we have 
that Q = i: 0[i:, lu ], and, since Q is recursive in u, z, we obtain that the pair 

(h, [/, I u ]) is compatible. Define now the augmented vector wk : = (Y1.:) 
and the recursive representation 'llk 

f/*: wk+a.+l =F(wi,+a.jzf+.B) := ·· ······· ·· ····· ···· · : Im i: 0-+D 00 (5.20) 
( 

/1(yf+a.jzf+.B) ) 

Mu%+ a. I zf + .B) 

Then, we clearly have that f/* is a right inverse of the trivially-recursive system 
i: 0 • Of crucial importance is the particular form of the recursion function F 
of f/*, namely, that its first p entries depend only on the first p entries of the 
vector w (i.e. y), whereas its other m entries depend only on the last m co
ordinates of w (i.e. u). We call a recursive representation having this particular 
form (p, m)-divided. These arguments prove the necessity direction of the 
following characterization of right rationality. 

Theorem 5.21 

Let i: : S(Rm)-+S(RP) be a recursive system with a recursive representation 
f/: Yk+.,,+i = /(yz+ 11 juf+µ). Then, i: is right rational if and only if, for some 
integers y, 8 ~ 0, there exists a function h: (RP)Y+1 x (Rm).s+1-+Rm such that 
the trivially-recursive system i: 0 : D 00 -+S(Rm): zk=h(yf+Yjuf+s) satisfies the 
following conditions : 

(o:) The pair (h, [/, lu]) is compatible, and, for any pair of elements 
(yju), (y'ju')EDC()' the equality h(y'f+Yju'z+ 8)=h(yz+Y1ut+6) for all 
integers k implies that i:u' = i:u. 

(/3) The system i: 0 has a right inverse i:t : Im i: 0-+D 00 having a (p, m)
divided recursive representation f/* of the form (5.20). 

(y) The system P: Im i: 0--+lm i: (derived from f/*) having the recursive 
representation Yk+a.+i =/ 1(y%+a.jzt+.B) is i/o-stable. 

(8) The system T: Im i: 0--+S(Rm) (derived from f/*) having the recursive 
t t . I ( k+a.l k+.a) . ·; t bl represen a 10n uk+a.+l = 2 'llk zk 1s 1 o-s a e. 

As in the case of Theorem 5.8, the conditions of Theorem 5.21 consist of 
algebraic conditions ((o:), (/3)), and of topologfral conditions ((y), (8)). 

CON. B 
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Proof 

We have already shown that conditions (ex), (/3), (y) and (S) are necessary 
conditions for right rationality. In order to show that they are also sufficient, 
assume that (ex), (/3), (y) and (S) hold. After possibly substructing a constant, 
we can assume without loss of generality that L 00 = 0 (see proof of Theorem 
5.8). Using the (m, p)-divided representation of (/3), we construct the recursive 
systems P and T of (y) and (S), and the system Q: = L~[L, 10 ] : S(Rm)--+Im L 0 • 

Then, by (ex), Q is recursive, Ker Q = Ker L, and Q is surjective by its definition. 
Also, by (/3), Tis a right inverse of Q. The systems P and Tare i/o-stable by 
(y) and (S). Further, the image of Q is the domain of P, so we can define the 
system L 1 

: = PQ. Now, let uES(Rm) be an arbitrary element, let y : = LU, 
and let z := L 0(yju)=L 0[L, 10 ]n=Qu. Also, let (y'juJ := L6°z, where Lti' is 
the right inverse of L 0 defined in (/3). Then, L 0 (y'ju')=-Z=L 0(yju), so that, by 
(ex), LU= Lit', and consequently y' =Lu'= LU =y. Thus, recalling the definition 
of P, we obtain L 1u=PQu=Pz=y' =y=L'll for all uES(R 111

), so that L 1 and L 
are i/o-equivalent. Whence, L = PQ, and, since Ker Q = Ker L, it follows that 
Pis injective. Finally, having already shown that Pis stable and that Tis a 
recursive stable right inverse of Q, we obtain that L = PQ is a right stability 
representation, and L is right rational. D 

For the case of BIBO-rationality, Theorem 5.21 takes the following form. 

Corollary 5.22 

Let L : S(R 111)--+S(RP) be a recursive system with a recursive representation 
Y: Yk=

11
+1 = f(yt+ 11 juz+1-t). Then, L is right BIBO-rational if and only if, for 

some integers y, S ~ 0, there exists a function h : (RP)Y+1 x (Rm)s+ 1--+Rm. such 
that the trivially-recursive system Lo: D 00 --+S(Rm) : zk = h(yz+y juz+ 6) satisfies 
conditions (ex) and (/3) of Theorem 5.21 together with the condition : 

(y') The system Lti' of (/3) is BIBO-stable. 

Corollary 5.22 is a direct consequence of the proof of Theorem 5.21 and the 
definition of BIBO-stabilit ,y. 

Remark 5.23 

In case the system L of Corollary 5.22 is injective, then it can readily be seen 
that condition (y') can be stated directly in terms of the function has follows : 

(y~) For every real 8 > 0 there exists a real M(8) > 0 such that, whenever 
p(h(yf+Yjuf+ sn~ 8 for all integers k, then Po(Y) ~ M(8) and Po(u) ~ M(8), 
for all (yju)ED 00 • D 

We demonstrate the application of Corollary 5.22 (and Remark 5.23) by the 
following simple numerical case. 

Example 

Consider the recursive system L : S(R)--+S(R) represented by 

Yk+I =exp [uk+ytJ-1 

(defined on its i/o-space). Here, we can choose 

h(yk juk) : = [uk + Ykl =: Z1,-
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An easy computation then gives the inverse ~6 : h[D 00 ]-+D 00 as 

(

Yk+ 1) ( exp (zk) - 1 ) 

uk+1 = zk+1 -exp (zk)+ 1 
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which is BIBO-stable. Whence, the system P of (y} is given by P: Yk+i = 
exp (zk) - 1, and the system T of ( S) is given by T : uk+ 1 = zk+ 1 - exp (zk) + I. 
The inverse of T is Q: = T- 1 

: zk+l =Uk+I + exp (zk)-1, and :E = PQ is a 
right BIBO-stability representation. D 

Finally, turning to the case of C-stability, we obtain the following conse
quence of the proof of Theorem 5.21. 

Corollary 5.24 

Let~ : S(Rm)-+S(RP) be a recursive system with a recursive representation 
f/ : Yk+

71
+ 1 = /(yz+ 71 !ut+,,). Then, ~ is right C-rational if and only if, for some 

integers y, S ~ 0, there exists a function h: (RP),,+1 x (Rm)H 1-+Rrn such that 
the trivially-recursive system ~o: Dco-+S(Rm): Zk=h(yz+y1uz+ 8) satisfies 
conditions (a:) and (/3) of Theorem 5.21 together with the condition : 

( y") The system ~6 of (/3) is C-stable. 
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