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The algebraic module theoretic stability framework for linear time-invariant systems is reviewed. 
The main theme is that Kalman's algebraic realization theory has evolved much beyond its initial 
objective of providing an abstract framework for the derivation of mathematical models of systems. 
It has become a powerful tool for the extraction of structural invariants, permitting the exact 
characterization of all options for dynamics assignment through internally stable linear dynamic 
compensation. This characterization is provided by a set of integers-the stability indices of the 
system. 

1 Introduction 

In a sense, realization theory is the basic mechanism of science through which 
the conceptualization of observation is achieved. It formulates the mathematical 
guiding principles that lead from measurement of behavior to laws of nature. 
Duly stated, realization theory is the abstract theory of mathematical modeling. 
It forms the bridge from experiment to theory, and, in a way, is a grand 
mathematical scheme for data compression, facilitating compact mathematical 
description of vast realms of experimental data. All this is, of course, well known. 
The main point of the present note is to show that realization theory has 
matured beyond its innate mission of providing guiding principles for modeling, 
and has become a refined tool for scientific analysis, capable of singling out the 
important aspects of experimental data and filtering away the clutter of 
secondary details. In mathematical terms, realization theory has become a 
sophisticated tool for the extraction of structural invariants of systems. 

Historically and philosophically, realization theory may be conceived as the 
driving force behind the scientific revolution that started in the eighteenth 
century; Nevertheless, it seems that elicit mathematical treatments of basic 
aspects of realization theory had not appeared in the scientific literature until 
around the middle of the present century. At that time, realization theory formed 
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a basic component of the re~earch in automata theory, which culminated in 
the well known Nerode principle (Nerode [1958]). The basic principles 0 ; 
realization theory the way it is known today were set out in the pioneerin~ 
contributions of R.E. Kalman (Kalman [1965, 1968], and Kalman, Falb 
and Arbib [1969J)i which formed the mathematical foundation of moder~ 
system theory and ~ontrol. The broad implications of realization theory to a 
variety of other scientific disciplines were also pointed out by R.E. Kalman (e.g. 
Kalman [ 1980] ). 

Perhaps, one of the most important contributions of R.E. Kalman in the 
context of realization theory was the development of an explicit mathematical 
framework within which the realization issue can be explored. In this way, the 
realization problem was transformed from a vague philosophical entity into a 
concrete set of mathematical problems, complete with tools and techniques for 
exploration. Kalman's mathematization of realization theory formed the cradle 
for the evolution of mathematical system theory, giving birth to an entirely new 
branch of Mathematics, and forming a lead toward the mathematization of 
Engineering. 

The present note is concerned with some implications of a particular 
contribution of R.E. Kalman to mathematical realization theory-the intro-
duction of algebraic module theory as a fundamental tool for the solution of 
the realization problem for linear time-invariant systems (Kalman [1965]). 
The main objective here is to show that basically the same abstract formalism 
can be used to derive structural invariants of linear time-invariant systems, 
invariants that determine and characterize the limitations on the performance 
of a linear system within a control engineering environment. The material 
covered in this note is a review and re-interpretation of results presented in 
Hammer [1983a, b, and c]. 

Over the years, much thought has been given to the issue of what should the 
true nature of Engineering theory be, and how should it relate to Engineering 
practice. Ideally, one might say, Engineering theory should provide the formulas 
for solving practical engineering problems. However, further reflection shows 
this approach to be quite simplistic; while being scientifically founded, 
Engineering practice comprises a substantial component of what one might call 
'Engineering Art'. The wide spectrum of design constraints and refined per-
formance criteria facing the Engineer make an individualistic approach to design 
imperative. And the unavoidable interaction between engineering systems and 
human operators adds to the performance evaluation an aspect of aesthetics 
and values. Thus, Engineering practice consists of much more than the 
application of pre-derived formulas. 

It seems that the most important role of Engineering theory is to provide 
the designer with a clear indication of the limitations on design performance. 
These limitations should be extracted by the theory from the description of the 
system, and presented in concise and clear form, so as to provide the designer 
with a clear characterization of the entire spectrum of achievable design 
specifications. Furthermore, in case critical design specifications cannot be met 
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for the given system, the theory should provide a clear indication of the ways 
•11 which the system has to be modified to facilitate the desired performance. 
~rorn a mathematical point of view, the limitations on design performance for 
a given class of systems are usually presented in terms of system invariants. In 
qualitative terms, the invariants characterize the fundamental underlying 
structure of the system which cannot be altered by external intervention; they 
provide the skeleton upon which the desjgner may build. 

The module theoretic approach to the linear realization problem initiated 
in Kalman [1965] has matured into a powerful tool for the derivation of 
structural invariants for linear time-invariant systems. Specifically, it yields a 
set of integer invariants that entirely characterize all possible dynamical 
behaviors that can be assigned to a system through the use of external dynamic 
compensation, subject to the requirement that the final closed loop configuration 
be internally stable. This result is derived by developing an algebraic module 
theoretic realization theory over certain rings of stable rational functions, which 
replace the ring of polynomials used in the original Kalman realization theory. 
In this way, algebraic realization theory becomes more than just a tool for 
obtaining dynamical models of linear systems; it provides the means to extract 
the inherent structure of the system from the input/output data on its behavior. 

It is quite fascinating that the fundamental invariant structure of a linear 
time-invariant system can be entirely characterized by a finite set of integers. 
When investigating the possible dynamical properties that can be endowed to 
a given system through an internally stable closed loop configuration, all one 
needs to know are these integer invariants, despite the fact that the complete 
description of the dynamical model of the system requires a much larger number 
of real parameters. The question of whether certain dynamical properties can 
or cannot be assigned to a system by internally stable compensation simply 
reduces to the comparison of some integers. This fact provides a deep indication 
of the fundamental simplicity of linear time-invariant control systems. It is, of 
course, in line with the classical results on pole assignment (Wonham [1967]) 
and on the assignment of invariant factors (Rosenbrock [1970]). 

2 Time Invariance, Linearity, and Stability Rings 

Consider a causal linear time-invariant system .E having an input space U of 
finite dimension m and an output space Y of finite dimension p. For the sake 
of intuitive clarity, assume that .E is a discrete-time system (the framework 
discussed herein applies to continuous-time systems as well; one only needs to 
use the Laplace transform instead of the Z-transform employed here). Adopting 
the input/output point of view, the system.Eis regarded as a map that transforms 
input sequences of vectors of U into output sequences of vectors of Y. An input 
sequence u = {ur 0 , Uro+i, Ur0 + 2 , ... } is commonly represented as a Laurent series 
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of the form 
00 

-t U= f...J U1Z , (2.1) 
t=to 

which is interpreted a-s the Z-transform of u. In this notation, the Laurent series 
zu simply represents the input sequence obtained by shifting u by one step to 
the left, and z represents the one-step shift operator. The set of all Laurent 
sequences of the form (2.1), where the (finite) initial time t0 may vary from 
sequence to sequence, is denoted by AU. Clearly, the output sequence generated 
by E from the input sequence u is then an element of the space A Y. The time 
invariance of the system E implies that it commutes with the shift operator z, 
so that 

LZ=ZL (2.2) 
In his [1972] lecture notes, Wyman noted that, through (2.2), time invariance 
is related to the linearity of the system I over the field of scalar Laurent series, 
and this idea was then further expounded in Hautus and Heymann [1978]. 
We review this point next. 

Let K be a field, let S be a K-linear space, and let AS denote the set of all 
Laurent series of the form 

00 

s = L s,z-r, (2.3) 
t=to 

where the initial integer t0 may vary from one sequence to another, and where 
s,ES for all integers t t0 • In particular, taking S = K, it is easy to see that the 
set AK forms a field under the operations of coefficientwise addition as addition 
and series convolution as multiplication. The set AS becomes then a AK-linec1;r 
space. Furthermore, it can readily be shown that if the dimension of S as a 
K-linear space is n, then AS is a finite dimensional AK-linear space of dimension 
n as well. The importance of the notion of AK-linearity is that it permits the 
fusion of two seemingly disparate notions-the notion of linearity and the 
notion of time invariance. In fact, every AK-linear map f :AU~ AY clearly 
satisfies (2.2), and whence represents a K-linear time-invariant system, which has 
the K-linear space U as its input space, and the K-linear space Y as its output 
space (Wyman [1972]). Moreover, it can be shown that every K-linear 
time-invariant system I which is causal and has a finite dimensional state-space 
represe,:zts a AK-linear map f:AU A Y, where U is the input space of E and 
Y is its output space. Thus, for the systems we intend to consider in this note, 
the notion of a AK-linear map is equivalent to the input/output description of 
a system. 

As any linear map between finite dimensional linear spaces, a AK-linear 
mapf:AU ~AY may be represented by a matrix, relative to specified bases of 
its domain AU and its codomain A Y. Among the bases of the space AU, a 
particularly significant role is played by bases of the original K-linear space U. 
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It is easy to verify that every basis u 1 , u2 , ••• , um of the K-linear space U is also 
a basis of the AK-linear space AU. A matrix representation of the AK-linear 
map f with respect to bases u1 , u2 , ... , um of U and y1 , y2 , ... , Ym of Y is called 
a transfer matrix off, and it coincides with the standard notion of a transfer 
matrix used in linear control. 

We consider next some objects in the infrastructure of the space AS. First, 
let {JS denote the set of all polynomial elements within AS, namely, the set of 
all elements of the form L~=tos,z- 1

, where to~ 0 and s,ES. Then, for S = K, the 
set {}K is simply the principal ideal domain of polynomials with coefficients in 
the field K. More generally, the space QS is an QK-module of rank equal to 
dimKS. Also, let Q-s denote the set ofall elements in AS of the form L'.:°=0 s,z-'. 
The set Q- K is then the principal ideal of all power series with coefficients in 
K, and Q- Sis a module over Q- K with rank given by dimKS. 

The space AS is itself an QK-module as well, and one may consider the 
quotient module I'S:= AS/QS. We denote by 

j:QS,-+AS 

the. identity injection, which assigns to each polynomial vector the formal 
Laurent series equal to it. We let 

n:AS-+I'S 

be the canonical projection onto the quotient module. 
Several classes of AK-linear maps are important in this context. A polynomial 

map is a AK-linear map f:AU -+A ¥which satisfies/[QU] c QY, and is simply 
a map that has a polynomial transfer matrix. A AK-linear map f: AU-+ A Y 
is rational if there is a nonzero polynomial 1/JEQK for which I/If is a poly-
nomial map. A causal map is a AK-linear mapf:AU-+AY that satisfies 
f [.Q- U] c .a-Y, and it describes a causal linear time-invariant system; The 
map fisstrictlycausaliff[t.r U] c z- 1 [.Q- Y]. A AK-linear map M:AU -+AU 
is bicausal if it is invertible, and if it and its inverse M- 1 are both causal maps. 
Finally, a rational and strictly causal AK-linear map is called a linear input/ 
output map. 

Perhaps, one of the most intriguing properties of linear systems is the fact 
that they permit treatment of the notion of stability in an algebraic setup, 
without requiring direct reference to topological properties. This fact, which is 
crucial to the algebraic theory of linear systems, has been observed by several 
investigators during the seventies. One of the earliest references to this point is 
Morse [1975]. The basic observation in this context is that stability theory 
for linear time-invariant systems can be developed within ,the algebraic frame-
work of localizations of the ring of polynomials. To be specific, let fJ c .QK be 
a subset of polynomials satisfying the following three properties: (i) the product 
of every two elements of fJ is still in fJ; (ii) the zero polynomial is not in fJ; and 
(iii) fJ contains a polynomial of degree one. A subset fJ satisfying these properties 
is called a stability set. The algebraic definition of stability is then given by the 
following 
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2.4. Definition. Let 8 be a stability set. A AK-linear map f :AU-+ A Y is 
input/output stable (in the sense of 8) if there is an element t/JE8 such that I/If 
is a polynomial map. 

Note that this ;potion of stability conforms with the classical notion of 
stability used in linear control. Indeed, let K be the field of real numbers. We 
can take the stability set 8 as the set of all polynomials having all their roots 
within the unit disc in the complex plane. Then, Definition (2.4) becomes identical 
with the classical definition of stability for discrete-time systems. Alternatively, 
we can take 8 to be the set of all polynomials having all their roots in the open 
left half of the complex plane. Then, (2.4) reduces to the classical definition of 
stability for continuous time systems. Thus, the present definition of stability 
generalizes the classical ones. 

In order to permit the development of a complete algebraic theory of 
internally stable control, it is necessary to refine somewhat the notion of a 
stability set in the following way (Hammer [1983a]). A strict stability set () 
is a stability set for which there exists a polynomial of degree one not in e. 
Thus, for a strict stability set 8, there is a polynomial of degree one in 8, and 
there is (another) polynomial of degree one which is not in 8. The examples 
provided above are, in fact, all strict stability sets. Throughout the present note, 
all stability sets are assumed to be strict stability sets. 

Let Q 0 K denote the set of all rational elements aEAK which can be expressed 
as a fraction of the form a= {3/y, where /J and y are polynomials and yE8. The 
set Q 0 K simply describes the set of all stable scalar transfer functions (in the 
sense of 8). The following is then a direct consequence of the theory of localized 
rings (e.g. Zariski and Samuel [1958]). 

(2.5) Proposition. Q 0K is a principal ideal domain. 

The space AS is, of course, an Q 0 K-module as well. Let s 1 ,s 2 , •.• ,sn be a 
basis of the K-linear space S, and let Q 0S be the Q 0K-submodule of AS generated 
by this basis, namely, 

Q 0S = {s = _I, !Xisi, a1 , ... , <XmEQ0K} 
,= 1 

Then, it is easy to see that Q 0 S is the same for any basis s1 ,s 2 , •.• ,sm of S, and 
its rank as an Q 0 K-module is equal to the dimension of S as a K-linear space. 
We denote by 

(2.6) 

the identity injection which maps each element of Q 0S into the same element 
in AS. By 

(2.7) 
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we denote the canonical projection which maps each element sEAS into the 
equivalence class s + Q 0S in AS/Q 0S. It follows then that a AK-linear 
yyrapf:AU-+AY is input/output stable if and only iff[Q 0 UJ c Q0 Y. 

The final algebraic structure that we need to review deals with the 
combination of the notions of causality and stability. Let Q; K := il 0K n Q- K, 
which consists of all the stable and causal elements in AK. Then, the following 
is true (Morse [1975]) 

(2.8) Proposition. Q; K is a principal ideal domain. 

Using this notation, a AK-linear map f: AU-+ A Y is causal and input/ output 
stable if and only if f[Q; VJ c Q; Y. It is convenient to employ the following 
terminology. A AK-linear map M:AU -+AU is QK- (respectively, Q- K-, 
n0K-, n; K-) unimodular if it has an inverse M- 1 , and if both Mand M- 1 are 
polynomial (respectively, causal, stable, causal and stable) maps. Clearly, the 
nK-unimodular maps are the usual polynomial unimodular maps, and the 
n- K-unimodular maps are the bicausal maps. Every Q; K-unimodular map 
must also be bicausal. 

3 Realization, Strict Observability, and Stability Modules 

The basic structure of Kalman's algebraic realization theory (Kalman [1965]) 
can be briefly described as follows. First, in order to provide an intuitive 
background, note that every element u = L~,

0
u,z-r with t0 ;£ 0 in the 

space AU can be decomposed into two (non-disjoint) parts: the past part 
up:= L~=,

0
u1z-r, which is the polynomial part of u; and the future part 

uF:= L~o u1z-', which can be identified with the projection nu. The 'present' 
component u0 is contained in both parts. Now, with each AK-linear 
map .f: AU-+ A Y, one associates a restricted map J given by 

f:= nfj:QU-+ r Y (3.1) 

In intuitive terms, the map J associates with each input sequence terminating 
at the present, the future part of the output sequence generated by it. Of 
particular importance is the set of all past input sequences that generate zero 
future outputs, namley the set 

L1K:= ker J, (3.2) 

which, by definition, is a subset of Q U. In fact, since J is clearly an 
QK-homomorphism, the set L1K is an QK-module, and it is usually referred to 
as the Kalman realization module. In order to point out the significance of the 
module L1K, we review the basic definition of an abstract realization, as conceived 
in Kalman [1965]. Let f :AU-+ A Y be a linear input/output map. An abstract 
realization off is a triple (X, g, h), where X is an QK-module and g:QU-+ X 
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and h:X--+-r Y are .DK-homomorphisms, such that the following diagram is 
commutative. 

f 
nu IT 

X 

This commutative diagram gives rise to a representation of the system 
represented by the input/output map fin the standard form 

xk+ 1 = Fxk + Guk, 

Yk=Hxk, 
in a way that we do not detail here (see Kalman, Falb, and Arbib [1969] 
or Hautus and Heymann [1978]). The realization (X, g, h) is called 
reachable whenever g is surjective; observable whenever h is injective; and 
canonical whenever it is both reachable and observable. The pair (X, g) is called 
a semirealization of f. It can be readily seen from the diagram that every 
realization (X, g, h) off must satisfy ker g c ker ]; and a reachable realization 
(X, g, h) is canonical if and only if ker g = ker J ( = L1K). A canonical 
semirealization can be simply constructed by taking g as the projection 
.QU --+-.QU/L1K, and the canonical state-space is simply given by the quotient 
module X = .QU/L1K. These facts indicate that the module L1K is the basic 
quantity in realization theory for linear time-invariant ~ystems. 

In stronger terms, the polynomial module L1K exactly contains the critical 
information that is necessary in order to construct a dynamical mathematical 
model of a given linear time-invariant system from its input/output behavior 
f. However, as we shall show in the sequel, this information does not directly 
provide the designer with a clear indication of the design options at his 
disposition, when trying to control the given system using an internally stable 
control configuration. The information provided by L1K, although complete, 
contains much too many details whithin which the critical information 
characterizing the design options is buried. Nevertheless, the module theoretic 
stability framework which we have briefly reviewed earlier will extract the sought 
after information from the deep underlying algebraic structure of the input/ 
output map f. It will provide an accurate characterization of all design options 
in the most obvious and condensed form, in terms of a set of m integers, where 
m is the dimension of the input space U. 

Perhaps, the most fundamental quantity in the analysis of the invariant 
structure of linear time-invariant systems is the strict observability module 
associated with an input/output mapf:AU--+-AY, and given by kernf 
(Hammer and Heymann [1983]). The strict observability module kernf 
consists of all input sequences (not necessarily restricted to the past) which 
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produce zero future outputs from the system described by the input/output 
rnaP f Sincef and n are both .OK-homomorphisms, it is an .OK-module, namely, 
a module over the polynomials. In contrast to the realization module L1K, which 
contains only polynomial vectors as elements, the module ker nf may also 
contain non-polynomial elements. As a direct consequence of the definition, we 
have that 

L1K = ker nf n .Q U, 

so that L1K c ker nf. In view of the well known fact that the realization module 
AK is of full rank whenever f is a rational function, the last containment implies 
that the module kernf contains a basis of the AK-linear space AU. 

The basic algebraic quantity of our present discussion is the stability module 
A8 of Hammer [1983a], given by 

(3.3) 

It consists of all stable input sequences that produce zero future outputs for 
the system described by the input/output map f. Since ker nf and .08 U are both 
.QK-modules (the latter being implied by the fact that .QK c !29K), it follows 
that L19 is an .OK-module. The module .18 will allow us to derive a complete 
set of invariants that characterize the set of all dynamical properties that can 
be assigned to the system described by the input/output map f by internally 
stable control. These invariants are derived through a standard procedure for 
the extraction of integer invariants from .OK-modules, which is described in 
the next section. 

Another module which is critical to our discussion is the pole module .18, 

also introduced in Hammer [1983a], and given by 

.18 :=kerndn.QU, (3.4) 

where n9 is defined in (2.7). This module consists of all polynomial (i.e. past) 
input sequences which produce stable output sequences from the system 
described by f :AU-+ A Y. It is an .OK-module, and is obviously contained in .QU. 

4 Module Indices and Stability Indices 

The derivation of structural invariants for linear time-invariant systems seems 
to be intimately linked to the notion of proper bases ( or 'minimal bases'), which 
have found various applications in algebra (e.g. Wedderburn [1934]), and 
whose significance to the theory of linear control systems has been pointed out 
by numerous authors (Rosenbrock [1970], Wolovich [1974], Forney [1975], 
Hautus and Heymann [1978], Hammer and Heymann [1981]). We start this 
section with a brief review of the notion of proper bases. 

Let s = I:~
10

s1z- 1 be an element of the AK-linear space AS. The order of 
s is defined by ord s := min1 { s, i= 0} if s i= 0 and ord s := oo if s = O; sometimes, 
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it is more common to use the notion of degree, given by deg s:= - ord s. The 
leading coefficient § of s is an element of the k-linear space S given by s:= s

0
rd 

ifs# 0 ands:= 0 ifs= 0. A set of elements u1 , u2 , .•• , un in the space AS is said 
to be properly independent if the leading coefficients tt1 , u2 , ••• , un are K-linearly 
independent. A prope,: basis of the AK-linear space AS is a basis of AS that 
consists of properly independent elements. An ordered proper basis of an 
.OK-module L1 c AS is a basis d 1, ••. , dn of L1 that consists of properly 
independent elements, and deg di;£ deg di+ 1 for all i = 1, ... , n - 1. As it turns 
out, the degrees of the elemens of ordered proper bases are of deep significance in 
linear time-invariant system theory. The origin of this fact stems from the notion 
of causality, but we will not explore this connection here in great detail (see 
Hammer and Heymann [1981, 1983] and Hammer [1983a]). 

It is quite interesting that the degrees of the elements of an ordered proper 
basis of an .OK-submodule L1 of the AK-linear space AS are uniquely determined 
by Li, and can be derived without the explicit construction of any proper bases. 
This fact has probably first been noticed (somewhat implicitly) in Rosenbrock 
[1970], but the specific procedure used here to derive these degrees was 
developed in Hautus and Heymann [1978], Hammer and Heymann [1981, 
1983] and Hammer [1983a]. To describe the procedure, let L1 c AS be an 
.OK-module. For every integer k, let Sk be the K-linear subspace of S spanned 
by the leading coefficients of all elements sEL1 satisfying ord s k. Since L1 is 
an .QK-module (thus permitting shifts to the left in the discrete-time 
interpretation), it follows that the sequence of ·subspaces { Sk} creates a chain 
· · · S _ 1 S0 S 1 • · ·, which is called the order chain of Li. The sequence of 
the dimensions of the elements of this chain, namely, the sequence of integers 
11k :=dimKSk,k= ... , -1,0,1, ... ,is called the order list of Li. An .QK-module 
L1 c AS is said to be rational if the intersection L1 n .QS is of rank equal to the 
dimension of the K-linear space S. Also, the .QK-module L1 is said to be bounded 
if there is an integer a such that ord s ;£ a for all nonzero elements sEL1. 

Now, let L1 be a rational .Q K-submodule of the AK-linear space AS, let 
{11k} be the order list of Li, and let n be the dimension of the K-linear space S. 
The degree indices µ 1 ;£ µ2 ;£ · · · ;£ µn of L1 are then defined as follows. For every 
integer j satisfying 1Ji ;£j < 17i-l • the degree index µi:= - i; if limk .... oo'7k # 0, set 
µi:= 0 for j = 1, ... , limk .... oo'7k· It can then be shown that, for a rational and 
bounded .QK-module Li, the degree indices describe the degrees of every ordered 
proper basis of Li, as follows (Hammer and Heymann [ 1983] ). 

(4.1) Theorem. Let L1 be a rational and bounded .OK-submodule of the AK-linear 
space AS, and let µ 1 ;£ µ2 ;£ · · · ;£ µn be its degree indices. Then, L1 is of 
rank n = dimKS, and 

(i) L1 has an ordered proper basis; 
(ii) Every ordered proper basis d1, ••• ,dn of L1 satisfies degdi=µi,i= 1, ... ,n. 

In order to provide an indication of the profound significance of the degree 
indices in the context of the theory of linear time-invariant systems, consider 
the following fundamental result, which is due to Rosenbrock [1970], Wolovich 
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[1974], Forney [1975], and Hautus and Heymann [1978] {the present version 
of the result is taken from the last reference). 

(4.2) Theorem. Letf:AU ~AY be a linear input/output map, and let L1K be the 
[(a/man realization module off. Then, the degree indices of L1K are the reachability 
indices of a canonical realization of the system represented by f. 

As well known, the reachability indices play an important role in the theory 
oflinear control, as evidenced by the Rosenbrock Theorem {Rosenbrock (1970]). 
They are also referred to as the 'Kronecker invariants' of the system {Kalman 
[1971] ). 

Of fundamental importance to the theory of internally stable linear control 
are the degree indices of the stability module L1° which were introduced and 
studied in Hammer [1983a, b, and c], and which form the main motto of this 
note. We review from these references the following basic definition. {Recall 
that a linear input/output map is simply a strictly causal and rational AK-linear 
map.) 

(4.3) Definition. Let f: AU~ A Y be a linear input/output map, let L19 = 
ker nf n il 0 U be its stability module, and let m = dimK U. The stability indices 
a 1 a 2 ~···~am off {in the sense of the stability set 8) are the degree indices 
of L1°. 

As it turns out, the stability indices exactly characterize the set of all possible 
dynamical behaviors that can be assigned to the system represented by f through 
internally stable closed loop control. Thus, the m integers a 1, ... , am represent 
the entire information that a designer needs to know about the system repre-
sented by f, when weighing the options available for designing the dynamical 
behavior of a closed loop control configuration that internally stabilizes the 
system. In this way, the formalism of the algebraic theory of linear realization 
provides a mechanism for the extraction of the underlying invariant structure 
of a linear system in the context of dynamical design and stabilization. It is 
also quite surprising to note how little data is needed about the system for this 
purpose-only a set of m nonnegative integers. The verification of these facts 
is the subject of the next section. 

Before concluding the present section, we provide one more definition. 

(4.4) Definition. Let f:AU ~AY be a linear input/output map, let L18 = 
ker nof nilU be its pole module, and let m = dimKU· The pole indices 
p 1 p2 • • • Pm off {in the sense of the stability set 8) are the degree indices 
of L10 • The pole degree p of the system represented by f is defined as 
p(f):= Pi + P2 + · · · + Pm· 

It can be shown the the pole degree is equal to the number of unstable poles 
of the system {see Hammer [1983a] for a detailed discussion of this and other 
topics mentioned in this section). 
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5 Invariants, Dynamics Assignment, and Internal Stability 

In order to ·discuss the implications of the stability indices on the theory of 
internally stable lif!ear control, consider the following classical control 
configuration. :... 

' ' ' ' ' ---------------------------------·' ' '' 

I I 
I I 
I I 
I I 
I I 

-------'II 
I I 
I I 
I I 

: f(V.r) : : 

~---------------------------------' I 

' fnv.V.r): ~--------------------------------------------

Here, f is the transfer matrix of the system that needs to be controlled; V is 
an in-loop dynamic precompensator; r is a dynamic output feedback com-
pensator; and Wis an external dynamic prec9mpensator. We denote by fw.r> 
the input/output relation (transfer matrix) of the loop alone, and by f<w.v,r> the 
input/output relation of the entire composite system. To set up the notation, 
we take f:AU~AY, in which case V:AU~AU;r:AY~AU; and W:Au~ 
AU. In order to preserve the degrees of freedom available for the input of the 
system, we shall require the precompensators V and W to represent invertible 
systems (i.e. systems with nonsingular transfer matrices). As is common practice, 
we shall also assume that the given system f is strictly causal. Of course, the 
compensators W, V, and r are all required to be causal. 

When discussing composite systems, the notion of internal stability is of 
uttermost importance. A composite system is internally stable if all its modes, 
including the unobservable and the unreachable ones, are stable, where stability 
is in the sense of the stability set e. Our basic objective here is to characterize 
all possible dynamical behaviors that can be assigned to the transfer matrix 
f<w.v,r> of the composite system by appropriately choosing the compensators 
W, V, and r, under the requirement that the system be internally stable. We 
shall see that the set of all such possible dynamical behaviors is completely 
characterized by the stability indices of the given system f (Hammer [1983a, b, 
and c]). 

We discuss next explicit conditions for the internal stability of the closed 
loop configuration (5.1). First, we list some input/output relations which can 
be directly derived through simple standard computations. Denoting 

(5.2) 
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it can be seen that 

fcv,r> = f VI,, 
and 

(5.3) 

fcw,V,r) = f(V,r) W (5.4) 
Further, some terminology. The series combination f V 1s said to be 

()-detectable if the pole degrees satisfy 

p(f V) = p(f) + p( V) (5.5) 

In intuitive terms, f V is 8-detectable if and only if there occur no cancellations 
of unstable poles and unstable zeros when the transfer matrices off and V are 
multiplied (Hammer [1983b]). We can now state a characterization of internal 
stability for the configuration (5.1) (Hammer [1983b]). 

(5.6) Proposition. The composite system f<w.v.r> is internally stable (in the sense 
of the stability set 8) if and only if the following conditions hold. 

(i) f V is 8-detectable; 
(ii) All of the maps W, fcv.r>' l,, fcv.,l, and l,r are input/output stable (in the sense 

of 8). 

Consider now a state representation 

xk+ 1 = Fxk + Guk, 
Yk= Hxk, 

of the input/output relation fcw.v.,>· As is well known (Rosenbrock [1970]), 
every such canonical state representation corresponds to a left coprime poly-
nomial fraction representation fcw.v,r> = G- 1 H of the transfer matrix of fcw.v.r> 
(which we denote by the same symbol as the map for simplicity of notation). 
Here, G and H are left coprime polynomial matrices with G being invertible. 
Also, the (nontrivial) invariant factors of the polynomial matrix G are the same 
as the invariant factors of the matrix F (where the invariant factors of the matrix 
F over the field K are defined as the invariant factors of the polynomial matrix 
(zl - F)). Furthermore, the dynamical properties of the input/output map f<w.v,r> 
are entirely determined by the invariant factors of the matrix F. In fact, the 
invariant factors of F, which characterize the invariant structure of F under 
similarly transformations (e.g. Maclane and Birkhoff [1979]), provide 
the only significant data about F, since F can be replaced by any matrix similar 
to it by inducing an isomorphic transformation of. the state-space X. 
Consequently, the canonical dynamical behavior of the closed loop system (5.1) 
is entirely described by the invariant factors of the denominator matrix G in a 
left co prime polynomial fraction representation fcw.v.,i = G- 1 H. 

Thus, in order to determine the entire set of canonical dynamical behaviors 
that can be assigned to (5.1) by appropriately choosing the compensators, all 
we need to know is the set of all possible invariant factors that may appear as 
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the invariant factors of the denominator matrix Gin a left coprime polynomial 
fraction representation fcw.v.ri = G- 1 H of the composite system. This set is 
entirely characterized by the next result, which is reproduced here from Hammer 
[1983c]. (We say that a polynomial </J is stable if l/</JEil8K. Also, note the 
reverse ordering of the stability indices here.) 

(5.7) Theorem. L1tf: AU -+AY be a linear input/output map with stability indices 
81 82 ···~em, and let k:= rank AKf. Let </>1 , •.• , <Pk be a set of manic stable 
polynomials, where <Pi+ 1 divides <Pi for all i = 1, ... , k - 1. Then, the following 
statements are equivalent. 

(i) '2:.{= 1 deg <Pi~ '2:.{= 1 ei for all j = 1, ... , k. 
( ii) There exist causal dynamic compensators W: AU -+ AU, V: A U -+AU, and 

r: A Y-+ AU, where Wand V are nonsingular, such that the closed loop system 
fcw.v,ri is internally stable and has a left co prime polynomial fraction representa-
tion fcw.v,ri = G-1 H, with G having </>1, ... ,</Jk as its (nontrivial) invariant 
factors. 

Whence, we have a complete characterization of all the possible dynamical 
properties that can be assigned to the given system f by dynamic compensation, 
within an internally stable closed loop control configuration. This character-
ization is entirely determined by m integers-the stability indices of the given 
system f. It follows then that the stability indices provide all the information 
a designer needs to know in order to be able to evaluate all the available options 
for the assignment of input/output dynamical properties through internally 
stable control. 

A detailed proof of Theorem (5.7), as well as explicit descriptions of the 
construction of dynamic compensators that achieve desired invariant factors 
for the closed loop system, are given in Hammer [1983b, c]. These references 
also contain a variety of other results on dynamics assignment, including 
dynamics assignment by pure dynamic output feedback and by unity output 
feedback. 

To conclude, we have seen that algebraic realization theory for linear time-
invariant systems has matured into more than just an abstract framework for 
the derivation of dynamical models of systems. It has become a refined tool for 
the extraction of structural invariants from the input/output behavior of the 
system, and has elicited the simplicity of the fundamental structure of linear 
time-invariant control systems. 
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