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A fraction representation of a nonlinear system I is a factorization of the system into a composition of two 
nonlinear systems, one of which is stable and the other is the inverse of a stable system. There are two main 
kinds of fraction representations: a right fraction representation, which is of the form I= PQ"1, and a left frac-
tion representation, which is of the form I= Y-1G. As it turns out, fraction representations provide effective 
means for the solution of nonlinear control problems. The present note is a brief overview of the theory of 
fraction representations of nonlinear systems and its applications to nonlinear control. 
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1. INTRODUCTION -

There seems to be an intimate connection be-
tween feedback theory and fraction representations, 
originating at the most fundamental level. Indeed, 
consider the following basic additive feedback con-
figuration used in many practical applications of con-
trol theory. 

(1.1) 

Here, I is a nonlinear system that needs to be con-
trolled; n is a nonlinear dynamic precompensator; 
and <p is a nonlinear dynamic feedback compen-
sator. In order to prevent the loss of degrees . of free-
dom, the precompensator n is required to be non-
singular. The overall system described by the configu-
ration is denoted by Icn:,q,J· A simple calculation 
shows that 

(1.2) Icn:,q,J = In[I + q,InJ-1. 

Defining the equivalent precompensator 

(1.3) R cn,q,J := n[I + q,InJ-1, 

we obtain that 

(1.4) Icn,q,J = Ii cn,q,J-

Now, it is a quite simple matter to show (HAMMER 
[1984b)) that when the closed loop system Icn:,q,J is 
well posed and internally stable, the equivalent prec-
ompensator 2 (n:,cp) has the following two properties: 
Ci) it is an invertible system, and (ii) it is stable. 
Combining these facts with (1.4), we obtain a repre-
sentation of the given system I in the form 

(1.5) I = Icn,cpJCi cn:,q,y-1, 

which is simply a right fraction representation of the 
system, having the 'numerator' Icn:,q,J and the denom-
inator R (1r,q,J· Thus, we see that the process of feed-
back stabilization inherently gives rise to a (right) 
fraction representation of the system being stabi-
lized. A similar phenomenon also occurs when the 
stabilizing feedback is non-additive (HAMMER 
[1989cD. Whence, considerations on a very basic level 
directly reveal a close association between fraction 
representations and feedback stabilization. 

These observations give rise to the premonition 
that fraction representations form an important key 
to the development of a general theory of feedback 
stabilization for nonlinear control systems. Extensive 
work performed over the last few years by numerous 
investigators seems to bear out this premonition. The 
remaining portions of this note provide a brief 
overview of the theory of fraction representations of 
nonlinear systems and of its applications to the solu-
tion of the nonlinear feedback stabilization problem. 
The material presented is mostly a review and re-in-
terpretation of the author's own work in this area 
(HAMMER [1984a, b, 1987, 1988, 1989a, Q, c, and 
1990)). Alternative points of view as well as further 
aspects of the theory are considered in DESOER and 
KABUL! [1988], VERMA [1988], SONTAG [1989 and 
1990). PAICE and MOORE [1990], CHEN and de 
FIGUEIREDO [1990], the references cited in these pa-
pers, and others. 

2. NOTATION AND BASICS 

We adopt the input/output point of view, and re-'"' 
strict the presentation to discrete-time systems. Thus, 
a system is regarded as a map that transforms input 
sequences into output sequ~i:ices. Denote by s(Rm) 
the set of all sequences of vectors ( u0, u1, u2, .. .), 

where uj e Rm for all integers j = 0, 1, .... Given a 
sequence U E S(JP1 ), we denote by Ui E J?!1I the i-th 
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element of the sequence, i = 0, 1, ... , so that u = (u0, 

U1, U2> .. .). 

A system I that accepts sequences of m di-
mensional vectors as input and generates sequences 
of p dimensional vectors as output is simply a map 
I : S(R.111) -) S(RP ). The image of a set S c S(Rm) of 
input sequences through I is denoted by I[S]. 

For our stability studies, we will need to consider 
bounded sequences of vectors. Let S((lTJ) denote the 
set of all sequences in S(Rm) of vectors whose indi-
vidual coordinates are bounded by the number 9 > 
0. To be more precise, let [-9, 9}11 be the set of all 
vectors (x1, x2, ... , Xm) e Rm satisfying -9 5 X; 5 9 
for all j = 1, ... , n. Then, S(em) consists of all ele-
ments u e S(Rm) with u; e [-9, 9/11 for all integers 
j 0. In this notation, a system I: S(R.111) S(RP) is 
BIBO (Bounded-Input Bounded-Output) -stable if for 
every real number 9 > 0 there is a real number M > 
0 such that I[S((lTJ] c S(MP ). 

Two norms on the space S(Rm) play an impor-
tant role in our discussion - the usual 2--norm and a 
weighted 2--norm. First, for a vector x = (x 1, ... , Xm) 
e R.111, let / x I := max {/ x 1 I, ... , I Xn /}. Then, the stan-
dard 2--norm on s(Rm) is given, for every element 
u e s(Rm ), by I u I :=sup;.? 0 I u; I. We also define the 
weighted r-norm p by 

p(u) :=sup;.? 0 z-i I u; I. 

Unless otherwise stated, all notions of continuity of 
systems are with respect to the norm p. From the 
mathematical standpoint, the basic advantage of the 
norm p is the fact that the domain -5(9"') is com-
pact under it, for any real number 9 > 0. When the 
norm p is combined with a separate boundedness 
requirement, it conforms with the intuitive interpre-
tation of a norm in control theory (see HAMMER 
(1987), [1989a] for discussion). 

A system I : S(Rfll) S(RP) is stable if it is 
BIBO-stable, and if for every real number 9 > 0, the 
restriction I : 5(8"') S(RP) is a continuous map. 
This notion of stability is in the spirit of the in-
put/ output notions of stability stemming from 
Llapunov theory. 

3. FRACTION REPRESENTATIONS : BACKGROUND 

A fraction representation of a nonlinear system is 
characterized by three quantities - a numerator sys-
tem, a denominator system, and a factorization space. 
We distinguish between two main types of fraction 
representations - right fraction representations and 
left fraction representations. In accurate terms, a right 
fraction representation of a nonlinear system I: 
S (Rm) -) S(RP) is characterized by a subset S c 
S(Rq), where q > 0 is some integer, and by two 
stable systems P : S S(RP) and Q : S -) s(Rm), 

with Q being invertible, so that I= PQ"1. The sub-
space S is then called the factorization space of the 
fraction representation. In the expression PQ- 1, the 
systems P and Q-1 are combined by composition. 
In analogy, a left fraction representation of the system 
I : S(Rm) -) S(RP) is determined by a subset SL c 
S(Rr), where r > 0 is some integer, and by two stable 
systems G : S(JF) SL and T : S(RP) -) SL, with T 
being invertible, so that I= r10. 

Apriori, there are no restrictions on the structure 
of the factorization space, but, as we shall discuss 
later, this structure determines to what extent a spe-
cific fraction representation aids in the solution of the 
stabilization problem. 

We provide next some indications on the signifi-
cance of fraction representations to the solution of 
the stabilization problem for nonlinear control sys-
tems. Consider the classical control configuration de-
picted in (1.1); A particularly simple situation results 
when the compensators q, and 1C are chosen in the 
form 

<p=A, 
(3.1) 

where A and B are stable systems, with B b~ing 
invertible. Of course, A and B- 1 must be causal. 
Assuming that the system I that needs to be con-
trolled has a right fraction representation I = PQ-1, 

we obtain from (1.2) · 

(3.2) 

Defining the system 

(3.3) M := AP + BQ, 

the input/ output relation of the closed loop system 
becomes 

(3.4) Icn,<pJ = PM"1. 

Thus ., if the systems A and B can be chosen in such 
a way that the (stable) system M has a stable inverse 
M- 1, the closed loop system of (1.1) will be in-
put/output stable. Furthermore, it can be shown that 
with some additional mild restrictions on the stable 
systems A and B, the closed loop system will actu-
ally be internally stable (HAMMER [1986]). A stable 
system M that possesses a stable inverse -M-1 is 
called a unimodular system. · 

Another fundamental implication of (3.4) is that 
the dynamical behavior of the closed loop system 
Icn,q,J can be influenced by appropriately choosing 
the unimodular system M. This observation leads to 
the nonlinear analog of the -linear theory of pole as-
signment, and was discussed in detail in HAMMER 
[1988). 
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We discuss now briefly some implications on the 
structure of the factorization space. From (.3.4) it fol-
lows that the domain of input sequences for - the 
closed loop system Icn,q,J is identical to the domain 
of input sequences of the system M-1, namely, to the 
domain of output sequences of the system M. 
Normally, the domain of input sequences of a control 
system is required to contain all sequences of ampli-
tude not exceeding a specified bound, so the input 
domain of Icn,q,J must contain the set S(em) for 
some real number 8 > 0. This directly implies then 
that the image of M must contain the same, i.e., 

(.3.5) S(f11') c Im M. 

Now, let S c S(Rq) be the factorization space of the 
fraction representation I= PQ-1. Then, considering 
(3.3), the domain of Mis S, and 

(3.6) M : S S(Rm ); M[S] seem). 
The design procedure that emerges from the the-

ory we describe here proceeds roughly as follows. 

(i) Choose a desired unimodular system M. As indi-
cated earlier, the choice of M determines the dy-
namical behavior of the closed loop system Icn,<pJ. 

(ii) Find an appropriate pair of stable systems A and 
B satisfying (3.3). The conditions under which such A 
and B exist and the means for computing them are 
discussed in section 4. 

From (i) it follows that an important step in the 
design of stabilizing compensators for the system I 
is the construction of a unimodular system M : S 
s(Rm) which contains a domain of the form sef11') in 
its image. This implies that we must find a subspace 
S' c S that is homeomorphic to s(em) together 
with a homeomorphism M : S' = S(em) ( which is a 
restriction of M, and is actually the only interesting 
part of M; by the way, this also shows that S must 
contain a subset homeomorphic to sef11' ).). Now, the 
construction of such a homeomorphism is not an 
easy task in general. Nevertheless, if a subspace of the 
form seam) is contained within the factorization 
space S, then one can take S' = se ct11 ), and construct 
a desirable homeomorphism M : 5( am) seem). 
The construction of such homeomorphism is easy -
take for instance M = (8/a)I. Thus, we conclude that 
it is extremely important to choose the fraction rep-
resentation I= PQ"1 so that its factorization space 
contains seam) for some real a > 0. In fact, as dis-
cussed later, it is possible to construct a fraction rep-
resentation whose factorization space is equal to 
S( am). Such fraction representation is then particu-
larly instrumental for stabilizing the system I. 

We consider next an application of left fraction 
representations. In general terms, left fraction repre-
sentations enable us to find all the solutions A, B of 
the basic stabilization equation (3.3), when given one 
such solution; They yield a remarkably simple and 

transparent parametrization of all pairs A, B of stable 
systems satisfying (.3.3). This parametrization can then 
be employed with optimization techniques to find 
the 'best' compensators tr and <p, under a suitable 
optimization criterion. 

Assume that the given· system I has a left frac-
tion representation I= T 1G with the factorization 
space SL, and recall that S is the factorization space 
of the right fraction representation I = PQ- 1 • 

Obviously, PQ"1 = T 1G, or 
(3.7) TP = GQ. 

Suppose now that one pair of stable systems A 0, 

Bo satisfying the equation AoP + B0Q = M has been 
found. Let h: SL~ S be any stable system, and con-
sider the pair of stable systems A, B given by 

A =Ao +hT, 
(.3.8) 

B =B 0 -hG. 

Then, 
(3.9) AP+ BQ = (A0 + hT)P + (B0 -hG)Q 

= (AoP + BoQJ + (hTP - hGQ) 
= AoP + B0Q = M, 

where the third equality is implied by (3.7). Thus, we 
see that for any stable system h, the systems A and 
B of (3.8) satisfy our basic stabilization equation. In 
this way, by varying h, we can generate infinitely 
many solutions of our equation; Furthermore, for ap-
propriate (i.e., 'coprime') left fraction representa-
tions I = r 1G, (3.8) generates all solutions of (3.3) 
(HAMMER [1987)). This leads to a simple and trans-
parent parametrization of the set of all compensators 
(of the form (3.1)) that stabilize the given system I, 
with closed loop dynamics assigned by the unimodu-
lar system M. Whence, left fraction representations 
also play an important role in control theory. 

4. FRACTION REPRESENTATIONS: BASIC RESULTS 

Having provided some background on the utiliza-
tion of fraction representations in nonlinear control, 
we tum now to a brief survey of certain basic aspects 
of their theory. A simplified exposition of the theory 
of fraction representation of nonlinear systems was 
presented in HMAMER [1987], and the remaining part 
of the present section is based on this reference. The 
theory incorporates the realistic premise that every 
system permits only bounded input values. Explicitly: 
we write I: S(am) S(RP) to indicate that the input 
amplitudes must be bounded by a > 0. · 

Vital to the theory of fraction representations of 
nonlinear systems is the notion of right coprimeness. 
Indeed, it is only when the systems P and Q are 
right coprime that a solution A, B to (3.3) exists. 
Intuitively, two stable systems P and Q with com-



mon input domain are right coprime if, for every un-
bounded input sequence u, at least one of the output 
sequences Pu, Qu is unbounded. When specialized 
to the case of linear systems, this reduces to the re-
quirement that P and Q have no unstable zeros in 
common. The accurate definition in the nonlinear 
case is as follows (HAMMER [1985, 19871). (For a sys-
tem P : S1 --) S2 and a subset S 3 c S2, denote by 
p•[s 3] the inverse image of the set S 3 through P, 
namely, the set of all input sequences u e S1 for 
which Pu e S 3.) 

(4.1) DEFINITION. Let Sc S(R'l) be a subset. Two 
stable systems P : S --) S(RP) and Q : S --) S(Rm) are 
right coprime if the following conditions hold: 

(i) For every real number -r > 0 there exists a real 
number 9 > 0 such that 

p•fs('l:PJJ n Q·fs(-r:m JJ c S((JCIJ. 
(ii) For every real number -r > 0, the set Sn S('t'l) is 

·a closed subset of S('t'l) (with respect to the topol-
Og'f induced by the norm p ). • 

A right coprime fraction representation E = 
PQ-1 is a right fraction representation in which the 
systems P and Q are right coprime. The next 
statement, which is one of the most fundamental re-
sults in the theory of fraction representations, indi-
cates that whenever the systems P and Q are right 
coprime, one can always find a solution A, B for the 

. basic stabilization equation (3.3), for any M. The 
Theorem is restricted to the case where the given sys-
tem E that needs to be controlled is injective (one-
to-one), but, as discussed in HAMMER [1987), this 
does not constitute a substantial limitation from a 
control theoretic point of view. 

(4.2) THEOREM. Let I: S(a"I)--) S(RP) be an injec-
tive system, and let I = P0- 1 be a right coprime fac-
torization with factorization space Sc S(R'l). Then, 
for every stable system M : S --) S there exists a pair 
of stable systems A: Im I--) S(Kl) and B: S(amJ--) 
S(R'l) satisfying AP + BQ = M. • 

Methods for finding appropriate systems A and 
B that satisfy the conditions of the Theorem are de-
scribed in HAMMER [1986, 1987, 1988, and 1989a]. A 
preliminary topic in this context is, of course, the 
characterization of the class of nonlinear systems that 
possess right coprime fraction representations. For 
this purpose, we need the following 

(4.3) DEFINITION. A system E: S(am)--) S(RP) is a 
homogeneous system if, for every subset Sc S(am) 
for which there exists a real number 9 > 0 such that 
E[S] c S(f1' ), the restriction of E to the closure S 
of S is a continuous map E : S --) 5(£1' ). • 

Roughly speaking, a homogeneous system is char-
acterized by the property that it is continuous over 
any set of input sequences that yield bounded output 
sequences. Homogeneous systems are quite common; 

In fact, most systems of practical interest are homo-
geneous,as follows (HAMMER [19871). 

(4.4) PROPOSITION. Let E: S(J?")--) S(RP) be a sys-
tem described by the equations 

Zk+f'/+1 = f(zk, ... , Zk+f'/> Uk, ... , Uk+µ), 

Yk = h(zk), 

k = 0, 1, 2, ... , where u e S(Rm) is the input se-
quence, ye S(RP) is the output sequence, and z e 
S(Rq) is an intermediate sequence. If the functions f 
and h are continuous, then I is a homogeneous 
system.• 

The significance of the class of homogeneous sys-
tems stems from the fact that it consists exactly of all 
systems possessing right coprime fraction represen-
tations, as follows (HAMMER (1985, 19871). 

(4.5) THEOREM. An injective system I : S(am)--) 
S(RP) has a right coprime fraction representation if 
and only if it is a homogeneous system.• 

The computation of right coprime fraction rep-
resentations is reviewed in the next section. Presently 
we consider the existence of left fraction representa-
tions (HAMMER [1987)). 

(4.6) THEOREM. An injective homogeneous system I 
: S((P)--) S(RP) has a left fraction representation.• 

The significance of Theorem (4.6) goes beyond its 
statement; as shown in the reference, the left fraction 
representations that arise in this framework are 
'coprime' in the sense that when used in the scheme 
(3.8), they yield all possible solutions A, B of the 
equation AP + BQ = M. 

To conclude, the class of homogeneous systems 
is a broad class containing most systems of practical 
interest; it consists of all systems possessing a right 
coprime fraction representation; and all its members 
possess left fraction representations as well. It thus 
forms a natural environment for the development of 
the theory of nonlinear control. 

S. FRACTION REPRESENTATIONS: COMPUTATION 

As we have seen, the derivation of a right co-
prime fraction representation is a critical step in the 
stabilization process. Generally speaking, a right co-
prime fraction representation is relatively simple to 
derive (HAMMER [19871). However, if due care is not. 
taken in the construction to obtain a 'nice' right co-
prime fraction representation, then the computation 
of the stabilizing compensators might tum out to be 
quite difficult. On account of ·the cogitation following 
(3.6), a 'nice' right coprime fraction representation is 
one that has a simple factorization space S; ideally, 
one for which the factorization space is of the form S 
= 5( am) for some a > 0. The construction of such 



fraction representations is described in HAMMER 
[1989b and c], and is based on the theory of reversible 
nonlinear state feedback. The present section is con-
cerned with a review of this topic. 

We restrict our attention to nonlinear systems I 
that can be described by equations of the form 

Xk+1 = f(xk,uk), 
(5.1) 

where u E seRm) is the input sequence; y E seRP) is 
the output sequence; x E seKl) is an intermediate se-
quence of states; and the initial condition x 0 is speci-
fied. The functions f: R'lxRm R'l and h: R'l RP 
are continuous. A system I that can be described in 
this form is said to have a continuous realization. The 
system represented by xk+l = f(xk,uk) is called the 
input/state part of I, and is denoted by Is. In view 
of Proposition (4.4), the systems I and I, are both 
homogeneous, and whence possess right coprime 
fraction representations. 

We compute a 'nice' right coprime fraction of 
the system I by deriving first a right coprime frac-
tion representation of the input/state part Is. A criti-
cal tool for the latter is the theory of reversible state 
feedback developed in HAMMER [1989b], from 
where we review some basic terminology next. 
Consider the following static state feedback loop 
around the input/ state system Is 

~,v) u •I...______, I, I I 
(5.2) T ------------

X • 

Here, u : R'lxRm Rm is a continuous function rep-
resenting the static state feedback; the closed loop 
system is denoted by Is<P and is given by 

(5.3) xk+l = f(xk> (J(xk, vk)). 

The feedback induced by the function u is said to be 
reversible if the system I 5 can be recovered from 
the closed loop system Isa through another feed-
back operation. It can be shown that (J induces a re-
versible feedback operation if and only if the function 
<1ex, v) is injective (one-to-one) in v for any possible 
state x (HAMMER [1989b]). 

A detailed theory of reversible feedback has 
been developed in HAMMER [1989b]. The theory in-
cludes necessary and sufficient conditions for the ex-
istence of a reversible feedback function u that 
stabilizes a given input/state system Is; a complete 
characterization of the set of all reversible feedback 
functions that stabilize the system; as well as explicit 
and implementable constructions of the stabilizing 
feedback functions (J. Basically, a system can be sta-
bilized by reversible state feedback whenever one 
would intuitively expect the system to be at all stabi-

lizable. These results are then applied in HAMMER 
[1989c] to the construction of 'nice' right coprime 
fraction representations for systems possessing con-
tinuous realizations. Here, we only provide the follow-
ing brief summary of the situation. (The phrase 'u 
stabilizes Is over the input domain seem) ' means 
that the closed loop system Isa is internally stable 
for all inputs of amplitude not exceeding 8 > 0. Also, 
a system is bicausal if it is causal and possesses a 
causal inverse.) 

(5.4) THEOREM. Let I: seRmJ S(H') be a system 
having a continuous realization, and let Is : S(R.111) 
seRq) be the input/state part of I. Assume there is a 
reversible feedback function u : R'lxRm Rm that 
stabilizes the input/state part Is over the input do-
main seem), for some 8 > 0. Then, the system I has 
a right coprime fraction representation I = PQ-1 

with the factorization space S((Jn ). Furthermore, the 
(stable) systems P : seem) S(RP) and Q : S(fJn) 
s(Rm) both have continuous realizations, and the re-
striction Q : s(en) Q[seem JI is bicausal. • 

Briefly, this means that every stabilizable nonlin-
ear system has a 'nice' right coprime fraction repre-
sentation. This fraction representation can then be 
used to derive compensators that internally and ro-
bustly stabilize the system ( without access to the 
state), while assigning to the closed loop a desirable 
dynamical behavior, as discussed in an earlier section. 
Detailed implementable constructions of all relevant 
quantities are described in the references quoted be-
fore. 

6. PRESERVATION OF STABILITY 

The computation of stabilizing compensators for 
a system I depends, of course, on a specific given 
mathematical model, which provides (only) an ap-
proximate description of the system. One needs to 
address then the question of whether the closed loop 
will remain stable when the true system is inserted 
into it, rather than the model for which it was de-
signed. We refer to the model as the 'nominal' de-
scription of the system. 

Let In be a nominal model of the system to be 
controlled, and let I denote the actual system. Con-
figuration (1.1) is used with compensators 1C and <p 
of the form (3.1). The compensators are computed 
using the nominal description In of the system, 
while the system actually inserted into the loop is I. 
We would like to characterize the class of all systems 
I for which the closed loop remains stable. 

At the outset, it is obviously necessary to assume 
that the nominal system In as well as the real system 
I are stabilizable. To be more specific, we shall as-
sume that both systems admit continuous realizations 
of the form (5.1), with input/state parts being stabiliz-



able by reversible state feedback. This implies the 
existence of right coprime fraction representations 
In = Pn Q '; and I = PQ- 1 in accordance with 
Theorem (5.4). We then compute the fraction repre-
sentation In= PnQ'; from the given nominal model 
In; While not assuming that the systems P and Q of 
the fraction representation of I are known, we shall 
characterize the set of all P and Q for which the 
closed loop remains stable. This will yield a character-
ization of the set of all systems I stabilized by the 
closed loop, with fixed compensators n, <p com-
puted for In. For brevity, only input/output stability 
is considered here; see HAMMER [19901 for internal 
stability. 

Having derived the fraction representations In = 
PnQ~1 and I = PQ-1 in accordance with Theorem 
(S.4), the denominator systems Qn ~nd Q are both 
bicausal, and the factorization space for both fraction 
representations can be taken in the form S(/3112) for 
some real number /3 > 0 (see HAMMER (19901 for 
details). 

Assume then that compensators n and <p of 
the form (3.1) have been designed to stabilize the 
nominal system In by choosing A and B to satisfy 
(6.1) Mn:= APn + BQn, 

with Mn unimodular (section 3). Furthermore, by 
(3.5), there is a real number 8 > 0 such that 

(6.2) S((:111) c Mn[S(/31" )]. 

Now, when the system I is inserted into the closed 
loop instead of the nominal system In for . which it 
was designed, equation (3.3) takes the form 

(6.3) AP + BQ = 
= APn + BQn + [(AP - APn) + (BQ - BQn)l 
=Mn+ L1, 

where 

(6.4) L1 := (AP - AP r) + (BQ - BQr). 

As can be seen, the quantity L1 describes the devia-
tion from nominality within the critical stabilization 
equation, as caused by the deviation of I from In. 
Preservation of stability can then be characterized as 
follows (HAMMER [1990 D. (Recall that S(/3'11) is the 
factorization space of our fraction representations.) 

(6.S) THEOREM. The closed loop system Icn,tpJ is in-
put/ output stable if and only if the deviation L1 satis-
fies the following condition: there is a real number a 
> 0 such that S( am) c (Mn + L1)[S(f3ril )]. When the 
latter holds, the closed loop system Icn,q,J is in-
put/ output stable over the domain of input sequences 
S(<f').• 

Interpreting the Theorem in intuitive terms, we 
can view the effect of the disturbance L1 as a 'shift' 
of the image of the unimodular system Mn. The only 
requirement for the preservation of the stability of 

the closed loop system is that a subset of the form 
scam), a> 0, remain contained within the image of 
(Mn + L1); all other conditions would then be automat-
ically satisfied. (Recall that Mn contains the subset 
S(t111) in its image by (6.2).) This necessary and suffi-
cient condition for the preservation of stability under 
system variations is very simple in nature, and is 
purely algebraic. It provides yet another manifesta-
tion of the power of the fraction representation ap-
proach to nonlinear control. Somewhat philosophi-
cally, we may say that the fraction representation ap-
proach has the advantage of automatically incorporat-
ing the topological considerations of the theory of 
stabilization of nonlinear systems, leaving us to verify 
only relatively simple algebraic conditions. 

Finally, we comment that Theorem (6.S) leads to 
some rather simple sufficient conditions for the veri-
fication of stability under system perturbations 
(HAMMER (1990]). Preservation of internal stability 
under system perturbations is discussed in HAMMER 
(1990]. 
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