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Abstract 

The problem of assigning invariant factors by inter-
nally stable output feedback co~figurations is consi -
dered. The emphasis :is placed on the input-output inva-
riant factors of the final feedback configuration, 
whereas the internal hidden modes of the final system 
are disregarded after their stability is ensured. Two 
types of output feed -oack configurations are considered: 
(i) a combination of unity feedback and dynamic pre -
compensation, and (ii) pure dynamic output feedback. 
It is shown that in both cases the possibilities of 
assigning invariant factors depend on certain integer 
invariants which are determined, roughly speaking, by 
the unstable poles, by the unstable zeros, and by the 
zeros at infinity of the transfer matrix of the given 
system. 

1. INTRODUCTION 

The p'.ll'pose of the present note is to rep::,rt some 
results on the assignment of invariant factors through 
application of output feedback. We mention here only 
the simplest cases and a brief outline of proof. A 

detailed presentation is given in HAMMER [1982], which 
also contains a discussion of the assignment of 
characteristic polynomials, omitted in our present 
survey. 

Let f be the transfer matrix of a strictly causal 
linear time-invariant system, and consider the following 
two feedback configurations around f 

(1.1) r-----------fv l 
I I 

V ·I f !" 
L-----------' 

(1.2) r---------f~ 

1t: I L _________ _I 

where v and r are transfer matrices of appropriate 
causal linear time-invariant systems, and where fv 
and fr represent the respective composite systems. We 
assume that the precompensator v is nonsingular, so 
that no degrees of freedom of the control variables are 
being destroyed. The configuration (1.1) is the classi 
cal unity feedback configuration, which has found many 
applications in tracking control systems, and (1.2) 
is a pure dynamic output feedback configuration. We 
require throughout our discussion that the systems rep-
resented by fv and by fr are internally stable, that 
is, that all their modes, including the unobservable and 
the unreachable ones, are stable. By stable we mean that 
the respective poles are located within a prescribed 
region of the complex plane, which we call the stability 
region.Our objective is to study the input-output dynamic 
properties that can be assigned to fv and f by r 
appropriate choices of v and r. We show that these 
dynamic properties depend o~ certain integer invariants 
which are determined, roughly speaking, by the unstable 
poles, by the unstable zeros, and by the zeros at infi-
nity of the given transfer matrix f. In exact terms, 
the problems that we are interested in are stated as 
follows. 

Lt fv = D-~ and f = D-L_ e v v r r ~r be polynomial mat-
r ix fraction representations. The invariant factors of 
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Dv and of Dr provide a detailed description of the 
0bservable) dynamical properties of fv and of fr, 
respectively. We are interested in the following pro -
blems related to these invariant factors. Let ¢1, •.. , 
¢m, where ¢i+l divides 9\ for all i = 1, •. . ,m-1, 
be a set of polynomials having all their roots in the 
stability region of the complex plane. 

(1.3) Under what conditions (on ¢1, .•• ,¢m does 
there exist a nonsingular causal precompensator v such 
that ¢1, .•• ,¢m are the invariant factors of Dv 
(and fv is internally stable). 

(1.4) Under what conditions (on 
there exist a causal feedback r 
are the invariant factors of D r 
stable). 

¢1, ••• ,¢m) does 
such that ¢1, •.• ,¢m 
(and f :is internally r 

The study of the effect of feedback on the invariant 
factors was initiated by ROSENBROCK [1970] (see also 
DICKINSON [1974], and MUNZNER and PRATZEL-WOLTERS [1978]) 
with a study of state feedback. Later the problem (1.4) 
was considered:in ROSENBROCK and HAYTON [1978], where 
the following result was obtained. Let Al~A~ ..• ~Am 
and µ1~~···~m be the reachability indices and the 
observability indices of f, respectively. If 

(1. 5) deg¢. > .i (A.+µ - 1) for all i=l, .•• m, jf:1. J - Jn J 1 
then there exists a feedback r such that ¢1, ..• ,¢m 
are the invariant factors of D r 

Actually, ROSENBROCK and HAYTON [1978] consider the 
invariant factors of a full realization of the composite 
system (1.2), and therefore their condition also applies 
to (l.3). Presently, ·however, we are interested in the 
input-output properties of fv and f, and, as we r 
shall see, in this case (1.3) and (1.4) lead to separate 
conditions, both of which are stronger than (1.5). Our 
present conditions are stated in terms of certain struc-
tural system invariants, which we next discuss. 

2. SYSTEM INVARIANTS 

In the present section we review certain integer 
invariants from HAMMER [1981 and 1982] which play a 
central role in our present discussion. These system 
invariants are determined by rigid structural features 
of the given system, like its unstable poles, its 
unstable zeros, its internal delay, and its singularity. 
Their derivation is algebraically analogous to the 
derivation of the classical reachability indices (see 
ROSENBROCK [1970], BRUNOVSKY [1970], KALMAN [1971], 
and, in particular, WOLOVICH [1974] and FORNEY [1975]). 
In order to emphasize this analogy we start with a 

review of some concepts from realization theory. 

Let R denote the real numbers, let R(z) denote 
the set of all rational functions :h z with real coeffi-
cients, and let Rm(z) denote the set of all m-dimen 
sional vectors with entries in R(z). Every element 
de lfl(z) can be expressed as a formal Laurent series 

-t d =t~todtz , where, for all t, the coefficient dt 
is in Rm. The order of d is defined as ord d := 
~n {dt f O} if d f O, and ord d := m if d = o. 
The leading coefficient a of d is defined as 
d := dord d if d f o, and d := 0 if d = O. A set 
of elements ~, ..• ,dm e Rm{z) is called p;;operlyA 
independent if their leading coefficients ~, •.• ,dm 
are linearly independent over the real numbers R (see 
WEDDERBURN [1936], WOLOVICH [1974 ], FORNEY [1975], 
HAUTUS and HEYMANN [1978], and HAMMER and HEYMANN [1981]). 
The set ~, ..• , dm e Rm(z) :is ordered if ord di+l 
ord di for all i = l, ••• ,m-1. 

Now, let f be a pxrn rational transfer matrix, 
and let f = PQ-l be a right coprime polynomial matrix 
fraction representation. There exists an mxm polynomial 
unimodular matrix M such that the columns ~, •.. ,dm 
of the matrix QM are properly independent and ordered. 
Then, the integers Ai:= -ord di, i = l, ••• ,m, are 
the reachability indices (or Kronecker invariants) of 
(a canonical realization of) f (see ROSENBROCK [1970], 
KALMAN [1972], WOLOVICH [1974], FORNEY [1975]). Using 
analogous procedures, we construct below several addi-
tional kinds of system nteger-invariants. 

First, some terminology. A rational transfer matrix 
h is called 'J:12. (input/output) stable if all its 
canonical poles are located within the stability region 
of the complex plane. A polynomial matrix P is called 
completely unstable if all the roots of its invariant 
factors are located outside the stability region. Now, 
let f be a pxm rational transfer matrix, and let 

-1 f = ND be a right coprime polynomial matrix fraction 
representation. Employ~ng the Smith canonical form of N, 
one can factor N = N

0
N1 , where N

0 
is a completely 

unstable pxrn polynomial matrix, and where N1 is an 
mxm nonsingular polynomial matrix having a stable 
inverse. The matrix N

0 
exactly characterizes the 

unstable zeros of f, and we call it a zero matrix of 
f. The factorization N = N

0
N1 :is a particular case of 

the classical left standard factorizations of N as 
employed by GOKHBERG and KREIN [1960] and, in a diffe-
rent sense, by YOULA [1961], and the matrix N was 

0 
also employed in PERNEBO [1981]. We now define the i/o 

-1 -1 stable matrix D
0 

:= DN1 , so that f = N
0
D

0 
, and we 

call this matrix fraction representation a zero repre-
sentation of f (HAMMER [1981]). 



Further, still letting -1 f = ND be a right coprime 
polynomial matrix fraction representation, we factor 
D = D D1 , where D is an mxm completely unstable p p 
poly m mial matrix, and D1 is an mxm polynomial mat-
rix having a stable inverse. The matrix D exactly p 
characterizes the unstable poles of f, and we call it 
a pole matrix of f. Defining the i/o stable matrix 

-1 Np:= N~!, we obtain a matrix fraction representation 
f = NPDP , which we call a right pole representation 
of f (HAMMER [1981]). A left pole representation is 
defined dually. 

Now, let f be a pxm injective transfer matrix 
(i.e., with linearly independent columns), and let 

-1 f = N
0
D

0 
be a zero representation of f. There exists 

an mxm polynomial unimodular matrix M such that the 
columns cL, ••• ,d of the matrix D M are properly -i. m o 
independent and ordered. We define the stability indices 
o1~ 2~ .•. _::om of f by oi := -ord di, i = l, •.• ,m 
(HAMMER [1981]). (In the noninjective case, the stability 
indices are defined similarly, except that the matrix 
D

0
, which is nonunique then, has to be suitably chosen; 

see HAMMER [1981i) It can be shown that, if A1~l~··· 
_::Am are the reachability indices of f, then 
for all i = 1, •.. , m (HAMMER [1981]). 

o. < A. 
J - l. 

Next, let f be a rational pxm transfer matrix, 
and let f = D-~ be a left pole representation of f. p p 
There exists a pxp polynomial unimodular matrix M 

such that the rows ~, ••. ,d' of the matrix MD are --i p p 
properly independent and ordered. We define then the 

I 
left pole indices p1~~···~Pp of f by pi :=-ord di' 
i = l, ••. ,p (HAMMER [1981]). It can then be shown that, 
if µ1>µ2> ••. >µ are the observability indices of f, - - - p 
then pi~ µi for all i = l, .•. ,p (HAMMER [1981]). p 
It is easy to see that the sum p := i~l pi is equal 
to the number of unstable poles of f. 

unstable or at infinity. 

For a detailed discussion of the invariants mentioned 
in this section see HAMMER [1981 and 1982]. 

3, THE MAIN RESULTS 

We describe now the main results regarding problems 
(1.3) and (1.4) obtained in HAMMER [1982]. The conditions 
that we obtain are of the same general form as the con-
dition (1,5) obtained by ROSENBROCK and HAYTON [1978], 
exept that the reachability and the observability indi-
ces therein are replaced by the invariants discussed in 
section 2. In order to avoid mentioning some more deli-
cate definitions, we consider in our present short note 
only the simplest situation, where we assume that the 
given transfer matrix f fu diagrams (1.1) and (1.2) is 
square and nonsingular. The conditions for a general 
transfer matrix f are similar to the ones in this par-
ticular case (see HAMMER [1982]). We first recall a few 
terms.A transfer matrix f is a J:/.5}_ (input/output) 
if it is both rational and strictly causal ("strictly 
proper"). We note that for a linear i/o map f, the 
a-latency ndices u1, ... ,um always satisfy ui l for 
all i = l, ••• ,m. Given an integer a, we denote by 
[a]+:= max (a,o). The following~ from HAMMER [1982]. 

(3.1) THEOREM. Let f be an mxm nonsingular linear 
i/o map with stability indices cr~cr2~ ••• ~crm. Also, let 
¢1, ... ,¢m be a set of monic polynomials having all their 
roots in the stability region of the complex plane, and 
for which ¢i+l divides ~i for all i = l, ..• ,m-1. 

(i) Let p 1~P~···~Pm be the left pole indices of f, 
If 

for all i = 1, ••• , m, 

We nextdefine an additional set of integer invariants. then there exists a nonsingular and causal precompensator 
Let f be an injective rational transfer matrix, and v such that the unity feeback configuration fv has a 
let f = P-lQ be a left coprime polynomial matrix frac- fv __ G-l __ ' polynomial fraction representation 11 where G 
tion representation of f. We again factor Q = Q_Q

0
, 

j_ has ¢1, ..• ,¢m as its invariant factors. 
where, this time, Q

0 
is an mxm nonsingular and 

completely unstable polynomial matrix, and :is a po-
lynomial matrix which has an i/o stable left inverse. 
Then, the rational matrix g := fQ-l has no unstable 

0 
zeros, and we let M be an mxm polynomial unimodular 
matrix such that the columns g1, ..• ,~ of gM.. are 
properly independent and ordered. We define now the 
cr-latency indices ul->u2~···Ym off as ui := ord gi, 
i = 1, ... ,m (HAMMER [1982]). The sum u := i~ ui 
is called the cr-latency degree of f, and it is equal 
to the number of those zeros of f which are either 

(ii) Let u1,::u~ .• ·Ym be the 
If 

cr-latency indices of f. 

.~ deg¢ > (crJ.+ u1- 1) Jh J - J=l for all i = 1, ••• , m, 

then there exists a causal feedback compensator r such 
that the pure output feedback configuration fr 
polynomial fraction representation f = G-1tt, r 
has ¢1, .•. ,¢m as its invariant factors. 

Comparing the conditions in parts (i) and 

has a 
where G 

(ii) 
of Theorem 3.1, we see that in (i) there is a strong 



dependence on the unstable poles of f (through pl), 
whereas in (ii) there is a strong dependence on the 
u.~stable and on the infinite zeros of f (through u1 ). 
We illustrate the numerical difference between the pre-
sent conditions and the ones of ROSENBROCK and HAYTON 
[1978] by the following 

EXAMPLE. Let f = [(z-l)(z+l)5J/[(z-2)(z+2) 6 J, and 
let the stability region be the left hand side of the 
complex plane. Then, using the above notation, we have 
o1= 2; u1= 2; and p1= 1; whereas the reachability 
and the observability indices are Al= µ1= 7. Now, let 
¢ be any monic polynomial with stable roots, and 
suppose that one is required to assign ¢ as a charac-
teristic polynomial. For the given f, we obtain the 
following suffici.ent conditi ons on ¢: 

ROSENBROCK and HAYTON (Condition (1.5)): deg¢~ 13. 

Theorem 3.1, Condition (i) : 

Theorem 3.1, CJndition (ii): 

deg¢~ 2. 

deg ¢ 3. 

As we can see, certain stable components of the 
system have no effect on the conditions of Theorem 3.1. 

4. OUTLINE OF PROOF 

We summerize now tht: '!lain ingredients of the proof 
of Theorem 3.1 (a detailed and general proof is given 
in HAMMER [1982]). We again assume that f is a square, 
say mxm, nonsingular, rational, and stricly causal 
transfer matrix. We use as our starting point the f oll o-
wing c:mfiguration, 

,------- f(v',~ 
n: + OUT 

u v' f 

(4.1) 

I 
I 
l_ 

y 

I 
r' A I _____ 4_J 

where v' :is an mxm nonsingular and causal precompen-
sator, r' is an rnxm causal feedback, and wl;lere . 
f(v',r') represents the resulting transfer matrix from 
IN to OUT. Explicitly, we have 

(4.2) f( I I ) = ft ( t I ) , v ,r v ,r 
'[I 'f ']-l where t ( , , ) = v + r v . V ,r 

From the configuration (4.1) we can obtain the 

configuration (1.1) simply by transfering the input u, 
and substracting it at point A instead of adding:it at 
point IN. The transfer matrix fA obtained in this way 
is then clearly 

(4.3) 

where 

(4.4) 

v := v'r', and it can be readily verified that 

fv = f( , , )r' • 
V ,r 

It is also clear that if 
then so is also fv. 

f (v',r') is internally stable, 

In order to obtain from (4.1) a configuration of 
the form (1.2), we use the nonsingularity of v', and, 
defining r := v'r', we have that 

(4.5) f = f( , •)v•- 1 . r v ,r 
In the following steps (1) to (5) 

compensators v' and r' such that 
condition (i) of Theorem 3.1. 

we construct 
fv satisfies 

) -1 (1 Let f = N
0

D
0 

be a zero representation of f, 
where D

0 
has ordered and properly independent columns. 

Then, by definition, the stability induces o1~ 2~···~m 
of f are the degrees of the columns of D

0
• 

(2) Assume that ¢1, ••. ,¢m satisfy the condition 

i i + 
.>'- deg¢.> .~1 (oJ. + [p1- 1]) J=l J - J= for all i = l, ••. ,m. 

This condition implies (see ROSENBROCK [1970], and als o 
MUNZNER and PRATZEL-WOLTERS [1978]) that there exists a 
polynomial matrix Q, having ordered and properly indi-
pendent columns ~, •.• ,dm' such that (a) ¢1, •.• ,¢m 
are the invariant factors of Q, and (b) the degrees 
Ai:= -ord di satisfy Ai~ (oi + [p1 - l]+) for all 
i = 1, •.. ,m • 

(3) Let a be a real number in the stability region 
+ of the complex plane, and denote S := [p1 - l] • Now, 

since A. > o. + S for all i = 1, .•. , m , the matrix 
J. - J. Q Q -1( ).., -1( ).., t := D0 Q z - a is causal, and ft= N

0
Q z - a . 

(4) By HAMMER [1982, section 4], there exists a pair 
of mxm causal matrices v• and r', where v' is 
nonsingular, such that (a) ft= f(v',r') 

is internally stable; and (b) the matrix 
(z - a) 13r• is a polynomial matrix. 

and 

p := 

f(v',r') 

(5) Combining now steps (1) to (4), defining v := 
v'r', and using (4.4), we obtain that fv = f( 1 ')r' 

-1 S -1 V ,r 
=fir'= N Q (z - a) r' = N Q P, where all of N , 

0 0 0 
Q, and P are polynomial matrices. Whence, since N

0 
and Q are coprime, it follows that fv has a left 
polynomial fraction representation fv = G-1ir, where G 
has the invariant factors of Q, that is, ¢1, .•. ,¢m. 
Thus, v satisfies part (i) of Theorem 3.1. 



The pr:::>of of part (ii) :::,f Theorem 3.1 is analogous. 
We use (4. 5) and the fact that, by HAMMER [1982,secti:::>n 
6], the pair v',r' in step (4) can be chosen s:::, 1;hat 
the matrix p .- (z _ Q')u1-lv 1 -l a polyn:::>mial matrix. 
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