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Non-linear systems, stabilization, and coprimenesst 

JACOB HAMMERi 

A theory of coprimeness is developed for non-linear systems, with the intention of 
constructing analytic tools for the solution of the problem of stabilizing a non-linear 
system through the application of additive non-linear feedback. The qualitative 
features of the resulting theory are strikingly similar to the situation in the linear 
case. 

1. Introduction 
Let L be a non-linear time-invariant discrete-time system, and consider the 

classical additive-feedback configuration shown in Fig. 1, where TC is a non-linear time
invariant precompensator, <p is a non-linear time-invariant feedback compensator, 
and Lc1r. cp) denotes the overall system. This configuration has been widely used in 
engineering applications for the purpose of transforming the possibly unstable given 
system L into a stable system Lc1r,cp)· We refer to such a transformation as the 
stabilization of L. Of course, the main problem here is how to find compensators TC 

and <p for which the resulting system Lc1r. cpJ is stable. In the present paper we study 
the solution of certain functional equations that arise in the computation of 
compensators TC and <p needed to stabilize the given system L. 

We shall require throughout our discussion that the system L be strictly causal, 
and that the compensators TC and <p be causal. For the moment, we also require that 
the precompensator TC be an isomorphism, i.e. that it possess an inverse n - 1 . This 
requirement guarantees that the precompensator TC does not destroy any degrees of 
freedom of the control variables, so that the final system Lc1r,cpJ has the same control 
capabilities as the original system L. In our discussion of the configuration (1.1) we 
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distinguish between input/ output stability, by which we mean that the input /output 
relationship induced by L<1r,q,J is stable, and the stronger notion of internal stability, by 
which we mean that all the degrees of freedom in (1.1), including those not directly 
affecting the input /output relationship, are stable. 

The point of departure for our present discussion is a fundamental analogy that 
exists between the general case, where L, n and <pare non-linear systems, and the well
understood particular case where L, n and <p are linear. The origin of this analogy is 
the property of rationality. Roughly speaking, a system L is said to be right-rational 
if there exist stable systems P and Q, where Q is invertible, such that L = PQ - 1

; The 
system L is left-rational if there exist stable systems S and T, where Sis invertible, such 
that L = s - 1 T (see§ 2 for exact definitions). Now,.a finite-dimensional linear time
invariant system LL is well-known to be both right- and left-rational, and its 
representation as a quotient of stable systems LL= PQ - l plays a fundamental role in 
the solution to the linear feedback-stabilization problem (Rosenbrock 1970, Desoer 
and Chan 1975, Desoer and Vidyasagar 1975, Hammer 1983 a, b). The situation in 
the general case when the system L is non-linear turns out to be strikingly similar. In 
Hammer (1984 b) it was shown that every (injective) non-linear system L that can be 
internally stabilized through the application of additive output feedback must be 
right-rational. Thus, when studying the problem of stabilizing a non-linear system L 
by additive feedback, we can assume a priori that L has a fraction representation 
L = PQ - 1

, where P and Q are stable systems. In the present paper we consider the 
problem of how to use the systems P and Q of such a representation in order to 
compute compensators n and <p that stabilize the given system L. (The computation 
of fraction representations L = PQ - 1, with P and Q stable systems, was discussed in 
Hammer (1984 a).) 

To be more specific, the systems L, n and <p map (input) sequences of finite
dimensional real vectors into (output) sequences of finite-dimensional real vectors. 
The sum A + B of two systems A and B, having the same input and output spaces, is 
defined pointwise for every input sequence u by (A+ B)u =Au+ Bu. Then, under 
the previously mentioned causality requirements on L, n and <p, the overall system 
L<1r, q,J can be expressed by 

(1.1) 

where 

1/1<1r,q,J := n[I + <pLnr 1 

is an equivalent precompensator (see Desoer and Lin (1983) and Hammer (1984 b). 
Assume now that the given system L has a rational representation L = PQ - 1, 
where P and Q are stable systems. The simplest case from our present point of 
view arises when the feedback compensator <p is stable and the precompensator 
n is of the form n = R - 1

, where R is a stable invertible system. In this case we obtain 

L(1r,q,) = PQ - 1 R - lu + <pPQ- 1R- 1r 1 
= PQ - 1 R - 1[(RQ + <pP)Q- 1 R - 1]- 1 

= P[RQ + <pPr 1 

Thus, the input/output relationship represented by L<1r,q,J is stable if the ( stable) 
map M: = RQ + <pP has a stable inverse M - 1

. In other words, if we can find stable 
maps R and <p (where R is invertible and <p, R - 1 are causal) for which the com bi-
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nation RQ + cpP has a stable inverse, then, upon setting n: = R - 1
, we clearly obtain 

that Lcn.q,> is input/output stable. (We remark that under these circumstances Lcn,q>) 

will also be internally stable, but we do not elaborate on this point here.) This 
situation is clearly reminiscent of the case of linear systems. We thus arrive at the 
following. 

Question 1 
Given two stable systems P and Q, when do there exist stable systems A and B for 

which the (stable) system M: = AP+ BQ has a stable inverse M - 1? 

In the case of linear systems, the answer to question 1 is well known-maps A and 
B exist ifand only if the transfer matrices representing P and Qare right-coprime. In 
the present paper we discuss question 1 for the case where P and Q are non-linear 
systems. Basically, we show that the situation in general is closely analogous to the 
situation in the linear case. In § § 3 and 4 we define coprimeness of two non-linear 
stable systems. Very qualitatively, two systems P and Q (with common input space) 
are right-coprime if, for every unbounded input sequence u, at least one of the output 
sequences Pu, Qu is unbounded. We then show that systems A and B solving 
question 1 exist if and only if P and Q are coprime in this sense. 

In view of our discussion, we are mainly interested in question 1 for the case where 
the maps P and Q are derived from a fraction representation I:= PQ - 1 of a right
rational system I:. By definition, a right-rational system L always has a represent
ation I: = PQ - 1

, where P and Q are stable systems. However, it is not clear whether 
or not the systems P and Q can be chosen so that they are also coprime. We therefore 
have to provide an answer to the following (in our present discussion we restrict our 
attention to injective systems). 

Question 2 

When does a right-rational injective system L possess a right-coprime fraction 
representation, namely, a representation I:= PQ- 1 where P and Qare stable coprime 
systems? 

In the case of finite-dimensional linear systems, it is well known that the answer to 
question 2 is 'always', namely, every such system has a right-coprime fraction 
representation. In the case of non-linear systems the situation is more delicate, and 
requires careful study. The answer to question 2 in the non-linear case depends, to a 
large extent, on what notion of stability one adopts. In the present paper we discuss 
two types of stability notions. Under the first, which we call Bl BO-stability, a system 
I: is regarded as stable if, for every bounded input sequence u, it produces a bounded 
output sequence I:u. Under the second, which we call C-stability, a system l: is 
regarded as stable if it is BIBO-stable and if it represents a continuous map from the 
space of input sequences into the space of output sequences. This notion is 
essentially the classical stability notion due to Liapunov. 

Now, for the case of BIBO-stability, the answer to question 2 is again 'always', 
namely, every injective system I: possessing a representation I:= PQ - 1 where P and Q 
are BIBO-stable, also has a representation I: = P cQ; 1 where Pc and Qc are BIBO
stable and BIBO-coprime (§ 3). Thus, the case of BIBO-stability closely resembles 
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the linear case. However, in the case of C-stability (§ 4), the situation is different, and 
not every right-rational system has a right-coprime fraction representation. In 
particular, if the system l: possesses any finite-jump discontinuities, then it can
not be represented as a right-coprime fraction with C-stable numerator and 
denominator. The only systems possessing right-coprime fraction representations in 
the C-stability sense are the 'homogeneous' systems defined in § 4. Roughly 
speaking, a homogeneous system is a system which exhibits continuous behaviour 
whenever its output is bounded. 

In summary, one can draw a close conceptual analogy between non-linear additive 
feedback systems and linear feedback systems. In both cases the notion of coprime 
fraction representations determines the underlying mathematical structure. 

2. Notation and preliminaries 
Our discussion throughout the present paper will be stated in terms of the 

framework developed in Hammer (1984 a, b), so we now review some parts of 
this framework. First, since we deal with discrete-time systems, we have to define 
their spaces of input sequences and of output sequences, which will simply 
consist of sequences of finite-dimensional real vectors. Formally, let R denote the 
set of real numbers. We denote by S(R m) the set of all two-sided infinite sequences 
u: = { ... , um un + 1 .... }, where ui E Rm for all integers j, and where there exists an 
integer t(u) (depending on u) such that ui = 0 for all i < t(u). The zero sequence in 
S(Rm), i.e. the sequence having all its elements equal to the zero vector, will be denoted 
by 0. Given a sequence u E S(Rm), we denote by ui the jth element of the sequence, 
and by u{, where i ~j, the set of all elements ui, ui + 1, ... , u i· If i > j, then u{ denotes the 
empty set 0. The set of all sequences u E S( Rm) for which u i = 0 for all j < 0 is denoted 
by So(Rm). 

An element u E S(Rm) is regarded as an input sequence to a system. More 
precisely, a system admitting input values from the real space Rm and having its 
output values in the real space RP, is a map L:S(Rm) ~ S(RP), transforming input 
sequences into output sequences. We assume that every system L under consider
ation has a (possibly unstable) equilibrium point at O (corresponding, for example, to 
the 'off' state of the system), so that l:O = 0. Finally, for every pair of elements 
u, v E S(Rm), one defines the sum u + v coefficientwise by (u + v)i: = ui + vi for all in
tegers i. For a pair of systems L 1, l: 2 : S(Rm) ~ S(R P), the sum l: 1 + l: 2 : S(Rm) ~ S(R P) 
is defined pointwise, for every element u E S(Rm), by (l: 1 + L2)u: = L 1u + L 2 u. 

The set S(Rm) evidently contains all possible input sequences, whether bounded or 
unbounded. From the practical point of view, the most interesting input sequences 
are, of course, the bounded ones. To treat bounded input sequences we need the 
following notation. Adhering to the usual convention, we denote, for every real 
(} > 0, by [ -e, er the set of all real vectors in Rm with entries in the interval 
[ -e, (}]. Further, we denote by S((}m) the set of all sequences u E S(Rm) for which 
ui E [ -{}, (}]m for all integers i. Thus, S((}m) is just the set of all input sequences 
'bounded by (}'. Similarly, we denote by S0((}m) the set of all elements u E S((}m) for 
which ui = 0 for all integers i < 0. 

Most of our ensuing discussion involves considerations regarding the stability of 
non-linear systems. The literature of control theory has accepted, in different 
applications contexts, a variety of stability notions for non-linear systems. The 
general underlying framework of our discussion in the present paper can be adapted 
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to accommodate most of these concepts of stability. We shall, however, mainly study 
two types of stability notions-one related to boundedness, and the other to 
continuity. Let l::S(Rm)-+ S(RP) be a system. Given a set Sc S(Rm), let :E[SJ 
denote the image of S through I:. We say that I: is BIBO (bounded-input bounded
output)-stable if, for every real M > 0, there exists a real N > 0 such that :E[S(Mm)] 
c S(N P). Thus, a BIBO-stable system transforms bounded input sequences into 
bounded output sequences. 

In order to review the classical notion of stability that originated with the 
pioneering work of Liapunov (1947), we need to discuss a few topics related to 
continuity. First, we introduce on the space S(Rm) a norm p as follows. For an 
element cx(cx1, ... , cxm) E Rm, we define p(ct): = max {lcxil, i = 1, ... , m}, and for the 
finite set of elements u{, i:::;; j, we let p(u{): = max {p(uK), i ::S; k:::;; j}. For an element 
u E S(Rm), we define p(u) := sup 2-lilp(uJ The norm p induces a metric p on S(Rm) 

i 

when, for any pair of elements u, v E S(Rm), one defines p(u, v): = p(u - v). In its turn, 
the metric p induces a topology on our spaces, and all notions of continuity mentioned 
below refer to continuity with respect to this topology. A system I:: S(Rm) -+ S(R P) is 
C-stable if it is BIBO-stable, and if, for every real fJ > 0, its restriction I:: S0(fJm)-+ S(R P) 
is a continuous map. Basically, C-stability requires that a 'small' change in the input 
sequence to :E should cause only a 'small' change in the output sequence from I:. 

Finally, we review very briefly the concept of rationality. A detailed definition of 
the concept of rationality is given by Hammer (1984 a). For our present discussion, 
we are interested only in the particular case of injective systems, for which the 
definition can be simplified to the following. An injective system I:: S(Rm) -+ S(R P) is 
right BI BO-rational (respectively, right C-rational) if there exist BIBO-stable (respec
tively, C-stable) systems P: S-+ S(R P) and Q: S-+ S(Rm), where S c S(Rq) for some 
integer q > 0, and where Q is invertible, such that I:= PQ - 1

• We shall further 
discuss these fraction representations of systems in the following sections. A final 
remark on terminology. An element u E S(Rm) will be said to be bounded if there 
exists a real fJ > 0 such that u E S(fJm); if such a fJ does not exist, then u is unbounded. 

3. Coprimeness of non-linear systems: the case of BIBO-stability 
Let S c S(Rq) be a subspace, and let P: S -+ S(RP) and Q: S -+ S(Rm) be BIBO-stable 

systems. The first question we study in the present section is the following. Under 
what conditions do there exist BIBO-stable maps A: S(R P) -+ S and B: S(Rm) -+ S for 
which the (BIBO-stable) map 

M:= AP+BQ:S-+S (3.1) 

is an isomorphism having a BIBO-stable inverse M - 1
. We start with a discussion of 

some necessary conditions. Probably the most evident condition necessary for the 
existence of A and B is that 

(*) for every unbounded input sequence u ES, at least one of the output sequences 
Pu or Qu must be unbounded 

For the particular linear case where P and Q are single-variable polynomials, this 
condition reduces to the requirement that P and Q have no unstable zeros in 
common. To see the origin of(*) in the general non-linear case, let u ES be any 
unbounded element, and assume, by contradiction, that both of the output sequences 
Pu and Qu are bounded. Then, since A and B are BIBO-stable, it follows that the 
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element v: = APu + BQu = Mu also is bounded. But then, since M - 1v = u, the map 
M - l maps the bounded element v into the unbounded element u, contradicting the 
assumption that M - l is Bl BO-stable. Thus, at least one of the elements Pu or Qu 
must be unbounded, and (*) is necessary. In order to state (*) in somewhat more 
concise form, denote, for any integer n, by U(n) the set of all unbounded elements in 
S(W), and let C* denote the set-theoretic inverse of a function C:S(Rm)-+ S(RP). 
Then, (*) can be stated as 

U(q) n S c P*[U(p)J u Q*[U(m)] (3.2) 

The argument used to derive (3.2) actually leads to a stronger condition, as 
follows. Let u1, u2

, ... , be a sequence { ui} of elements of S. If there is a real 8 > 0 
such that { ui} c S(8q), then we say that { ui} is a bounded sequence; otherwise, we say 
that {ui} is an unbounded sequence. Now, assume again that there exist BIBO
stable maps A and B for which the map (AP+ BQ) has a BIBO-stable inverse, and let 
{ ui} c S be an unbounded sequence. Then, a slight variation of the argument 
leading to (3.2) implies that at least one of the sequences { Qui} or { Pui} must be an 
unbounded sequence. Equivalently, 

(**) if both of the sequences {Qui} and {Pui} are bounded then the sequence 
(of input sequences) {ui} c S must be a bounded sequence. 

In more accurate terms (**) takes the following form: 

for every real -r > 0, there exists a real 8 > 0 such that} 

P*[S(-rP)J n Q*[S(-rm)] c S(8q) 
(3.3) 

Notice that (3.2) is included in (3.3). In summary, an elementary argument leads 
us to the conclusion that (3.3) is a necessary condition for the existence of BIBO-stable 
maps A and B for which the map (AP+ BQ) has a BIBO-stable inverse. This 
condition is reminiscent of the condition of coprimeness in the linear case. 
Moreover, one of the main results of the present section is that (3.3) is not only 
necessary, but also sufficient for the existence of such maps A and B. So motivated, 
we introduce the following. 

Definition 1 

Let S c S(Rq) be a subspace. Two BIBO-stable maps P: S-+ S(R P) and 
Q: S-+ S(Rm) are right Bl BO-co prime if they satisfy (3.3). 

Below, it will be convenient to employ the following terminology. Let S 1 c S(Rq), 
S 2 c S(RP) be subspaces. A map M: S 1 -+ S 2 is BI BO-unimodular if it is an isomorph
ism, and if both M and M - 1 are BIBO-stable. Our next objective is to show that the 
property of coprimeness is a sufficient condition for the existence of BIBO-stable maps 
A, B for which (AP + BQ) is BIBO-unimodular. Actually, the following somewhat 
stronger assertion is true (we limit our attention here to injective systems). 

Theorem 1 

Let S c S(Rq) be a subspace, and let P: S -+ S(RP) and Q: S -+ S(Rm) be BIBO-stable 
maps, where P is injective and Q is an isomorphism. If P and Q are right BIBO
coprime, then, for every BIBO-unimodular map M: S-+ S, there exist BIBO-stable 
maps A: S(RP) -+ S and B: S(Rm) -+ S satisfying AP + BQ = M. 
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Proof 

Suppose, for a moment, that the space Sc S(Rq) has been decomposed into two 
disjoint sets AA and AB which satisfy the following conditions: 

(i) AA uAB = S, AAnAB = 0. 
(ii) For every real r > 0 there exists a real () > 0 such that Q*[S(rm)] n AB c S(()q) 

and P*[S(rP)J n AA c S(()q). 

Let M: S-+ S be a BIBO-unimodular map. Using the above decomposition, we define 
maps A: S(RP)-+ S and B: S(Rm)-+ S as follows: 

Bu:= {:Q•u 
Au:= {:P•u 

if u E Q[ABJ 

if u ¢ Q[ABJ 

if u E P[AAJ 

if u ¢ P[AAJ 

Then, for every real r > 0, we obtain 

B[S(rm)] = B[Q[ABJ n S(rm)] u {0} 

= M[AB n Q*[S(rm)JJ u {O} 

c M[S((Jq) n SJ c S(Tm) 

where T > 0 is a real number satisfying M[S((Jq) n SJ c S(Tm), which exists by virtue 
of the BIBO-stability of M. Similarly 

A[S(rP)J = A[P[AAJ n S(rP)J u {O} 

= M[AA n P*[S(rP)JJ u {O} 

c M[S((Jq) n SJ c S(Tm) 

Thus, A and B are BIBO-stable. Finally, we show that AP+ BQ = M. Indeed, 
by (i), every element u of S is either in AA or in AB, exclusively. When u E AA> 
we have (AP+ BQ)u = APu + BQu = MP*Pu + 0 = Mu and when u E AB we have 
(AP+ BQ)u = APu + BQu = 0 + MQ*Qu = Mu, where we have used the injectivity 
of P and of Q. Thus, (AP + BQ)u = Mu, for all u E S, and our proof will conclude 
upon the construction of the sets AA and AB, which is what we do next. 

For every real () > 0, we denote U(()m): = S(Rm)\S((Jm) (the difference set), so that 
U((Jm) and S((Jm) are disjoint sets, and whence Q*[S((Jm)] n Q*[U((Jm)] = 0. Now, let 
0 < r 1 < r 2 < ... and O < ()1 < ()2 < ... be diverging sequences of real numbers. For 
every integer i ~ 1, we define the set 

Ki:= Q*[S(r 1)] n U(()'/) 
we let 

co 

K:= U Ki 
i= 1 

and 

A0 : = S\K (the difference set), A~:= K 

Then, for every integer i ~ 1, we have Q*[S(r 1)] n A0 c S(()'!). However, the set 
P*[S(rf)] n A~ may be unbounded. The key to correcting this situation is the fact 
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that if u E P*[S(rf)J is an unbounded element, then, by coprimeness, Qu must be 
unbounded, and so u E Q*[U(rf')]. We define, for every integer i ~ 1, the sets 

Ri: = P*[S(rf)] n A~ n Q*[U(rf')] 

R(X): = { u E U(q) n S: Qu is unbounded} 

and we let 

Consider now the sets 

AA:= A~\(R n A~), AB:= A0 u R 

We claim that these sets satisfy conditions (i) and (ii). Evidently, AA u AB= A~ u A0 

= S, and AA n AB c A~ n A0 = 0, so that (i) holds. Further, 

Rn Q*[S(<i)] = {:0: R;} n Q*[S(c/)] c P*[S(,f)] n Q*[S(<i)] 

so that, by the right-coprimeness of P and Q, there is a real et.;> 0 such that 
Rn Q*[S(r?')J c S(a'f). Consequently, 

AB n Q*[S(rf')] = {A0 n Q*[S(rf')J} u {Rn Q*[S(rf')J} c S(8'f) u S(a'f) 

cS(/3'/) 

where /3i: = max { 8;, a;}. Also, recalling that AA= A~ \(Rn A~), we obtain 

AA n P*[S(rf)J c P*[S(rf)J n A~ n Q*[S(rf')] c P*[S(rf)] n Q*[S(rf')] 

C S( et.'/) C S(/3'/) 

and (ii) holds. Thus, AA and AB satisfy conditions (i) and (ii), and this concludes the 
proof. D 

As we have mentioned in the introduction to this paper, our interest in the 
equation AP+ BQ =Mis principally for the case where the BIBO-stable maps P and 
Q originate from a fraction representation I: = PQ - 1 of a BIBO-rational system I:. 
In view of Theorem 1, we need the maps P and Q to be right BIBO-coprime. We 
therefore arrive at the following question: does every BIBO-rational system L have a 
fraction representation L = PQ- 1

, where P and Q are right BIBO-coprime? An 
affirmative answer to this question is provided by the next statement. 

Theorem 2. 
Let I:: S(Rm) ~ S(RP) be an injective system having a fraction representation 

L = PQ - 1, where P: S ~ S(RP) and Q: S ~ S(Rm) are BIBO-stable systems, and 
Sc S(Rq) for some integer q > 0. Then, L also has a fraction representation 
L = PcQ; 1 where Pc:Sc ~ S(W) and Qc:Sc ~ S(Rm) are BIBO-stable and right BIBO
coprime, and where Sc c S(Rq) is a suitable subspace. 

Proof 

Let O = 80 < 81 < 82 < ... be a divergent sequence of real numbers. For no
tational convenience we define, for every integer n ~ 0, the difference set 



Non-linear systems, stabilization, and coprimeness 

A(n, i): = S(81 + i)\S(87) (the difference set) 

Now, for every integer i;::: 0, let 

be the image of A(m, i) through L, and construct the sets 

<Xi:= L*[fi n S(8f)J 

/Ji:= l:*[fi n U(p)] 

c\:= fk\I:{aku{Jk} 
i 

1'i: = LJ {l:*[c5k n A(p, i)J} 
k=O 

9 

In view of the injectivity of I:, we have that <Xi is the set of all elements in A(m, i) which 
are mapped by I: into S(8f); /Ji is the set of all elements in A(m, i) having unbounded 
images through L; and, finally, Yi is the set of all elements in S(er) mapped by L into 
the 'interval' A(p, i). Further, let (Ji and (i be two disjoint subsets of A(q, i) such that (Ji 
is isomorphic to <Xi, and (i is isomorphic to Yi (without loss of generality, we can 
assume, after possibly using an evident embedding, that q;::: m, so that (Ji and C 
exist). Since Q is an isomorphism, there are isomorphisms 

For unbounded elements in Im I:, we define 

co 

Seo:= L /Ji= {I:*[U(p)J} n {S(Rm)\U(m)} 
i=O 

By the BIBO-stability of P, and since I:[ScoJ = PQ- 1 [ScoJ c U(p), it follows that 

(3.4) 

Also, by the BIBO-stability of Q, we have Q- 1 [U(m)] c U(q) (otherwise, Q will 
map some bounded elements into unbounded elements), so the set 
S* := {Q- 1 [ScoJ} u {Q- 1 [U(m)J} is a subset of U(q). We now consider the set 

s. := s,u{,90 (cr,u(,)} C S(R') 

and the isomorphism A: Im Q- 1 ~ S 1 given by 

Ax:= 1/Jfx if x E Q- 1[aJ, i = 0, 1, 2, .. . 

Ax:= 1/J?x if x E Q- 1 [yJ, i = 0, 1, 2, .. . 

Ax:= x 

We next show that the maps A, PA - 1
, and QA - l are BIBO-stable, and that PA - l and 

QA - 1 are right BIBO-coprime. Then, our proof will conclude, since the conditions 
ofTheorem2 can be met upon setting Pc:= PA- 1

, Qc:= QA- 1
, and Sc:= S1. (In 

(1), (2), (3), and (4) below, i varies over all positive integers.) 
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(1) The map A: S ---+ S 1 is BIBO-stable 

Recalling that S: = Im Q 1
, and using (3.4), we obtain 

S(/Jf)nS=S(07)n {Q-{0
0 
r}Q-t0

0 
";]} 

Now, since Pis BIBO-stable, there is a real -r > 0 for which P[S(8?) n SJ c S(-r:P). Let 
b be an integer such that eb ~ r. Then, by the definition of }'i and the injectivity of P 

and of I:, it follows that S(Oi) n S = S(8i) n { Q-{l)
0 

Y;J u Q-1 [;Oo ";]}. 
Similarly, since Q is BIBO-stable, there exists' a real -rx > 0 such that 
Q[S(8r) n SJ c S(-r;). Let k be an integer for which Bk~ rx. Then, by the defi
nition of rx.;, we have 

S(Oi) n S = S(81) n { Q-{l)
0 

Y;J u Q-{l)
0 

";]} 

C Q- l [.u Yi] u Q - l [.u rx.jJ 
1 ==0 1==0 

Whence, letting a : = max { b, k}, we obtain 

A[S(8i) n SJ c AQ- {0
0 

Y;J u AQ {Q
0 

";] c S(O:+ 1) 

where the last inclusion is by the construction of A. Thus, A is BIBO-stable. 

(2) The map PA 1
: S 1 ---+ S(RP) is BI BO-stable 

By the construction of A, we have 

Whence, 

PA 
1
[S(8i) n s.J C {{Q ";]} u {{0: Y;]} C S(8f+ il 

by the definition of {rx.i} and {yJ Thus, PA - 1 is BIBO-stable. 

(3) The map QA - 1
: S 1 ---+ S(Rm) is BI BO-stable 

As before, 

QA-1[S(8f)nS1J C Q{Q-{0: (Cl;UY;l]} C '.Q (Cl;UY;l C S(Or) 

and QA - 1 is BIBO-stable. 

(4) The maps PA - 1 and QA- 1 are right BIBO-coprime 

We have 

(Pr 1J*[S(OrlJ =AQ-1{P[S(OrlJ} c AQ-1{CQ
0 
"}(0: r1)} 

C (.u O"j) u (IJ ,j) 
1==0 1 = 0 
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Also, since 

we obtain 

Thus, since 

we finally get 

{(Pr
1
)*[S(Of)]} r, {(QA 

1
)*[S(Oi)]} c c0: ";)uC0: (;) c S(Of) 

which implies that (PA - 1) and (QA - l) are right BIBO-coprime. This concludes our 
proo[ D 

Remark 

The general existence of right BIBO-coprime fraction representations can be 
proved using a method similar to the one employed in the proof of Theorem 6 
below. We preferred the present proof for Theorem 2 since it invokes the concept of 
'cancellation', as evidenced in the relations Pc= PA - l and Qc = QA - 1

. D 

One of the main questions that arises when considering coprime fraction 
representations of the form described in Theorem 2 is: to what extent are these 
representations determined by the system "i,? In other words, given two right BIBO
coprime representations of the same system I:= PQ- 1 and I:= P 1Q11

, what is the 
connection between the BIBO-stable maps P, Q and the BIBO-stable maps P 1, 

Q 1? Evidently, if I:= PQ - 1 is a representation where P: S-+ S(RP) and Q: S-+ S(Rm) 
are BIBO-stable and right BIBO-coprime maps, and if M: S 1 -+ S is any BIBO
unimodular map, then the fraction representation I:= P 1 Q11, where P 1 : = PM: S 1 

-+ S(W) and Q 1 := QM:S 1 -+ S(Rm), is again a right BIBO-coprime fraction repre
sentation of I:. In the next statement we show that, by varying the BIBO
unimodular map M (together with the space S 1), we can generate in this way all 
coprime fraction representations of I: from one such representation I: = PQ- 1

. 

Theorem 3 
Let I:: S(Rm) -+ S(RP) be an injective system, and let I: = PQ - 1 be a fraction 

representation where P: S -+ S(RP) and Q: S -+ S(Rm) are BIBO-stable and right BIBO
coprime maps, and where Q is an isomorphism and Sc S(Rq) for some integer q > 0. 
If I:=P 1Q11 is any fraction representation where P 1 :S1 -+S(RP) and Q 1 :S1 -+S(Rm) 
are BIBO-stable and BIBO-coprime maps, and where Q1 is an isomorphism and 
S 1 c S(Rq), then there exists a BIBO-unimodular map M: S 1 -+ S such that P 1 = PM 
and Q1 =QM. 

The proof of Theorem 3 depends on the following result. 
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Lemma 1 

Let L: S(Rm) -+ S(W) be an injective system, and let l: = PQ - 1 be a fraction 
representation where P: S -+ S(W) and Q: S -+ S(Rm) are BIBO-stable and right BIBO
coprime maps with Q an isomorphism and S c S(Rq) for some integer q > 0. Also, let 
T:S 1 -+ S(Rm) be a BIBO-stable map, where S1 c S(Rq). If the map LT is BIBO
stable, then so also is the map Q - 1 T. 

Proof ( of Lemma 1) 

Let () > 0 be a real number. In view of the BIBO-stability of the maps 
T:S 1 -+ S(Rm) and LT:S 1 -+ S(RP), there exist positive numbers r 1 and r 2 such that 
S2 : = T[S(8q) n S1] c S(r'I') and S3 : = l:T[S(8q)nS 1] c S(r~). Now, let X: = Q- 1[S2]. 

Then, clearly, P[X] = S3, so that, by mJect1V1ty, X = P*[S 3] n Q*[S 2]. 

Letting T: = max { T 1, r 2 }, and using the facts that S2 c S(rm) and S3 c S(rP), we ob
tain X c P*[S(rP)J n Q*[S(rm)]. By the right BIBO-coprimeness of P and Q, there 
exists a real e > 0 for which P*[S(rP)J n Q*[S(rm)] c S(eq), so X c SW). Thus, for 
every real 8>0 there exists a real e>O such that Q- 1 T[S(8q)nS 1] =Q - 1[S 2 ] = 
X c S( ~q), and Q- 1 T: S 1 -+ S is BIBO-stable. D 

Proof ( of Theorem 3) 

We use the notation of the theorem. Clearly, the maps l:Q 1 ( = P 1) and LQ ( = P) 
are BIBO-stable. Thus, by Lemma 3.9 and our assumption that l: = PQ - 1 and 
l: = P 1Q11 are coprime fraction representations, it follows that the maps Q- 1Q1 and 
Q11Q are BIBO-stable. But, the map M := Q- 1Q1 :S 1 -+ Sis evidently an isomor
phism, and M - 1 = Q11Q. Consequently, both M and M - i are BIBO-stable, and, 
since Q1 = QM and P 1 = LQ 1 = PQ - 1QM = PM , our proof is complete . D 

Let L: S(Rm) -+ S(W) be an injective right BIBO-rational system, and consider a 
coprime fraction representation l: = PQ - 1

, where P:S-+S(RP) and Q:S-+S(Rm) are 
BIBO-stable and right BIBO-coprime maps, and where Sc S(Rq) for some integer 
q > 0. In view of Theorem 3, the space Sis uniquely determined by the system L up 
to a BIBO-unimodular isomorphism. We call S the factorization space of L, and we 
denote it by F(l:). Also, for brevity, we say that two sets S1 c S(Rm), S2 c S(Rn) are 
BIBO-morphic if there exists a BIBO-unimodular isomorphism M:S 1 ~ S2 • Now, in 
case the factorization space F(l:) is BIBO-morphic to S(Rm), we can choose S(Rm) as 
our factorization space. Indeed, if M: S(Rm) ~ F(L) is a BIBO-unimodular map, then 
the BIBO-stable maps Pc:= PM and Qc := QM evidently induce a coprime fraction 
representation l: = P cQ; 1 having S(Rm) as its factorization space. The situation 
where F(L) is S(Rm) is particularly convenient from the control-theoretic point of 
view. However, in some cases, F(L) may not be BIBO-morphic to S(Rm). Below, we 
provide a necessary and sufficient condition on the given system L for F(L) to be 
BIBO-morphic to S(Rm). We shall denot~ by G(L) the set of all ordered pairs (u, LU), 
where u varies over all of S(Rm), namely, the set of all pairs consisting of input elements 
u E S(Rm) and their corresponding outputs LU. Clearly, the set G{L) traces the graph 
of l: in the space S(Rm) x S(W), so we refer to G(L) as the graph of L. As we show in 
the next statement, it is the structure of the graph G{L) that determines the structure of 
the factorization space F(L). 
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Theorem 4 

Let :E: S(Rm) -+ S(RP) be an injective system. The factorization space F(:E) is 
BIBO-morphic to the graph G(:E). 

Proof 

Let :E = PQ - 1
, where P: F(:E) -+ S(RP) and Q: F(:E) -+ S(Rm) are BIBO-stable 

and right BIBO-coprime maps. For every real -r > 0, we denote by S*(-r): = 
G(:E) n { S(-rm) x S(-rP)}, i.e. the set of all pairs (u, :Eu) for which both the input u and the 
output :Eu are 'bounded' by -r. The map R: F(:E)-+ G(:E): Rx:= (Qx, Px) induces an 
isomorphism F(:E) ~ G(:E), and its inverse R- 1

: G(:E)-+ F(:E) can be expressed as 
R- 1(cx, /3) = Q*cx n P* /3 since we always have Q*cx = P* f3 for every (ex, /3) E G(:E). Now, 
we claim that R is BIBO-unimodular. Indeed, since both P and Qare BIBO-stable, 
clearly R is BIBO-stable as well. Also, since P and Qare right BIBO-coprime, there 
exists, for every real fJ > 0, a real -r > 0 satisfying Q*[S(fJm)] n P*[S(fJP)] c S(-rq) (where q 

is such that F(:E) c S(Rq)), so we obtain R - 1[SifJ)] c Q*[S(fJm)] n P*[S(fJP)J c S(-rq), 
and R - 1 is BIBO-stable. Thus, R is BIBO-unimodular, and G(:E) is BIBO-morphic 
to F(I:). D 

As a direct consequence of Theorem 4, we obtain the next result. 

Corollary 

Let :E: S(Rm) -+ S(RP) be an injective system. The factorization space F(:E) is 
BIBO-morphic to S(Rm) if and only if the graph G(:E) is BIBO-morphic to S(Rm). 

4. Coprimeness of non-linear systems: the case of C-stability 
In the present section we discuss the concept of coprimeness of non-linear systems, 

using C-stability as the underlying notion of stability. Basically, the situation here is 
similar to the one encountered in § 3, where the underlying notion of stability was 
BIBO-stability, but, naturally, some modifications are necessary. In view of our 
definition of C-stability, it will be convenient to restrict our attention in the present 
section to input sequences starting at t = 0, i.e. to input sequences from So(Rm). For 
the case of causal time-invariant systems, such a restriction does not impair in any 
sense the generality of the discussion. We start with a statement of the problem. 
Let Sc S0(Rq), where q > 0 is an integer, be a subspace, and let P:S-+ S0(RP) 
and Q: S-+ S0(Rm) be C-stable systems, with Q an isomorphism. We wish to find 
under what conditions there exist C-stable maps A: S0(RP) -+ S and B: S0 (Rm) -+ S for 
which the (C-stable) map 

M:= AP+ BQ:S-+S (4.1) 

is an isomorphism having a C-stable inverse M - 1
• An isomorphism N: S 1 -+ S 2 for 

which both N and its inverse N - 1 are C-stable will be referred to as a C-unimodular 
map. 

Now, by definition, every C-stable map is BIBO-stable as well. Thus, the maps A, 
B, P and Q of (4.1) are, in particular, BIBO-stable, and Mis BIBO-unimodular. The 
discussion in § 3 leads us therefore to the conclusion that, for A and B to exist, the 
maps P and Q have to be right BIBO-coprime. So motivated, we introduce the 
following definition. 
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Definition 2 

Let S c S0(Rq) be a subspace. Two C-stable maps P: S-+ So(RP) and 
Q: S -+ S0(Rm) are right C-coprime if the following conditions hold: 

(o:) For every real r > 0 there exists a real (J > 0 such that P*[So(-cP)] n Q*[So(rm)] 
c S 0( (Jq), and 

(/3) For every real r > 0, the set Sn S0(rq) is complete (i.e. is a closed subset of 
S0 (rq)). 

As we can see, condition (o:) is just the condition for right BIBO-coprimeness to 
which we have alluded before. Condition (/3) is motivated by continuity consider
ations, as follows. Consider the equation AP + BQ = M, where we choose M as the 
restriction of a C-unimodular map M: S0 (Rq)-+ S0(Rq) (for example, take M = I, the 
identity). Since all the maps in this equation are continuous and BIBO-stable, they 
possess unique continuous extensions to the closure Sn So(rq) in S0(rq). Evidently, 
this extension will still satisfy the same equation, but this time over the larger space 
- the closure. Thus, the solution on Sn So(rq) actually provides a solution on the 
closure Sn S0(rq), whence the coprimeness condition (o:) must hold (by BIBO
coprimeness considerations) over the closure. Hence (/3). In the next statement we 
show that right C-coprimeness ensures the existence of C-stable maps A and B 
satisfying (4.1). (We again restrict our attention to injective systems.) 

Theorem 5 

Let S c So(Rq) be a subspace, and let P: S-+ So(RP) and Q: S-+ So(Rm) be C-stable 
maps, where Pis injective and Q is an isomorphism. If P and Qare right C-coprime, 
then, for every C-unimodular map M :S-+ S, there exist C-stable maps A :Im P-+ S0(Rq) 
and B:S 0(Rm)-+ S0(Rq) satisfying AP+ BQ = M. 

Proof 

The present proof is a refinement of the proof of Theorem 1. We again propose 
to construct two subsets AA and An of the space S c So(Rq) which satisfy the following 
conditions: 

(i) AA u A8 = S. 

(ii) For every real r > 0 there is a real (J > 0 such that Q*[So(rm)] n An c S0(Bq) 
and P*[S 0(-cP)] n AA c S0(8q). 

(iii) For every real r > 0, the sets Q*[So(rm)] n An and P*[S 0(rP)J n AA are closed 
subsets of S0(8q) (where B is from (ii)), and hence are compact. 

We note that by condition (/3) of Definition 2, every closed subset of Sn S0(rq) is 
also a closed subset of S0(rq), and is therefore compact. Below, we tacitly make 
repeated use of this observation. 

Suppose, for a moment, that a decomposition satisfying conditions (i), (ii), and (iii) 
has been achieved. Then, we can define a pair of maps A: Im P-+ S0(Rq) and B: S0(Rm) 
-+So(Rq) as follows. Let O < 01 < 02 < ... be a divergent sequence ofreal numbers. For 
every element u E { Q[AnJ} u U(m), let Bu:= MQ*u. Now, since Q[AnJ n So(BT) = 
Q{ Q*[So(BT)J n An}, since Q*[So(BT)] n An is compact, and since Q is injective and 
continuous, it follows that the isomorphism Q: Q*[S 0(BT)J n An~ Q[AnJ n S0(BT) is a 
homeomorphism, and, thus, the restriction of Q- 1 to the set Q[AnJ n S0(BT) is 
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continuous for every i ~ 1. Hence, the restriction of MQ* to Q[AB] is C-stable, and B 
is C-stable on Q[AB]. Consequently, for each integer i ~ 1, there is a real -r:i > 0 such 
that B{Q[AB] n So(8?1)} c So(-r:'/). We now extend B inductively into a C-stable map 
So(Rm)-+ S0(Rq). Let S0(8'(;): = 0, and assume that, for some integer i ~ 0, the map B 
has been extended into a continuous map So(8?1)-+ S0(-rf). Then, since B was 
originally defined on Q[AB], we have B defined as a continuous map on the closed 
subset {Q[ABJ n S0(87'+1)} u S0(8?1) of S0(8?1+1), and its values there are in the complete 
set S0 ( -r:f + 1). By the extension theorem for continuous functions (for example, 
Kuratowski (1961)), there is a continuous extension B:So(8?1+ 1)---+ S0(-rf + 1). 

Repeating the same procedure for all integers i ~ 0, we obtain a C-stable map 
B:So(Rm)-+ So(Rq). 

Next, we define the map A: Im P-+ S by Au:= (M - BQ)P*u for all u E P[AA], 
and by Au:= 0 for all u E P[AB]. To verify consistency of this definition, we note 
that, for every element v E AA n AB, one has APv = 0 from Pv E P[AB], and, from 
Pv E P[AA], we obtain APv = (M - BQ)P* Pv = Mv - BQv = 0 by the construction of 
B (since v is also in AB), and it follows that our definition of the map A is 
consistent. We next show that A is C-stable. First, the restriction of A to P[AB], 
being constantly zero, is evidently C-stable. Regarding the restriction of A to P[AA], 
we note that, by conditions (ii) and (iii), the set P*[S 0(-rP)J n AA is compact, so the 
isomorphism restriction P:P*[S 0(-r:P)] n AA-+ P[AA] n S0(-rP) is a homeomorphism, 
since it is a continuous injective function on a compact domain. Thus by an 
argument similar to the one used to prove the C-stability of the restriction of B to 
Q[AB], we obtain that the restriction of A to P[AA] is C-stable. Recalling that 
Im P = P[AA] u P[AB], we further show that A is C-stable over all of Im P. To this 
end, let { ua c P[AA] n So(8P) and { va c P[AB] n So(8P) be two sequences converg
ing to the same point 

u' := Jim u; = lim v; 
i-+oo i-+oo 

Since clearly 

lim Av;= lim 0=0 
i-+co i-+co 

we need to show, in order to prove continuity, that also 

lim Au;=O 
i-+ co 

Let ui: = P*u;, i = 1, 2, ... , and note that ui E AA n P*[S 0 (8P)] c S0(-rP). Since the 
restriction P: AA n P*[S 0(8P)]-+ P[AA] n S0 (8P) is a homeomorphism, the sequence 
{ uJ converges to a point u = P*u' E AA n P*[So(8P)] c S0(-r:P). Now, clearly, 
S0(-rP) n S = { AA n S0(-rP)} u { AB n S0(-r:P)}. Thus, the following two possibilities 
anse: 

(ex) u is an internal point of AA n So(-r:P), or 

(/3) u is not an internal point of AA n So(-rP) 

(in both cases with respect to the topology on Sn S0 (-r:P)). Now, AA n S0(-r:P) is a 
compact set, so the restriction of P to it is a homeomorphism. Therefore, in case (ex), 
the point u' = Pu is an internal point of P[AA n S0(-rP)J. Whence, since v;-+ u', there 
is a subsequence { wJ of { va which is completely contained in P[AA n So(-r:P)]. But 
then, since we have already shown that A is C-stable on P[AA], we have lim Au;= lim 
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Awi, and, since Awi = 0 for all i (by same property of the sequence {vJ), it follows that 
lim Au;= 0. When (/3) holds, there is a sequence {zJ c AB n S0('rP) which con
verges to u. In such case, by the C-stability of the map M - BQ, we obtain lim 
(M - BQ)ui = lim (M - BQ)z; = 0, where the last equality holds by the definition 
of B since z; E AB. Whence, lim Au;= lim (M - BQ)P*u; = lim (M - BQ)u; = 0. 
Thus, in both cases lim Au;= 0, and A is C-stable. 

Finally, an explicit computation similar to the one given in proof of Theorem 1, 
shows that (AP+ BQ)u = Mu for all u ES. Summarizing, starting from the sets AA 
and AB, we have constructed C-stable maps A, B satisfying AP+ BQ = M. To 
conclude our proof, it only remains to construct the sets AA and AB, which is our next 
objective. 

First , we use the construction described in proof of Theorem 1 to obtain a pair of 
sets A 1 and A 2 which satisfy conditions (i) and (ii) when setting A 1 for AA and A 2 for 
AB. Using the sets A 1 and A 2 , we proceed now to construct the required sets AA and 
AB. Let O < r 1 < r 2 < ... , and O < 81 < 82 < ... be the two divergent sequences ofreal 
numbers employed in the construction of the sets A1 and A2 (proof of 
Theorem 1). We define the closed 'intervals' 

c51: = So(rT) 

c5;: = S0(r?')\ S0(rf1_ i) c S0(r?'), i = 2, 3, ... 

Then, by (ii), we clearly have Q*[c5;] n A2 c S0(81) for all integers i ~ 1. By the 
C-stability of Q, the set Q*[c5;] n S0(~q) is closed for all real ~ > 0. Thus, the clo
sure Q*[c5;] n A2 c S0(87) is contained in Q*[c5;], so there is, for each i ~ l, a subset 
H; C Q*[c5;] r'\ sown for which Q*[c5;] r'\ {A2 U HJ= Q*[c5;] r'\ Az. Define now 

AB:= A2 U {.O Hi} 
1= 1 

i 

Then, since Q*[S0(r?')J = U Q*[c5J, we obtain 
j = 1 

A8 nQ*[S 0(ri')] = {Q*[So(r:")] n A2 } u { Q*[S 0(r;")] n (Q
1 
H;)} 

= {Q*[S0(ri')] n A2 } u {C0
1 
H;) u ( Q*[O;] n H1+ 1)} 

= L0
1 

(Q*[O;] n(A 2 u H;))} 

u {Q*[c5;] n (Q*[c5i+ 1] n (A2 u Hi+ 1))} 

where in the last term we used the fact H;+ 1 c Q*[c5;+ 1], which implies that 
Q*[c5;] n Hi+ 1 = Q*[c5;] n (Q*[c5;+ 1) n H;+ 1). Thus, the set Q*[S0 ('rf')J n AB is the 
union of a finite number of closed sets, and is thus closed. Consequently, the set AB 
satisfies all its respective requirements in (i), (ii), and (iii). The construction of AA 
from A 1 is done similarly, by replacing Q by P, A 2 by A 1, and AB by AA throughout the 
last paragraph. D 

We turn now to an examination of the existence of right-coprime fraction 
representations in the C-stability sense. Let ~: So(Rm)-+ S0(W) be an injective 
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system. We say that L has a right C-coprime fraction representation if there exists a 
pair of C-stable and right C-coprime maps P:S~S 0(RP), Q:S~S 0(Rm), where 
Sc S0(Rq) for some integer q > 0, and where Pis injective and Q is an isomorphism, 
such that L = PQ - 1

. The set S is then called the factorization space of this 
representation. We first show that, in order to possess a right C-coprime fraction 
representation, the system L must exhibit continuous behaviour whenever its outputs 
are bounded. 

Proposition 

Let L: S0(Rm) ~ S0(R P) be an injective system having a right C-coprime fraction 
representation. Let {) > 0 be a real number, and let S* c S0({)m) be a subset. 
Assume that there exists a real -r > 0 such that L[S*J c S0(-rP). Then, the restriction 
of L to the closure S* of S* in S0(8m) is a continuous map. 

Proof 

Let L = PQ- 1 be a right C-coprime fraction representation of 1:. Let 
S1 := Q- 1 [S*J, and S2 := L[S*]. Then, denoting cc= max {e, -r}, we have 
S1 = Q*[S*] = P*[S 2 ] = Q*[S*] n P*[S 2] c Q*[S(am)J n P*[S(aP)]. Whence, by 
the right-coprimeness of P and Q, there is a real f1 > 0 such that S 1 c S(f1q). Now, let 
S1 be the closure of S 1 in S(f1q), so S1 is a compact set. By coprimeness, S n S(f1q) is 
a closed subset of S(f1q), so S1 is still a subset of S; by the C-stability of Q, the set Q[S 1] 

is well-defined, closed, and bounded, and we have Q[S 1] = S*. Consequently, the 
continuous isomorphism Q: S1 ~ S* is actually a homeomorphism (see for example 
Kuratowski (1961)), and the restriction of Q- 1 to S* is a continuous map. But then, 
by the continuity of P, the restriction of L ( = PQ - 1

) to S* is a continuous map as well. 
D 

The property of the system L described in the Proposition plays a fundamental 
role in our theory of C-rationality. It will be convenient to give it a special name. 

Definition 3 

Let L: S0(Rm) ~ S0(R P) be a system. We say that L is homogeneous if for every 
real{)> 0 the following holds: for every subset S* c S({)m) for which there exists a real 
-c > 0 such that L[S*] c So(i-P), the restriction of L to the closure S* of S* in S0({)m) is a 
continuous map. 

In view of the Proposition, homogeneity is a necessary condition for the existence 
of a right-coprime fraction representation in the C-stability sense. We next show 
that homogeneity is also a sufficient condition for the existence of such a fraction 
representation. 

Theorem 6 

An injective system L: S0(Rm) ~ S0(R P) has a right C-coprime fraction represent
ation if and only if it is homogeneous. 

Proof 

The 'only if' direction is stated in the Proposition. We prove now the 'if' 
direction by constructing a right C-coprime fraction representation L = PQ - 1

. 
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Adhering to the notation of§ 3, we let G(I:) := {(u, I:u):u E So(Rm)} be the graph on:, 
and we denote, for brevity, S: = G(L), so S is a subset of S0(Rq) with q = m + p. 
Let P 1 : S0 (Rm) x S0(RP) -+ S0(Rm) and P 2 : S0(Rm) x S0 (RP) -+ S0(R P) be the respective 
natural projections, and define the maps P: S-+ So(RP): Px: = P 2x for all x E S, and 
Q:S-+ S0(Rm):Qx := P 1x for all x ES. In view of the fact that L is an injective 
map, we have that Pis injective and Q is an isomorphism. Also, clearly, L = PQ 1, 
and, since P and Q are just restrictions of the natural projections from the space 
product, the maps P and Qare C-stable. To show that P and Qare right C-coprime, 
we first note that, by the construction of P and Q, one evidently has 
P*[S 0(8P)J n Q*[S 0(8m)J c Sn So(8q) c S0(8q), and condition (ct) of Definition 2 
holds. Thus, we only have to show that Sn S0(8q) is a closed subset of So(8q), for all 
real 8 > 0. To this end, let u1, u2 , ... c Sn S0(8q) be a sequence of elements 
converging to a point u E S0(8q). Our proof will conclude upon showing that 
u ES. Now, the projected sequence u;: = P 1 ui, i = 1, 2, ... , clearly converges to the 
point u' := P 1u E S0(8m), whereas the projected sequence u;' := P2ui, i = 1, 2, ... , 
converges to the point u": = P 2u E S0(8P). Further, since ui ES, we have u;' = Lu; for 
all i = 1, 2, ... , and 

lim Lu; = lim u;' = u" 
i--+ 00 i--+ 00 

On the other hand, since {Lua c So(8P) and { ua c So(8m), it follows by homogeneity 
that L is continuous on the closure { u;}, so lim I:u; = L(lim u;) = I:u'. Thus 
u" = Lu', or u = (u', u") belongs to S, and Sn S0(8q) is closed in So(8q). D 

We now turn to a discussion of the uniqueness of coprime fraction representations 
in the C-stability sense. The situation here closely resembles the situation for the 
case of BIBO-rationality described in Theorem 3. 

Theorem 7 
Let L: S0(Rm) -+ S0(R P) be an injective homogeneous system, and let I: = PQ 1 

and I:= P 1 Q11 be two right C-coprime fraction representations of I:, with factoriz
ation spaces S, S 1 c So(Rq), respectively. Then, there exists a C-unimodular map 
M:S 1 -+ S such that P1 = PM and Q1 = QM. 

Our proof of Theorem 7 depends on the following auxiliary result. 

Lemma 2 
Let I:: S0(Rm) -+ S0(RP) be an injective system having a right C-coprime fraction 

representation I: = PQ - 1
, and let T: S 1 -+ S0(Rm) be a C-stable isomorphism, where S 1 

is a subspace of S0(Rq) for which the set S 1 n S0(8q) is a closed subset of S0(8q), for any 
8 > 0. If the map I: T is C-stable, then so also is the map Q- 1 T. 

Proof ( of Lemma 2) 

Let 8 > 0 be a real number. In view of the C-stability of the maps T:S 1 -+ S0(Rm) 
and I:T:S 1 -+ S0(RP), there exist real positive numbers i-1 and i-2 for which 
S2 := T[S 0(8q) n S1] c S0{i-T) and S3 := I:T[S 0(8q) n S1] c S0{'r~). Also, since 
S0(8q) n S1 is closed in S0(8q) it is compact, and, hence, the set S2 , being the continu
ous image of a compact set, is a closed subset of Im T n S0{i-T) = So(i-T). Thus, 
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S2 is compact. Now, let X:= Q- 1[S2 ]. Then, clearly, P[XJ =S 3 , so that, by 
injectivity, X = P*[S 3] n Q*[S 2]. Letting r: = max { r i, r 2 }, we obtain 
X c P*[S 0(rP)J n Q*[So(rP)J. By the right C-coprimeness of P and Q, there exists 
a real ~ > 0 for which P*[So(rP)J n Q*[S 0 (rm)J c So(~q), and it follows that 
X c S0(~q). Further, let S be the factorization space of the fraction representation 
L = PQ - 1. Then, since Q is continuous, the set X = Q- 1 [S 2] is a closed subset of 
Sn S0 (~q), and whence, by the coprimeness requirement, a closed subset of 
S0(~q). Consequently, X is compact, and the restriction of Q to X is a 
homeomorphism. Since Q[X] = S2 , it follows that the restriction of Q- 1 to S2 is a 
continuous function. Thus, by the continuity of T and the fact that 
S2 =T[S 1 nS 0 (8q)J, the restriction of Q- 1 T to S 1 nS 0(8q) is continuous (and 
bounded), for every real 8 > 0. This proves our assertion. D 

Proof ( of Theorem) 

We use the notation of the theorem. Clearly, the maps LQ 1( = P 1) and LQ ( = P) 
are C-stable. Thus, by Lemma 2 and our assumption that L = PQ- 1 and L = P 1 Q 1 

1 

are right C-coprime fraction representations, it follows that the maps Q 1 Q 1 and 
Q11Q are both C-stable. But the map M:Q- 1Q1 :S 1 ---+ Sis an isomorphism, and its 
inverse is M - l = Q11Q. Consequently, both M and M - l are C-stable, and, since 
Q1 = QM and P 1 = LQ 1 = PQ- 1QM = PM, our proof is concluded. D 

Finally, combining Theorem 7 with the proof of Theorem 6, we obtain the 
following analogue of Theorem 4. (We say that two spaces S 1, S2 are C-morphic if 
there exists a C-unimodular map M:S 1 ~ S2 .) 

Theorem 8 

Let L: S0(Rm)---+ S0(RP) be an injective homogeneous system. The factorization 
space of any right C-coprime fraction representation of L is C-morphic to the graph 
G(L). 

We conclude with an example of a class of homogeneous systems. 

Examplet 

A system L: So(Rm) ---+ So(RP) is called recursive if there exist integers 17, µ > 0 and a 
function! :(RPY,+ 1 x (Rmt+ 1 ---+ RP such that, for every pair of sequences u E S(Rm) and 
y : = LU E S(RP), the following relationship holds for all integers k: 

Yk+,,+1 =f(yk, Yk+1' ... , Yk+,,, Uk, ... , Uk+µ) 

The function f is called the recursion function of L. Using our definition of the 
topologies on S0(Rm) and S0(RP), one can readily show through an explicit compu
tation that the following holds. 

Let L: So(Rm) ---+ So(RP) be a recursive system with recursion function 
f:(RP) 11+1 x (Rmt+ 1 ---+ RP. If the functionfis continuous, then Lis a homogeneous 
system. 

t The author is grateful for this example to Eduardo D. Sontag of the Department of 
Mathematics, Rutgers University, New Brunswick, New Jersey, U.S.A. 
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Thus, we see that a large class of commonly encountered systems is indeed 
homogeneous. (Of course, the continuity off does not imply that L is stable in any 
sense.) In particular, we see from here that the rationality of linear recursive systems 
is 'caused' not by linearity, but rather by the evident continuity of their recursion 
functions. 
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