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LINEAR SYSTEM FACTORIZATION

J. Hammer+ and M. Hc_vmzmnH

1. Introduction

In HAUTUS and HEYMANN [1978], an investigation was initiated of the algebraic struc-
ture of discrete time, time invariant, finite dimensional linear systems (or, simply,
linear systems) with particular emphasis on static state feedback. This investigation
was extended to the study of dynamic as well as static output feedback in HAMMER and
HEYMANN [1981]. Pivotal in the extended theory was the problem of causal factoriza-
tion, i.e., the problem of factoring two system maps over cach other through a causal
factor. The theory was further extended in HAMMER and HEYMANN [1980] where the struc-
tural invariants of precompensation orbits and the concept of strict observability
were studied in detail. Algebraically, the theory of strict observability hinges on
the problem of polynomial factorization, i.e., the problem of factoring two system

maps over each other through a polynomial factor.

It has since become increasingly clear, that the theory of linear systems can be for-
mulated in a very general algebraic setup in which the central concepts of causality
(and hence of feedback), of stability and of realization are investigated in a unified
framework. In the present paper we present some of the essentials of this theory with
particular emphasis on the issue of system stability. Proofs of theorems are omitted
because of space limitations and will appear in a future expanded paper HAMMER and
HEYMANN [1982].

2. The Mathematical Setup

We assume that the reader has basic familiarity with the setup and terminology of
HAUTUS and HEYMANN [1978], HAMMER and HEYMANN [1981] as well as HAMMER and HEYMANN

[1980]. We review the principal aspects of this setup very briefly.

l'or a field K and a K-linear space S, we denote by AS the set of all formal

Laurent series in z-l with coefficients in S, 1i.e., series of the form

2T oLt
(2.1) s = ) 5.2 ; s, €5
E=t
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In AS, the set of polynomial elements of the form ) s¢2 0, 1 denoted by 'S,
tzo
and the set of causal elements, that is, the set of jower series of the form Z .2
t2o

-t

)

is denoted by Q7S.

The set AK is a ficld under coefficientwise addition and convolutional multiplica-
tion and, under similar operations, the set AS becomes a AK-linear space. The
polynomial subset Q'K of AK and the set of causal clements QK are subrings
(principal ideal domains) of AK. The field AK 1is then an Q'K-module and an

Q K-module as well.

The @ K-order of an element s ZStZ_t € AS 1is defined by

min t€Z|st#O if s#0
(2.2) ord -,

7}
1

o if s=0
where Z denotes the integers.
Let the K-linear spaces U and Y be given. A AK-linear map f:AU-AY represents a linear
time invariant system, having U as the input value space and Y as the output value
space. It is assumed throughout the paper that all underlying K-linear (value) spaces,

and, in particular, U and Y are finite dimensional. The Q K-order (or, simply, order) of

a AK-linear map f:AU>AY is defined as

(2.3) ord f: = inf{ord f(u)-ord u]O#uEAU}.

The map f is said to be of finite order if ord f > -w.

If £ is a AK-linear map of finite order to, we associate with it its transfer function,

i.e., an element

wherec L 1is the K-linear space of K-linear maps U»Y as follows. We define the K-linea

maps p. and iu by

i : U»AU: u »u (canonical injection)
(2.4) “ =t
Pyt AY-Y: Y2 Ry
and then for all integers tato we let Tt: = Tt(F): = pt-f-iu. Conversely, with each

clement T = Zth'tEAL we associate a AK-linear map ?=fT of finite order whose action

on clements u = ZUtz_t€AU is defined through the convolution formula

freu: = J(J Tou )2t
T £ ktek

For a map f: AU+AY and a subset AcAU, we denote by F[A] the image of A under f, i.e.,
F[A] = {f(u)|u€A}. A AK-linear map f: AU+AY is called causal if ord f30 or, equiva-
lently, if f[Q U]e"Y. Similarly, f is called strictly causal if ord fx1 or, equiva-

lently, if E[27U]ez 127Y. We have the following




(2.5) DEFINITION. A AK-linear map f: AU>AY is called a linear input/output (or i/o)

map if it is strictly causal and of finite order.

Associated with a linear i/o map f: AU»AY are two further maps as follows. First, we
restrict the inputs to the Q" K-module Q+U, and consider the projection of the corres-
ponding outputs on the quotient a*K-module T7Y: = AY/2'Y. Then we obtain the restricte

linear i/o map F: Q'U+T'Y associated with f through

where j+: 2'U>AU is the canonical injection and 7 : AY-T'Y is the canonical projection
It is readily seen that f is an Q+K-homomorphism. Next, we associate with f the output
response map f: Q Uy given by f: = pl-f-j+ or, more explicitly,

£: Q'Y: u »f(u): = plf(u) .

Since the map P is K-linear, so is also the output response map f. The case in which
f is an Q+K-homomorphism as well, is of particular importance and we have
(2.6) DEFINITION. A linear i/o map f: AU»AY is called an input/state (or i/s) map if

. + . . . .
there exists an Q K-module structure on Y, compatible with its K-linear structure, such

that the output response map f = pl-f-j+ is an Q+K—homomorphism.

3. Rationality and Stability: General Considerations

An element s€AS is called Q' K-rational (or sometimes simply rational) if there exists

.f.

a nonzero polynomial veR 'K such that ¢SEQ+S. The set of Q K-rationals in AS is deno-

ted QQ*KS‘ For an element s€QQ+KS, the set of polynomials ¢€Q+K for which ¢s€Q+S is
casily seen to be an ideal in @'K. Since Q'K is a principal ideal domain, this ideal

is generated by a monic polynomial bes which we call the least denominator of s. The

zeros of ws are called the poles of s. (In case K=, the field of real numbers, it is
customary to consider not only poles in & but also in C, the field of complex numbers)

e o . . . . . . v
The definition of Q K-rationality applies, in particular, also to transfer functions
of AK-linear maps and we call a AK-linear map f: AU-AY Q'K-rational (or, simply,

rational) if so is its transfer function.

We turn now to the concept of stability. If D is a set of polynomials, we say that an
+

Q K-rational map is .JQ-stable if its least denominator is in.). We impose a number of

restrictions on the set J) of stable denominators (see MORSE [1976]) as follows :

(3.1) DEFINITION. A setd of (monic) polynomials over K is called a denominator set

if it satisfies the following conditions

(i) D is multiplicatively closed, i.e., p&d, q€Q imply p-q€ .

(ii) The unit polynomial 1 belongs to,) but the zero polynomial does not belong

to D .

t+ Throughout the paper S denotes a finite dimensional K-linear space.



(iii) Db contains at least one polynomial of degrec one, i.c., there exists a€K such
that z-a€J).

(iv) Jf is saturated, i.e., if p€ and q is a monic divisor of p, then q€ .9 .

Conditions (i) and (ii) say that ) is a multiplicative set so that one can define the

set K as the set of fractions p/q, where p€Q+K and qGD. Conditions (iii) and (iv)

Q
are ﬁgtivated by considerations that are discussed shortly. We now introduce the
following '

(3.2) DEFINITION. LetJ) be a denominator set. Then an element sEQQ+KS is called
stable (or, explicitly, ,J) -stable) if there exists y€J such that yseq*S, or, equiva-
lently, if the least denominator ¢Se,a . The set of stable elements in QQ*KS is

denoted by %DS. The set of stable and causal elements is denoted by %58, 1.€a 5

(3.3) Qﬁs = QDS neas

The above definition of stability is easily seen to be a generalization to arbitrary
fields of the usual concept of stability in system theory defined in an algebraic

framework,

Definition 3.2 applies, in particular, to the case S = L, the space of all linear
maps U»Y and we have a definition of stable transfer functions and stable AK-linear
maps. In particular, we have the following

(3.4) PROPOSITION. The map EEQDL if and only if ?[?DU]C%DY.

The set 2 K 1is easily seen by direct computation to be a subring (with identity) of

the rational field Q and is actually a principal ideal domain. In fact,

ark S+
we have even more :

(3.5) PROPOSITION. The ring QDK is a Euclidean domain.

Since we arc interested in causal systems, we shall be interested in the ring QsK
which, as was proved in MORSE [1976] is also a principal ideal domain and, in fact,
just as QDK, is also a Euclidean domain. We generalize now our framework of considera-
tion so as to include the preceding examples as special cases. In particular, since
we encountered as substructures of AK the rings Q+K, QK, QDK and gaK all of which

are Euclidean domains or, more generally,principal ideal domains, we consider now a

more general framework as follows :

Let QK be a principal ideal domain (P.I.D.) properly contained as a subring in AK.
The AK-linear space AS is then also an QK-module. Define Q@S to be the QK-submodule of

AS generated by S, i.e., if SyseesSy is a basis for S then

n
(3.6) 0S: = {s€AS|s = Y a.,s. , a«, € 90K, i=1,...,n}
i=111 1

We now extend some basic concepts and terminology to the P.I.D. QK. An element s€AS
is called QK-rational if there exists a nonzero element Y€EQK such that ys€RS. The



set of QK-rationals in AS is denoted QQKS' Just as in the case Q+K, the definition of
QK-rationality also applies to transfer functions of AK-linear maps and we call a AK-
linear map QK-rational if so is its transfer function. It is readily seen that

f: AU>AY is an QK-rational map if and only if f[QQKU]CQQKY.(The sufficiency of this
condition depends on the finite dimensionality of U). An element s€AS is called an
@K-element if s€qQS. Thus, a AK-liner map f: AU-AY is an QK-map in case its transfer
function is an QK-element of AL. f is called QK-unimodular if it is an invertible

QK-map and its inverse is also an QK-map.
We shall make use of the following notation

jQK: QS +» AS: s »s (natural injecction)
(3.7)

HQK: AS > AS/QS =: FQKS (canonical injection)
We can write the following
(3.8) THEOREM. Let f: AUAYbe a AK-linear map. Then f is an QK-map if and only if
floU]=Y (or, equivalently, if and only if QUckernQKf).

The following corollary to Theorem 3.8 is very useful
(3.9) COROLLARY. A AK-linear map 2: AU-AU is QK-unimodular if and only if
2[U] = U (equivalently, ker 7, 2 = QU).

aK

4. The Order and Adapted Bases

Our main objective in this section is to obtain finitary characterizations of QK-
submodules of AK-linear spaces and of related properties of AK-linear maps. As before,
we let QK be a principal ideal domain properly contained as a subring in AK and let

QQK (=QQKK) denote the field of quotients generated by (K.

For an element s€AS we define the order of s, denoted ordQKs (or, simply, ord s when
the underlying ring is clear) as the set of all elements aEQQK for which os€QS. When
$=0 we obviously have that ord s = QQK’ i.e., the whole quotient field generated by ~
@K. In general, it is an easy exercise to verify that ord s is an fK-module (submodule
of QQK)' In fact, we have the following :

(4.1) THEOREM. If s€AS is nonzero,_then ord s is a cyclic QK-module.

Let O#s€AS be any element and let aEQQK be any generator of ord s (possibly zero). If
a'GQQK is another generator of ord s, then it is clearly an associate of o with
respect to QK, i.e. a' = pa where p€QK is a unit (i.e., an invertible). It follows
that a is uniquely defined modulo units in QK, and it will sometimes be convenient

to identify ord s with one of its generators.
Before we proceed with our discussion,let us consider some examples of special interes

First, let QK be the ring Q K of causal elements. It is easily seen that QQ-K = AK

since for every a€AK, either a or a—l is in QK (or both). Further, for every element



#

O#a€AK there is a unique integer k such that 0L=uz_k for some unit p€Q K. Thus, for
-k

QK )Q'K
s with the integer k associated with it. This definition of order of

each O#s€AS, there exists a unique integer k such that ord_ _, s = (z and we may

identify ordQ_K

an clement as an integer is precisely the (standard) definition of order as given in

(2.2) above. (See also HAUTUS and HEYMANN [1978] and HAMMER and HEYMANN [1980],[1981])

As the second example let QK be the ring Q'K of polynomials. In this casc QQ*K is the
usual field of rationals. For an element s€AS, ordSZ+ s#0 if and only if s€Q2+K
i.e., if and only if s is ratégnal (in the classical sense). Let O#SEQQ+KS be given
as s = (sl,...,sm) with sy = a%-, pi,qi€Q+K being coprime for all i=1,...,m. Then
ordQ+Ks is generated by the rational element q/p where q and p are the monic poly-
nomials q = l.c.m.(ql,...,qm) and p = g.c.d.(pl,...,pm) (l.c.m. and g.c.d. denoting,

respectively, the least common multiple and the greatest common divisor). To see this,

write p. = pﬁi and q = qiii for polynomials p., a , i=1,...,m. Then
H’ = g. ﬂ. = a.n Q 2
D s (p Syse-esny S ) (qlpl,...,q p ) € S so that ( ) + Cbrd9+ks Conversely,

P m
let %-be any element in ordQ+Ks where r and t are coprxmc polynomials. Then for each
p.
i=1,...,m, %-a% € Q+K Thus, q; is a divisor of r for cach i, and since q is the

l.c.m. of the q; 's it follows that q is a divisor of r as well, that is, r = qr
for some T€Q'K. Similarly, t is a divisor of each of the pi's and hence also of p,

so that p = tp for some p€Q K. Thus, E—= 9—- 9¥E- J{rp) and it follows that
P
T

s € (p)Q+K’ and combining with our previous observations, we have that ordQ+Ks (p)Q+K'

Finally, we consider the case when QK is the ring Q;K of causal and stable elements.

The quotient field Q again coincides with the usual field of rationals Q and

Q*K

an element s€AS has nonzero QEK order if and only if s€Q Let

Q*K
(sl,...,sm) € QQ*KS be a nonzero element and write cach entry Si» i=1,...,m
PiTy . . + +
as s = Y where T. ,q.Qf}are coprime (with respect to Q K) and where (O#)piEQ K
i
is coprime with every element of ) . Then it can be verified by direct computation

9_ . - -
that ordQ_Ks is generated by an element = € QQ+K as follows: p g.c.d.(pl,...,pm)

and q and r are any coprime elements off) such that ord - ord

9.5 -
Q‘K(pr) - Q-K>

We proceed now with the discussion of some general properties of the order.

(4.2) THEOREM. Let s€AS be any element. Then ord s#0 if and only if SEQOKS
Next, we have the following simple characterization of elements in QS.

(4.3) PROPOSITION. Let s€AS be uny element. Then s€QS if and only if QK < ord s.

Let sl,...,sm € QQKS be a set of elements with orders ord si = (Yi)QK’ i=1,...,m.

Then the intersection ord 1 N...N ord sm is also a cyclic QK-module, and hence there -

is a generator y€Q such that ord s; N...n ord Sm = (Y)QK It is easily seen that y

is- a least common multlple over 9K of yl,...,y , (i.e., y divides every element
Y EQQK satisfying the condition that there exists for ecach i an element Y €QK such

that y' = YiYi)' If SEQQKS and aEQQK are any elements, then ord as = a-l ord s so
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that if ord s = (Y)QK, then ord as = (u'ly) In particular if «€QK, then

K"

ord s € ord as. Furthermore, if s "’Sm€QQKS is any set of elements)thed

1°°

(4.4) ord Sy N...Nn ord 5o < ord (51+...+sm)

Finally, we shall say that a set of elements s ..,sm€AS is QK-ordercd (or simply

1°°
ordered) if ord s1 c...c ord S

We turn now to characterization of when a AK-linear map f: AU+AY is an QK-map. Recall
that f is an QK-map if F[QU] < QY and let O#UEQQKU be any element. Then ord u = (Y)QK

yE(u)€EQY so that

for some YEQQK and yu€QU. If f is an QK-map, then f(yu)
QK < ord F(yu) (see Proposition 4.3), or, equivalcntly, 9K < ord yf(u) = Y_l ord f(u).
Thus we conclude that (Y)QK < ord f(u), and a necessary condition for f to be an
QK-map is that ord u < ord f(u). This condition is actually also sufficient and we

have the following

(4.5) THEOREM. Let f: AU>AY be a AK-linear map. Then f is an QK-map if and only if
ord u < ord f(u) for each uEQQKU.

The condition of Theorem 4.5 is, of course,‘not easily tested directly and we would
like to find a finite ''test set'" of elements in QQKU which is sufficient for verifica-
tion that a AK-linear map is an QK-map. That a basis for QQKU may not be appropriate
for this purpose is seen in the following simple example.

(4.6) EXAMPLE. Let QK = Q K and let Y = U = K2. Take as basis for QQKKZ the elements

-1 _ _
u, = (f ) and u, = (% 2) and define f: AK2+AK2

?(ul) =u, +u,

1
f(uz) = u,
Obviously, @ K = ordg_K u, = ordQ_K f(ul) = ordQ_K u, = ordQ_K f(uzz. Thus, f satisfie
the condition of Theorem 4.5 for the basis ul,uzjyet it is not an @ K-map (that is, no
. - = -2
causal).Indeed, since f(ul—u2)=u1 and since up-u, = & = 2"y, we have

OrdQ‘K(ul_uz) =20 K & ordQ_K u; = QK .

Let us explore now the cause of difficulty encountered in the above example. If
sl,...,smEQQKS is a given set of elements and a
then by formula (4.4),

1,...,amEQQK is any set of scalars,

m m
N ord a.s, cord ) a.s,
. i’i Lo %574
i=1 i=1

But, the above inclusion, in general, need not hold with equality (even when the s
-linearly independent). This order 'deficiency" also occurs in the example and
therefore .the basis selected there failed as a test sct for causality. Indeed, we .
have there

2
2 ord u, = Q K # ordQ_K(ul-uz) = 20 K



Thus, we are motivated to introduce the following

(4.7) DEFINITION. A set of nonzero elements 51""’Sm€QQKS is called 9K-adapted if
tor every set of scalars al,...,amEQQK the condition

m m
(4.8) N ord a,s. = ord X oS,

s i1 . i7i

i=1 i=1

holds. A basis of QK-adapted elements s »S of QQKS is called an QK-adapted basis

170"
It is easily verified that in Definition 4.7 we could replace QQK by €K,

i.e., s ceaSy is QK-adapted if and only if (4.8) holds for cvery set a

1’ ..,amEQK.

1’

In the case when QK=Q K, it can be seen that Q K-adapted sets coincide with properly
independent sets (see HAMMER and HEYMANN [1981]) and minimal bases (see FORNEY [1975]:
which have found many applications in system theory (see also WOLOVICH [1974], HAUTUS
and HEYMANN [1978] and KAILATH [1980]).

Next we have the following theorem

(4.9) THEOREM. An QK-adapted set of nonzero elements sl,...,sngQQKS is AK-linearly
independent.

Let sl,...,sm€AS be a set of elements and let A[Sl""’sm] denote the AK-linear space
spanned by SysesesSpy We then have the following characterization of QK-adapted sets.

(4.10) THEOREM. Consider a set of nonzero elements s ..,smEQQKS with

1’
ord s; = (Yi)QK’ i=1,...,m. Then {sl,...,sm} is an QK-adapted set if and only if

{Ylsl,...,ymsm} forms a basis for the QK-module A[sl,...,sm] n QS.

As an immediate consequence of the above theorem we have the following characterizatic

of QK-adapted bases.

(4.11) COROLLARY. Assume the set Sl""’snEQQKS is a basis for AS with

ord s, = (Yi)QK’ i=1l,...,n. Then the sct {sl,...,sn} is QK-adapted if and only if
{Ylsl,...,ynsn} generates 9S.

(4.12) EXAMPLE. Corollary 4.11 provides a particularly simple way for determining

whether a basis s RPN of a AK-linear space AS is QK-adapted. Indeed, the main

clause of the Corillary can be restated to read: The basis sl,...,sn of AS is
QK-adapted if and only if det[sl,...,sn] = yil.ygl ..... ygl. Using this simple crite-
rion, we show that the columns
z z2+1 0
S1 = 23 » Sy = (zz+1)2 , Sz = 0
24 z4(z2+1) 23+1

form an (unordered) Q'K-adapted basis of AKS. Indced, we have ord, s, = (z'l)Q+K,
2, 44-1 3] a2 3
ordQ+K52 = ((z°+1) )Q+K and ordes3 = ((z7+1) )Q+K’ whence Y1 Y50 =z (z"+1) (z7+1)



which is equal to det[sl,s7,53]. It however, Sy» Say, is replaced by si=(22,23,z4)T

the resulting set will no longer be Q+K—adapted since
det[s',sq,ss] = (23+1)(22+1)(23+22).
- O
We turn now to the characterization of QK-maps with the aid of QK-adapted bases. As a

further consequence of Theorem 4.10 we have the following

(4.13) PROPOSITION. Let f: AU>AY be a AK-linear map and assume that u

100 oYy is an

QK-adapted basis for AU. Then f is an QK-map if and only if ord uy < ord ?(ui) for

all i=1,...,n.

(4.14) DEFINITION. A AK-linear map f: AU»AY is called QK-order preserving (or,

simply, order preserving) if for each uEQQKU, ord u = ord f(u).

(4.15) THEOREM. Let f: AU>AY be a AK-linear map and let ul""’unEQQKU be an QK-

adapted basis for AU. Then f is QK-order preserving if and only if (i) ?(ul),...,f(un‘

J

is ©K-adapted and (ii) for all i=1,...,n, ord u, = ord f(ui).

(4.16) THEOREM. Let f: AU>AU be a surjective AK-linear map. Then f is QK-unimodular

if and only if it is QK-order preserving.

5. Bounded K-Modules

Let A<AS be an QK-module. We say that A is QK-bounded (or simply bounded) if there
exists a nonzero element yEQQK such that y € ord s for all s€A (i.e., ys€QS for all
s€A). It is clear that if A is a bounded QK-submodule of AS, it consists only of
QK-rational elements. An QK-module consisting of QK-rational elements is called
rational. If ACAS is bounded QK-submodule, we define the order of A, denoted ord A,
as the class of all elements y€QQK such that y € ord s for all s€A. It is easily seen

that ord A = N ord s whence if A#0, ord A is a cyclic QK-module and is generated by
SEA
an element w€QQK. Explicitly, ¥ is a least common {K-multiple of all order generators

Y = y(s) of elements s€A.
Next, we have the following :

(5.1) LEMMA. Let AcAS be a rational QK-submodule. Then A is bounded if and only if

A has finite rank (i.e., is finitely generated) in which case rank A < dim S.

Below we make use of the Smith canonical form theorem for matrices over a principal
ideal domain (see e.g. MACDUFFEE [1934] and NEWMAN [1972]). We shall identify AK-linea
maps with their transfer function matrices. In particular, we shall speak of an
QK-matrix if its entries are in QK and of an QK-unimodular matrix if both it and its

inverse are QK-matrices. Smith's theorem is stated as follows:

(5.2) THEOREM. Let T be an mxn QK-matrix. Then there are QK-unimodular matrices ML

and Mp of dimensions mxm and nxn, respectively, and elements 61,...,6r€QK, uniquely

’ 1=1,...,T—1,

defined up to multiples of units of @K, with remin(m,n) 329-5i+1|5i



such that

(5.3) T = ML D MR
where D is the mxn matrix given by D = diag(él,...,ér, 0,...,0).
The elements 61,...,6r in Theorem 5.2 are called the invariant factors of T and the

theorem itself is sometimes callcd the invariant factor theorem.

Assume now that AcAS is a nonzero and bounded QK-module with ord A = (w)QK and (in

view of Lemma 5.1) let d1""’dr€A be a basis for A. Then wdl,...,wdrEQS and the mxr

matrix yT: = [wdl,...,wdr] (where wdi is viewed as a column vector) has Smith repre-
sentation
(5.4) YT = M D M,
where

e ]

61 0

D = i 6r ,
—- 0 —_

and the GiEQK (with 6i+lldi) are the invariant factors of yT. We note that, by assump-

tion, & "’Gr are nonzero. Dividing both sides of (5.4) by y yields

12*
(5.5) T = M D Mp

where D0 is the Mcmillan form of D, and is given by

Let doi denote the ith column of Do‘ It is easily observed that the columns

d01""’dor€QQKs constitute an QK-adapted set. Indeed, for every set al,...,arEQQK
we have that = n
61
al——w_
r Gr
d = Z (x_d = o —
jop +ooi Ty
0
e O —
aldl arar
and clearly ord d = (—)g, N...0 ()¢



Furthermore, we have

A = T[as] = M D_Mp[es] =M D [as] ,

the last equality following since Mp is QK-unimodular (see Corollary 3.9). Now, ML is

gK-unimoduéar, so that by Theorem 4.15 the columns of ML Do’ given by

1

E-MLl""’ﬁzMLr (where M is the ith column of ML) are also QK-adapted. Further,

Li
since ML is QK-unimodular, it also follows that ord MLi = QK, whence,
S$. 8 8
ord —lM .= Y—-QK = W . We see immediately that the set —1M ,...,—EM
Y Li di Gi aK Yy L1 Y Lr

constitutes an ordered QK-adapted basis for A. We make the following further observa-

tion. Since §, .|6., it follows that
i+1' 71

v v v
B] <] ey
r’/ QK .r-l QK 1/ QK
so that .
ord A = (¢).., = [2—
K Gr‘QK

and we conclude that Gr is a unit in QK which, in particular, can always be chosen as

Gr = 1.

We summarize the foregoing discussion with the following important theorem

(5.6) THEOREM. Let AcAS be a nonzero bounded QK-module. Then

(1) A has an ordered QK-adapted basis dl""’dr'

(ii) If di,...,d; is any other ordered QK-adapted basis of A then

ord d! = ord d., i =1,...,T.
i i

If AcAS is a bounded QKrgodule with ordered QK-adapted basis dl""’dr’ then the set

i
of QK-modules ord di = Wak

and we call it the order trace of A.

i=1,...,7r constitutes an important invariant of A

L.et AcAS be a bounded QK-module of rank r and let dl""’dr be a basis of A. We can

form the matrix D: = [dl""’dr] and view A as the image of an QK-homomorphism
QK*+AS defined by e, »Dei = di' With this convention we then write A as A = DK'.

We say that A is full (in AS) if rank A = dim S, i.e., if A = DQS and D is nonsinguls

(5.7) THEOREM. Let Al’ A2 < AS be bounded QK-submodules given by A1 = Dlﬂs and

Az = DZQS, respectively. Then A2 < A, if and only if there exists an QK-matrix R

1
(i.e., with entries in QK) such that D2 = DlR'
(5.8) COROLLARY. Let Al, A2 < AS be bounded QK-submodules given by A1 = Dlﬂs and
A, = Dy2S. Assume A, is full and define R: = DIIDZ. Then A, < A, if and only if R

is an QK-matrix, with equality holding if and only if R is ©K-unimodular.

We turn now to the existence of QK-adapted bases for AK-linear spaces. A AK-linear

subspace RcAS is called QK-rational if it has a basis Spsee Sk consisting of

QK-rational vectors.



(5.9) THEOREM. Let dim S = n and let RSAS be a nonzero QK-rational AK-lincar sub-

space. Then (i) R has an QK-adapted basis, and (ii) every QK-adapted subset

Sl""’52€R can be extended to an QK-adapted basis for R.

Next, we give the following characterization of the order trace.

(5.10) PROPOSITION. Let A,A'cAS be nonzero and bounded QK-modules of equal rank m.
Then there exists an QK-unimodular map M: AS+AS such that M[A] = A' if and only if A

and A' have the same order traces.

Related to the notion of QK-adapted bases is also the following

(5.11) DEFINITION. Let Rl""’RE:AS be QK-rational AK-linear subspaces. Then

Rl""’Rk are called QK-adapted if for every set of clements SpseeaSy where siERi’
i=1,...,k,
) k
ord (sl Fom ot sk) = if:lord S5

It follows readily from the above definition that the concept of QK-adapted subspaces

is equivalent to the following : Let Rl,...,RkéAS be {K-rational AK-linear subspaces

and let d..,...,d.
il

1.

o 1 s
QK-adapted if and only if dll""’dll ,...,dkl,...,dkjl

Rl ...+ Rk. Naturally, QK-adapted sp%ces are AK-linearly independent so that the

above sum of subspaces is, in fact, a direct sum. Accordingly, we speak of QK-adapted

be a basis for Ri’ i =1,...,k. Then the subspaces Rl,...,R are

k
is an QK-adapted basis for

direct sums of AK-linear spaces.

The concept of QK-adapted subspaces is of course a generalization to arbitrary P.I.D.'
of the concept of properly independent and stably independent spaces as defined in
HAMMER and HEYMANN [1981], and in HAUTUS and HEYMANN [1980a], [1980b].

Theorem 5.9 leads to the following useful result.

(5.12) COROLLARY. Let RlcR2 (=AS) be QK-rational AK-linear subspaces. Then R1 has

an QK-adapted direct summand in Rz.

6. QK-Factorization and Invertibility

Consider two AK-linear maps f;: AU>AY and ?2: AU+AW and assume there exists an QK-map
h: AY+AW such that fz = ﬁ-fl. Let u€AU satisfy the condition that fl(u)EQY, or, in
the notation of (3.7), that u€kernQKf. Then, obviously, fz(u) = ﬁ-fl(u)EQw so that

uEkernQK?z, and the existence of the QK-map h such that ?2 = ﬁ-?l,

kernQK?lckernQKfz. In case the maps fl and EZ are QK-rational, the converse of the

above statement is also true and we have the following central

implies that

(6.1) THEOREM. Let ?1: AU>AY and ?2: AU>AW be 2K-rational AK-linear maps. There
exists an QK-map h: AY+AW such that_f,=ﬁ&3 if and only if kernQK?lckernQK?z.

Theorem 6.1 depends on the following lemmas.



(6.2) LEMMA. Let f: AU>AY be an QK-rational AK-linear map. Let r:= dim

AKImf and let

YOCY be any r-dimensional subspace. Then there exists an QK-unimodular map M: AY-AY
such that ImM-?=AYO.

(6.3) LEMMA. Let f: AU>AY be a AK-linear map. If Rckerm
then Rckerf.

f is a AK-linear subspace,

K

Theorem 6.1 admits the following
(6.4) COROLLARY. Let fl,?z: AU~AY be QK-rational AK-linear maps. There exists an

@K-unimodular map M: AY>AY such that fz = M-fl, if and only if kernQKf =kernQKf2.

We call a AK-linear map f: AU+AY QK-left invertible if it has an QK-map as a left

inverse. The following further corollary to Theorem 6.1 is also useful.

(6.5) COROLLARY. An QK-rational AK-linear map f: AU>AY is QK-left invertible if and
only if kernancnU.

Before concluding the section, we wish to express in an explicit form the main quanti-

ties that appeared in our discussion. Let f: AU»AY be an QK-rational AK-linear map.

We start with an explicit representation of the QK-module kerm_  f. We shall identify

the map f with its transfer matrix, and shall denote r: = dimAK¥§?' Let ML: AY->AY
and MR: AU~AU be gK—ugimodular maps su;h t?at f=ML-D-MR, where the matrix D: AU-AY is
of the form D = O° ol » with Do: AK">AK"™ (square) nonsingular. One possible choice
of D is, of course, the McMillan canonical form of f. Also, we let Uo 0] U1 = U be a

direct sum decomposition, where AU0 = ker D and AU, is the domain of Do'

1

Now, kerm . f = kerm__ M DM_ = Mil[kerw MLD]’ and, applying corollary 6.4, we obtain

ek = "TI'eK TLUR K 4
that kernQKf = MR [kernQK D]. Further, it is readily scen that kernQKD = Do [QUI]QAU(
and, consequently, we have
(6.6) kern F =M1 [au.] @ AU ] and
’ QK R “o 1 o’
2 _ 1
(6.7) ker ¥ = M "[AU].
Defining now the map
.= M . AU ~AU
we have that
(6.8) kerm  F = ?*[QUl] + ker £

so that f, generates the "bounded part" of kernQKf.

Next, let f£': AU>AY' be a linear i/o map. We express now the condition of theorem 6.1
in more explicit form. The condition kernQK?ckernQK?' is clearly equivalent to
?'[kernQKf]CQY'. Substituting now (6.8), and noting that ker f is a AK-linear sub-
space, the latter condition can be split into the two conditions: (i) f'f*[QUl]CﬂY',

and (ii) f£'[kerf] = 0. These conditions are then equivalent to simply



IR

(i) FF, is an QK-map, and (iia) kerfckerf', respectively.

Returning now to theorem 6.1, we can summarize as follows: There exists an 9K-map
h: AY>AY such that f' = hef if and only if f'f, is an QK-map, and kerfckerf'. More-

over, through a direct computation,one can show that, if h exists, then it is

necessarily of the form
h=(£'F,, YyseeeaYy .
where p: = dimK Y, and yl,...,yp_r are (arbitrary) elements in QY'. Thus, the map f*,

which generates the "bounded part" of keerKf, plays a central role in factorization

theory.

7. Precompensation and Stable Output Feedback

We turn now to a brief discussion of some applications of the above factorization
theory to stable (and causal) output feedback. We assume throughout the section that

QK is either the ring %aK or the ring QéK.

Let f: AU+AY be a linear i/o map and let 2: AU>AU be a bicausal AK-linear map (i.e.,

Q K-unimodular) which we regard as a precompensator for f. We can express L = as

7.1) ilaulasm

where L is static (see HAUTUS and HEYMANN [1978]) and where h is strictly causal. If,
additionally, we can express h as h = gf for some causal map g: AY->AU then we can
give £ an output feedback interpretation through the formula

L= F(1+ gL,

which is the i/o map of the composite system

LI I R ¢ | F Y

\

g |

The map g is then clearly a causal (dynamic) output feedback compensator and L is a
coordinate transformation map in the input value space. We may require additionally
that the feedback compensator g be stable, i.e., an QDK~map. We are then faced with
the question of when can h of (7.1) be factored over f through an %DK—map g. The

answer is provided by Theorem 6.1 and we have the following

(7.2) THEOREM. Let f: AUAY be an QDK—rational linear i/o map, let %: AU>AU be an

QDK-rational bicausal precompensator for f and express

as in (7.1). There exists

L
% if and only if

a causal and stable output feedback representation for
kerm, ﬁ:kern%DK

We say that a linear i/o map f: AU»AY is %DK-minimum phase (or, simply, minimum phase




if it is an Qbk—map (i.e., stable) and is @ K-lett invertible, Thus T is @ K-minimum

4

"phase precisely whenever

(7.3) kern. f=QU.

Q K
Y Py

We recall further (see HAMMER and HEYMANN [1981]) that a linear i/o map f is called

nonlatent if and only if

kernQ_Kf =z U,

i.e., if and only if zf has a causal left inverse. Now, if f is K-left invertible,

Q
]
so is also (z+a)f where (z+a)€ﬁ. In case f is nonlatent as well, then (z+a)f also has

a causal left inverse. Thus, one can readilly sce that an i/o map f is nonlatent and

minimum phase if and only if

(7.4) kerngaKf = (z+a)%0U .
We now have the following Theorem which is an analog to Corollary 5.4 in HAMMER and
HEYMANN [1981]

(7.5) THEOREM. Assume that for some «,BEK, both (z+a) and (z+B8) are in g, and let

f: AU+AY be an QgK—rational and stable linear i/o map. Then f is nonlatent and minimu

phase if and only if every %5K—unimodular AK-linear precompensator 2: AU>AU has a

causal and stable feedback representation (L,g), i.e., there exists a pair (L,g) with

1.

L static and g causal and D-stable such that & = (I+gf)~

The interest in Theorem 7.5 derives from the fact that stable injective linear i/s
maps are alwgys nonlatent and minimum phase. This fact is seen as follows. It was

shown in HAMMER and HEYMANN [1980] that if f: AU»AY is an injective linear i/s map,

it is strictly observable, i.e., kernQ+Kﬂ:n+U. Let D be an Q+K-adapted basis matrix

for kernQ+KE, that is,DQ+U=kern It is easily verified that we then also have

f
QrK e
that DU = kernQ Kf. Now, the strict observability of f implies that D is a poly-

- . . +* . -
nomial matrix and thus DQbUCQUU (since Q chaK). We conclude that l\ernQ KﬁcQaU,

and if the i/s map f is also stable, the minimum phase property (see (7.3?) follows.
That Iinjective linear i/s maps are nonlatent was proved in HAMMER and HEYMANN [1981]

(Theorem 5.5). We summarize the above in the following.

(7.6) PROPOSITION. lf_f: AU>AY is a stable injective linear i/s map, then it is

nonlatent and minimum phase.

We can now combine Theorem 7.5 with Proposition 7.6 to obtain the following result.

(7.7) COROLLARY. Let f: AU»AY be a stable, injective linear i/o map and let

2: AU>AU be an %gK-unimodular precompensator for f. Then % has a stable causal

(dynamic) state feedback representation in every stable realization of f.
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