
,...../ 
I FEEDBACK CONTROL OF LINEAR AND NONLINEAR SYSTEMS, edited by D. Hinrichsen 

and I. Isidori, Lecture Notes in Control and Information Sciences, No. 39, 
Springer Verlag, 1982, NY. 

L IN EAR SYSTEM FACTO I{ I 3 /\ T I ON 

t ·rt 
.J. Hammer and M. llcymann 

1. Introduction 

In HAUTUS and HEYMANN [1978], an investigation was initiated of the algebraic struc­

ture of discrete time, time invariant, finite dimensional linear systems Lor, simply, 

linear systems) with particular emphasis on static state feedback. This investigation 

was extended to the study of dynamic as well as static output feedback in HAf1MER and 

HEYMANN [1981]. Pivotal in the extended theory was the problem of causal factoriza­

tion, j .e., the problem of factoring two system map~ ovf'r cnch other through a causal 

factor. The theory was further extended in HAMMER and HEYMAi'.JN [ 1980] ivhere the struc­

tural invariants of precompensation orbits and the concept of strict observability 

were studied in detail. Algebraically, the theory of strict observability hinges on 

the problem of polynomial factorization, i.e., the problem of factoring two system 

maps over each other through a polynomial factor. 

It has since become increasingly clear, that the theory of linear systems can be for­

mulated in a very general algebraic setup 1n which the central concepts of causality 

(and hence of feedback), of stability and of realization are investigated in a unified 

framework. In the present paper we present some of tl1e essentials of this theory with 

p:.1 rticular emphasis on the issue of system stabi lit:• Proofs of theorems are omitted 

because of space limitations and will appear in a future expanded paper HAMMER and 

HEYMANN [1982]. 

2. The Mathematical Setup 

We assume that the reader has basic familiarity with the setup and terminology of 

HAUTUS and HEYMANN [1978], HAMMER and HEYMANN [1981] as well as HAMMER and HEYMANN 

[1 J 80]. We review the principal aspects of this setup very briefly. 

fo'or a field K and a K-linear space S, we denote hy /\S the set of all formal 
-1 Laurent series in z with coefficients in S, i.e., series of the form 

(2. 1) 
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In AS, the seL of polynomial elements of the form is denoted by 

and the set of causal elements, that is, the set of r•ower series of the form 

is denoted by n-s. 

+ n s, 

The set AK is a f i eld under coefficientwisc a<lJition and convolutional multiplica­

tion and, under sjmilar operations, the set AS becomes a AK-linear space. The 

polynomial subset n+K of AK and the set of causal clements n-K are subrings 

(principal ideal domains) of AK. The field AK is then an ~/K-module and an 

n-K-module as well. 

- \ -t Then K-order of an elements= lstz E AS is defined by 

if s/0 

(:2. 2) 

if s=O 

where z denotes the integers. 

Let the K-linear spaces U and Y be given. A AK-linear map f:AU+AY represents a linear 

time invariant ~ystem, having U as the input value space and Y as the output value 

space. It is assumed throughout the paper that all underlying K-linear (Yalue) spaces, 

and, in particular, U and Y are finite dimensional. The n-K-order (or, simply, order) of 

a AK-linear map f:AU+AY is defined as 

(2.3) ord f: = inf{ord l(u)-ord u!OluEAU}. 

The map f is said to be of fini tc order if or<l f > - 00 • 

If f is a AK-linear map of finite order t , we associate with it its transfer function, 
0 

i.e., an element 

T = 

00 

l 
t=t 

0 

where L is the K-linear space of K-linear maps U+Y as follows. We define the K-linea 

maps pt and iu by 

(2.4) 
U+AU: u »u (canonical jnjection) 

-t 
AY+Y: y tz 1+yk 

and then for all integers t~t
0 

we let Tt: = Tt(f): = I\·f·iu. Conversely, with each 

clement T = ITtz-tEAL we associate a AK-linear map f=fr of finite order whose action 

on clements u = Iutz-tEAU is defined through the convolution formula 

For a map f: AU+AY and a subset AcAU, we denote by f[A] the image of A under f, i.e.' 

tfA] = {f(u) luEA}. A AK-linear map f: AU+AY is called causal if ord ho or, equiva-

lently, if f[n-u]c::n-Y. Similarly, f is called strictly causal if ord hl or, equiva-

lently, if £[n-u]cz- 1n-Y. We have the following 
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(2.5) DEFINITION. A AK-linear map f: AlJ-+AY is called a linear input/output (or i/o) 

map if it is strictly causal and of finite order. 

Associated with a linear i/o map f: AU+AY are two further maps as follows. First, we 

restrict the inputs to the n+K-module n+u, and consider the projection of the corres­

ponding outputs on the quotient n+K-module r+Y: = AY/n+Y. Then we obtain the restricte, 
- + + -linear i/o map f: n U+r Y associated with f through 

+ - + f = 1T •f•j 

where j+: n+U+AU is the canonical injection and n+ AY+r+Y is the canonical projection 

It is readily seen that f is an n+K-homomorphism. Next, we associate with f the output 

response map f: n+U+Y given by f: = p
1

•r•j+ or, more explicitly, 

+ f: n U+Y: u ~f(u): = p 1r(u) 

Since the map p
1 

is K-linear, so is also the output response map f. The case in which 

f is an n+K-homomorphism as well~ is of particular importance and we have 

(2.6) DEFINITION. A linear i/o map f: AU+AY is called an input/state (or i/s) map if 

there exists an n+K-module structure on Y, compatible with its K-linear structure, such 
- + + that the output response map f = p ·f·j is an n K-homomorphism. 

1 

3. Rationality and Stability: General Considerations 

An element sEAS is called n+K-rational (or sometimes simply rational) if there exists 

a nonzero polynomial 1/JEn+K such that v,sEn+s.t The set of n+K-rationals in AS is deno­

ted Qn+KS. For an element sEQn+KS, the set of polynomials v,En+K for which 1/}sEn+s is 

easily seen to be an ideal in n+K. Since ~tK is a principal ideal domain, this ideal 

is generated by a monic polynomial 1/J, which we call the least denominator of s. The 
s 

zeros of 1/1
5 

are called the poles of s. (In case K=~, the field of real numbers, it is 

customary to consider not only poles in lH but also in C, the field of complex numbers) 

The definition of n+K-rationality applies, in particular, also to transfer functions 

of AK-linear maps and we call a AK-linear map f: AU+AY n+K-rational (or, simply, 

rational) if so is its transfer function . 

We turn now to the concept of stability. If J) is a set of polynomials, we say that an 
+ 

n K-rational map is~-stable if its least denominator is in~. We impose a number of 

restrictions on the set.l> of stable denominators (see MORSE (1976]) as follows : 

(3.1) DEFINITION. A set}) of (manic) polynomials over K is called a denominator set 

if it satisfies the following conditions : 

(i) 2J is multiplicatively closed, i.e., ~' qE.,V imply p•qE IJ. 
(ii) The unit polynomial 1 

to ]J . 

belongs to.ll but the zero polynomial does not belong 

t Throughout the paper S denotes a finite dimensional K-linear space. 
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(iii) JJ contains at least one polynomial of degree one, i.e., there exists aEK such 

that z-a.E J. 

(iv) Jj is saturated, i.e., if pEi) and q is a manic divisor of p, then qE~. 

Conditions (i) and (ii) say that.!} is a multiplicative set so that one c~n define the 

set n..r/ as the set of fractions p/q, where pEn+K and qE.[). Conditions (iii) and (iv) 

are motivated by considerations that are discussed shortly. We now introduce the 

following 

(3.:) DEFINITION. Let,!) be a denominator set. Then an element sEQ +KS is called 
Q . 

stable (or, explicitly, J) -stable) if there exists ~E~ such that ~sEn+s, or, equiva-

lently, if the least denominator ~ EJ). The set of stable elements in Q +KS is 
s n 

denoted by ~S. The set of stable and causal elements is denoted by ~S, i.e., 

(3. 3) 

The above definition of stability is easily seen to be a generalization to arbitrary 

fields of the usual concept of stability in system theory defined in an algebraic 

framework. 

Definition 3.2 applies, in particular, to the case S = L, the space of all linear 

maps U+Y and we have a definition of stable transfer functions and stable AK-linear 

maps. In particular, we have the following 

(3.4) PROPOSITION. The map rE~L if and only if f[~U]°:bY. 

The set nliK is easily seen by direct computation to be a subring (with identity) of 

the rational field Qn+K (=Qn+KK), and is actually a principal ideal domain. In fact, 

we have even more: 

(3. 5) PROPOSITION. The ring n.DK is a Euclidean domain. 

Since we arc i ntcrestcc.l in causal systems, we sha 11 he i ntcrcste<l in the ring r~K 

which, as was proved in MORSE [1976] is also a principal ideal domain and, in fact, 

just as ~K, is also a Euclidean domain. We generalize now our framework of considera­

tion so as to include the preceding examples as special cases. In particular, since 

we encountered as substructures of AK the rings n+K, n-K, n.nK and :£K all of which 

are Euclidean domains or, more generally,principal ideal domains, we consider now a 

more general framework as follows : 

Let nK be a principal ideal domain (P.I.D.) properly contained as a subring in ~K. 

The AK-linear space AS is then also an nK-module. Define ns to be the nK-submodule of 

AS generated by S, i.e., if s 1, ... ,sn is a basis for S then 

(3. 6) ns: = {sEASls = 
n 
l a.s. 

. 1 1 1 
1= • 

a. E nK, 
1 

i = 1, ... ,n}. 

We now extend some basic concepts and terminology to the P.I.D. nK. An element sEAS 

is called QK-rational if there exists a nonzero element ~EnK such that ~sEnS. The 
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~et of nK-r11tio1wls in /\Sis dunotcd \~
2
Ks .. Just :is in the case r/K, the definition of 

OK-rationality also applies to transfer functions of AK-linear maps and we call a AK­

linear map nK-rational if so is its transfer function. It is readily seen that 

f: AU~AY is an nK-rational map if and only if r[QnKU]c:Q
0

KY. (The sufficiency of this 

condition depends on the finite dimensionality of U). An element sEAS is called an 

nK-element if sens. Thus, a AK-liner map f: AU+AY is an nK-map in case its transfer 

function is an nK-element of AL. f is called nK-unimodular if it is an invertible 

nK-map and its inverse is also an nK-map. 

We shall make use of the following notation 

(natural injection) 

(3.7) 

We can write the following 

(3.8) THEOREM. Let f: J\U+AYbe a AK-linear map. Then f is an nK-map if and only if 

f[nU]c:::nY (or, equivalently, if and only if OOc:kernmJ). 

The following corollary to Theorem 3.8 is very useful 
-

(3.9) COROLLARY. ~ AK-linear map t: J\U~AU is nK-unimodular if and only if 

i[nU] = nlJ (equivalently, ker nnK i = nu). 

4. The Order and Adapted Bases 

Our main objective in this section is to obtain finitary characterizations of nK­

submodules of AK-linear spaces and of related properties of AK-linear maps. As beforei 

we let nK be a principal ideal domain properly contained as a subring in AK and let 

QnK (=QnKK) denote the field of quotients generated by nK. 

For an element 

the underlying 

sEAS 

ring 

we 

is 

define the order of s, denoted ordnKs (or, simply, ord s when 

clear) as the set of all elements aEQnK for which asE0S. When 

that ord s = QnK' i.e., the whole quotient field generated by ·· 

nK. In general, it is an easy exercise to verify that ord s is an nK-module (submodul€ 

of QnK). In fact, we have the following : 

s=O we obviously have 

(4.1) THEOREM. Lf.sEAS is nonzero, then ord sis a cyclic nK-module. 

Let O!sEAS be any element and let aEQnK be any generator of ord s (possibly zero). If 

a'EQnK is another generator of ord s, then it is clearly an associate of a with 

respect to nK, i.e. a' = µa where µEnK is a unit (i.e.~ an invertible). It follows 

that a is unique 1 y defined modulo uni ts in nK. and it wi 11 sometimes be convenient 

to identify ord s with one of its generators. 

Refore we proceed with our discussion) let us consider !-iornc examples of special intere5 

First, let nK be the ring n-K of causal elements. It is easily seen that Qn-K = AK 

since for every aEAK, either a or a-l is in nK Lor both). Further, for every element 



-k -O#<lEAK there is a unique integer k such that a=µz for some unit µEn K. Thus, for 
-k -

each 01sEAS, there exists a unique integer k such that ordn_Ks = (z )n-K and we may 

identify ord
0

_Ks with the integer k associated with it. This definition of order of 

an clement as an integer is precisely the (stan<lar<l) definition of order as given in 

(2.2) above. (See also HAUTUS and HEYMANN (1978] and HAMMER and HEYMANN (1980], (1981]) 

+ 
As the second example let nK be the ring n K of polynomials. In this case Qn+K is the 

usual field of rationals. For an element sEJ\S, orJs
2
+Ksf0 if and only if sEQn+KS' 

i.e., if and only ifs is rational (in the classical sense). Let 01sEQn+KS be given 
P· :., 

as s = (s
1

, ... ,sm) with s. = _2_, p. ,q.HtK being coprime for all i=l, ... ,m. Then 
l qi l l 

ordn+Ks is generated by the rational element q/p where q and pare the manic poly-

nomials q = l.c.m.(q 1, ... ,qm) and p = g.c.d. (p 1, ... ,pm) (l.c.m. and g.c.d. denoting, 

respectively) the least common multiple and the greatest common divisor). To see this, 

write p. = pp. and q = q.q. for polynomials p., q., i = 1, . .. ,m. Then 
1 l l l 1 1 

i·s = ci s1,···,} sm) = (q1P1,···,qmpm) E n+s so that (t)n+Kcordn+Ks. Conversely, 

let f be any element in ordn+Ks where rand t arc coprime polynomials. Then for each 
. r Pi + 
1=1, ... ,m, -t ~En K. 

qi 
Thus, q. is a divisor of r for each i, and since q is the 

1 -l.c.m. of the q. 'sit follows 
1 

that q is a divisor of r as wellJ that isJ r = qr 

for some rEn+K. Similarly, t is a divisor of each of the p. 'sand hence also of p, 
- -- l 

- - + so that p = tp for some pEn K. Thus E. = 3.!:_ = -9.!g = 3.( rp-) and it fo 11 ows that 
't t tp r 

f-inally, we consider the case when nK is the ring n~K of causal and stable elements. 

The quotient field Qn-K again coincides with the usual field of rationals Qn+K and 

an element sEAS has n~nzero niK-order if and only if sEQn+KS. Let 

s = (s 1, ... ,sm) E Qn+KS be a nonzero clement and write each entry si' i = l, ... ,m 
pir. + + 

as s. = -- 1 where r. , q. EfJ are coprime (with respect to n K) and where (0#) p. En K 
J % l l 1 

is coprime with every element of .1J . Then it can be verified by direct computation 

that ord 0_Ks is generated by an element~ E Qn+K as follows: p = g.c.d.(p 1 , ... ,pm) 

and q andJ;r are any coprime elements ofl) such that or<ln_K(}r) - - ordn_Ks. 

We proceed now with the discussion of some general properties of the order. 

(4.2) THEOREM. Let sEJ\S be any element. Then ord s;i£0 if and only if sEQ!:lKS. 

Next, we have the following simple characterization of elements inns. 

(4.3) PROPOSITION. Let sEAS be any element. Then sEQS if and onlv if nK cords. 

Let s 1, ... ,sm E QnKS be a set of elements with orders ord si = (yi)nK' i=l, ... ,m. 

Then the intersection ord s
1 

n ... n ord sm is also a cyclic nK-modul~ and hence there · 

is a generator yEQnK such that ord s 1 n ... n or<l sm = (y)nK" It is easily seen that y 
is · a least common multiple over nK of y

1
, ... ,ym' (i.e., y divides every_element 

y'EQnK satisfying the condition that there exists for each i an element yiEnK such 
- -1 

that y' = yiyi). If sEQ0Ks and ClEQnK are any elements, then ord ClS = Cl ord s so 
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-1 
that if ord s = (Y)nK' then ord as= (a y)QK" In particular if aEnK, then 

ord s cord as. Furthermore, if s
1

, ... ,smEQnKS is any set of elements> then 

( 4. 4) 

Finally, we shall say that a set of elements s
1

, ... ,s EAS is QK-ordercJ (or simply 
m 

ordered) if ord s
1 

c ... c ord sm. 

We turn now to characterization of when a AK-linear map f: AU+AY is an QK-map. Recall 

that f is an nK-map if f[nU] c nY and let o,uE~KU be any element. Then ord u = (y)nK 

for some yEQnK and yuEnU. If f is an nK-map, then f(yu) = yf(u)EnY so that 

OK cord l(yu) (see Proposition 4.3), or, equivalently, nK cord yF(u) = y-l ord f(u). 

Thus we conclude that (y)nK cord f(u), and a necessary condition for f to be an 

nK-map is that ord u cord f(u). This condition is actually also sufficient and we 

have the following 

(4.5) THEOREM. Let f: Al.J-+AY be a AK-linear map. Then f is an nK-map if and only if 

ord u Cord r(u) for each uE~Ku. 

The condition of Theorem 4.5 is, of course, not easily tested directly and we would 

like to find a finite "test set" of elements in QnKU which is sufficient for verifica­

tion that a AK-linear map is an nK-map. That a basis for QnKU may not be appropriate 

for this purpose is seen in the following simple example. 

(4.6) EXAMPLE. Let nK = n-K and let Y = U = K2
. Take as basis for QnKK2 the elements 

u 1 = Cf-1) and u2 = Cf-2) ~nd define f: AK
2
~AK2 

f(u
1

) = u
1 

+ u 2 
r(u2) = u2 

Obviously, n-K = ordn-K u 1 = ordn-K f(u 1) = ordn-K u2 = ordn_K f(u 2). Thus, f satisfie 

the condition of Theorem 4.5 for the basis u
1

,u
2

,yet it is not an n-K-map (that is, no· 
_ -1 -2 

causal). Indeed, since f(u
1 

-u 2)::u
1 

and since u
1

-u
2 

= cz 
O 

z ) , we have 

Let us explore now the cause of difficulty encotmtered in the above example. If 

s 1 , ... ,smEQnKS is a given set of elements and a 1 , ... ,amEQnK is any set of scalars, 

then by formula (4.4), 

m m 
n ord a.s. cord l a.s. 

i=l 1 1 i=l 1 1 

But, the above inclusion, in general, need not hold with equality (even when the s. 
1 

are QnK-linearly independent). This order "deficiency" also occurs in the example and 

therefore ,the basis selected there failed as a test set for causality. Indeed, we 

have there 
2 
n ordn-K ui = n-K; ordn_K(u 1-u 2) = zn-K 

i=l 



Thus, we are motivated to introduce the following 

(4.7) DEFINITION. A set of nonzero elements s 1, ... ,srnEQnKS is called nK-adapted if 

for every set of scalars a 1, ... ,amEQnK the condition 

m m 
( 4. 8) n ord a.s. = ord L a . s. 

i=l 1 1 i=l 1 l 

holds. A basis of nK-adapted elements s 1, ... ,sn of QnKS is called an nK-adapted basis 

It is easily verified that in Definition 4.7 we could replace QnK by nK, 

i.e., sl' ... ,sm is nK-adapted if and only if (4.8) holJs for every set a 1, ... ,amEnK. 

In the case when nK=n-K, it can be seen that n-K-adapted sets coincide with properly 

independent sets (see HAMMER and ~EYMANN [1981]) and minimal bases (see FORNEY [1975]: 

which have found many applications in system theory (see also WOLOVICH [1974], HAUTUS 

and HEYMANN [1978] and KAILATH [1980]). 

Next we have the following theorem 

(4.9) THEOREM. An nK-adapted set of nonzero elements s 1, ... ,smEQnKS is AK-linearly 

independent. 

Let s
1

, ... ,smEAS be a set of elements and let A[s 1, ... ,srn] denote the AK-linear space 

spanned by s
1

, ... ,sm. We then have the following characterization of QK-adapted sets. 

(4.10) THEOREM. Consider a set of nonzero elements s 1, ... ,smEQnKS with 

ord si = (yi)QK' i=l, ... ,m. Then {s 1, ... ,sm} is an nK-adapted set if and only if 

{y1s 1, ... ,ymsm} forms a basis for the nK-module A[s 1, ... ,sm] n ns. 

As an immediate consequence of the above theorem we have the following characterizatic 

of nK-adapted bases. 

(4.11) COROLLARY. Assume the set s 1, ... ,snEQnKS is a basis for AS with 

ord si = (yi)QK' i=l, ..• ,n. Then the set {sl' ... ,s
11

} js QK-adapted if and only if 

{y 1s 1, ... ,ynsn} generates ns. 

( 4 .12) EXAMPLE. Corollary 4 .11 provides a particularly simple way for detennining 

whether a basis s 1, ... ,sn of a AK-linear space AS is QK-adapted. Indeed, the main 

clause of the Corollary can be restated to read: The basis s 1, ... ,s of AS is 
-1 -1 -1 n ~ ~ 

nK-adapted if and only if det[s 1, ... ,sn] = y 1 .y 2 ..... yn . Using this simple crite-

rion, we show that the columns 

s l = [: :] , s 2 = [~:;: 1) 
2 

] s = [~ l 
z z4 (z2+1) 

3 
z3+1 

+ 3 -1 form an (unordered) n K-adapted basfs of AK . Indeed, we have ordn+Ksl = (z )n+K' 

ordn+KS2 = ccz2+1)-
1

)n+K and ordn+KS3 = ((z
3

+1)-l)n+K' whence Y'1l.y2l.Y3I=z(z
2

+1) (z
3

+1) 
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h . h . 1 d [ ] If' h . 1 d b ' - (2 ..,3 4 )T w 1c 1s equa to et s
1

,s
2

,s
3 

. owever, s
1

, say, 1s rep ace y s
1

- _ z,~ ,z , 

the resulting set will no longer be n+K-adapted since 

det[s 1,s~,s 3] = (z 3+l)(z 2+l)(z 3+2z). 
D 

We turn now to the characterization of r2K-maps with the aid of QK-adapted bases. As a 

further consequence of Theorem 4.10 we have the following 

(4.13) PROPOSITION. Let f: AU+AY be a AK-linear map and assume that u
1

, ... ,un is an 

nK-2dapted basis for AU. Then t is an OK-.~~r- if and m~..!1-if ord ui c orJ f (ui) for 

all i=l, ... ,n. 

( 4. 14) DEFINITION. A AK-linear map f: AU+AY is called nK-order preserving (or, 

simply, order preserving) if for each uEQnKU, ord u = ord r(u). 

(4.15) THEOREM. Let t: AU+AY be a AK-linear map and let u 1 ' ... , u n E Qn KU be an QK-

adapted basis for AU. Then f is nK-order preserving if and onlr if (i) f(u
1

), ... ,f(unJ 

is OK-adapted and (ii) for all i=l, ... ,n, ord u. = ord f(u.). 
1 1 

(4.16) THEOREM. Let f: AU+AU be a surjective AK-linear map. Then f is nK-unimodular 

if and only if it is OK-order preserving. 

5. Bounded K-Modules 

Let 1:1=.AS be an nK-module. We say that bis nK-bounded (or simply bounded) if there 

exists a nonzero element yEQnK such that y E ord s for all sEb (i.e., ysEnS for all 

sEb). It is clear that if !J. is a bounded nK-submodule of AS, it consists only of 

OK-rational elements. An nK-module consisting of nK-rational elements is called 

rational. If Y=.AS is boW1ded nK-submodule, we define the order of b, denoted ord b, 

as the class of all elements yEQnK such that y E ord s for all sEb. It is easily seen 

that ord !J. = n ord s whence if !J.~O, ord bis a cyclic nK-module and is generated by 
sE:6 

an element ~EQnK· Explicitly,~ is a least corrunon r.K-multiple of all order generators 

y = y(s) of elements sE6. 

Next, we have the following 

(5.1) LEMMA. Let be.AS be a rat.ional OK-submodule. Then 6 is bounded if and only if 

6 has finite rank (i.e., is finitely generated) in which case rank A~ dim S. 

Below we make use of the Smith canonical form theorem for matrices over a principal 

ideal domain (see e.g. MACDUFFEE [1934] and NE\'IMAN [1972]). We shall identify AK-linea 

maps with their transfer function matrices. In particular, we shall speak of an 

nK-matrix if its entries are in nK and of an nK-unimo<lular matrix if both it and its 

inverse are nK-matrices. Smith's theorem is stated as follows: 

(5.2) THEOREM. Let T be an mxn nK-matrix. Then there are nK-unimodular matrices ML 
and MR of dimensions mxrn and nxn, respectively, and elements o

1
, ... ,6rEnK, uniquely 

defined up to multiples of units of nK, with r,min(m,n) and 8. 118., i=l, ... ,r-1, 
--- -- 1+ 1 



such that 

(5. 3) 

where Dis the mxn matrix given by D = diag(o 1, ... ,or, 0, ... ,0). 

The elements 0
1

, ... ,or in Theorem 5.2 are called the invariant factors of T and the 

theorem itself is sometimes callcJ the invariant factor theorem. 

Assume now that ~cAS is a nonzero and bounded nK-module with ord 6 = (~)nK and (in 

view of Lemma 5.1) let d
1

, ... ,drE~ be a basis for 6. Then wd
1

, ... ,wdrEns and the mxr 

matrix ~T: = [wd1, ... ,~d] (where ~d. is viewed as a column vector) has Smith repre-r 1 

sentation 

(5. 4) 

where 

D = 
0 

0 

0 

. 0 
r 

and the o.EnK (with o. 
1

!o.) are the invariant factors of ~T. We note that, by assump-
1 1+ 1 

tion, 0
1

, .... ,or are nonzero. Dividing both sides of (5.4) by w yields 

where D is the Mcmillan foTin of D, and is given by 
0 

D = 
0 

0 

0 

o !w r 

Let d . denote the ith column of D . It is easily observed that the columns 
01 0 

d01 , ... ,d
0

rEQnKS constitute an nK-adapted set. Indeed, for every set a 1, ... ,arEQnK 

we have that 

and clearly ord d 

r 
d: = l a.d . = 

. 1 1 01 
1= 

0 
r a­

r W 
0 



. 
..... .'.' 

Furthermore, we have 

the last equality following since MR is nK-unimo<lular (see Corollary 3.9). Now, ML is 

nK-unimodular, so that by Theorem 4.15 the columns of ML D, given by 
cSl c5 0 . 

~-=MLl, ••• ,fMLr (where MLi is the ith colunm of ~\) are also nK-adapted. Further, 

since ~\ is nK-unimodular, it also follows that ord 1'\i = nK, whence, 

~ <\ = 1"' _ [$ 1 ° 1 ° r 
01 d t=MLi 0i nK - oiJ nK We see immediately that the set t=Mu, ... '~Lr 

constitutes an ordered OK-adapted basis for 6. We make the following further observa­

tion. Since cS. 
1
10., it follows that 

1+ 1 

so that 

ord t:,. = ( "1 \iK = (! ] 
r nK 

and we conclude that or is a unit in OK which, in particular, can always be chosen as 

or = 1. 

We summarize the foregoing discussion with the following important theorem 

(5.6) THEOREM. Let t:,.cAS be a nonzero bounded nK-module. Then 

(i) 

(ii) 

t:,. has an ordered OK-adapted basis d
1

, ... ,dr. 

_I_f di, ... ,d; _i_s~a_n~y __ o_th_e __ r_o_r_d_e_r_e_d_ OK-adapted basis oft:,. then 

ord d! = ord d., i = l, ... ,r. 
1 1 

If t:,.cAS is a bounded OK7module with ordered OK-adapted basis d1 , ... ,dr, then the set 

of nK-modules ord di= (!i)QK' i = l, •.. ,r constitutes an important invariant of ~ 
and we call it the order trace of 6. 

Let /),C./\S be a bounded nK-modulc of rank rand let <l
1

, .•. ,dr be a basis oft:,.. We can 

form the matrix D: = [d 1, ... ,dr] and view l1 as the image of an OK-homomorphism 

nKr+AS defined bye . .+De. = d .. With this convention we then write 6 as t:,. = DOKr. 
1 1 1 

We say that t:,. is full (in AS) if rank t:,. = dim S, i.e., if t:,. = DnS and D is nonsingula 

(5. 7) THEOREM. Let ~l' 62 c AS be bounded nK-submodules given by 61 = o
1
ns and 

62 = o2ns, respectively. Then l12 c l11 if and only if there exists an nK-matrix 

(i.e., with entries in nK) such that D2 = o1R. 

R 

(5.8) COROLLARY. Let l11, l1
2 

c AS be bounded nK-submodules given by 6
1 

= o
1
ns and 

62 = o2ns. Assume 61 is full and define R: = o1
1o2 . Then l12 ~ ~l if and only if R 

is an nK-matrix, with equality holding if and only if R is nK-unimodular. 

We turn now to the existence of nK-~dapted bases for AK-linear spaces. A AK-linear 

subspace RcAS is called nK-rational if it has a basis s
1

, ... ,sk consisting of 

GK-rational vectors. 



!-·' 

(5.9) THEOREM. I.ct dim S = n and let Rc/\S he a non;:ero nK-rntiona1 flK-linC'ar sub­

space. Then (i) R has an nK-adapted basis, and (ii) every nK-adapted subset 

s
1

, ... ,siER can be extended to an nK-adapted basis for R. 

Next, we give the following characterization of the order trace. 

(5.10) PROPOSITION. Let ~,~'cAS be nonzero and bounded nK-modules of equal rank m. 

Then there exists an nK-unimodular map M: AS+AS such that M[~] = ~· if and onlv if ~ 

and~' have the same order traces. 

Related to the notion of nK-adapted bases is also the following 

(5.11) DEFINITION. Let R
1

, ••. ,RkcAS be nK-rational /\K-linear subspaces. Then 

R
1

, ... ,Rk are called nK-adapted if for every set of clements s 1 , ... ,sk where siERi, 

i = l, ... ,k, 
k 

ord (s 1 + ••• + sk) = n . ord s. 
i=l l 

It follows readily from the above definition that the concept of nK-adapted subspaces 

is equivalent to the following : Let R
1

, ... ,RkEAS be nK-rational AK-linear subspaces 

and let dil'" .. ,dii. be a basis for Ri, i = l, ... ,k. Then the subspaces R1 , ... ,Rk are 

nK-adapted if and ofily if d
11

, ... ,d
1

i , ... ,dk
1

, ... ,dkl is an nK-adapted basis for 

R
1 

+ ••• + Rk. Naturally, nK-adapted spAccs are AK-linea~ly independent so that the 

above sum of subspaces is, in fact, a direct sum. Accordingly, we speak of nK-adapted 

direct sums of AK-linear spaces. 

The concept of nK-adapted subspaces is of course a generalization to arbitrary P.I.D.' 

of the concept of properly independent and stably independent spaces as defined in 

HAMMER and HEYMANN [1981], and in HAUTUS and HEYMANN fl980a], [1980b]. 

Theorem 5.9 leads to the following useful result. 

(5.12) COROLLARY. Let R
1
c:R

2 
(cAS) be nK-rational AK-linear subspaces. Then R

1 
has 

an nK-adapted direct summand in R
2

. 

6. nK-Factorization and Invertibility 

Consider two AK-linear maps £1 : AU+AY and £2 : AU+AW and assume there exists an nK-map 

h: /\Y+AW such that r
2 

= h•f1 . Let uEAU satisfy the condition that £1 (u)EnY, or, in 

the notation of (3.7), that uEkernnKf. Then, obviously, £
2

(u) = h·f
1

(u)Enw so that 

uEkernnKr 2, and the existence of the nK-map fi such that £2 = fi•f 1, implies that 

kernnKf 1ckernnKr 2 . In case the maps £1 and £
2 

are nK-rational, the converse of the 

above statement is also true and we have the following central 

(6.1) THEOREM. Let r
1

: AlJ-+AY and £
2

: AlJ-+J\W be ~K-rational AK-linear maps. There 

cxi sts an nK-~ n: AY-+!IW such that. f 
2
=h-f 1 if and on l v if kcr'ITnKt 

1
cker,1 nK f 

2
. 

Theorem 6.1 depends on the following lemmas. 
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(6.2) LEMMA. Let!: AU+AY be an nK-rational AK-linear map. Let r:= dim}\J(Imt and let 

Y cY be ~ny r~dimensional subspace. Then there exists an nK-unimodular map M: AY+AY 
0 

such that ImM•f=AY. 
0 

(6.3) LEMMA. Let f: AU+AY be a AK-linear map. If RckerrrnKf is a AK-linear subspace, 

then Rckerf. 

Theorem 6.1 admits the following 

(6.4) COROLLARY. Let £
1
,£

2
: AU+AY be nK-rational AK-linear maps. There exists an 

nK-unimodular map M: AY-+AY such that f 2 = M•f
1

, if and only if kernnKf
1
=kernnKf

2
. 

We call a AK-linear map f: AU+AY nK-left invertible if it has an nK-map as a left 

jnverse. The following further corollary to Theorem 6.1 is also useful. 

(6.5) COROLLARY. An nK-rational AK-linear map f: AU-+AY is nK-left invertible if and 

only if kernnKfc:::nU. 

Before concluding the section, we wish to express in an explicit form the main quanti· 

ties that appeared in our discussion. Lett: AU+AY be an nK-rational AK-linear map. 

We start with an explicit representation of the nK-module kernnKf. We shall identify 

the map f with its transfer matrix, and shall denoter: = dimAKimf. Let ML: AY+AY 

and MR: AU+AU be nK-unimodular maps such that f=~t· D•MR, where the matrix D: AU-+AY is 

of the fonn D = (go g) , with D
0

: AKr~AKr (square) nonsingular. One possible choice 

of Dis, of course, the McMillan canonical fonn off. Also, we let U
0 

© u
1 

=Ube a 

direct sum decomposition, where AU
0 

= ker D and AU
1 

is the domain of 0
0

. 

Now, kerrrnKf = kerrrnK MLDMR = MR1 [kerrrnK MLD], and, applying corollary 6.4, we obtain 
- -1 -1 

that kernnKf = MR [kernnK D]. Further, it is readily seen that kernnKD = 0
0 

[aU1]@AUc 

and, consequently, we have 

(6.6) - -1 -1 
kernnKf = MR [Do [nUl] @ AUO], and 

(6.7) - -1 
ker f = MR [AUO]. 

Defining now the map 

f*: = M~l r:~l l AU1+AU, 

we have that 

(6.8) 

so that f* generates the "bounded part" of kernnKf. 

Next, let f': J\U+AY' be a linear i/o map. We express now the condition of theorem 6.1 

in more explicit form. The condition kernnKfckernnKf' is clearly equivalent to 

f'[kerrrnKf]c:!2Y'. Substituting now (6.8}, and noting that ker f is a AK-linear sub­

space, the latter condition can be split into the two conditions: (i) f'f*[nu
1

]~Y', 

and (ii) f'[kerf] = O. These conditions are then equivalent to simply 



r 

• 
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(ia) ff* is an nK-map, and (iia) kerfckerf', respectively. 

Returning now to theorem 6.1, we can summarize as follows: There exists an ~K-map 

fi: AY+AY such that f' = h•f if and only if f'f* is an nK-map, and kerfckerf'. More­

over, through a direct computation,one can show that, if h exists, then it is 

necessarily of the fonn 

-1 h = (f'f*, y1, ... ,y )ML p-r 

where p: = dimK Y, and y1 , ... ,y are (arbitrary) elements in nY'. Thus, the map f*' 
p-r 

v,:hich generates the "bounded part" of kernnKf, plays a central role in factorization 

theory. 

7. Precompensation and Stable Output Feedback 

We turn now to a brief discussion of some applications of the above factorization 

theory to stable (and causal) output feedback. We assume throughout the section that 

nK is either the ring ~Kor the ring n~K. 

Let f: AU+AY be a linear i/o map and let i: AU+AU be a bicausal AK-linear map (i.e., 
- --1 n-K-unimodular) which we regard as a precompensator for f. We can express t as 

(7 .1) 

where Lis static (see HAUTUS and HEYMANN [1978]) and where his strictly causal. If, 

additionally, we can express fi as fi = gf for some causal map g: AY+AU then we can 

give i an output feedback interpretation through the formula 

fi = f(I + gf)-lL, 

which is the i/o map of the composite system 

~+ f V 

g 

The map g is then clearly a causal (dynamic) output feedback compensator and Lis a 

coordinate transfonnation map in the input value space. We may require additionally 

that the feedback compensator g be stable, i.e., an n..DK-map. We are then faced with 

the question of when can fi of (7.1) be factored over f through an n~K-map g. The 

answer is provided by Theorem 6.1 and we have the following 

(7.2) THEOREM. Let f: AU+AY he an n.DK-rational linear i/o map, let£: AU+AU be an 

n~K-rational bicausal precompensator for f and express i as in (7.1). There exists 

a causal and stable output feedback representation for i if and only if 

kerir n.l?l'c:kerir ~ K ii. 

We say that a linear i/o map f: AU+AY is nJ)K-minimum phase (or, simply, minimum phase: 



·,\"·, 

?'.'·· · 

··?' 

if i.t is an n.bK-mup (.i.e., stable) and is r:OK-left invl'rt ihlc. Thus r is~~ K-111inimum 

·phase precisely whenever 

(7.3) kern n / = n U . 
J) ~ 

We recall further (see HAMMER and HEYMANN (1981]) that a linear i/o map f is called 

nonlatent if and only if 

kernn_Kr = zn-U 

i.e., if and only if zf has a causal left inverse. Now, if f is ~K-left invertible, 

so is also (z+a)f where (z+a)Eij. In case f is nonlatent as well, then (z+a)f also has 

a causal left inverse. Thus, one can rcadilly sec that an i/o map f is nonlatent and 

minimum phase if and only if 

(7.4) kernn_Kf = (z+a)~U. 
J) 

We now have the following Theorem which is an analog to Corollary 5.4 in HAMMER and 

HEYMANN (1981] 

(7 .5) THEOREM. Assume that for some a,SEK, both (z+a) and (z+S) are in~, and let 

r: AU+AY be an n~K-rational and stable linear i/o map. Then f is nonlatent and minimu1 

phase if and only if every ~K-unimodular AK-linear precompensator l: Au-+AU has a 

causal and stable feedback representation (L,g), i.e., there exists a pair (L,g) with 

L static and~ causal and~-stable such that I = (I+~f)- 1L. 

The interest in Theorem 7.5 derives from the fact that stable injective linear i/s 

maps are alwqys nonlatent and minimum phase. This fact is seen as follows. It was 

shown in HAMMER and HEYMANN (1980] that if r: AU+AY is an injective linear i/s map, 

it is strictly observable, i.e., kernn+Kfq··/u. Let D be an n+K-adapted basis matrix 

for kernn+Kr, that i~DQ+U=kernn+Kf. It is easily verified that w~ then also have 

that on.:Bu = kernn Kf. Now, the strict observability off implies that Dis a poly­

nomial matrix and;.othus D~~U (since n+K~K). We conclude that kernn Kfd"2i}U, 

and if the i/s map r is also stabl~the minimum phase property (see (7.31) follows. 

That injective linear i/s maps arc nonlatcnt was proved in HAMMER and HEYMANN [1981] 

(Theorem 5.5). We summarize the above in the following. 

(7. 6) PROPOSITION. If f: /\.U+/\.Y is a stable injective linear i/s maE, then it is 

nonlatent and minimum phase. 

We can now combine Theorem 7.5 with Proposition 7.6 to obtain the following result. 

(7.7) COROLLARY. Let f: AU+AY be a stable 2 injective linear i/o maE and let 

i: AlJ-+.AU be an n;K-unimodular precompensator for f. Then i has a stable causal 

(dynamic) state feedback representation in every stable realization off. 
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