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Input/Output Control of Asynchronous 
Sequential Machines 

Xiaojun Geng, Member, IEEE, and Jacob Hammer, Fellow, IEEE 

Abstract-The problem of controlling a finite-state asyn­
chronous sequential machine is examined. Main consideration 
is given to input/output control, where access to the state of the 
machine is not available. The objective is to use output feedback 
to control the machine so as to match a prescribed model. It is 
shown that necessary and sufficient conditions for the existence 
of appr~priate controllers ~an be stated in terms of a simple 
comparISon of two numerical matrices. Whenever controllers 
exist, algorithms for their design are outlined. 

Index Tenns-Asynchronous sequential machines, model 
matching, observers, output feedback, separation principle. 

I. INTRODUCTION 

A SYNCHRONOUS sequential machines are important 
building blocks of high-speed digital computer and con­

trol systems. The present paper develops a methodology of 
controlling such machines and changing their behavior through 
the use of traditional feedback control techniques. Given an 
asynchronous finite-state machine E with undesirable behavior 
we build around it an output feedback loop, with the objectiv~ 
of achieving desirable behavior of the closed-loop system. The 
control configuration is shown in Fig. 1. 

Here, E is the asynchronous machine being controlled and 
C is an asynchronous machine that serves as an output feed­
back controller. The objective is to design the controller C so 
that the closed loop system Ee exhibits desirable characteris­
tics. We concentrate on the model matching problem, namely, 
the problem of finding a controller C for which the closed loop 
system Ee mimics a prescribed model E'. The techniques de­
veloped in the paper can also be used to address other problems 
related to the control of asynchronous machines. 

The main results are presented in Section IV, which includes 
necessary and sufficient conditions for the existence of a con­
troller C solving the model matching problem. To state the con­
ditions, we associate with every asynchronous machine a nu­
merical matrix called ''skeleton matrix". The existence of C is 
then determined by comparing the ''skeleton matrix" of the ma­
chine E to the "skeleton matrix" of the model E'. An algorithm 
for the construction of C is also provided. 

In Section III, we prove the validity of a separation prin­
ciple, whereby every solvable model matching problem for 
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Fig. 1. Closed-loop system. 
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Fig. 2. Separation principle. 
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asynchronous machines can be solved by a controller C that 
decomposes into a combination an obsen,er Band a state-feed­
back control unit F, as depicted in Fig. 2. 

The observer B estimates the state of E from input/output 
data of E and feeds the estimated state to the control unit F. The 
latter generates a sequence that drives E along a desired path. 
To exhibit such a decomposition, we write C = (F 1 B). 

The framework developed here continues the process initiated 
in [ 1] to develop tools for the control of asynchronous machines. 
In [l], the model matching problem is considered for asyn­
chronous machines whose state is available as output. When the 
state of the controlled machine is not available as output, the 
problem becomes more complex and requires the development 
of new concepts and new analytical tools. 

Asynchronous machines are finite state sequential machines 
that operate without a clock; they are often called clockless logic 
circuits. Lacking a clock, an asynchronous machine is driven 
by changes of its input variables. A change of an input variable 
causes the machine go through a succession of state transitions. 
This succession of state transitions may or may not end. When 
it ends, the machine reaches a state at which it lingers until the 
next change of an input variable. This state and the current input 
value form a stable combination of the machine. When the suc­
cession of state transitions does not end, then the machine has 
an infinite cycle. Machines with infinite cycles are not discussed 
in this paper. 

The intermediate states through which an asynchronous ma­
chine passes on its way to a stable combination are called un­
stable states. State transitions occur at the speed limit of the ma­
chine's components, as they are not slowed by waiting for the 
next clock tick. Consequently, asynchronous machines are used 
in some of the fastest computing equipment. 
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The lack of a synchronizing clock requires that special 
precautions be exercised when operating an asynchronous 
machine. Care has to be taken while the machine is in transition 
through a succession of unstable states. During such a transi­
tion, the exact state of the machine at any moment of time is 
unpredictable. since no clock governs the state changes, and the 
transition rate depends on unpredictable hardware conditions. 
Consequently. if an input change occurs during a transition 
process, the response of the machine can become unpredictable, 
since the state of the machine at the time of the input change is 
unpredictable. To avoid such uncertainty, it is common practice 
to keep the input of an asynchronous machine constant while 
the machine is not in a stable state. This leads to the following 
notion [2]. 

( 3) Definition: A machine ( or a composite machine) oper­
ates in fundamental mode if only a single variable of the ma­
chine can change its value at a timte. + 

For a single machine, fundamental mode operation requires 
the rate of input changes not to exceed the response rate of 
the machine. For the composite system shown in Fig. 1, fun­
damental mode operation requires the input of E to remain con­
stant while E undergoes a transition; and it requires the input of 
C to remain constant while C undergoes a transition. Clearly, 
tl1e input of E remains constant while the output of C is con­
stant, and the input of C remains constant while the output of 
Eis constant (and the external input vis constant). This simple 
argument leads to the following [1]. 

(,I.) Proposition: Let E and C be asynchronous machines in­
terconnected in the configuration of Fig. 1. Then, the configura­
tion operates in fundamental mode if the following hold: 

i) the output of C is constant while E is not in a stable 
combination; and 

ii) the output of E and the input variable v are constant 
while C is not in a stable combination. + 

All control configurations used in the present paper are de­
signed to operate in fundamental mode. 

The present discussion continues the investigation into the 
control of asynchronous sequential machines initiated in [1] and 
[3]. There, the model matching problem is considered for asyn­
chronous machines whose state is available as output. When the 
state of the controlled machine is not available for output, as is 
the case here, the problem becomes more complex and requires 
the development of new tools. 

The control of sequential machines has received considerable 
attention in the literature of the last two decades. Prominent 
are studies related to the supervisory control of discrete-event 
systems [4], [5], the references cited in these papers, and many 
others. In supervisory control, the objective is to develop a con­
troller ( or a supervisor) that elicits from the controlled machine 
a specified formal language. Other authors have studied sequen­
tial machines via the traditional control theoretic approach, con­
centrating on the development of controllers that resolve issues 
related to error correction, the reduction of disturbance effects, 
and model matching [6]-[12]. This literature on the control of 
sequential machines does not address certain issues that are crit­
ical to the operation of asynchronous machines, like the distinc­
tion between stable and unstable states and fundamental mode 

a b C y 

x1 x4 x3 xi 0 
x2 x2 x2 XJ 1 
xJ - x2 XJ 0 
x4 x2 1 x4 1 x-

Fig. 3. Example. 

operation (see Section II for details). Addressing these issues re­
quires new conceptual and analytical tools that form the subject 
of the present paper, of [1], and of [3]. The approach adopted 
here draws on a combination of tools taken from the traditional 
theory of digital design [2] and from traditional control theory. 

The paper is organized as follows. Terminology and back­
ground are introduced in Section II. The decomposition of the 
controller into an observer and a state feedback is discussed in 
Section III. The solution of the model matching problem is pre­
sented in Section IV, where necessary and sufficient conditions 
for the existence of controllers are derived, and where design 
algorithms for controllers are developed. This paper concludes 
in Section V with a comprehensive example. 

IL TERMINOLOGY AND BACKGROUND 

A. Asynchronous Machines and Stable Equivalence 

An asynchronous sequential machine :E is represented by a 
quintuple (A, Y: X: :c0 , f, h), where A. Y, and X are nonempty 
finite sets-A is the input alphabet, Y is the output alphabet, 
and X is the state set; :c0 is the initial state of the machine, and 
.f : A x X --* X and h : X ~ Y are partial functions, i.e., 
functions defined only over part of their domain. The machine 
E is represented by a recursion of the form 

(5) Xk+l = f (xi~, u1,;) 
Yk = h(xk), k = 0, 1, 2, ... 

Here, uo: 'lt 1 , 'lt 2 , .•. is the input sequence of the machine; 
Yo, Y1, :1)2: ..• is the output sequence; and xo, x1 : :z:2, ... is the 
state sequence. The integer k represents the "step counter" of 
E; it advances by one upon a change of the machine's input or 
state. The function f is the recursion function ( or state transition 
function) of E, and h is the output function. Note that the 
output function h of (5) does not depend on the input variable 
u, namely, that E is a Moore machine [2]. Considering that 
every asynchronous machine can be represented as a Moore 
machine, we observe that the use of the representation (5) is 
not restrictive. In the special case when the output function h 
is the identity function, E is called an input/state machine. An 
asynchronous machine can be represented by a graph or by a 
table of transitions, as indicated in the following. 

(6) Example: An asynchronous machine with the input al­
phabet A= {a, b, c}, the output alphabet Y = {O, l}, and the 
state set X = {.r.1, x 2 , x3. x""'} can be depicted by a graph or 
by a table of transitions. The transition function f and the output 
function h are depicted in the table. The symbol .,_., in Fig. 3 
indicates that the associated state-input pair is not to be used. 
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a b C y 

x' x2 x2 x' 0 
x2 x2 x2 x3 I 
x3 - x.2 x3 0 
x4 x2 x2 x4 I 

Fig. 4. Stable state machine. 

(7) Definition: Let E = (A, Yi Xi :co, f, h) be an asyn­
chronous machine. A pair (x, 'u) E X x A is a valid pair of E 
if the function f is defined at (x, u). The pair (x, u) E X x A 
is a stable combination if x = f(x, u). + 

In Example 6, the pairs (x1, c), (x 2 , a), (.r,2 , b), and (:r:\ c) 
are stable combinations, while (:r.4 , a) is not. When (:r, n) is 
not a stable combination, a machine E engages in a chain of 
transitionsx1 = f(x,u),x2 = f(x 1,u), ... ,whichmayormay 
not terminate. If this chain of transitions does not terminate, then 
E contains an infinite cycle. We assume throughout this paper 
that the machines under consideration have no infinite cycles. 
For such machines, the following concept is important. 

(8) Definition: Let (x, u) be a valid pair of the machine 
E = (A, Y, X, xo, f, h), inducing the chain of transitions 
xi = J(x, 'U), x2 = J(x 1, u), ... Assume that there is an 
integer ·i 2:: 1 for which (xi, n) is a stable combination. Then, 
:r.:i is the next stable state of x with the input character u. + 

Referring to Example 6, we see that x 2 is the next stable state 
of the state x1 with the input a. The corresponding chain of 
transitions is x 4 = f (x1 , a), x2 = f(x 4 , a), x2 = f(x 2

, a). 
Ideally, when there are no infinite cycles, it takes zero time 

for an asynchronous machine to reach its next stable combina­
tion, irrespective of the number of intermediate transitions in­
volved. Thus, from a user's point of view, only output values 
that correspond to stable combinations are noticeable, since the 
machine can linger only at stable combinations. The following 
recursion function therefore describes the "noticeable" behavior 
of the machine. 

(9) Definition: For an asynchronous machine E 
(A, Y, X, xo, f, h), let x' be the next stable state of a valid 
pair ( x, u). The stable recursion function s : X x A - X of 
Eis given by s(.1:, n) := x' for all valid pairs (.r,, 11,) E X x A. 
The stable state machine induced by E is represented by the 
quintuple (A, Y, X, :co, .s, h), and is denoted by E18 • + 

The stable state machine E 1 s describes the transitions of :E 
between states at which the machine can linger, and thus it de­
scribes the behavior of E as seen by a user. 

(10) Example: The machine of Example 6 induces the stable 
state machine shown in Fig. 4. 

Recall that, in fundamental mode operation, only one vari­
able of the machine can change at a time. Consequently, an 
input variable can change only after all state transitions have 
ceased, i.e., only after the machine has reached a stable com­
bination. Consider an input string ·1.t = 'Uo'u 1 ••. 'Um-I applied 
to a machine E at the initial state x 0 . In fundamental mode op­
eration, the first input value u0 remains fixed until E reaches 
the next stable state x1 := s(x 0, u0). Then, the input value 
switches to n1 and stays constant until the next stable state :1:2 := 

(s(s(xo, ·uo), ·u1) is reached. This process continues until the 

last stable state Xm := s( ... s(s(s(xo, uo), ui), 'tt2) ... , Um-1) 

is reached. We use the shorthand notation 

s(xo, u) := s( ... s(s(s(xo, 'Uo), 'U1), ·u2) ... , 'Um-1). 

The notion of stable state machine leads to the following gener­
alization of the classical notion of equivalence. 

(11) Definition: Let E = (A, Y, X, x 0 , f, h), and 
:E' ( A, Y, X', (o, f', h') be two machines having the 
same input and the same output sets, and let E1 s and :E1 s be 
the stable state machines induced by E and E', respectively. 
Two states x E X and ( E X' are stably equivalent ( x = () 
if the following is true: When EI s starts from the state x and 
:Ef s starts from the state(, then: i) :E18 and 1:r s have the same 
permissible input strings~ and ii) :E1 s and :E1 s generate the 
same output string for every permissible input string. The two 
machines E and E' are stably equivalent if their initial states 
are stably equivalent, i.e., if x 0 = (0 . + 

Stably equivalent machines appear identical to a user. 

B. Minimal Machines and Quotient Machines 

The notion of equivalent states can also be applied to a single 
machine. A machine with equivalent states contains redundant 
states, and can be simplified by deleting one state of each pair 
of equivalent states. This leads to the following. 

( 12) Definition: A machine is stably reduced if its stable state 
machine has no states that are stably equivalent. + 

The following notion was used in [1] and [3]. 
(13) Definition: Let E = (A, Y, X, :r:0 ,f, h) be an asyn­

chronous machine with the stable recursion function s, and let 
E 1 s be the stable state machine induced by E. A state x' of I; is 
stably reachable from a state x of E (or x can stably reach x') if 
there is an input string u for which :v' = s(x, u). The machine 
:E is stably reachable if every state of :E

1 
s is stably reachable 

from the initial state :c0 • + 
Another way of simplifying a machine without modifying its 

behavior is to remove inaccessible states. Removing all (stably) 
redundant and inaccessible states results in the next adaptation 
of a classical concept of automata theory [13]. 

( 14) Definition: An asynchronous sequential machine is 
stably minimal if it is stably reduced and stably reachable. + 

Another classical concept adapted to the present framework 
is the notion of a quotient machine. Recall that a partition IT = 
{ 1r1 , ... 1rm} of a set Xis simply a collection of disjoint subsets 
of X whose union is X. It is convenient to use the following 
notation. For a function s : X x A -r X and two subsets 
8 1 C X and 8 2 C A, denote by [81 , 8 2] := 81 x S2 the 
cross product set, and by s[81, 8 2

] the corresponding image, 
i.e., s[81,8 2] := {s(x,a): x E 81,a E S2 }. 

( 15) Definition: Let :E be an asynchronous machine with the 
stable state machine E1 s = (A1 Y, X, :.r0 , s, h). Let X,. be the 
set of states that are stably reachable from the initial state x0 • 

i) A partition II = { 1r1, ... , 1rm.} of x ·r is a valid pa11i­
tion when the following holds for every member 1r E II 
and for every input character u E A: If there is a state 
x E 1r for which (:v, u) is a valid pair of :E, then all 
elements of 1r x n are valid pairs of :E. Then, [1r, n] is 
also called a valid pair. 
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ii) A valid partition II is transition consistent if, for every 
valid pair [ 1r, u], there is a member 1r' E II such that 
s [ 1r , u] C 1r'. 

iii) A valid partition II is output consistent if the output 
function h is constant over each member of II, i.e., if, 
for every 1r E II, one has h( a) = h( b) for all states 
a., b E 1r. 

iv) The partition II is a stable equivalence pa11ition if it is 
valid, transition consistent, and output consistent. + 

(16) Definition: Let Ebe an asynchronous machine with the 
stable state machine E1 s = (A, Y, X, x 0 , s , h), let xr be the 
set of states stably reachable from the initial state x 0 , and let 
II = { 1r1 , ... : 1rm} be a stable equivalence partition of x 1

• • 

Then , the stable quotient machine :E /II of :E with respect to II is 
the machine (A , Y, II, 1r0 , s1r, h1r) whose recursion function s1r 

and output function h1r are defined as follows for every 1r E II: 
i) S7r ( 1r : ·u) := 1r', where 1r' E II is the member satisfying 

s[1r , u] C 1r'; 

ii) h7r(1r) := h(x), where xis an element of 1r. 

The initial state 1r0 of :E /II is the member of II that contains the 
initial state xo of :E. + 

In intuitive terms, the stable quotient machine is a simpler ma­
chine whose stable state behavior is equivalent to that of :E. The 
next definition and proposition follow along well-established 
lines of automata theory [13]. 

(17) Definition: Let E (A : Y, X, x 0 , f: h) and 
:E' = (A': Y': X': (0 1 f'. h') be two asynchronous machines 
with stable recursion functions s and .<;', respectively. Then, 'E 
and 'E' are stably isomorphic if there exist three set isomor­
phisms a: X -+ X' , /3 : A-+ A', and x : Y -+ Y' such that 

i) n:(s(:c:, u)) = .s'(o:(x)J3(u)); 
ii) h(x) = x[h'(a(x))]; 
iii) a(:1;0) = (o; 

for all XE X and ·u EA. • 

( 18) Proposition: Let E and E' be stably equivalent ma­
chines. If :E' is stably minimal, then there is a stable equivalence 
partition II for which the quotient machine :E/II is stably iso­
morphic to E'. 

III. DEIBCTABILITY AND OBSERVERS 

A. Detectability of Asynchronous Machines 

For the control configuration of Fig. 1 to operate in funda­
mental mode, the input value of :E must remain constant while 
E undergoes state transitions. Considering that the input of ~ 
is the output of the controller C, this means that, after every 
change, the output of C must remain constant until E reaches 
a stable combination. Accordingly, C must determine whether 
or not :E has reached its next stable combination. This determi­
nation must be based on the input/output data of :E, i.e., on the 
input string and on the output string of E, since the controller 
has no access to the state of E. 

To examine the situation more closely, let 
E = (A 1 Y, X, x 0 , f: h) be an asynchronous machine 
with the stable recursion function s. Assume that 'E is in a 
stable combination (:r.1 : v) when the input character changes 
to u. Let x1, :1:2 : ..• , :c:m be the string of states generated 

by this input change, where Xm = s(x 1 : ·u) is the next 
stable state of E, and, if m > 1, the other states satisfy 
:c:i+1 = f( :c:i, ·u), ·i. = L ... , m - 1. The corresponding 
output string is then h(:c:1)h(:1:2) .•. h(:c:m). When m = 1, 
the machine E remains in a stable combination, so there is 
no issue of detecting arrival at the next stable state. However, 
when m > 1, caution is required. since the output values 
h(.r,1), h(x2), ... , h(:1:m) generated during this transition 
may not be all distinct. In an asynchronous environment, it is 
impossible to distinguish between consecutive equal values of 
a string, since there is nothing to mark the start of a new step. 
In other words, constant segments of the output string appear 
as a single element. The presence of a constant segment in 
the output string may create a difficulty in recognizing arrival 
at the next stable state. For example, when h(x .i) = h(x.;.+1 ) 

for an i E {1, .... m - 1 }, it is impossible to determine from 
input/output data when (or whether) the transition from xi 

to xi+ 1 has occurred. (The input data does not help in this 
regard, since the input character is kept fixed during a chain of 
transitions .) The following concepts are crucial in this context. 

(19) Definition: An asynchronous machine E 
(A, Y. X , :ro : f, h) is detectable at a stable combination (x, u) 
if it is possible to determine from input/output data whether E 
has reached the next stable state x' of (T. u); if so, the transition 
from (:r:. 'U) to :c:' is called a stable and detectable transition. 

(20) A stably reachable machine E = (A, Y, X , Xo, f h) is 
detectable if every state of :E can be reached from the initial con­
dition x 0 through a chain of stable and detectable transitions.+ 

(21) Definition: Let Y be an alphabet and let 7/1, ... : 1/q E Y 
be a list of characters such that Yi+l f:. Yi for all 
i 1, ... , q - 1. Then, the burst of a string y 

Y1Y1 · · · Y1Y2Y2 · · · Y2 · · · YqYq · · · Yq is f3(y) := Y1Y2 · · · Yq· t 
The burst is obtained by replacing each segment of repeating 

characters by a single occurrence of the same character. For ex­
ample, the string a.hbccr.a.a has the burst {-3( a.bbccca.a.) = a.bca.. 
The burst is the only discernible entity of an asynchronous 
output string. When referring to the output string generated by 
E from the valid pair ( x 1 , 'IL) discussed earlier, we denote the 
resulting burst by the shorter notation 

(22) (-3(.1:1, 11,) := {j(h(.r,1)h(:1;2) .. , h(;r,m-1)h(:r.m)). 

Let us reconsider now the situation described in the para­
graph preceding Definition 19. In order to determine from 
input/output data whether :E has reached the stable combi­
nation (.1:m; 11,), it must be possible to determine whether the 
output string h(:r:1)h(.c:2 ) .•. h(:i:m) has reached its end. This, 
however, is not always feasible. Consider, for example, the 
case where m = 3, and h(x 1) = a, h(x2) = b, h(x3) = b. 
Here, it is not possible to determine from the output whether 
the machine has reached the stable combination (:1:3: u), since 
the output switches to b at the state :c2 and remains unchanged 
during the transition from :1:2 to :c3 • The difficulty originates 
from the fact that one observes only the burst of a string, not 
the string itself. Consequently, the end of the output string can 
be determined if and only if it is signified by a difference in 
the burst, i.e., if and only if /3(h(.r,1)h( :1:2) ... h(:r.m-1)) f:. 
/3(h(.v1 )h(x2) ... h(:r:m_i)h(:cm) ). The latter is equivalent 
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to h(xm_i) =/ h(xm). This provides a practical test for de­
tectability and justifies the next statement. We use the notation 

/3 ( ) { 
f:3(h(x1)h(x2) ... h(xm-1) 

-1 X1,'U := , .. 
0 form= 1. 

for rn > 1 

(23) Proposition: An asynchronous machine E 
(A, Y, X, x0 , f, h) is detectable at a valid pair (x, 'U) if and only 
if r;_ 1 ( :i;, 11,) =1 r; ( x, 7L) . 

(24) Example: For the machine E of Example 6, the pair 
( x1 : a) induces the chain of state transitions :c:1: :c:4 , :c:2 , where 
( x2 : a) is the next stable combination. The corresponding 
output string is h(x 1 )h(x 4 )h(x 2

) = 011, for which we have 
f3(x1, a) = f3_1 (x1 , a) = 01. Therefore, the machine Eis not 
detectable at (.1:1, a). A similar examination shows that E is 
detectable at (:i:1, b). + 

In general, of course, an asynchronous machine may or may 
not be detectable at any one of its valid pairs. However, for 
input/state machines, the situation is different. 

(25) Proposition: An asynchronous input/state machine is 
detectable at all its valid pairs. 

Proof We use the notation of the previous paragraphs re­
garding the valid pair ( x1: u). When m = l, one always has 
f3-1(x1;u) =/ /3(x1,'u), sincef3-1(x1,·u) = 0 and,B(x1,u) = 
x 1 • When m > 1, the states .r.1 : x 2 , ••. , :1:m must all be dis­
tinct-a repeating state in this list would either create a stable 
combination before xm is reached, or it would cause an infinite 
loop. But then, /3-1 (xi, u) = x1x2 ... Xm-1, while /3(x1, u) = 
:i:1:i:2 ... Xm, so /3-1 (x1, ·u) =/ /3(x1, u). + 

B. Skeleton Matrices 

In [1] and [3], it was shown that the control capabilities of 
an input/state machine I: are determined by its skeleton ma­
trix K(E). In brief, K(E) is a matrix of zeros and ones, whose 
(( j) entry Kij (E) = 1 if the state :c:i is stably reachable from 
the state xi; otherwise K.ij(E) = 0. Presently, we deal with 
input/output asynchronous machines, and this requires a refine­
ment of the notion of skeleton matrix. Specifically, detectability 
has to be taken into consideration. 

(26) Definition: Let :E = (A, Y, X : :c:0 , f, h) be a machine 
with state set X = {:c:1 , ... , :i:n} and stable recursion function 
s. The one-step fused skeleton matrix D(:E) is an n x n matrix 
of zeros and ones whose ( i, .fl entry is shown in the equation at 
the bottom of the page. + 

(27) Example: Consider the machine E of Example 6. The 
state :c:1 can stably reach :c:2 with the input characters a and 
b. However, by Example 24, the machine is not detectable 
at (:i:\ a). As the machine is detectable at (x1, b), the entry 

(
I l! 011 0~1 

D(}:) = ~O 

l O 1 • 

Fig. 5. Fussed skeleton matrix. 

D 12 (E) is 1. Fig. 5 illustrates all one-step detectable and stably 
reachable transitions of E. 

Here is a systematic way of computing the one-step fused 
skeleton matrix. 

(28) Algorithm: Let E = (A, Y, X: :c:0 : f, h) be an asyn­
chronous machine with the state set X = { x1: x2, ... , xn} and 
input alphabet A = { u1, ... , um}, where n is the number of 
states and mis the number of input characters. Lets be the stable 
transition function of E. The following steps derive then x n 
one-step fused skeleton matrix D(E). 

Start: Seti := 1, q := 1, and set all entries of D(E) to zero. 
Step 1) If i = n and q = m + 1, then the Algorithm 

terminates, and the current value of D(E) is the 
one-step fused skeleton matrix of E; otherwise, 
continue. 

Step 2) If q > m, then increase the value of i by 1, and 
set q := 1; otherwise, continue. 

Step 3) If (:c:i, uq) is a valid pair of s, then let j be the 
integer for which s(xi, uq) = xi, and continue 
to Step 4 ); otherwise, increase the value of q by 1 
and go to Step 1 ). 

Step 4) Using Proposition 23, determine whether Eis de­
tectable at the pair ( x-i, uq). If yes, set Dij (E) := 
1, where j is from Step 3; otherwise, leave D(E) 
unchanged. Increase the value of q by 1, and go 
to Step 1). + 

(29) Remark: Algorithm 28 has polynomial complexity. In­
deed, letting n be the number of states and m the number of input 
characters, it follows that the total number of state-input pairs is 
mn. Finding the next stable state of each pair requires checking a 
maximum of n transitions. Verifying whether a stable transition 
is detectable requires checking a maximum of n output values. 
Thus, the total number of steps in the calculation of the matrix 
D(:E) cannot exceed n 3m. + 

In the special case when E is an input/state machine, it fol­
lows by Proposition 25 that the one-step fused skeleton matrix 
is equal to the one-step skeleton matrix of [1] and [3]. However, 
in general, the two matrices are not always equal. 

We review next some operations on skeleton matrices ( see [ 1] 
for more details). Let A, B be two n x n matrices of zeros and 
ones. The combination AB is again an n x n matrix of zeros 
and ones; its (i,j) entry is (AB)ij := max{AikBkj : k = 

{ 

1, 
D.;.1(.E) = 

0, 

if there is a character ·u E A such that E is 
detectable at (xi, u) and xi = .s(xi, u) 
otherwise i,j = 1, ... : n 



GENG AND HAMMER: INPUT/OUTPUT CONTROL OF ASYNCHRONOUS SEQUENTIAL MACHINES 1961 

1: ... , n} for all i 1 .i = l, ... , n. With combination, we can 
consider the kth "power'' Dk (:E) of the one-step fused skeleton 
matrix, k = 1, 2, ... Let Dt(E) be the ('i,j) entry of Dk(E). 
Define the matrix D (m) (E) by setting its ( i, .i) entry to 

D (m ) ("("') ·- D k ("("') U L, .- max ii L, ' 
k=l, ... ,·rn 

rn = l, 2, ... 

Then, D(m) (E) is also a matrix of zeros and ones, and 
n<1)(E) = D(E). The following terminology is convenient. 

( 30) Definition: Let xi, x.i be states of the asynchronous ma­
chine E = (A , Y. X 1 x 0 , f, h), and let t > 1 be an integer. A 
chain oft detectable stable transitions from x ·i to :ri is a string 
of detectable pairs (:i/, 'u1), (:i:2, 'U2), ... , (:Dt-1, 'Ut-1, (:ct, ut), 
where u1 , u2 , ••• , Ut E A are input characters, and where x 2 : = 
s(xi, u1), X3 := s(x2, u2), ... , Xt := s(xt-l : Ut-1), and x·1 = 
s(xt, Ut). + 

Note that, in the Definition, 
(x2, 'U1), (x3, 'U2), ... , (xt, 'Ut-1), (xi, 'Ut) are all 
stable combinations. 

Regarding the matrix n(m) (E), a slight reflection shows that 
Df1) = lif and only if the state xi can be reached from the state 
xi through a chain of m or fewer detectable stable transitions. 
The case m = n - 1, where n is the number of states of E, is of 
particular importance. 

( 31) Definition: Let D ( E) be the n x n one-step fused 
skeleton matrix of the asynchronous machine E. The fused 
skeleton matrix of Li is .6.(E) := D(n-l) (E). + 

The special significance of the case m = n - l originates 
from the following fact, whose proof is analogous to the proof 
of [1, Lemma 3.9]: If xi cannot be reached from xi within n - l 
detectable stable transitions, then x·1 cannot be reached from xi 
in any number of detectable stable transitions. This yields the 
next result. 

(32) Proposition: Let xi and :i:-i be two states of the asyn­
chronous machine :E, and let .6.(E) be the fused skeleton matrix 
of E. The following two statements are equivalent: 

i) there is a chain of detectable stable transitions from the 
state :r.i to the state .r,i; 

ii) .6.-ii(E) = l. 

( 33) Example: For the one-step fused skeleton matrix D(:E) 
of Example 27, a simple calculation shows that 

.6.(E) = D3 (E) = ( ~ ~ ~ ~) 0 1 1 0 . 

0 1 1 1 

In the special case of an asynchronous input/state machine, it 
follows by Proposition 25 that the fused skeleton matrix is equal 
to the skeleton matrix of [1] and [3]. 

Recall that fundamental mode operation implies that the con­
troller C of Fig. 1 can guide the system :E only along paths 
that are chains of detectable stable transitions. When this fact is 
combined with Proposition 32, it gives rise to the expectation 
that fused skeleton matrices would be critical in determining 
the control capabilities of asynchronous machines. The forth­
coming sections bear out this expectation. 

C. Observers 

The notion of an observer is employed here in a way that 
is similar to its use in other branches of control theory. In the 
present context, an observer is an asynchronous input/state ma­
chine whose purpose is to calculate the present state of another 
asynchronous machine, using input/output data of that machine. 
In addition, the observer must also indicate when the observed 
machine has reached its next stable state. 

For a machine E = (A , Y: X, x0 , f, h), one can attempt to 
build an observer by using the input/state part of E, given by 
EJ := (A 1 X, X , x 0 , f. I); here I indicates the identity function. 
The machine :E f does reproduce, of course, the transitions of the 
input/state part of E, except that the transitions of E 1 and E are 
not synchronized. For example, assume that, in response to an 
input string, the machine E passes through a state x; then. the 
machine :E f must also pass through x in response to the same 
input string. However, since the machines are asynchronous, :E 
may reach the state x either before, or during, or after the time 
at which x is reached by E f. In other words, due to lack of 
synchronization, E 1 cannot reproduce the current state of E. 
In fact, this argument indicates that it is not possible to build 
an observer for transient states of E; as the machines (ideally) 
spend zero time in a transient state, there is no opportunity to 
synchronize them in such a state. Thus, the most one can hope 
for is to build an observer that reveals stable combinations of 
E and indicates whether E has reached a stable combination. 
The latter is possible only for detectable transitions. The next 
statement introduces an auxiliary function that helps build an 
observer for E. 

( 34) Lemma: Let (x 1 • 'LL) be a valid pair of the asynchronous 
machine E = (A, Y, X, x 0 , f, h), and assume that the next 
stable state Xm of ( x1 , u) is reached after rn - l steps. When 
m > 1, define the chain of transitions :z:.i+i = f (xi , u), ·i = 
1: ... , m - 1 and the burst {:J_; := {:J( h(x1 )h( :r.2 ) ••. h(:r.1)) :.i E 
{ 1, ... , rn}. Then the following two statements are equivalent: 

i) the machine E is detectable at the pair ( x 1 , u); 
ii) there is a function K,(x1, 'U: •): Y*-+ {O, 1} such that 

K,(x11 u, /31) = 1 if and only if j = m. Here, Y* is the 
set of all bursts of characters of Y. 

Proof' Using the notation of (22), we have f3m 
/3(x1, ·u). Now, assume that (ii) is valid. Then, it must be true that 
K,(X1,·u,/3- 1(x1, 'u)) # K,(x1,·u,/3(x1,u)). The latter implies 
that f3_1(:r1 , 11.) # /3(x1, ·u), and part i) follows by Proposition 
23. Conversely, assume that i) is valid. Using again Proposition 
23, we have that /3-1(:i:1.·u) # /3(:r:1 ,u). Then, the function 
n:(.r-1,u , •): Y*-+ {0,1} defined by K.:(x,u, {3(x1 ,u)) := 1 
and !i:( x1 , u. y) := 0 for all y # /3( x 1 , u) satisfies condition ii), 
completing the proof. + 

Now, we can build an observer that reproduces all stable and 
detectable transitions of the machine E. The observer for E is 
an input/state machine B = (A x Y*, X, Z, zo: er, I) with two 
inputs: the input character u E A of Li and the output burst f3 E 

Y* of E; the state set Z is identical to the state set X of I:, and 
the initial condition is identical to that of E, i.e., z0 = .r.0 . The 
recursion function CJ : Z x A x Y * -+ Z of B is constructed as 
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• 
Fig. 6. Observer. 

follows. First, using the stable recursion function s of I:, define 
the function ..\ : Z x A x {O, 1} --+ Z by 

(35) '( , ) ·= { s(z , 11,), if a= l "'z,u,a . .f 0 z, 1 a= . 

Next, assume that I: is in a stable combination (x, u.;,- 1 ) when 
the input character changes to 'Ui, where ( x, ui) is a detectable 
pair. The change of the input character may give rise to a chain 
of transitions of I:. Let k ~ 't be a step during this chain of 
transitions, let f3k be the burst of I: from step i to step k, and let 
uk be the input character of I: at step k. By fundamental mode 
operation, the input is kept constant during a chain of transitions, 
so we have uk = 11,i. Employing the function ,,, of Lemma 34 
with the state z = x, define 

or, explicitly 

{ 
.s(x, 'Uk), if /3k = {3(x, 'ltk) 

(37) O"(x, uk, f3k) := x, otherwise. 

The observer B is then an input/state machine defined by 

(38) B: { 
Zk+l = O'(Zk, 'Uk, f3k) 

Wk= Zk 

where zk and wk are the state and the output of B at the step k, 
respectively; B is a stable state machine. 

To describe the operation of the observer, assume that the 
observer switched to the state x immediately after I: has reached 
the stable combination ( x, 'Ui- l). Let v ~ i be the step at which 
the chain of transitions from ( x, 11.i) to the next stable state x' = 
s(:r,, 11,i) terminates; then, {1p = {1(:r, '11,i). As the pair (:1:, ni) is 
detectable, it follows by the definition of O" that the output of the 
observer B switches to the state x' at the step p + 1. This leads 
to the following statement. 

( 39) Proposition: Let ~ be an asynchronous machine, and 
let B be an observer of I: given by (38). Then, B displays as its 
output the most recent stable state that I: has reached through a 
detectable transition. + 

In view of our earlier discussion and Lemma 34, it is not 
possible to infer the state of ~ if it is not a stable state reached 
through a detectable transition. 

(../.0) Example: An observer for the machine E of Example 6 
is described by Fig. 6 (see also Example 27). 

We can now summarize the implications of our discussion on 
the control configuration of Fig. 1. By fundamental mode oper­
ation, the output of the controller C must remain constant while 
the machine :Eis in transition. To fulfill this requirement, it must 

be possible for C to determine whether~ has completed its tran­
sition process. As discussed, the end of a transition process can 
be detected only for detectable transitions. For a detectable tran­
sition, the output of the observer B switches to the next stable 
state of I: immediately after I: has reached that state; this sig­
nifies the end of the transition process and indicates the most 
recent stable state of I:. In this way, the observer B helps create 
an environment in which the machine I: can be controlled in 
fundamental mode operation. 

These considerations lead us to the conclusion that only de­
tectable stable transitions can be utilized when controlling a ma­
chine I:. The fact that all such transitions are characterized by 
the fused skeleton matrix A(E) explains the significance of this 
matrix to the control of asynchronous machines. 

N. CONTROLLERS: ExIS1ENCE AND DESIGN 

In this section, we derive necessary and sufficient conditions 
for the existence of a controller solving the model matching 
problem. When such a controller exists, we show that it can al­
ways be designed as a combination of an observer and a control 
unit, as depicted in Fig. 2. The structure of the observer was de­
scribed earlier in (38), and an algorithm for the construction of 
the control unit is developed later in this section. First, a tech­
nical notion that is critical to the sequel. 

A. Fused Skeleton Matrices and Reachability Indicators 

( 41) Definition: Let I: be an asynchronous machine with the 
state set X, and let A 1 and A 2 be two nonempty subsets of X. 
The reachability indicator r(I:, A 1 , A 2 ) is 1 if every element of 
A1 can reach an element of A 2 through a chain of stable and 
detectable transitions; otherwise, r(E, A 1 , A 2 ) := 0. + 

The reachability indicator can be easily calculated from the 
fused skeleton matrix as follows. Let~ be an asynchronous ma­
chine with state space X and fused skeleton matrix A(I:). Let 
A 1 and A 2 be nonempty subsets of X, where A 1 has m elements 
and A 2 hasp elements. Build the 'rn x p matrix A1\l ,.\2 (E) by 
deleting from A(.E) all rows that correspond to states not in A 1 

and all columns that correspond to states not in A 2 • Next, create 
a column vector V by adding all columns of A,v,A2(I:). Then, 
a slight reflection shows that r(I:, A 1 , A 2 ) = 1 if and only if V 
has no zero entries. Here is an example. 

(42) Example: Consider a machine :E with the state set X = 
{ x1 , x2 , x3 } and the fused skeleton matrix 

(

1 1 
A(:E) = O 1 

() 1 

LetA 1 = {:r1 ,x 2 } andA 2 = {x1,x 3 }; then 

~A,,,\'(~)=(~ D V = C) 
so that r(~, A 1 , A 2 ) = 1. + 

Since every state has a stable combination, r(:E, A 1 , A 1 ) = 1 
for every nonempty subset A 1 . Next, we extend the notion of a 
fused skeleton matrix to lists of subsets of the state set. 

( ../.3) Definition: Let I: be a machine with the state set X, and 
let A = { A 1 , ... ; Am.} be a list of m. ~ 1 nonempty subsets of 
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X. The fused skeleton matrix ~(E, A) of A_ is ~nm x m matrix 
whose ( i., .i) entry is ~ii (E, A) := r(E: N, A1 ). + 

Continuing with Example 42 and setting A := { A 1 : A 2 }, we 
obtain by a simple entry-by-entry calculation that 

A(~,A) = C D. 
• In the special case where Ai = {.1:i}. ·i = 1, ... , n, we get 

~(E , A) = ~(E). Our ensuing discussion revolves around lists 
of subsets, so we introduce now some terminology in this con­
text. 

(44) Definition: Let A = {A\ ... : Am} and W 
{W1, ... , wm} be two lists of subsets of a set X. The length 
of the list A is m, the number of its members. The list W is a 
subordinate list of A (written W-< A) ifW has the same length 
mas A, and if Wi c Ai for all i = l, ... , m. A list is deficient 
if it includes the empty set as one of its members. + 
B. Output Equivalence Lists 

Consider the control of an asynchronous machine 
E = (A: X, Y, :1:0 , f, h) in the configuration of Fig. 1. Here, the 
output string y is determined by the input string v through the 
equations 

7t, = C(v:11) 

y= Eu. 

As we can see, the controller C has two inputs: one is the ex­
ternal input v of the closed loop system and the other one is the 
output burst y of the controlled machine E. To simplify nota­
tion, assume that the input alphabet of the closed loop system 
is the same as the input alphabet A of E. As the bursts of :E are 
elements of the set Y * of output character strings, the input set 
of C is the cross product set Ax Y*. We take the output set of C 
to be A, the input set of E, since the output of C is connected to 
the input of E. Letting T be the state set, ?j; the recursion func­
tion, µ, the output function, and t0 the initial state of C, we can 
write C = (A x Y *: A, T, to, '¢1, 11,). 

Then, the closed loop system Ee of Fig. 1 has the input set 
A and the output set Y; being a combination of the machines C 
and Ee its state set is T x X. Denoting by ,c,c the stable recursion 
function of Ee and by he the output function, we can write Ee = 
(A, Y, TX xl (to, ..co), .Sc, he). As the output of Ee is the output 
of E, the output function he : T x X x A -+ Y satisfies 
hc((t,x), 'u) = h(x) for all states (t,x) ET x X and for all 
input characters v E A. The following is a common term. 

(·15) Defintion: The closed loop machine Ee is well posed if 
its output string is uniquely determined by the input string and 
the initial conditions. + 

When the controller C consists of a combination (F, B) of 
an observer B and a control unit F, as depicted in Fig. 2, the 
composite system is represented by the following equations: 

u = F( ·u, w) 

w=B(u 1 y) 
y= E·u. 

The control unit F has two inputs: the external input v of the 
configuration and the output w of the observer, so its input set is 
A x X. The output of F is the input of E, so the output set of F 
is A. Denoting by 2 the state set of F, by i;o its initial condition, 
by ¢ its recursion function, and by 'fJ its output function, we 
obtain F = (A x X, A, 3, ~0 1 c/J: 'T/). The observer B = (A x 
Y*, X, Z, z0 , a, I) is given by (38). 

In this case, the controller C = (A x Y*, A. T, to, 'lj;, 11,) is 
a combination of F and of B. Consequently, the controller's 
state set T is the direct product of the state set 3 of F and of 
the state set Z of B, namely, T = 3 x Z; its recursion function 
is 7f; = cp x o-, and its initial condition is to = (~o, xo). As the 
output of C is the output of F, the controller· s output function 
satisfies 11,(e. z) = r7(~) for all (e, z) ET. 

We turn now to a formal statement of the model matching 
problem. Let E be a machine that exhibits undesirable behavior. 
Assume that the desirable behavior is specified by an asyn­
chronous machine E'. It is then necessary to design a controller 
C for which the behavior of the closed loop system Ee simulates 
the behavior of E'. The machine E' is then called the model. 
As discussed earlier (see also [2]), the practical performance of 
an asynchronous machine is determined by its stable-state be­
havior. Thus, from a practical standpoint. "the behavior of Ee 
simulates the behavior of E'" when the stable-state behavior of 
Ee is equivalent to the stable-state behavior of E'. This leads to 
the following. 

(46) The Model Matching Problem: Given a machine E and 
a model E', find necessary and sufficient conditions for the ex­
istence of a controller C such that :Ee is stably equivalent to :E' 
and operates in fundamental mode. If such a controller exists, 
derive an algorithm for its design. + 

Considering that only the stable state behavior of the model 
is relevant to the model matching problem, and that reduction 
to stably minimal form does not alter the stable-state behavior, 
it follows that the model :E' can always be taken as a stably 
minimal machine. The model matching problem concentrates 
on matching the stable input/output behavior of the model. 

The next definition introduces a notion which underlies our 
solution of the model matching problem for asynchronous ma­
chines. First, some notation. Given two sets 8 1 and 8 2 and a 
function g : 8 1 -+ 8 2 , denote by g1 the inverse set function of 
g; explicitly. for an elements E 8 2 , the value!/ (s) is the set of 
all elements ct E 8 1 satisfying g( o:) = s. 

(./.7) Definition: Let E (A, Y, X, xo, f, h) and 
~' = (A, Y, X', (0 , ::/ : h') be two asynchronous machines 
with the same input set and the same output set, where the 
state set X' of E' consist of the q states ( 1, ... , (q. De-
fine the subsets Ei := J/h'(('i) c X, i = 1, ... , q. Then, 
E(E, E') := { E 1; ... , E'1} is the output equivalence list of~ 
with respect to :E'. + 

In other terms, an equivalence list is characterized by the fol­
lowing property: the value of the output function h of E at any 
state of the set Bi is equal to the value of the output function h' 
of :E' at the state (i. The members of an output equivalence list 
are not necessarily disjoint sets. 

(48) Example: Let X = {:r1
1 x2 , x3 } be the state set of 

the machine ~. and let the output function h of E be given by 
h(:cl) = o, h(:c2 ) = O, h(:r3 ) = 1. Assume that the machine 
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E' has the state set X' = { (1 : (
2

} and the output function 
h' given by h'(( 1) = 0, h'(( 2 ) = 1. Then, the output equiv­
alence list of E with respect to E' is E(E, E') = { E1, E 2

} = 
{{x1,x2},{x3}}. + 

C. Existence of Controllers 

We are now ready to address the model matching problem, 
namely, to construct a controller C for which Ee is stably equiv­
alent to a specified model E'. The first step in this direction is 
the following statement, which originates from the fact that the 
stable equivalence of Ee and E' gives rise to an equivalence 
partition II of the states of Ee, under which the quotient ma­
chine Ee/II is equivalent to E' (Proposition 18). The statement 
provides a preliminary glimpse of the significance of the fused 
skeleton matrix, and we show later that its converse direction 
is also true. Regarding notation, let A and B be two p x q nu­
merical matrices. The expression A 2: B indicates that every 
entry of the matrix A is not less than the corresponding entry of 
the matrix B, i.e., Aij 2: Bij for all i = 1, ... , p and for all 
j = 1, ... ,q. 

(49) Lemma: Let E = (A, Y, X, x0 , f, h) and E' = 
(A, Y, X', (o, s', h') be asynchronous machines, where E' is 
stably minimal. Let X' = { (1 , ... , (q} be the state set of E', 
where the initial condition of E' is (0 = (d. Assume that there 
is a controller C for which Ee is stably equivalent to E' and 
operates in fundamental mode. Then, there is a nondeficient 
subordinate list A of the output equivalence list E(E, E') for 
which ~(E, A) ~ K(E') and .1:0 E Ad. 

Proof: Let C be a controller for which the composite ma­
chine Ee = (A, Y. 3 x X, (i;o, :co), sc, he) is stably equivalent 
to the model E' = (A, Y, X', (0 , s', h'), where E' has the state 

/ {" -1 } set X = -~ , ... , (q . Recall that the state set of Ee consists 
of all pairs ( fi, xi), where ti is a state of the controller C and 
xJ is a state of E. The initial state of Ee is (fo, x 0 ), where eo 
is the initial state of C and :Do is the initial state of E. Let G 
the set of all states of Ee that are stably reachable from the ini­
tial state (fo, xo). By Proposition 18, there is an equivalence 
partition II = { 1r1 , ... , 1rq} of G for which the quotient ma­
chine Ee/II is stably isomorphic to E'. This partition induces 
the stable equivalences 1ri = ('i, i = 1, ... , q. Each member 1r·i 

of II is not empty and consists of a subset of G; for reference, 
write 

1ri = { ( <;o-(i,1), :c6(i,1)) , ( ~o-(i,2), x6(i,2)) , ... , 

( ~o-(-i.,mU)), Xb(-i.,m(-i.)))} C G 

where m(i) is the number of elements of 1ri, and where a(i, j) 
and 8(,i,, j) are appropriate integers. Denote by 1r0 the member 
of II that is equivalent to the initial state (0 of E'. Then, 1r0 is the 
initial state of the quotient machine Ee /II, so that ( (o, :r.0 ) E 1r0 ; 

since (o = (d, we have 1ro = 1rd. Let srr be the stable recursion 
function of Ee/II. 

Now, for an integer i E {1, ... , q }, denote by 

(50) Ai := { :co(i,1), :1:o(i,2) , .•• , xo(i,m(i))} 

the set of all states of E that appear in elements of 1r·i, i.e., Ai 
is the projection of 1r-i onto the state set X of E. In view of the 
inclusion ( <;o, :to) E 1r0 and the equality 1r0 = 1rd, we have 
:to E Ad. The fact that IT is an equivalence partition implies 
that i) and ii) hold for all i = 1, ... , q. 

i) hc(((o-(i,l),x6(i,1))) = hc((eo-(i,2),x6(i,2))) = ... = 
hc((eo-(-i,m(·i)),x6(i,m(i))) = h'((i). 

ii) For a character u E A, it follows by the definition of 
a quotient machine that s1r ( 1ri, 11.) = 1rj if and only if 
the following is true: for each integer t = 1, ... , m(i), 
there is an integer T(t) E {1, ... , m(j)} such that 
Sc((ea-(i ,t) 

1 
x6(i,t)), u) = (eo-(j,r(t)) 

1 
X6(j,r(t))). 

Now, since he((~, x)) = h(x ), it follows from i) that 
iii) h(xo_(i,l)) = h(x6(i,2)) = ... = h(x6(i,m(·i))) = 

h' ( C). Also, since 1ri = (i, it fallows from ii) that, 
for a character ·u E A, one has 

iv) s' ( (i, u) (j if and only if the following 
is true: for each t = 1, ... , m( i), there ex-
ists an integer T(t) E {1, ... , m(j)} such that 
sc( (lo-(i,t), x6(i,t) ), 11,) = (lo-(j,r(t)), X6(j,r(t))). 

The controller C of Fig. 1 can access the machine E 
only through the input of E, and the closed-loop system 
Ee operates in fundamental mode. Recalling that, in 
fundamental mode operation, C can drive the system E 
only along chains of stable and detectable transitions, 
we conclude from iv) that the following is true. 

v) If s'((i, 'U) = (j, then, for each t = 1, ... m(i), there 
is a string of stable and detectable transitions that takes 
the controlled machine :E from the state x 8(i ,t) to the 
state x 6U,r(t)). 

_Now, consider the list of subsets A := { A 1 , ... , A q}, where 
A" is given by (50), i = 1, ... , q. Since the members ofll are not 
empty, neither is any of the members of A. Consequently, iii) im­
plies that A is a nondeficient subordinate list of the output equiv­
alence list E(:E, E'). Further, by definition of the skeleton ma­
trix K ( E'), the relation s' ( (i, 11.) = ( i implies that Ki.i ( E') = 
1. By (v), the same relation implies that the reachability indi­
cator satisfies r(E, Ai, Ai) = 1, so that the corresponding entry 
of the fused skeleton matrix satisfies A-i:i ( E, A) = 1. In other 
words, we have Aij(E, A) = 1 whenever Kij(E') = 1, for all 
i, .i E {l, ... , q }. Thus, ~(E, A) 2: K(E'); having shown ear­
lier that :1:0 E Ad, our proof concludes. + 

In Section IV-D, we provide an example of calculating the 
list A of Lemma 49. In the meanwhile, we show that the con­
dition of Lemma 49 is not just a necessary condition but also a 
sufficient condition for the existence of a solution of the model 
matching problem. This originates from the nature of the subor­
dinate list A= {A1, ... , Aq} of Lemma 49. Recall that X' = 
{ ( 1 , ... , (q} is the state set of the model E'. The inequality 
6.(E, A) 2: K(E') indicates the following. If the model E' has 
a stable transition from a state (i to a state (j, then the machine 
E has a stable and detectable transition from every state in Ai to 
a state in Ai. The fact that A is a subordinate list of E("E,: I:') en­
sures that, in these transitions, the corresponding output values 
of the two systems match. Thus, the model matching controller 
needs only to generate the input string that takes :E from a state 
in Ai to a state in AJ. Such a controller is constructed in the proof 
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below, where it is also shown that the controller can be imple­
mented as a combination of an observer and a control unit, as 
depicted in Fig. 2, with the observer B given by (38). We have 
reached one of the main results of this paper. The construction 
of the list A is described in the next subsection. 

(51) Theorem: Let :E = (A, Y, X, x0 , f, h) and :E' = 
(A, Y, X' , (0 , ;;\ h') be stably reachable asynchronous ma­
chines, where :E' is stably minimal. Let X' = { (1 , ... , (q} be 
the state set of E', and assume that the initial condition of E' is 
( 0 = (d. Then, the following two statements are equivalent. 

i) There is a controller C for which Ee = E', where Ee 
operates in fundamental mode and is well posed. 

ii) There is a nondeficient subordinate list A of 
the output equivalence list E(E, E') for which 
~(:E, A) ~ K(E') and x 0 E Ad. 

Furthermore, when ii) holds, the controller C can be designed as 
a combination of an observer B and a control unit F as depicted 
in Fig. 2, where the observer is given by (38). 

Proof: The fact that i) implies ii) is stated by Lemma 49. 
To prove the converse direction, assume that ii) is valid. Let 
A = { A1 , ... , A q} be a subordinate list of E(E, E') satis­
fying ~(E, A) ~ K(E') and :c0 E Ad. Using A, we construct 
a controller C for which the closed-loop system Ee of Fig. 1 
is stably equivalent to the model E', is well posed, and oper­
ates in fundamental mode. The controller C we construct is a 
combination of an observer n and a control unit F as depicted 
in Fig. 2, where the observer B is given by (38). In this way, 
the proof will be complete upon the construction of the control 
unit F. Note that the control unit is an asynchronous machine 
F = (A. x X , A 1 3 , (0 , ¢, 17) with two inputs: the external input 
v E A of the composite system and the output w E X of the 
observer B. Our objective is to derive the recursion function ¢ 
and the output function 'f/ of F. 

To describe the operation of the control unit F, assume that 
E' is at the stable state (i and that E is at a stable state x E Ai. 
Here, (i is either the initial condition (d of E' or the outcome 
of a detectable stable transition; similarly, x is either the initial 
condition :r.0 E Ad of E or the outcome of a detectable stable 
transition. Assume further that the external input character of 
Fig. 2 is switched to the character w. Then, E' moves to its next 
stable state s' ( ("i I w) = (i. Letting s be the stable recursion 
function of E, the inequality ~(E, A) ~ K(E') implies that 
there is an input string 11, = 11,111,2 ••• 11,1. such that the stable com­
binations (X, 'U1 ), (s(x, 'Ut), 'U2), .. • , (s(x, 'UI 'll2 . , , 'Ur-I), 'Ur) 

are all detectable, and such that the state x,. := s(x, ·u) belongs 
to A7• Define the intermediate states 

(52) x1 := s(x, u1) x2 := .s(x1, u2), ... 

.Cr = s( :cr-1 , 'LLr)• 

As the combinations (xi, 'lti): ·i = 1, ... , r, are all stable and 
detectable combinations, the states x 1 , ... 1 Xr appear as output 
values of the observer n immediately after having been reached 
by E. The situation can be depicted as follows. 

E':(·~(i 
I;; XE Ai 'Ul,~ · Ur Xr E Aj • 

The objective of the control unit F is to generate the string 
11, = u111 ,2 ... 11,r and apply it as input to E. This action achieves 
model matching for the present transition for the following 
reason. The string u drives the system E to the stable state :1:,., 

which then becomes the next stable state of the closed-loop 
system :Ee. Then, since h(xr) = h[Ai] = h'((i), the next 
stable state of Ee produces the same output value as the model 
E', thus matching the model's response. 

We construct now a recursion function ¢ for F that imple­
ments this behavior. Due to the requirement of fundamental 
mode operation, F must generate the string u one character at 
a time, making sure at each step that the composite system has 
reached a stable combination before generating the next char­
acter. As the string u has r characters, F needs r states to accom­
plish this, say, the states e (x' (i : w)' ... ''r (x ' (i, w). The re­
sulting set of states 

is associated with the state (i of E', the state x of E, and the ex­
ternal input character w. To account for all possible such com­
binations, the control unit F needs the state set 

3:=fou{._u u, 3(x,(\w)} 
t-1, ... ,q ,EA 

WE.1 

where ~o is the initial state of F. We will use the following no­
tation. For a state x of the machine E, let 

U(:c) := {a EA: s( :c, a)= x} 

be the set of all input characters that form stable combinations 
with x. Similarly, for a state ( of the machine :E', denote by 

U'(() := {a EA: .s'((, a)=(} 

the set of all input characters that form stable combinations with 
(. Recalling that 2 is the state set of F, the recursion function 
of F is a function ¢ : 2 x X x A -. 2, whose variables are 
the state ( E 3 of F, the output w E X of the observer B, and 
the external input character v E A of the configuration Fig. 2. 
Denote by .,, : 3 x X x A -. A the output function of F. Then, 
¢ and r1 are defined as follows. 

i) Let the closed-loop system Ee be at a stable combina­
tion, where :E is at the state X, the observer B has the 
output value w = X, and control unit F is at a state 
( E 3. Select an element c E U(x), and define 

ii) 

¢((, (x, b)) := ( .for all b E U'((i) 

rJ(e, (x , a) := C for all a EA. 

This guaranties that, as long as the model :E' remains 
at the state t, the control unit stays at the state e, and 
the system E stays at the state x. 
Suppose that the external input switches to a character 
w satisfying s' ( ( i : w) = (i. As discussed earlier, the 
control unit F then needs to generate the input string 
u = 'l£1 u2 ... '1£,., to take ~ through the chain of states 
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x1 , ... , Xr to the state Xr E Ai. To this end, the recur­
sion function ¢ must be as follows. (The output of the 
observer B tracks the state sequence :.L:1 , •.• , :c:r.) 

</J(l, (x. w)) := e(x, (\ w) 
<ti(ek(x,(\w),(a:k,w)) := ~k+l(x,(\w) 

r,(~k(x, (\ w), (z, b)) := uk 

for any (z, b) EX x A, 

k = 1,2, ... ,r - 1 

k = 1, 2, ... ,r. 

iii) In response to the last input character u,. produced by 
F, the machine :E reaches the desired stable state Xr. 

The machine :E needs to remain at the state xr until the 
external input switches from w to another character. To 
this end, choose an element v E U(:cr), and assign 

q,(~r(x, (i' w), (xr, w)) := ~r(x, (\ w) 

rM'r(X, (\ w), (z, b)) = v for all (z, b) EX x A. 

This completes the construction of the control unit F. A careful 
examination of this construction shows that it achieves model 
matching with fundamental mode operation. The fact that the 
output function h of :E depends only on the state of :E guaranties 
that the closed-loop configuration of Fig. 2 is well posed with 
the present controller. This concludes the proof. + 

The Proof of Theorem 51 includes an algorithm for the con­
struction of a controller C solving the model matching problem, 
when given a list A that satisfies condition ii) of the Theorem. 
The controller is a combination of the observer B of (38) and a 
state feedback controller F constructed in the proof. The deriva­
tion of an appropriate list A is described in Algorithm 54. In 
summary, the proof of Theorem 51 together with Algorithm 
54 provide a complete methodology for the construction of a 
controller that solves the model matching problem for asyn­
chronous sequential machines. Examples of this construction 
are provided in the sequel. Once an appropriate controller has 
been derived, its number of states can be reduced by using stan­
dard machine reduction techniques (e.g., [2]). As is the case with 
any asynchronous machine, the output of the closed loop ma­
chine :Ee may include transient output values interspersed be­
tween its stable combinations. The effects of these transients on 
other systems can be eliminated by connecting :Ee in series with 
a gate that opens only when :Ee is in a stable combination (e.g., 
[2]). In effect, the output function of C built in the proof of The­
orem 51 is an example of such a gate. 

Two comments regarding the statement of Theorem 51 are 
in order. First, Theorem 51 requires the model :E' to be a stably 
minimal machine. This requirement is not restrictive in any way: 
The model matching problem depends only on the stable-state 
input/output behavior of the model, and this behavior remains 
unaffected when the model is reduced to its stably minimal 
form. Second, Theorem 51 requires the system :E to be stably 
reachable. Again, this is not a restrictive requirement, since, as 
discussed in Section 3, model matching involves only states of 
:E that are stably reachable from the initial state .co. 

The statement of Theorem 51 can be simplified somewhat 
when the machine :E is detectable. 

(53) Corollary: Let :E (A, Y, X, :co, f, h) and 
:E' = (A, Y, X', (0 , s', h') be stably reachable asynchronous 
machines, where :E is detectable and :E' is stably minimal. 
Assume that h(x 0 ) = h'(( 0 ). Then, statements i) and ii) are 
equivalent. 

i) There is a controller C for which :Ee = :E', where :Ee 
is well posed and operates in fundamental mode. 

ii) There is a nondeficient subordinate list W of 
the output equivalence list E(:E, :E') such that 
~(:E, W) 2:: K(:E'). Furthermore, when ii) is valid, C 
can be designed as a combination of an observer and 
a control unit, as depicted in Fig. 2, with an observer 
n given by (38). 

Proof' It follows directly from Theorem 51 that part i) of 
the Corollary implies part ii). To prove the converse, assume that 
( 0 = (d. It is enough to show that when part ii) of the Corollary 
is valid, then one can build a subordinate list A that satisfies the 
requirements of part ii) of Theorem 51. In other words, in the 
notation of Theorem 51, one must show that the initial condition 
x 0 of :E can be added to the member Wd of W, if it is not already 
there. 

To this end, construct a new list A = { A 1 , ... , A q} from W 
by setting 

Ai = wi, for all i =I-d 

Acl := { Wd u :r:0 if :r,0 ff: Wd 
Wd otherwise 

i.e., by adding the initial state x 0 of :E to Wd if it is not al­
ready there, leaving all other members of W unchanged. We 
show now that the new list A is still a nondeficient subordinate 
list of E(:E, :E') satisfying ~(:E, A) 2:: K(:E'). 

Indeed, A is nondeficient since W is nondeficient. Also, since 
h( x 0 ) = h' ( (o) and (0 = (d by assumption, and since h [Wd] = 
h' ( ( 0 ) by the definition of a subordinate list, it follows that 
h[Ad] = h[Wd U {:Do}] = h[Wd] U h[:.ro] = h'((o) = h'((d), 
so that Ad c Ed (member d of the output equivalence list 
E(:E, :E')). As J\.1 = Wi for all j =j:. d and W is a subordi­
nate list of E(:E, :E'), we conclude that A is a subordinate list 
of E(:E, :E'). Next, since :E is a stably reachable and detectable 
machine, every state of :E is stably reachable from the initial 
state x 0 through a chain of stable and detectable transitions. 
This means that r ( :E, x 0 , x) = 1 for all x E X. Recalling that 
Ad= Wd u {xo}, this implies, by Definition 41 of the reacha­
bility indicator, that 

r(:E, Ad, Ai) = r(:E, Wd, Wi) for all i = l, ... , q 

r(:E, Ai, Ad) 2:: r(E, Wi, Wd) for all i = 1, ... : q. 

Addingthefactthatr(:E,Ai..Ai) = r(:E, Wi, Wi) foralli, .i =I­
d (since Ai = w·i for all ·i =I-d), we get ~(:E. A) 2:: ~(:E. W). 
and, since ~(:E, W) ~ K(:E'), we deduce that A(:E, A) 2:: 
K(:E'). Finally, as :v0 E Ad by construction, the list A satisfies 
the requirements of Theorem 5 l(ii), and the proof concludes.+ 

The next objective is to devise a procedure to derive a subor­
dinate list satisfying part ii) of Theorem 51. 
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D. Calculating Subordinate Lists 

The following algorithm builds a list A that satisfies condi­
tion ii) of Theorem 51 [or condition ii) of Corollary 53], when­
ever such a list exists. Recall that the list A gives rise to a con­
troller C that solves the model matching problem through the 
procedure described in the proof of Theorem 51. In this manner, 
the forthcoming algorithm combines with Theorem 51 into a 
comprehensive and constructive solution of the model matching 
problem. The algorithm uses a recursive process to build a de­
creasing chain of subordinate lists. We show later that the last 
list in this chain, if not deficient, satisfies condition ii) of The­
orem 51; if the last list of the chain is deficient, then there is no 
controller that solves the requisite model matching problem. 

(54) Algorithm: Let E (A, Y, X : .1:0 , .f, h) and 
E' = (A,Y,X' , (0 ,f',h') be the machines of Theorem 
51, let E(E, E') = { E 1 , ... , Eq} be their output equivalence 
list, and let K(E') be the skeleton matrix of E'. The following 
steps yield a decreasing chain A(O) >-A(l) >-· · · >-A(r) of 
subordinate lists of E(E, E'). The members of the list A(,i) are 
denoted by A1 (i) , ... ,Aq(i); they are subsets of the state setX 
of E. 

Start Step: Set A(O) := E(E, E'). 
Recursion Step: Assume that a subordinate list A(k) 

{A1(h':), ... ,Aq(k)} of E(E , E') has been constructed for 
some integer k ~ 0. For each pair of integers i,.i E {1, ... , q }, 
let Sij(k) be the set of all states x E Ai(k) for which 
r(E.x,Aj(k)) = 0, i.e., S.;.j(k) consists of all states x E Ai(k) 
for which there is no chain of stable and detectable transitions 
to a state of Ai ( k). Note that Sij ( k) may be empty. Then, set 

Now, using \ to denote set difference, define the subsets 

(56) Vi(k) := Uj = l, .. . ,qTij(k), 't = 1, ... , q 

(57) A'i(k + 1) := Ai(k)\ V'i(k), i = 1, ... , q. 

Then, the next subordinate list in our decreasing chain is given 
by 

A(k + 1) := {A 1 (k + 1), ... ,Arz(k + 1)}. 

Test Step: The algorithm terminates if the list A(k + 1) is 
deficient or if A(k+ 1) = A(k); otherwise, repeat the Recursion 
Step, replacing k by k + 1. + 

Algorithm 54 generates a decreasing chain of subordinate 
lists of the output equivalence list E(E. E'). Before discussing 
the significance of the Algorithm, we provide an example. 

(58) Example: Let the machine E = (A , Y, X. :i:0 , f. h) and 
the model E' = (A, Y, X'. (0 , f', h') be as shown in Fig. 7. 

(59): The corresponding stable state machines are shown in 
Fig. 8. 

For ~' the state set is X = { x 1
, a.:2 , x 3 , x4

} and the initial 
state is x 0 = x 1 ; for ~', the state set is X' = { ( 1 , ( 2 , ( 3 } 

and the initial state is ( 0 = (1. From the tables, the output 
equivalence list is E(E, E') = {E1, E2 , E3 }, where E 1 = 

a b C y 

x' x' x- - 0 a b C y 

x! x4 x~ - 1 ti l;/ t ·' 1;1 0 
x-' - x- x·' 2 1;z i;- - SI 1 

x"' x"' - x~ 0 !;3 1;2 !;3 - 2 

(a) The machine ~ (b) The model ~' 

Fig. 7. Example. 

:i:ls 

Fig. 8. Transition diagrams. 

{x 1 • :.c:4 } 1 E 2 = {:c2
} 1 E

3 = {:c:3 }. Using the tables, we obtain 
the fused skeleton matrix .6.(~) and the skeleton matrix K(~') 

0 
1 1 

D G 
1 D .6.(E) = 1 1 

K(E') = 1 (60) 
1 1 
1 1 

1 

Algorithm 54 leads then through the following steps: 

A(O) = E(~ ~ ~') = {E1, E 2
, E 3

}. (61) 

At the first recursion step, set A(l) = {A1 (1), A2 (1), A3 (1)}. 
To find A1(1), note that Uj=l,2. 3T1j(O) = 0 in (56), so that 
A1 (1) = A1 (0) by (57). Similarly, A2 (1) = A2 (0), and 
A3 (1) = A3 (0). This yields 

(62) A1(1) = {:c:1,x4 } A2 (1) = {:c2
} A3 (1) = {:c:3 }. 

As A(l) is equal to A(O), the algorithm terminates. Note that 
the resulting the list A( 1) is not deficient. + 

We proceed now to show that the last list in the chain gener­
ated by Algorithm 54 has an important maximality property: It is 
the maximal subordinate list of E("E, E') for which .6.(LJ, A) ~ 
K(~'). 

(63) Proposition: Let E and~' be the two machines of The­
orem 51, and let E(E, ~') be their output equivalence list. Let 
A(O) >-A(l) >-... >-A(r) be the chain of subordinate lists 
generated by Algorithm 54, and let A be any nondeficient sub­
ordinate list of E(E, E'). If .6.(E, A) ~ K(E'), then A-< A(r). 

Proof' Write E(~, E') = {E 1
, ••• , Eq} and A(k) = 

{A1 (k), ... ,M(k)}:k = O: ···,r, and recall that A(O) = 
E(~. E'). Now, let A = { A 1 , ... , M} be a subordinate list 
of E(E, E') satisfying .6.(E, A) ~ K(E'), and assume, by 
contradiction, that A is not a subordinate list of A(r). Clearly, 
A -< E(E , E') means that A -< A(O). Lett ~ 0 be the greatest 
integer for which A -< A(t); in view of the last two sentences, 
we have that O :::; t ~ r - l and that A -A A(t + 1). The 
latter implies that there is an integer i. E { 1, ... , q} such that 
Ai (/.. Ai(t + 1). By (57), this implies that the intersection 
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Ai n V'i(t) =J 0, so there is an element z E Ai n Vi(t), i.e., 
z E Ai and z E Vi(t). The inclusion z E Vi(t) implies, by 
(56), that there is an integer j E { 1, ... , q} such that z E Tij ( t). 
Consequently, Ti1(t) is not empty, and, using (55), we deduce 
that r(Li, z, Ai(t)) = O while K.iJ(Li') = l. Now, A ~ A(t) 
entails that Ai c J\..i (_t), so the second part of the last sentence 
implies that r(Li: z, Ai) = O while Kij (:E') = 1. Finally, since 
z E A\ it follows that r(:E: A\ A1) = 0 while Ki 1(:E') = 1, 
or that ~ij(Li, A) = 0 while Kij(Li') = 1, contradicting the 
fact that Ll(Li, A) 2:: K(:E'). Consequently, we must have 
A -< A(r), and our proof concludes. + 

The next statement indicates that the list A( r) obtained at the 
end of Algorithm 54, if not deficient, satisfies the inequality 
~(Li, A(r)) ~ K(Li'). This fact, when viewed together with 
Proposition 63, leads to an important conclusion: Algorithm 54 
generates the maximal subordinate list A* of E(Li, Li') that sat­
isfies the matrix inequality .6.(E, A*) 2:: K(E'). 

(64) Proposition: Let E and E' be the two machines of The­
orem 51, and let A(r) be the list generated by Algorithm 54. If 
A(r) is not deficient, then Ll(:E: A(r)) ~ K(E'). 

Proof: When A( r) is not deficient, then the Test Step 
of Algorithm 54 implies that r 2:: 1 and A(r) = A(r - 1). 
Assume next, by contradiction, that A( r) is not deficient and 
.6.(E, A(r)) 'i. K(E'); since A(r) = A(r - 1), we can write 
~(E, A(r - 1)) 'i. K('E'). There must then be a pair of inte­
gers i,j E {1, ... , q} such that ~-ij('E, A(r - 1)) = 0 while 
KiJ (Li') = 1. Referring to the Recursion Step of Algorithm 
54, the latter implies that SiJ(r - 1) # 0. But then, by (57), 
it follows that Ai(r) f Ai(r - l), contradicting the equality 
A(r) = A(r - 1). Thus, we must have Ll(:E, A(r)) 2:: K('.E'), 
and the proof concludes. + 

Combining Propositions 63 and 64, and noting the maxi­
mality property indicated by Proposition 63, we obtain the next 
result. It offers a complete characterization of the conditions 
for the existence of a subordinate list required for the solution 
of the model matching problem by way of Theorem 51. 

(65) Corollary: Let E (A, Y, X, xo, f: h) and 
E' = (A, Y, X': (0 , s', h') be stably reachable asynchronous 
machines, where E' is stably minimal. Let X' = { (1: ... , (q} 
be the state set of 'E' and assume that the initial condition of 'E' 
is (0 = (d. Let E('E, E') be the output equivalence list of 'E 
with respect to E', and let A( r) be the list generated by Algo­
rithm 54. Then, the following two statements are equivalent. 

i) There is a subordinate list A of E(:E: E') for which 
~('E, A) 2:: K(E') and x 0 E Ad. 

ii) A(r) is not deficient and x 0 E Ad. 

In view of Corollary 65 and Theorem 51, the solution of the 
model matching problem can be summarized as follows. 

(66) Corollary: Let E (A, Y, X, :r.o: !: h) and 
E' = ( A, Y. X' : (0 • s' , h') be stably reachable asynchronous 
machines, where E' is stably minimal. Let X' = { (1 , ... , (q} 
be the state set of E' and assume that the initial condition of 
E' is (0 = (d. Let A(r) = {A1(r), ... ,Aq(r)} be the list 
generated by Algorithm 54. Then, the following two statements 
are equivalent. 

i) There is a controller C for which '.Ee = E', where Ee 
is well posed and operates in fundamental mode. 

ii) ThelistA(r) isnotdeficientandx 0 E Ad(r). 

Consider again Example 59. Recall that, in this example, the 
outcome of Algorithm 54 was a nondeficient list. In view of 
Corollary 66, this implies that, for the machines E and E' of 
the example. there is a controller C for which the closed-loop 
'Ee is stably equivalent to the model E', where the closed loop 
system operates in fundamental mode and is well posed. The 
controller C can be built as a combination of an observer B and 
a state feedback controller F. The observer B is given by (38), 
while the state feedback controller Fis constructed from the list 
A( r) by following the process described in the proof of The­
orem 51. The construction of the controller is demonstrated in 
Section V. Meanwhile, we show that the computational burden 
of Algorithm 54 is not excessive. 

(67) Proposition: Algorithm 54 has polynomial complexity. 
Proof: In the notation of Algorithm 54, let n and q be 

the number of states of the machines E and E', respectively. 
A slight reflection shows that the following are valid: i) the 
output equivalence list E(E, :E') consists of q subsets, and each 
subset has at most n elements; ii) the chain of subordinate lists 
A(O) >-A(l) >-... >-A(r) produced by Algorithm 54 strictly 
decreases, except, possibly, in the last step; iii) Algorithm 54 
ends if a deficiency is encountered. These facts imply that the 
number of runs of the Algorithm's Recursion Step cannot ex­
ceed q(n - 1). During each such run, we check the reacha­
bility indicators {r('E,x,Ai(k))}xEX,J=l, ... ,q· As there are no 
more than qn reachability indicators, the number of computa­
tions cannot exceed q( n - 1 )qn < ( qn )2 , and Algorithm 54 has 
polynomial complexity. + 

V. EXAMPLE 

Consider the asynchronous machines E = 
(A, Y, X, :r.0 , .f, h) and 'E' (A, Y, X', (o, f' , h') of 
Example 59, where it was shown that there is a controller C 
solving the model matching problem Ee = :E'. In (62), we 
found the subordinate list A(l) = {A1(1),A 2 (1),A 3 (1)} for 
which ~(:E,A(l)) 2:: K(E') and x 1 E A1(1). Using this list, 
we can apply the construction described in the Proof of The­
orem 51 to derive the control unit F =(Ax X: A, 2, fo, <I>: r,). 
This control unit is then combined with the observer B of (38), 
to obtain the model matching controller C = (B, F) depicted 
in Fig. 2. 

As indicated in Example 59, the initial state of 'E is :1:1 and 
the initial state of E' is ( 1 . In order to keep E' at the state ( 1• the 
external input character must be c; in order to keep E at the state 
x1

, the input character of :E must be a. Following the Proof of 
Theorem 51. set the initial state of F to fo. For the sake of clarity, 
we denote the states of the observer B by { :c:1 , :c2 , ..c3 , :1:4 }, cor­
responding to the states of :E. Thus, the initial state of B is x1 . 

Using the notation of the Proof of Theorem 51 and (37), it fol­
lows by Fig. 8 that U(x 1

) = {a} and U' ( ( 1
) = { C }, so that 

F: (p(~o, (x1, c)) := fo 
'IJ(fo, (x1, c)) := a, 

B: a(.c1, (<LJ3)) = :i :1 for all ,8 E Y*. 
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Assume next that the external input character switches from c 
to a. Recalling that .r;' is the stable recursion function of E', it 
follows from Fig. 8 thats' ( ( 1 , a) = (2 . To mimic this transition, 
the system E needs to move to a state in A 2 = { x2 }, i.e., to the 
state x2 . We have from Fig. 8 that s( x1 , b) = x2 ; where F needs 
to generate the character b to serve as input for E. This leads to 
the following: 

F: 

B: 

F: 

B: 

¢( fo, (:1:1, a.)) = e (.r.1, ,1, a.) 

r1(e(x1, (1, a), (:z:1, a))= b 

a(x1, (b:/3)) = { :i:2 
for /3 ~ 01 

x1 otherwise. 
ef>(e1(x1, (1, a.), (.r.2 , a,))= e1(T1, (1, a,) 

r1(e(x1,( 1 ,a), (x2,a)) = b 

a(x 2
, (bJ3)) = x 2 for all f3 E Y*. 

Consider next the case where E is at a stable combination with 
the state T 1 E A 1 and the model E' is at a stable combination 
with the state ( 1, when the external input character switches to 
b. From Fig. 8, the model responds bys' ( ( 1 , b) = (3 . To mimic 
this transition, the system E needs to move to a state in A 3 = 
{ x·3 }, i.e., to x 3 . We obtain from Fig. 8 thats ( x1 , bac) = x.3, so 
F needs to generate the characters b, a, and c in succession as 
input for E. This leads to the following, where, for clarity, the 
response of E is also shown: 

F: 

E: 

B: 

F: 

E: 

B: 

F: 

E: 

B: 

F: 

E: 

B: 

</J(eo, (x1, b)) = e1(x1, (1, b) 

ri(e(:i:1, (1, b), (:c:1, b)) = b 

s( :1:1. b) = :1:2 

/3(x1,b) = h(x1)h(x 2
) = 01 

a(x1, (b: /3)) = { :i:2' for {1 ~ 01 
..c 1 , otherwise 

</J(e1(x1, ( 1
. b), (x2

, b)) = e2(x1, (1, b) 

r1(e(x1,( 1 ,b),(x 2 ,b)) = a 

s(x 2: a) = :c:4 

{1(x2
, a.) = h(:r:2)h(x 4

) = 10 

a(.r.2, (a.Ji)) = { x 4 
for /3 ~ 10 

x2 otherwise 
q')(e(:c:1, (1, b), (:c4, b)) = ~3(:c1, (1, b) 

r1(e3(:r:1, ( 1
, b), (x4, b)) = c 

s(x4, c) = x 3 

f3(x4, c) = h(x4)h(x3
) = 02 

a(x4, (cJJ)) = { .1:.3 for /J ~ 02 
x 4 otherwise 

¢(e(x1, (1, b), (x3
, b)) = ecx1, (1, b) 

r,(e3(x1,(1,b).(x 3 ,b)) = c 
s(.r:·3: c) = :c;3 

{1(x3
, c) = h(:r.3 ) = 2 

a(x3, (c, /3)) = x3, for all /3 E Y* . 

Assume further that E is at a stable combination with the state 
:c3 E A 3 and ~' is at a stable combination with the state ( 3 , 

when the external input character switches from b to a. By Fig. 8, 
the model's response is s' ( ( 3 , a.) = (2 ; therefore, the controller 
F must drive E to a state in A2 = {:c:2 }. This is done as follows 
( omitting the descriptions of B and of E): 

Next, assume that the machine~ is in a stable combination 
with the state :i:2 E A2 and E' is at the state ( 2 , when the ex­
ternal input character switches from a to c. This leads to the 
assignments 

¢(e1(:1:2,(2,c).( :r:2, c)) = e2(.1;2, (2,c) 

7/( e ( X2, (2, C), ( X2, C)) = b 

77(e2(x2, ( 2
, c), (x2, c)) = a 

<t>(t(.r:2,(2, c).(:1:4,c)) = t( x2.(2 , c) 

r1(e2(:1:2.( 2,c) , (:r:4,c)) = a.. 

Further, assume that E is at a stable combination with the state 
x 4 E A 1 and the model E' is at a stable combination with the 
state ( 1 , when the external input character switches from c to b. 
Here, the necessary assignments are 

</>(e1(x·\ (1, b), (:r:4. b)) = t( :1:4. (1, b) 

7J(e(x4, (1, b), (x4, b)) = C 

¢(e2(x4,(1,b) , (x3 ,b)) = e2(x4,(1,b) 

'TJ(e(:c4, <;1, b). (:i:3, b)) = C. 

Another case: ~ is at a stable combination with the state x 4 E 
A 1 and E' is at a stable combination with the state ( 1

, when the 
external input character switches from c to a. The corresponding 
assignments are 

</J(el(x4,(1,a), (x4,a)) = e2(x4,(1,a) 
ij(~2 (x4

,(
1 ,a).(x4 .a)) = c 

¢(E2(x~,(1,a)(x3,a)) = e3(x4,(1,a) 
ry(e3(x4, (1, a), (x3

, a))= b 

<t>(e(:c:\ ,1, a)(:i:2 , a)) = ecx\ (1, a) 
7J(e3(:i:4, (1, a.). (:r:2' a))= b. 

The state set of the control unit F in this case is 

An examination (e.g., [2]) shows that the state set of F can be 
reduced in this case to four states, with the transition diagram 
shown in Fig. 9. 
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(x4 ,c) 
(x 1,c) 
(x2 ,a} 
(x3,b) 

Fig. 9. Four-state controller. 

Fig. 10. Observer. 

(x4,a) 
(x3,a) 
(x 1 ,a} 

(x4,b) 
(x2,c) 
(x 1,b) 

The observer B = (A x Y*, X, X, x0 , a,I) is described by 
Fig. 10, and is derived according to (38). 

The overall controller is then obtained by combining F and B 
into the configuration of Fig. 2. As in this example, the number 
of controller states can often be reduced by using classical state 
reduction techniques for asynchronous sequential machines 
(e.g., [2]). 

VI. CONCLUSION 

Toe paper presents a methodology for the input/output con­
trol of asynchronous sequential machines. The methodology is 
based on model matching: the desired behavior is represented in 
the form of a model, and a controller is then designed to drive the 
machine so as to match the model. Necessary and sufficient con­
ditions for the existence of a controller have been derived, and 
an algorithm for the construction of a controller has been pre­
sented. Whenever it exists, the controller can be implemented 
as a combination of an observer and a state feedback. 
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