
International Journal of Control
Vol. 83, No. 1, January 2010, 125–144

Input/output control of asynchronous sequential machines with races
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The design of output feedback controllers that eliminate uncertainties caused by critical races in asynchronous
sequential machines is considered. The objective is to build controllers that drive a race-afflicted machine so as to
match a prescribed deterministic model. Necessary and sufficient conditions for the existence of such controllers
are presented in terms of a numerical matrix derived from the given machine. When controllers exist, an
algorithm for their construction is also provided. The discussion depends on the novel notion of ‘generalised
state’, which helps represent the uncertainty created by critical races and facilitates the construction of
controllers.
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1. Introduction

Asynchronous sequential machines form a fast and
efficient platform for the implementation of high-speed
computing systems, and they play a critical role in the
analysis and modelling of parallel computing systems
and of processes in molecular biology (e.g. Hammer
1994). It is therefore of interest to develop control
techniques that help overcome deficiencies and defects
in the operation of such machines. A common defect in
the operation of an asynchronous machine is a critical
race – a flaw that causes the machine to exhibit
unpredictable behaviour. Critical races may originate
from malfunctions, design flaws, implementation flaws
or from genetic flaws in biological systems (e.g.
Hammer 1995).

The objective of the present article is to develop
output feedback controllers that eliminate the effects of
critical races on asynchronous sequential machines,
creating closed-loop machines that are deterministic
and match prescribed models. The use of feedback
controllers allows us to restore proper operation of
malfunctioning asynchronous machines without having
to replace them. This is particularly important in
applications where the defective machine cannot be
replaced, as is the case with remote, inaccessible or
biological systems. In addition, the use of corrective
feedback controllers is often less costly than the
replacement of an entire defective machine. The use of
an output feedback controller is described in Figure 1.
In the figure, ! is the defective asynchronous machine
being controlled, and C is another asynchronous
machine that serves as an output feedback controller.

The closed-loop machine is denoted by !c. Our
objective is to find a controller C for which !c exhibits
desirable behaviour.

The desirable behaviour of the closed-loop machine
!c is represented by a deterministic asynchronous
machine !0, which serves as a model. Our objective is
to design an output feedback controller C for which !c

simulates !0. In particular, as !0 is deterministic, such
a controller C eliminates the effects of uncertainties
caused by the critical races of !. The problem of
designing the controller C is referred to as the model
matching problem. In this article, we present necessary
and sufficient conditions for the existence of model
matching output feedback controllers; whenever such
controllers exist, we provide an algorithm for their
design.

We assume that a description of the defective
machine ! is provided. This is often the case in
applications; for example, consider a molecular biol-
ogy system modelled by an asynchronous sequential
machine (e.g. Hammer 1995). When a malfunction
occurs in such a system, a diagnostic process is
conducted to characterise the fault that causes the
malfunction. The description of the defective machine
is then known and can be used in the construction of
a corrective biochemical controller. Being part of a live
organism, the faulty system cannot be replaced in this
case; the only option is to use a corrective controller.

As another example, consider a mass produced
device in which a malfunction was detected after
production. A sample of the device can be analysed to
characterise the fault responsible for the malfunction.
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It is then often more economical to add a corrective
controller to each faulty device than to completely
replace all defective devices.

The problem of controlling asynchronous sequen-
tial machines was also discussed in Murphy, Geng and
Hammer (2002, 2003), where state feedback controllers
were used to eliminate the effects of critical races in
asynchronous machines; in Venkatraman and Hammer
(2006a, b, c), where state feedback controllers were
used to eliminate the effects of infinite cycles; in Geng
and Hammer (2005), where model matching with
output feedback was considered for asynchronous
machines with no critical races; and in Yang and
Hammer (2008a, b), where state feedback controllers
were used to counteract the effects of adversarial
inputs and disturbances on asynchronous sequential
machines. The present article concentrates on the
design of output feedback controllers that eliminate
the effects of critical races on asynchronous sequential
machines. The handling of critical races in cases where
there is no access to the state of the afflicted machine
requires new theoretical notions. In particular, we
introduce the notion of ‘generalised state’ to represent
the impact of uncertainties caused by critical races
(Section 2). In somewhat oversimplified terms,
a generalised state represents a group of states
consisting of all possible outcomes of a critical race.
Although the particular outcome of a critical race is
uncertain, the set of all possible outcomes is, of course,
deterministic. As discussed in Section 2, the use of
generalised states makes it possible to handle critical
races within a deterministic framework.

Unlike synchronous machines, which are driven by
clock pulses, asynchronous machines are driven by
changes of their input variables. An asynchronous
machine may occupy a stable state or a transient state.
A stable state is a state at which the machine lingers
until a change occurs in one of its input variables.
A transient state is a state through which the machine
passes very quickly, ideally in zero time. An asynchro-
nous machine may pass through several transient
states on its way from one stable state to another.
Alternatively, during an infinite cycle, a machine
moves indefinitely among transient states without
ever reaching a stable state. The present article
concentrates on machines that have no infinite cycles.

To guarantee predictable behaviour of an asynchro-
nous machine, care has to be exercised to keep its input
constant while the machine is not in a stable state.
Indeed, if an input change occurs while the machine is in
transition, then, due to the quick and asynchronous
succession of transient states, it is not possible to predict
the state of the machine at the time of the input change.
This may result in an unpredictable response, as the
response of a machine generally depends on its state.
To avoid such uncertainty, asynchronous machines are
normally operated so as to prevent input changes while
the machine is not in a stable state. When this
precaution is taken, the machine is said to operate in
fundamental mode. In this article, all asynchronous
machines are operated in fundamental mode.

The string of output values that an asynchronous
machine generates along its way from one stable state to
the next is often called a burst. A burst is a rapidly
progressing string of output characters which, ideally,
has a duration of zero time. Control of asynchronous
machines can be performed with or without the
utilisation of bursts (Geng and Hammer 2004, 2005).
The use of bursts facilitates more powerful controllers
at the cost of somewhat higher controller complexity.
Often, control objectives can be met without utilising
bursts. In such cases, avoiding the use of bursts
simplifies controller design and implementation.
The present article concentrates on the existence and
the design of controllers that do not utilise bursts. The
utilisation of bursts is considered in a separate report.

Studies dealing with other aspects of the control of
sequential machines can be found in Ramadge and
Wonham (1987), Thistle and Wonham (1994), and
Kumar, Nelvagal and Marcus (1997), where the theory
of discrete event systems is investigated; and in
Dibenedetto, Saldanha and Sangiovanni-Vincentelli
(1994), Hammer (1994, 1995, 1996a, b, 1997), Barrett
and Lafortune (1998), andYevtushenko, Villa, Brayton,
Petrenko and Sangiovanni-Vincentelli (2008), where
issues related to control and model matching for
sequential machines are considered. These discussions
do not take into consideration specialised issues related
to the function of asynchronous machines, such as the
implications of stable states, transient states, and fun-
damental mode operation. The lack of such consider-
ation may result in non-deterministic behaviour of
asynchronous sequential machines.

The article is organised as follows. Generalised
states and their use in characterising the control
capabilities of asynchronous machines with critical
races are introduced and studied in Sections 2 and 3.
Section 4 deals with the existence and the design of
output feedback controllers that solve the model
matching problem. The article concludes in Section 5
with a comprehensive example.

Figure 1. A feedback control configuration.
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2. Basics

2.1 Asynchronous machines and stable state
machines

An asynchronous sequential machine is represented by
a sextuple !¼ (A,Y,X, x0, f, h), where A is a finite
input alphabet, Y is a finite output alphabet, X is a finite
state set, x02X is the initial state of the machine, and
f :A"X!X (the recursion function) and h :X!Y (the
output function) are partial functions. The machine
operates according to the following recursion:

!:
xkþ1 ¼ f ðxk, ukÞ
yk ¼ hðxkÞ, k ¼ 0, 1, 2, . . . ,

!
ð1Þ

where xk2X is the state, uk2A is the input value, and
yk2Y is the output value of the machine at step k.
The step counter k advances by one upon any change
of the input or of the state of !. We use here the
Moore representation of the machine !, so the output
function h depends only on the state.

A pair (x, u)2X"A is a valid pair if the recursion
function f is defined at it. In addition, if x¼ f(x, u),
then (x, u) is a stable combination. At a stable combi-
nation (x, u), the machine ! lingers at the state x until
the input character u is changed. When (x, u) is not
a stable combination, then the machine generates
a chain of transitions

x1 ¼ f ðx, uÞ, x2 ¼ f ðx1, uÞ, . . . ð2Þ

which may or may not terminate. If this chain of
transitions terminates, then the last state, say, xq,
satisfies xq¼ f(xq, u), i.e. (xq, u) is a stable combination
of !. In such case, we refer to xq as the next stable state
of x with the input character u. If the chain (2) does not
terminate, then it forms an infinite cycle. In this article,
we restrict our attention to asynchronous machines
with no infinite cycles. It is convenient to define
iterations of the recursion function by setting

f iðx, uÞ :¼ f ð f i&1ðx, uÞ, uÞ, f 0ðx, uÞ :¼ x, i ¼ 1, 2, . . .

A valid pair (r, v)2X"A is a critical race if its next
stable state is not uniquely determined and may be one
of several options. The options r1, r2, . . . , rm2X of the
next stable state are called the outcomes of the critical
race (r, v) (e.g. Kohavi 1970). A critical race turns the
machine ! into a non-deterministic machine. The
recursion function f of a machine with critical races is
multivalued, and the symbols xkþ1 in (1) and x1, x2, . . .
in (2) may represent sets of states.

State transitions of asynchronous machines occur
very quickly – ideally, in zero time. Consequently, for
an asynchronous machine, the behaviour observed by
a user is determined by state/input pairs at which the
machine lingers, i.e. by stable combinations.

To characterise this behaviour, let (x, u) be a valid
pair of an asynchronous machine !. Denote by x 0 the
next stable state of x with the input u when (x, u) is not
a critical race; otherwise, let r1, r2, . . . , rm be the
outcomes of the race. Then, the stable recursion
function s of ! is defined by

sðx,uÞ :¼
x0 if ðx,uÞ is not a critical race,

r1, r2, . . . , rm if ðx,uÞ is a critical race.

(

The stable state machine !js¼ (A,Y,X, x0, s, h)
describes the stable transitions of !; it shares with
! the input, output, and state sets, as well as the initial
state and the output function. A stable state machine is
minimal if there is no stable state machine with
a smaller number of states that has the same input/
output behaviour. Finally, two asynchronous machines
! and !0 are stably equivalent if the stable state
machines !js and !0js are equivalent i.e. if !js and !0js
have the same input/output behaviour. Stably equiv-
alent machines are indistinguishable by a user,
since they have the same stable combinations.
We write !¼!0 to indicate that ! and !0 are stably
equivalent.

Example 2.1: Consider a machine ! with the input
alphabet A¼ {a, b}, the output alphabet Y¼ {0, 1},
the state set X¼ {x1, x2, x3}, and the following
transitions:

Diagram of transitions for !

Table of transitions for !

X a b Y

x1 x1 {x2, x3} 0
x2 x1 x2 1
x3 x2 x3 1
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As we can see, the pair (x1, b) is a critical race.
The corresponding stable state machine !js has the
following transitions:

Diagram of transitions for !js

To guarantee that no uncertainties are introduced as
a result of improper operation, all our asynchronous
machines are operated in fundamental mode, namely,
inputs of a machine are allowed to change only while
the machine is in a stable combination (e.g. Kohavi
1970). In this way, the machine is in a well-defined
state when an input change occurs. Fundamental mode
operation is the most common mode of operating
asynchronous sequential machines. For the configura-
tion of Figure 1, fundamental mode operation
translates into the following.

Condition 2.2: Let ! and C be asynchronous sequen-
tial machines interconnected as in Figure 1. The
configuration operates in fundamental mode when all
the following hold:

(i) C is in a stable combination while ! under-
goes transitions;

(ii) ! is in a stable combination while C under-
goes transitions; and

(iii) the external input v changes only while ! and
C are both in a stable combination.

In order to implement part (i) of Condition 2.2, it must
be possible for the controller C to determine whether

the machine ! has reached a stable combination, i.e.
whether the transition process has terminated. As C
has access only to the input and the output of !, this
determination must be made without access to the state
of !. The following notion is critical in this context.

Definition 2.3: Assume that the machine ! is at
a stable combination with the state x, when the input
character switches to u. The pair (x, u) is strongly
detectable if it can be determined from input and
output values of ! whether the next stable state has
been reached.

Similarly, let S be a set of states of !. Assume that
! is at a stable combination with an unspecified state
x2S, when the input character switches to u. The pair
(S, u) is strongly detectable if it can be determined from
input and output values of ! whether the next stable
state has been reached.

In preparation for deriving necessary and sufficient
conditions for strong detectability, consider an asyn-
chronous machine !¼ (A,Y,X, x0, f, h) with the stable
recursion function s. Assume that ! is at a stable
combination with the state x when the input character
changes to u. This results in a chain of transitions
x¼ f 0(x, u),x1¼ f(x, u), x2¼ f 2(x, u), . . . , x 0¼ f i(x, u),
where x0¼ s(x, u) is the next stable state of ! (recall
that our machines have no infinite cycles); the symbols
x, x1, x2, . . . , xi, and x 0 may represent sets of states.
Denoting the operation of set difference by n, the set of
transient states included in this chain of transitions is
given by

f&ðx, uÞ :¼
[

j¼0,1,2,...,i
f jðx, uÞ

( )

n sðx, uÞ:

For a subset of states S'X and an input value u that
forms a valid combination with every state x2S,
denote by

f&½S, u) :¼
[

x2S
f&ðx, uÞ ð3Þ

the collection of all transient states included in transi-
tion chains triggered by the input character u from
states of S. (Throughout the article, the symbol '
indicates inclusion with the possibility of equality.)

We can derive now a simple necessary and suffi-
cient condition for strong detectability. Indeed, the set
h[ f&[S, u]] includes all output values that are generated
by transient states, whereas the set h[s[S, u]] includes all
output values that are generated by stable states
reached at the end of the transition process. In order
for us to be able to determine whether transitions have
ceased, these two sets must be disjoint. In fact, the
converse is also true, and we obtain the following.

Table of transitions for !js

X a b Y

x1 x1 {x2, x3} 0
x2 x1 x2 1
x3 x1 x3 1
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Proposition 2.4: Let !¼ (A,Y,X, x0, f, h) be an asyn-
chronous machine with the stable recursion function s, let
S be a set of states of !, and let u2A be an input
character for which (x, u) is a valid combination for all
x2S. Then, (S, u) is strongly detectable if and only if
h[ f&[S, u]]\ h[s[S, u]]¼1, the empty set.

Proof: By (3), the set h[ f&[S, u]] consists of all output
characters generated by transient states that the
machine ! passes along its way from states of S to
their next stable state. Now, assume first that
h[ f&[S, u]]\ h[s[S, u]] 6¼1, so that there is an element
y2 h[ f&[S, u]]\ h[s[S, u]]. Then, there are states x 0,x00 of
the machine ! such that x 0 2 f&[S, u], x00 2 s[S, u], and
h(x 0)¼ h(x00)¼ y; note that x 0 is a transient state, while
x00 is a stable state. Thus, when the output character y
appears, it is impossible to tell whether ! is in the
transient state x 0 or in the stable state x00.
Consequently, (S, u) is not strongly detectable.

Conversely, assume that h[ f&[S, u]]\ h[s[S, u]]¼1,
and that an output value y2 h[s[S, u]] is detected. Then,
the last equality implies that y =2 h[ f&[S, u]], so that
! cannot be at a transient state. Thus, (S, u) is strongly
detectable, and our proof concludes. œ

Example 2.5: For the machine ! of Example 2.1, let
S¼ {x1, x3} and consider the input character u¼ a.
Then, we have s[S, a]¼ {x1}, while f&[S, a]¼ {x2, x3},
so that h[s[S, a]]¼ {0} and h[ f&[S, a]]¼ {1}. Thus,
h[ f&[S, a]]\ h[s[S, a]]¼1 in this case, and the pair
({x1, x3}, a) is strongly detectable. Similarly, it can be
seen that the following pairs are all strongly detectable:
(x1, a), (x1, b), (x2, a), (x2, b), ({x2, x3}, a), ({x2,x3}, b).

2.2 Generalised states

In the present subsection, we introduce one of the most
fundamental notions of our discussion. First, some
terminology. Two states x, x 0 of a machine !¼
(A,Y,X, x0, f, h) are output equivalent if they yield the
same output values, namely, if h(x)¼ h(x 0). Given a set
S of states, we can induce an output equivalence
partition {S1,S2, . . . ,Sp}, which consists of disjoint
classes S1,S2, . . . ,Sp of output equivalent states of S.
As our information about ! must be derived from its
output values, output equivalent states play an impor-
tant role in our discussion.

It is sometimes convenient to group several states
of a machine into one entity. For example, when
creating an output equivalence partition, several states
are grouped together into one output equivalence class.
As another example, consider the case where the
machine ! passes through a critical race whose
outcomes are all output equivalent. In such case, it is
impossible to determine the exact state of the machine

after the race from input and output values. It is then
convenient to group the set of all states that are
consistent with the available data into one entity that
represents the uncertainty about the state. This leads us
to the following notion. (Below, #S denotes the
cardinality of a set S, and P(S ) is the power set of S,
i.e. the set of all subsets of S.)

Definition 2.6: Let !¼ (A,Y,X, x0, f, h) be an asyn-
chronous machine with the stable recursion function s,
let ! be a set disjoint from X and including at least 2#X

elements and let " :P(X )!X[! be an injective
function satisfying "(x)¼ x for all states x2X. With
an output equivalent set S'X, associate the element
" :¼"(S ).

If #S4 1, then " is called a group state of the
machine !, while S is called the underlying set of " and
is denoted by S("). For an input character u2A, the
pair (", u) (or the pair (S, u)) is a valid pair if (x, u) is
a valid pair for all x2S.

An extended state set ~X of ! is the union of the
original state set X with a set of group states.
A generalised state set ~X of ! is an extended state set
for which the following is true for all valid pairs
ð", uÞ 2 ~X" A: every member of the output equivalence
partition of the set s[S("), u] is either a single state or is
represented by a group state in ~X.

We extend now recursion and output functions to
group states. Let !¼ (A,Y,X, x0, f, h) be an asynchro-
nous machine with the stable recursion function s, and
let ~X be a generalised state set of !. For a member
# 2 ~X, denote by S(#) the underlying set of states,
where S(x) :¼ x for every state x2X. Further, for
a valid combination ð#, uÞ 2 ~X" A, let {S1, . . . ,Sm} be
the output equivalence partition of the set s[S(#), u],
and let #i 2 ~X be the generalised state associated with
Si, i¼ 1, . . . ,m. Then, the generalised stable recursion
function sg : ~X" A! ~X is defined by

sgð#, uÞ :¼ f#1, . . . , #mg: ð4Þ

The set {#1, . . . , #m} may include group states and
regular states. The generalised output function hg:
~X! Y is

hgð#Þ :¼ h½Sð#Þ) for all # 2 ~X: ð5Þ

Note that, since S(#) is an output equivalence class,
h[S(#)] is a single character of the output alphabet Y.
The sextuple !g :¼ ðA,Y, ~X, x0, sg, hgÞ forms a general-
ised machine associated with !. In view of its
construction, the generalised machine has exactly the
same input/output behaviour as the original machine
!. In other words, !g is simply a different realisation
of !, and we often refer to !g as a generalised
realisation of !.
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Note that, even after a critical race, the generalised
state of a machine is always uniquely determined by the
machine’s output value, since each generalised state
represents a known output equivalence class.
That being so, a generalised realisation creates a
deterministic relationship between output values and
generalised states of a possibly non-deterministic
machine. The following algorithm for the construc-
tion of generalised realisations is a consequence of
Definition 2.6.

Algorithm 1: Let !¼ (A,Y,X, x0, f, h) be an asyn-
chronous sequential machine with the stable recursion
function s, and assume that ! has $ critical race pairs
(r1, u1),(r2, u2), . . . , (r$, u$). Let ! be a set that is disjoint
of the state set X and has at least 2#X elements, and let
" :P(X )!X[! be an injective function satisfying
"(x)¼x for all x2X. The following steps build
a generalised realisation !g :¼ ðA,Y, ~X, x0, sg, hgÞ of !.

Step 1: For every valid pair (x, u)2X"A that is not
a critical race, set sg(x, u) :¼ s(x, u). If $¼ 0, then set
# :¼1 and go to Step 9.
Step 2: Define the ordered family of pairs S :¼
{(r1, u1), (r2, u2), . . . , (r$, u$)} and the sets # :¼1 and
#0 :¼1. Assign i :¼ 1.
Step 3: Let %i be the i-th member of the family S, and
let {G1, . . . ,Gk} be the output equivalence partition of
the set of states s(%i).
Step 4: Let "j :¼"(Gj), j¼ 1, 2, . . . , k, and replace #
by the set #[ {"1, . . . , "k}. Assign sg(%i) :¼ {"1, . . . , "k},
and denote S("j) :¼Gj, j¼ 1, 2, . . . , k.
Step 5: If iþ1*#S, then replace i by iþ 1 and return
to Step 3.
Step 6: Define the difference set #00 :¼ [#n#0] nX;
then replace #0 :¼#.
Step 7: If #00¼1, then go to Step 9.
Step 8: Replace S by an ordered family consisting of
all valid pairs (S(#), u), where # 2#00 and u2A, and
return to Step 3.
Step 9: Terminate the algorithm. The set # is the set
of group states, ~X :¼ X [ # is the generalised state set,
and sg is the generalised stable recursion function of !.

Remark 1: Step 6 of Algorithm 1 singles out all new
generalised states that arose during the current cycle of
the algorithm. Step 8 prepares towards an extension of
the generalised stable recursion function to all resulting
new pairs.

Note that a generalised realisation is usually not
a minimal realisation. Nevertheless, generalised realisa-
tions greatly simplify the process of designing con-
trollers for asynchronous machines with critical races,
since they create a deterministic relationship between
the output value of a machine and its generalised
state even in the aftermath of a critical race.

Example 2.7: Using Algorithm 1, we build a general-
ised realisation for the machine ! of Example 2.1.
In this case, ! has only one critical race %1¼ (x1, b); the
race has two outcomes s(%1)¼ s(x1, b)¼ {x2,x3}.
As h(x2)¼ h(x3)¼ 1, the output equivalence partition
of the set s(%1) consists of the single class G1¼ {x2, x3}.
Associating with G1 the generalised state "1, the
generalised stable recursion function sg is set to
sg(%1) :¼ "1. Further, sg("1, a) :¼ s[G1, a]¼ {s(x2, a),
s(x3, a)}¼ {x1}, and sg("1, b) :¼ s[G1, b]¼ {s(x2, b),
s(x3, b)}¼ {x2, x3}¼ "1. For the generalised output
function, we have hg("1) :¼ h({x2, x3})¼ 1. At all other
valid combinations, sg is identical to s, and hg is
identical to h. Finally, replacing the symbol "1 by the
symbol x4 for notational simplicity, we obtain the
following generalised stable machine !g:

We regard the computational complexity of Algorithm
1 as the number of pairs to which it extends the
generalised stable recursion function outside the orig-
inal state set. An asynchronous machine ! is simple if
any set of next stable states of a critical race’s outcomes
includes no output equivalent states. The following
is a bound on the computational complexity of the
algorithm.

Lemma 2.8: Let ! be a simple asynchronous machine
with $+ 1 critical races. Assume that each race has no
more that p outcomes, and let m be the number of
characters in the input alphabet of !. Then, the
computational complexity of Algorithm 1 does not
exceed $pm.

Proof: The fact that ! has $ critical races implies that,
during the first $ times that Algorithm 1 passes through
Step 3, the sets {G1, . . . ,Gk} are all outcomes of critical
races. Considering that each critical race has no more
than p outcomes, we conclude that that k* p in each
one of the first $ passes through Step 3 of the algorithm
(i.e. the outcomes of one critical race cannot create
more than p group states). Thus, the first $ passes of
Step 3 can create no more than a total of $p group
states. Using the fact that there are m input characters,
it follows that the generalised stable recursion function
must be extended over no more than $pm pairs during
the first $ cycles of the algorithm. After the first $
cycles, the sets {G1, . . . ,Gk} of Step 3 are all sets of
next stable states of critical race outcomes. As ! is

X a b Y

x1 x1 x4 0
x2 x1 x2 1
x3 x1 x3 1
x4 x1 x4 1
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a simple machine, it follows that G1, . . . ,Gk are all
single states after the first $ cycles of the algorithm,
and hence give rise to no further group states. This
concludes our proof. œ

Next, we discuss the role of generalised realisations
in the task of eliminating the effects of critical races.

3. Controlling asynchronous machines with races

Following Geng and Hammer (2004, 2005), we decom-
pose the controller C of Figure 1 into two asynchro-
nous machines: an observer # and a control unit F as
described in Figure 2.

As we discuss below, the observer # determines the
most recent generalised stable state visited by the
machine !, while the control unit F generates the input
strings that drive !. The overall controller C consists
of the combination C¼ (F,#).

3.1 The observer q

The role of the observer in our discussion is analogous
to its role in standard control theory: we use the
observer to determine the most recent generalised
stable state reached by the observed machine !.
The nature of the observer here is somewhat different
from its nature in Geng and Hammer (2004, 2005), as
our present control process does not utilise bursts
and has to overcome critical races of the controlled
machine !.

In technical terms, let !g ¼ ðA,Y, ~X, x0, sg, hgÞ be
a generalised machine induced by !. Then, the
observer # is a stable state input/state machine
#¼ (A"Y,Z, z0, %) with two inputs: the input character
u2A of ! and the output character y2Y of !.
The state set Z of # consists of the same elements as the
generalised state set ~X of !, and the initial state of # is

identical to the initial state of !, i.e. z0¼x0. The
recursion function % :Z"A"Y!Z of # is defined by

%ðz,u,yÞ :¼
# 2 sgðz,uÞ if y¼ hgð#Þ and ðz,uÞ is

strongly detectable,

z otherwise:

8
><

>:
ð6Þ

In view of Proposition 2.4, the recursion function
%(z, u, y) is well defined: when starting from a strongly
detectable pair (z, u), the output value y2 hg(sg(z, u)) of
! is reached only when ! arrives at its next stable
generalised state # 2 sg(z, u). Furthermore, by construc-
tion, there is exactly one generalised state # 2 sg(z, u)
that satisfies y¼ hg(#) for the current output value y of
!. The state of the observer # switches to the state #
when it detects the character y in the signal it receives
from the machine !. In this way, the state of the
observer # switches to # immediately after the machine
! has reached its next stable generalised state.
As a result, the state of # tracks the stable generalised
state of !, always lingering at the most recent stable
generalised state that ! has reached through a strongly
detectable transition.

To illustrate the operation of the observer #,
assume that the machine ! is at a stable combination
(x, u0) when the input character changes to u, where
(x, u) is a strongly detectable pair. The change of the
input character may give rise to a chain of transitions,
ultimately leading ! to a stable generalised state
# 2 sg(x, u). As the pair (x, u) is strongly detectable, it
follows by Proposition 2.4 that ! starts displaying an
output value y2 hg(sg(x, u)) right upon reaching the
state # 2 sg(x, u), and not before. When the observer #
detects this output value, it transitions to its state # 2Z,
and, since # is an input/state machine, this state
becomes the new output value of #.

The information provided by the observer # helps
guarantee fundamental mode operation of the control
configuration 2 in the following way. As the state (and
output) of # stay constant while ! is in transition, the
control unit F has constant input while ! is in
transition. Hence, both # and F (i.e. the entire
controller C) remain in a stable combination while
! is in transition (recall that the external input v is kept
constant during transitions of the composite machine
!c). Now, immediately after ! has reached its next
stable combination through a strongly detectable
transition, the observer # undergoes a transition to
its own next stable state. As # is a stable input/state
machine (see (6)), the output of # remains constant
until # switches to its next stable state. When # reaches
its next stable state, its output changes and, as a result,
the control unit F experiences a change at the input
connected to #. This, in turn, may lead F into a
transition that changes the input u of the controlled

Figure 2. Controller decomposition.
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machine !. Consequently, transitions among the
three machines #, F, and ! always occur sequentially
– one machine at a time. In this way, the closed-loop
machine operates in fundamental mode.

3.2 Reachability

Needless to say, the presence of critical races in an
asynchronous machine may create an uncertainty
about the current state of the machine, since the
output value does not allow one to distinguish among
output equivalent states. As we have seen, the notion
of generalised state helps us deal with this uncertainty
by using a single generalised state to represent the set
of all states that are compatible with available data.
In the present subsection, we examine reachability
properties within the set of generalised states. Our
discussion in the previous subsection has shown that,
for the closed-loop configuration of Figure 2, funda-
mental mode operation can be guaranteed only at
strongly detectable pairs. As a result, the operation of
the closed-loop must be restricted to such pairs, and
this leads us to the following notion.

Definition 3.1: Let ! be an asynchronous machine
with the generalised realisation !g ¼ ðA,Y, ~X,x0, sg,hgÞ,
where ~X¼ fx1,x2, . . . ,x&g. For a pair of generalised
states xi,xj 2 ~X, define the set of input characters

'ðxi, x jÞ :¼
"
a 2 A : ðxi, aÞ is a strongly detectable

pair and x j 2 sgðxi, aÞ
#
: ð7Þ

Then, letting N be a character not in A, the generalised
one-step reachability matrix Rg(!) is a &"& matrix
whose i, j entry is

Rgij ð!Þ :¼
'ðxi, x jÞ if 'ðxi,x jÞ 6¼1,

N if 'ðxi,x jÞ ¼1,

!
ð8Þ

i, j¼ 1, 2, . . . ,&.

When the machine ! has no group states, then the
generalised one-step reachability matrix Rg(!) reduces
to the one-step reachability matrix of Murphy et al.
(2002, 2003).

Let ! be an asynchronous machine with the state
set X¼ {x1, . . . , xn} and the generalised state set ~X ¼
fx1, . . . , xn, xnþ1, . . . , xnþtg: Each group state xnþi,
i¼ 1, 2, . . . , t, represents an underlying set of states
that cannot be distinguished from each other by using
input and output data. It is instructive to divide the
one-step generalised reachability matrix into four
blocks

Rgð!Þ ¼
R11 R12

R21 R22

$ %

where R11 is an n"n matrix of strongly detectable one-
step transitions among regular states of !; R12 is an
n"t matrix of strongly detectable one-step transitions
from regular states to group states, namely, strongly
detectable transitions that pass through a critical race
and have an uncertain outcome in terms of regular
states; R21 is an t"n matrix of strongly detectable one-
step transitions from a group state to a regular state,
namely, transitions from an uncertain regular state to
a single deterministic regular state; and R22 is a t"t
matrix of one-step strongly detectable transitions from
one group state to another group state, namely,
transitions from an uncertain regular state that have
uncertain outcomes in terms of regular states.

Example 3.2: For the machine ! of Example 2.1,
a generalised realisation was derived in Example 2.7
and a list of strongly detectable transitions is provided
at the end of Example 2.5. The generalised one-step
reachability matrix is then given by

Rgð!Þ ¼

a N N b

a b N N

a N b N

a N N b

0

BBB@

1

CCCA:

The generalised one-step reachability matrix pro-
vides a simple characterisation of the generalised
machine’s critical races. Indeed, consider an asynchro-
nous machine ! with the stable recursion function s
and the state set X¼ {x1, . . . , xn}. Let ~X ¼
fx1, x2, . . . , xnþtg be the generalised state set and let sg
be the generalised stable recursion function of !.
Assuming that ! has critical races, there is a state xi

and an input value v for which the set s(xi, v) includes
more than one state. If the states included in s(xi, v) are
not all output equivalent, then the set sg(x

i, v) will
also include more than one member. Then, by
Definition 3.1, the input character v will appear in
more than one entry of row i of Rg(!). Thus, a critical
race of the generalised machine causes an input
character to appear more than once in a row of
Rg(!). A slight reflection shows that the converse is
also true: if an input character v appears more than
once in a row of Rg(!), then v is involved in a critical
race of the generalised machine. This leads to the
following conclusion (compare with Venkatraman and
Hammer 2006c, Proposition 4.16).

Lemma 3.3: Let ! be an asynchronous machine with
the one-step generalised reachability matrix Rg(!) and
the generalised state set ~X ¼ fx1, . . . , x&Þ. Then, the
following are equivalent for all i¼ 1, . . . ,&:

(i) An input character v appears in more than one
entry of row i of Rg(!).
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(ii) The pair (xi, v) is a critical race of the general-
ised realisation of !.

Example 3.4: Consider the asynchronous machine
! with the following table of transitions:

Here, the outcome {x2, x3} of the critical race splits
into the two output equivalent subsets {x2} and {x3}.
As a result, this machine has no group states, and its
generalised stable recursion function is identical to
the original recursion function described in the
table. The one-step generalised reachability matrix of
! is then

Rgð!Þ ¼
a b b

a b N

a N b

0

B@

1

CA:

As we can see, the input character b appears twice in
row 1 of the matrix, signifying a critical race.

We define next a few operations on generalised
one-step reachability matrices that are similar to the
operations used in Venkatraman and Hammer (2006a,
b, c). These operations allow us to characterise all
reachability features of the machine ! by applying an
analog of matrix multiplication to the one-step reach-
ability matrix.

Let Aþ be the set of all non-empty strings of
characters of the alphabet A, and consider two
elements w1, w22Aþ[N, where N is a character not
in A. Then, the operation [= of unison is defined by

w1 [= w2 :¼

w1 [ w2 if w1,w2 2 Aþ;

w1 if w1 2 Aþ and w2 ¼ N;

w2 if w1 ¼ N and w2 2 Aþ;

N if w1 ¼ w2 ¼ N:

8
>>><

>>>:

For two subsets %1, %2'Aþ[N, the unison is
defined by

%1 [= %2 :¼ fw1 [= w2 : w1 2 %1 and w2 2 %2g:

Given two n"n matrices A and B whose entries are
subsets of Aþ[N, the unison C :¼ A [= B is again
an n"n matrix with the entries Cij :¼ Aij [= Bij,
i, j ¼ 1, . . . , n: Note the similarity to numerical matrix
addition, with N taking the role of the zero.

Next, we define an operation that mimics matrix
multiplication. First, the concatenation of two elements
w1, w22Aþ[N is

concðw1,w2Þ :¼
w2w1 if w1,w2 2 Aþ;

N if w1 ¼ N or w2 ¼ N:

!

For two subsets W,V'Aþ[N, the concatenation is

concðW,VÞ :¼ [=
w2W, v2V

concðw, vÞ:

Now, let C and D be two n"n matrices whose entries
are sets of elements of Aþ[N. Then, the product
Z :¼CD is an n"n matrix whose (i, j) entry Zij is

Zij :¼ [=
k¼1, 2,..., n

concðCik,DkjÞ, i, j ¼ 1, . . . , n:

Using this product, we can define powers of the
generalised one-step reachability matrix by setting

Rq
gð!Þ :¼ Rq&1

g ð!ÞRgð!Þ, q ¼ 2, 3, . . .

By construction, the (i, j) entry of the matrix Rq
gð!Þ is

not N if and only if the generalised machine !g can be
taken from a stable combination with the generalised
state xi to a stable combination with the generalised
state xj in exactly q stable and strongly detectable
transitions. Furthermore, if notN, this entry consists of
all strings of q input characters that take !g from a
stable combination with xi to a stable combination with
xj in exactly q stable and strongly detectable transitions.

In explicit terms, assume that the string of input
characters u1u2...uq is a member of the (i, j) entry of
Rq

gð!Þ. Then, we can proceed as follows from xi to xj:
at a stable combination with the generalised state xi,
apply the input character u1, and hold it until the
observer # of (6) displays a state of the set sg(x

i, u1);
then, apply the input character u2, and again wait
until the observer # displays a state of the set
sg(x

i, u1u2); and so on for q steps. If this string of
transitions includes critical races, then xj is one of the
final state options.

For an integer q2 {1, 2, . . .}, define the matrix

RðqÞg ð!Þ :¼ [=
r¼1,..., q

Rr
gð!Þ: ð9Þ

The (i, j) entry of RðqÞg ð!Þ, if not N, includes all input
strings that may take ! from a stable combination
with the generalised state xi to a stable combination
with the generalised state xj in q or fewer stable
and strongly detectable steps. The following statement
and its proof are similar to Murphy et al. (2003,
Lemma 3.9).

Lemma 3.5: Let !¼ (A,Y,X, x0, f, h) be an asynchro-
nous machine with the generalised state set ~X ¼
fx1, x2, . . . , x&g, and let Rg(!) be the generalised

Table of transitions of !

X a b Y

x1 x1 {x2, x3} 0
x2 x1 x2 1
x3 x1 x3 2
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one-step reachability matrix of !. Then, the following
are equivalent:

(i) The generalised state xj is stably reachable from
the generalised state xi through a finite string of
stable and strongly detectable transitions, pos-
sibly as one outcome of a critical race.

(ii) The (i, j) entry of the matrix Rð&&1Þg ð!Þ is not N.

In the lemma, when the transition forms a critical
race, xj is just one of the possible outcomes of the race
and may not be deterministically reachable. In view of
the lemma, all strongly detectable stable transitions of
the generalised realisation of ! are characterised by the
matrix Rð&&1Þg ð!Þ. This motivates the following notion.

Definition 3.6: Let ! be an asynchronous machine
having & generalised states. The generalised stable
reachability matrix of the machine ! is $ð!Þ :¼
Rð&&1Þg ð!Þ.

Example 3.7: Consider the machine ! of Example 2.1.
Here, the number of states in the generalised realisation
is &¼ 4, so &&1¼ 3. Using the one-step generalised
reachability matrix Rg(!) of Example 3.2, we obtain

R2
gð!Þ ¼

fa, bag N N fab, bg
fa, bag b N ab

fa, bag N b ab

fa, bag N N fab, bg

0

BBB@

1

CCCA,

R3
gð!Þ ¼

fa, ba, abag N N fab, bab, bg
fa, ba, abag b N fab, babg
fa, ba, abag N b fab, babg
fa, ba, abag N N fab, bab, bg

0

BBB@

1

CCCA and

$ð!Þ ¼

fa, ba, abag N N fab, bab, bg
fa, ba, abag b N fab, babg
fa, ba, abag N b fab, babg
fa, ba, abag N N fab, bab, bg

0

BBB@

1

CCCA:

3.3 Output feedback trajectories

Output feedback trajectories form a critical tool for the
construction of controllers that eliminate the effects of
critical races. We start with a formal statement of the
model matching problem, referring to Figure 1.

Problem 3.8: Let ! and !0 be asynchronous sequen-
tial machines with the same input and output
alphabets, and assume that !0 is a stable state machine.
Find necessary and sufficient conditions for the exis-
tence of a controller C for which the closed-loop
machine !c is stably equivalent to !0. When C exists,
describe an algorithm for its construction.

Normally, the model !0 is a deterministic machine,
while ! may not be deterministic. In such case, the
closed-loop machine has a deterministic stable state
behaviour !c|s despite critical races of !, and the
controller C eliminates the effects of these critical
races. This means that every transition from one stable
state to another stable state of the closed-loop machine
!c is deterministic. However, the transient states that
!c passes while executing such a transition may not be
deterministic – they may differ from one execution of
the transition to another. Recall that transient states
are inconspicuous and have no impact on user
experience, since transitions occur very quickly (ide-
ally, in zero time).

Definition 3.9: A stable state transition is determinis-
tic if it always has the same stable state outcome,
irrespective of transient states passed during the
transition process.

To demonstrate how different transition chains can
lead to the same stable outcome of the closed-loop
machine !c, consider the following case. Let s be the
stable recursion function of the machine !, and let
(x 0, u) be a strongly detectable critical race of !¼
(A,Y,X, x0, f, h) with two distinct state outcomes
xp and xq, i.e. s(x 0, u)¼ {xp, xq}. Assume that xp and
xq are not output equivalent, so that yp :¼ h(xp) 6¼
yq :¼ h(xq). Further, let x00 be another state of the
machine !, and assume that there are input characters
u1, u2 such that s(xp, u1)¼x00 and s(xq, u2)¼x00. Under
these conditions, we can build a feedback controller
that induces a deterministic stable transition from the
state x 0 to the state x00, as follows. Assume that the
machine ! is at a stable combination with the state x 0,
when the input character v is applied. As (x 0, u) is
strongly detectable, our feedback controller can deter-
mine when ! reaches its next stable state. If that next
stable state is xp, then the feedback controller detects
the output value yp; it applies then the input value u1 to
!, leading ! to the state x00. Similarly, if the next stable
state is xq, then the feedback controller detects the
output value yq and applies the input value u2 to !,
again leading ! to the stable state x00. Thus, irrespec-
tive of the outcome of the critical race, the closed-loop
machine ends at a stable combination with the state x00.
The transition process, however, is different for each
outcome of the race. In formal terms, this process is
captured by a generalisation of the notion of feedback
trajectory (Venkatraman and Hammer 2006a, b, c)
discussed next.

In qualitative terms, a feedback trajectory repre-
sents a chain of transitions of the machine ! that starts
at a single state and ends at a single state. Each
intermediate step of the chain includes all possible
outcomes of the previous step, and thus may involve
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multiple states. Specifically, let ~X be the generalised
state set of the machine !. A feedback trajectory
consists of a string of subsets of pairs S0,S1, . . . ,Sp '
~X" A, with the following important feature: any next
stable state of a member of Si appears in a member of
Siþ1, i¼ 0, 1, . . . , p& 1. In this way, a feedback trajec-
tory represents a natural succession of transitions:
starting from the pair (x0, u0)2S0, the next generalised
stable state is x12 sg(x0, u0). This state appears in
a member of S1, say in the pair (x1, u1)2S1. Applying
the input character u1, we obtain a state x22 sg(x1, u1),
which appears in a member of S2. Continuing in this
way creates a string of transitions that takes ! from
the state x0 to a state xp in Sp. Individual transitions
along this string may involve critical races, but
a continuation is offered for each possible outcome.

A feedback trajectory forms the basis for deriving
a feedback controller, as follows. Being aware of the
machine’s generalised state, a feedback controller can
apply to ! an input character that is paired with the
machine’s state in one of the feedback trajectory’s
members, thus taking the machine to the next step of
the feedback trajectory. Eventually, this process allows
the feedback controller to induce a transition between
the beginning state and end state of the feedback
trajectory. Below, %x : ~X" A! ~X : %xðx, uÞ :¼ x is
the standard projection onto the generalised state set.

Definition 3.10: Let ! be an asynchronous machine
with the generalised state set ~X and the generalised
stable recursion function sg, and let x 0 and x00 be two
generalised states of !. An output feedback trajectory
from x 0 to x00 is a list of subsets S0,S1, . . . ,Sp ' ~X" A
of strongly detectable pairs with the following features:

(i) S0¼ (x 0, u0) for some u02A.
(ii) sg[Si]'%x[Siþ1], i¼ 0, . . . , p& 1.
(iii) sg[Sp]¼ x00.

Example 3.11: For the machine ! of Example 2.1 (see
also Examples 2.5, 2.7, 3.2 and 3.7), an output
feedback trajectory from the state x2 to the generalised
state x4 is S0¼ {(x2, a)}, S1¼ {(x1, b)}, S2¼ {(x4, b)}.

The notion of output feedback trajectory makes it
possible to state necessary and sufficient conditions for
the existence of a feedback controller, as follows.

Theorem 3.12: Let ! be an asynchronous machine,
and let x0 and x00 be two generalised states of !. Then,
the following two statements are equivalent:

(i) There is an output feedback controller that
drives ! through a deterministic stable transi-
tion from x0 to x00 in fundamental mode
operation.

(ii) There is an output feedback trajectory from x0

to x00.

Proof: Let !g ¼ ðA,Y, ~X, x0, sg, hgÞ be a generalised
realisation of !. Assume that ! is at a stable combi-
nation with the state x 0, having reached it by a strongly
detectable transition. Now, assume that (ii) is valid,
and let {S0,S1, . . . ,Sp} be an output feedback trajec-
tory from x 0 to x00. We construct an output feedback
controller C that takes ! from a stable combination
with x 0 to a stable combination with x00.

Referring to Figure 2, recall that C has two inputs:
the output value y of ! and the external command
character v. The latter commands the controller to
induce a transition of ! from x 0 to x00. Let W'A be
the set of external input characters that command this
transition. To clarify the various relations, we use the
notation C(x 0, x00,W ) for the controller: a character of
W applied at the command input v causes the
controller to generate an input string that takes !
through a string of stable and strongly detectable
transitions starting at x 0 and always ending at x00.

As indicated in Figure 2, the controller C(x 0, x00,W )
is a combination of an observer # and a control unit F.
The observer # ¼ ðA" Y, ~X,Z, z0, %, I Þ is a stable state
input/state machine with two inputs: the input u2A of
! and the output y2Y of !. The state set Z of # is
identical to the generalised state set ~X of !; the initial
condition z0 is identical to that of !, namely, z0¼x0;
and the stable recursion function % of # is given by (6).
Denoting by ! the output value of #, it follows from
(6) that ! is equal to the latest stable generalised
state reached by ! through a strongly detectable
transition. Thus, at the start of our process, the output
of # is !¼ x 0.

The control unit F is an asynchronous machine
F ¼ ðA" ~X,A,&, "0,(, )Þ with two inputs: the external
command input v2A and the output ! 2 ~X of the
observer #. Recalling the length p of our output
feedback trajectory, it turns out from the construction
of F described below that the state set of F consists of
pþ 2 states, which we denote by &¼ {"0, "1, "

1(x 0,W ),
"2(x 0,W ), . . . , "p(x 0,W )}. The control unit F stays in its
initial state "0 until the observer # indicates that ! has
reached a stable combination with the generalised
state x 0. Then, F switches to the state "1; in this state,
F is ready for a command input character v2W.
The transition function ( of F is constructed as
follows. Let U(x 0) be the set of all input characters
that form stable combinations with the generalised
state x 0; then, set

(ð"0, ðz, vÞÞ :¼ "0 for all ðz, vÞ 2 ~X" A n fx0 "Uðx0Þg,
(ð"0, ðx0, vÞÞ :¼ "1 for all v 2 Uðx0Þ:

While in the state "0, the control unit F is transparent –
it applies to ! an input character identical to the
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external command input character it receives. Thus, we
set the output function of F as follows:

)ð"0, ðz, vÞÞ :¼ v for all ðz, vÞ 2 ~X" A:

While in the state "1, the control unit F is transparent
for all external input characters, except for characters
v2W, as these initiate the required transition.
Consequently, we set

)ð"1, ðx0, vÞÞ :¼ v for all v =2 W:

For a character v2W, the control unit applies to ! one
of the characters of the set U(x 0), say u0 2U(x 0), so that
! continues for now to stay in a stable combination
with the state x 0:

)ð"1, ðx0, vÞÞ :¼ u0 for all v 2W:

This assignment helps achieve fundamental mode
operation of the combined system.

When an external command character v2W is
received while F is at the state "1, the control unit
F starts to create an input string to drive ! to a stable
combination with the generalised state x00. To construct
this string, we employ the given output feedback
trajectory {S0,S1, . . . ,Sp}. Suppose S0¼ {(x 0, u1)},
where u12A. Upon receiving the command character
v, F moves from "1 to the state "1(x 0,W ); upon
reaching this state, F applies the input character u1 to
!. This is accomplished by setting

(ð"1, ðx0, vÞÞ :¼ "1 for all v =2 W,

(ð"1, ðx0, vÞÞ :¼ "1ðx0,W Þ for all v 2W,

)ð"1ðx0,W ÞÞ :¼ u1:

By the definition of an output feedback trajectory,
the input character u1 moves ! to a stable combination
with a generalised state x12 sg(x 0, u1) through a
strongly detectable transition. Thus, the observer #
outputs the character x1 immediately after ! has
reached its next stable combination (x1, u1). Upon
detecting the output x1 of #, the controller F moves to
the state "2(x 0,W ). To this end, set

(ð"1ðx0,W Þ, ðz, vÞÞ :¼ "1ðx0,W Þ for all ðz, vÞ 2
~X" A n fx1 "W g,

(ð"1ðx0,W Þ, ðx1, vÞÞ :¼ "2ðx0,W Þ for all v 2W:

By the definition of an output feedback trajectory,
there is a pair (x1, u2)2S1. When F reaches the state
"2(x 0,W ), it needs to apply the input character u2 to the
machine !, so we set

)ð"2ðx0,W ÞÞ :¼ u2:

This process continues in a step-by-step fashion.
Consider the step r, where 1* r* p&1; denote by xr
the stable generalised state of ! at this point and by
"r(x 0,W ) the state of the control unit F. Recalling that
all transitions along an output feedback trajectory are
strongly detectable by definition, the current stable
combination of ! at the generalised state xr was
reached through a strongly detectable transition, and
hence the observer # shows xr as its output. When F
detects the output xr of #, it moves to the state
"rþ1(x 0,W ), as follows:

(ð"rðx0,W Þ, ðz, vÞÞ :¼ "rðx0,W Þ for all ðz, vÞ 2
~X" A n fxr "Wg,

(ð"rðx0,W Þ, ðxr, vÞÞ :¼ "rþ1ðx0,W Þ for all v 2W:

Next, using again the definition of an output feedback
trajectory, there is a pair (xr, urþ1)2Sr. Upon reaching
the state "rþ1(x 0,W ), the control unit F needs to apply
to ! the input character urþ1; to this end, set

)ð"rþ1ðx0,W ÞÞ :¼ urþ1:

The character urþ1 makes ! move to a stable combi-
nation with a generalised state xrþ12 sg(xr, urþ1)
through a strongly detectable transition. After p&1
such steps, this process takes ! to a stable combination
with the generalised state x00 through a strongly
detectable transition, as desired. After reaching x00,
the control unit returns to its initial state "0 when the
command input character changes to a character
outside W:

(ð"pðx0,W Þ, ðx00, vÞÞ : ¼ "pðx0,W Þ for v 2W,

(ð"rðx0,W Þ, ðx00, vÞÞ :¼ "0 for all v =2 W:

This concludes the construction of the control unit F.
Note that with this control unit, the closed-loop
machine operates in fundamental mode.

To prove the converse direction, assume that
condition (i) of the theorem is valid, and let F be
a control unit that takes ! from a stable combination
with the generalised state x 0 to a stable combination
with the generalised state x00 in fundamental mode
operation. Note that only the initial generalised state x 0

and the final generalised state x00 in this process are
deterministic; intermediate steps encountered along the
way may involve critical races and hence may not be
deterministic. Denote by p the largest number of
consecutive input characters that F applies to ! in this
transition process. We build now an output feedback
trajectory {S0,S1, . . . ,Sp} as follows. Let u1 be the first
input character that F applies to ! after receiving
an external command character v2W, and set
S0 :¼ (x 0, u1). Next, define the set of generalised states
X1 :¼ sg(x

0, u1). For each member x2X1, let u2(x) be
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the next input value applied by F to the machine !.
Define the set S1 :¼ {(x, u2(x)) : x2X1}. Continuing
with this process to step r, where r2 {1, 2, . . . , p&1},
set Xrþ1 :¼ sg[Sr]. For each generalised state x2Xrþ1,
let urþ2(x) be the next input character that F applies to
!. Define the set of pairs Srþ1 :¼ {(x, urþ2(x)) :
x2Xrþ1}. According to (i), the closed-loop machine
operates in fundamental mode; this implies that all
transitions encountered along the way are strongly
detectable. Hence, the list of subsets {S0,S1, . . . ,Sp}
forms an output feedback trajectory from x 0 to x00, and
our proof concludes. œ

Example 3.13: Consider the machine ! with the
generalised realisation of Example 2.7. Using the
output feedback trajectory S0¼ {(x2, a)}, S1¼
{(x1, b)}, S2¼ {(x4, b)} of Example 3.11, we follow the
proof of Theorem 3.12 to construct a corresponding
control unit F. Referring to Figure 2, recall that
F ¼ ðA" ~X,A,&, "0,(, )Þ has two inputs: the exter-
nal command input v2A and the output ! 2 ~X of
the observer #. Assume that the set of external
command characters W that activate F is the sin-
gle character W in this case. Note that the
length of the output feedback trajectory is p¼ 2 here,
so F has 4 states; it’s state set is &¼ {"0, "1, "

1(x2,W ),
"2(x2,W )}.

Now, the control unit F stays in its initial state
"0 until the observer # indicates that ! has reached
a stable combination with the state x2. Then, F switches
to the state "1, getting ready for the command input
character W. In our case, the set of input characters of
! that form stable combinations with the state x2 is
U(x2)¼ {b}. The transition function ( of F is then set to

(ð"0, ðz, vÞÞ :¼ "0 for all ðz, vÞ 2 ~X" A n fx2 " bg,
(ð"0, ðx2, bÞÞ :¼ "1:

While in the state "0, the control unit F applies to ! the
input character it receives, namely,

)ð"0, ðz, vÞÞ :¼ v for all ðz, vÞ 2 ~X" A:

While in the state "1, the control unit F is transparent
for all external input characters, except for the
character b. At b, the controller F applies to !
a control input character of the set U(x2); as this set
consists of the single character b here, we can set in
this case

)ð"1, ðx0, vÞÞ :¼ v for all v 2 A:

When the external command character W is
received while F is at the state "1, the control unit F
starts to create an input string that drives ! to a stable
combination with the final state x4 of our output

feedback trajectory. Considering that S0¼ {(x2, a)},
we set

(ð"1, ðx2, vÞÞ :¼ "1 for all v 6¼W,

(ð"1, ðx2,W ÞÞ :¼ "1ðx2,W Þ,
)ð"1ðx2,W ÞÞ :¼ a:

According to our output feedback trajectory, the
input character amoves ! to a stable combination with
the state x1 through a strongly detectable transition.
As a result, the observer # outputs the character x1

immediately after ! has reached its next stable state.
Upon detecting the output x1 of #, the controller F
moves to the state "2(x2,W ); to this end, set

(ð"1ðx2,W Þ, ðz, vÞÞ :¼ "1ðx2,W Þ for all ðz, vÞ 2
~X" A n fx1 "Wg,

(ð"1ðx2,W Þ, ðx1,W ÞÞ :¼ "2ðx2,W Þ:

According to our output feedback trajectory, the
next step of the transition string requires F to apply the
control input character b to the machine !, so we
assign

)ð"2ðx2,W ÞÞ :¼ b:

This input character then takes ! to the desired
generalised state x4. In this example, we simply leave
the machine ! at this state, so we let F remain at its last
state by setting

(ð"2ðx2,W Þ, ðz, vÞÞ :¼ "2ðx2,W Þ for all ðz, vÞ 2 ~X" A:

The next objective is to characterise the set of all
pairs of generalised states that can be connected by
an output feedback trajectory. This characterisation
will allow us to determine the class of all models that
can be matched by controlling a given machine !.
We start with the following operation of ‘meet’,
which was introduced in Venkatraman and Hammer
(2006a, b, c). In a forthcoming algorithm, the meet
helps us determine whether or not a particular pair
of states can be connected by an output feedback
trajectory.

Definition 3.14: Let A be an alphabet and let * be
a character that is not 0 nor 1 and is not included in A.
The meet is a binary operation^ involving a string
a2Aþ and the characters 0 and 1, and is defined as
follows:

0 ^ 0 :¼ 0; 0 ^ 1 :¼ 0; 1 ^ 0 :¼ 0; 1 ^ 1 :¼ 1,

0 ^ a :¼ 0; a ^ 0 :¼ 0; 1 ^ a :¼ *; a ^ 1 :¼ *:

The meet of two vectors is the vector of the meets of
the corresponding components.
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Remark 2: The special character * of Definition 3.14
is, in fact, necessary only when dealing with systems
that include infinite cycles. As the systems under
consideration in the present article have no infinite
cycles, the parts involving * can be omitted from the
definition.

The next algorithm is similar to Algorithm 4.22 of
Venkatraman and Hammer (2006c). It builds a matrix
of zeros and ones that characterises all pairs of
generalised states of ! that can be connected by an
output feedback trajectory. In qualitative terms, the
algorithm works on the generalised stable reachability
matrix $(!), which characterises all stable and detect-
able transitions of the asynchronous machine !.
Initially, the algorithm singles out all transitions that
involve no critical races. For transitions that involve
critical races, the algorithm checks backwards from
a potential end state to a potential beginning state in
a step-by-step manner, to determine whether all
outcomes of intermediate steps lead to the same final
state.

Algorithm 2: Let ! be a an asynchronous machine
with the generalised state set ~X ¼ fx1, . . . , x&g, and let
$(!) be the generalised stable reachability matrix of !.

Step 1: Replace all entries of N in the matrix $(!) by
the number 0; denote the resulting matrix by K1.
Step 2: Perform (a) below for each i, j¼ 1, . . . ,&; then
continue to (b):

(a) If the entry K1
ij includes a string of Aþ that does

not appear in any other entry of the same row i,
then perform the following operations: Delete
any string included in K1

ij from all entries of
row i of the matrix K1. Replace all resulting
empty entries, if any, by the number 0. Replace
entry K1

ij by the number 1.
(b) Denote the resulting matrix by K0(1). Delete

from the matrix K0(1) all strings of Aþ whose
length is bigger than 1. Replace all empty
entries, if any, by the number 0. Denote the
resulting matrix by K(1). Set k :¼ 1.

Step 3: If k 6¼&, then continue to Step 4. Otherwise,
perform the following operations: If every entry of the
matrix K(&) is either 0 or 1, then set Kg(!) :¼K(&) and
terminate the algorithm. If K(&) includes characters
other than 0 or 1, then rename K(1) :¼K(&), set k :¼ 1,
and continue to Step 4.
Step 4: If all entries of row k of the matrix K(k)
are 1 or 0, then set K(kþ1) :¼K(k), and repeat from
Step 3 with the value kþ1 for k. Otherwise, proceed to
Step 5.

Step 5: Perform the following for every character
u2A that appears in row k of the matrix K(k):

(a) Denote by j1, j2, . . . , jq the entries of row k of
K(k) that include u. Let J(u) be the meet of
rows j1, j2, . . . , jq of the matrix K(k).

(b) If J(u) has no entries other than 0 or 1, then
delete u from all entries of row k of the
matrix K(k); set all empty entries, if any, to the
value 0.

(c) If J(u) has no entries of 1, then return to Step 4.
Otherwise, continue to (d).

(d) If J(u) has entries of 1, then let i1, . . . , ir be the
entries of J(u) having the value 1. Let S(k) be
the set of rows of K(k) that consists of row k
and of every row that has the number 1 in
column k of K(k). In the matrix K(k), perform
the following operations on every row of S(k):

(i) Delete from the row all occurrences of
input characters that appear in entries
i1, . . . , ir of the row.

(ii) Replace entries i1, . . . , ir of the row by the
number 1.

(iii) If any entries of K(k) remain empty, then
replace them by the number 0. Return to
Step 4.

Definition 3.15: The outcome Kg(!) of Algorithm 2 is
called the generalised skeleton matrix of the machine !.

It was shown in Venkatraman and Hammer (2006c)
that Algorithm 2 has polynomial computational
complexity. The matrix Kg(!) characterises all pairs
of generalised states that can be connected by an
output feedback trajectory, as follows.

Proposition 3.16: Let ! be an asynchronous machine
with the generalised skeleton matrix Kg(!), and let xi

and xj be two generalised states of !. Then the following
two statements are equivalent:

(a) There is an output feedback trajectory from xi

to xj.
(b) The (i, j) entry of Kg(!) is 1.

The proof of Proposition 3.16 is similar to the
proof of Proposition 4.2 of Venkatraman and Hammer
(2006c), except for some minor simplifications that
originate from the fact that our present machine ! has
no infinite cycles.

Example 3.17: We demonstrate Algorithm 2 on an
asynchronous machine ! with the generalised state set
X¼ {x1, x2, x3, x4, x5}, the input alphabet A¼ {a, b},
and the generalised stable transition function sg
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described by the following table of transitions.
We assume that all transitions are detectable.

The matrix of detectable stable transitions is then

$ð!Þ ¼

b a a ab fab, aba, abab, ababag
N a N b fb, ba, bab, babag
N N a b fba, bab, babag
N N N b fa, ab, aba, ababg
N N N N fa, b, ab, ba, aba, bab, abab, babag

0

BBBBBB@

1

CCCCCCA
:

Following Steps 1 and 2 of Algorithm 2, we obtain the
matrix

Kð1Þ ¼

1 a a 0 1

0 1 0 0 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0

BBBBBB@

1

CCCCCCA
:

Referring to Step 5 of the algorithm, we can see that
row 1 includes characters that are not 0 or 1 in entries
2 and 3. The meet of rows 2 and 3 of the matrix K(1) is
J(a)¼ (0, 0, 0, 0, 1). As the entries of J(a) are all either
0 or 1, we proceed to part (b) of Step 5, where we
obtain that S(1) is rows 1 and 5. Applying the
remaining operations of Step 5, we obtain a matrix
of zeros and ones, terminating the algorithm with

Kgð!Þ ¼

1 0 0 0 1

0 1 0 0 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0

BBBBBB@

1

CCCCCCA
:

Example 3.18: Consider the machine ! of
Example 2.1; its generalised stable reachability matrix
$(!) was derived in Example 3.7. Applying Algorithm 2
to $(!), we obtain the generalised skeleton matrix

Kgð!Þ ¼

1 0 0 1

1 1 0 1

1 0 1 1

1 0 0 1

0

BBB@

1

CCCA:

The process of calculating Kg(!) also yields the
corresponding output feedback trajectories, as follows:
x1! x4: {{(x1, b)}, {(x4, b)}}; x2!x1: {{(x2, a)},
{(x1, a)}}; x2! x4: {{(x2, a)}, {(x1, b)}, {(x4, b)}};
x3! x1: {{(x3, a)}, {(x1, a)}}; x3! x4: {{(x3, a)},
{(x1, b)}, {(x4, b)}}; and x4!x1: {{(x4, a)}, {(x1, a)}}.

4. Controller design

In the present section, we describe the construction of
model matching controllers. We start with some
notation. Let S1 and S2 be two sets, and let P(S1) be
the power set of S1 (i.e. the set of all subsets of S1). For
a function g :S1!S2, denote by gI :S2!P(S1) the
inverse set function of g. Specifically, for an element
s0 2S2, the set gI(s0) consists of all elements s2S1

satisfying g(s)¼ s0.
We turn now to the generalisation of several

notions introduced in Geng and Hammer (2004,
2005), starting with the notion of output equivalence
list. The output equivalence list characterises the states
of the controlled machine ! that produce the same
output character as a specific state of the model !0.

Definition 4.1: Let ! be an asynchronous machine
with the generalised realisation !g ¼ ðA,Y, ~X, sg, hgÞ
and let !0¼ (A,Y,X0, f 0, h0) be an asynchronous
machine with the state set X0¼ {#1, . . . , #q}. The
generalised output equivalence list of ! with respect to
!0 is Eg(!,!0) :¼ {E1, . . . ,Eq}}, where Ei :¼ hIgh

0ð#iÞ,
i ¼ 1, . . . , q.

In the notation of the definition, all generalised
states of ! that belong to the set Ei produce the same
output value as the state #i of !0. In general, the
members of a generalised output equivalence list are
not always disjoint sets.

Example 4.2: We calculate the generalised output
equivalence list of the machine ! of Example 2.1 with
respect to the model !0¼ (A,Y,X0, #0, f 0, h0) described
by the following table of transitions:

For the machine !, we use the generalised realisation
!g derived in Example 2.7. As we can see, the output
character corresponding to the state #1 of the model !0

X a b

x1 {x2, x3} x1

x2 x2 {x4, x5}
x3 x3 x4

x4 x5 x4

x5 x5 x5

X0 a b Y

#1 #1 #3 1
#2 #1 #2 0
#3 #1 #3 0
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is the character 1. According to the table of transitions
provided in Example 2.7, the set of states of the
generalised realisation !g that produce the output
character 1 is {x2, x3, x4}; consequently, E1¼
{x2, x3, x4}. Similarly, E2¼ {x1}, and E3¼ {x1}.

Definition 4.3: Let ! be an asynchronous machine,
and let '1 and '2 be two non-empty sets of generalised
states of !. The generalised reachability indicator
rg(!,'1,'2) is 1 if there is an output feedback
trajectory from every member of '1 to a member of
'2; otherwise, rg(!,'1,'2) :¼ 0.

The generalised reachability indicator can be
computed from the generalised skeleton matrix.

Example 4.4: For the machine ! whose generalised
skeleton matrix Kg(!) is given in Example 3.18,
consider the two subsets of states '1¼ {x1, x2} and
'2¼ {x2, x4}. As entries (1, 4) and (2, 2) of Kg(!) are 1,
it follows that rg(!,'1,'2)¼ 1.

Definition 4.5: Let ! be an asynchronous machine,
and let '¼ {'1, . . . ,'q} be a list of non-empty sets of
generalised states of !. The generalised fused skeleton
matrix Dg(!,') is a q"q matrix whose (i, j) entry is
Dgijð!,'Þ :¼ rgð!,'i,'jÞ, i, j ¼ 1, 2, . . . , q.

Example 4.6: Continuing with Example 4.4, let
' :¼ {'1,'2}. Then, a direct examination of Kg(!)
yields

Dgð!,'Þ ¼
1 1

1 1

$ %
:

Definition 4.7: Let ! be an asynchronous machine
and let '¼ {'1, . . . ,'q} and W¼ {W1, . . . ,Wq} be
two ordered lists of sets of generalised states of !.
The length of the list ' is the number q of its members.
The list W is a subordinate list of ', denoted byW,',
if W has the same length as ' and Wi''i for all
i¼ 1, . . . , q. A list is deficient if one of its members is
the empty set.

4.1 Existence of controllers

We turn now to the derivation of necessary and
sufficient conditions for the existence of model
matching controllers. Given two p"p numerical matri-
ces A and B, the expression A+B indicates that every
entry of the matrix A is not less than the corresponding
entry of the matrix B, i.e. Aij+Bij for all i, j¼ 1, . . . , p.
The following statement is analogous to Lemma 49 of
Geng and Hammer (2005) and has a similar proof.
It provides a necessary condition for model matching
which, as we show later, is sufficient as well.

Lemma 4.8: Let !¼ (A,Y,X, x0, s, h) and !0¼
(A,Y,X0, #0, s0, h0) be asynchronous machines, where !0

is a minimal stable state machine with the state set
X0¼ {#1, . . . , #q} and the initial condition #0¼ #d. Assume
that there is an output feedback controller C for which
the closed-loop machine !c is stably equivalent to !0 and
operates in fundamental mode. Then, there is a non-
deficient subordinate list ' of the generalised output
equivalence list Eg(!,!0) for which Dg(!,')+K(!0) and
x02'd.

The following statement, which is the main result of
the present section, shows that the conclusion of
Lemma 4.8 is also a sufficient condition for the
existence of model matching controllers.

Theorem 4.9: Let ! and !0 be asynchronous
machines, where !0 is a minimal stable state machine
with the state set X0¼ {#1, . . . , #q} and the initial
condition #0¼ #d, and let K(!0) be the skeleton matrix
of !0. Then, the following two statements are equivalent:

(i) There is a controller C for which !c and !0 are
stably equivalent, with !c operating in funda-
mental mode.

(ii) There is a non-deficient subordinate list ' of the
generalised output equivalence list Eg(!,!0) for

which Dg(!,')+K(!0) and x02'd.

Furthermore, when (ii) holds, the controller C can be
designed as a combination of an observer # and a control
unit F as depicted in Figure 2, with # being given by (6).

Proof: Let !¼ (A,Y,X,x0, s, h) and !0¼
(A,Y,X0, #0, s0, h0) be stable state realisations of the
two machines. In view of Lemma 4.8, (i) implies (ii);
thus, it only remains to show that (ii) implies (i).
Assume then that (ii) is valid, and let '¼ {'1, . . . ,'q}
be a non-deficient subordinate list of Eg(!,!0) for
which Dg(!,')+K(!0) and x02'd. Using ', we build
a controller C for which the closed-loop machine !c is
stably equivalent to !0 and operates in fundamental
mode. We build the controller C according to Figure 2,
so C is a combination of an observer # and a control
unit F, with the observer # being given by (6). Thus,
our proof will conclude upon the construction of the
control unit F, which is an asynchronous machine with
two inputs: the external command input v2A and the
output ! 2 ~X of the observer #. Accordingly, we can
write F ¼ ðA" ~X,A,&, "0,(, )Þ.

Let w0 be the external command input character of
the closed-loop machine !c. Assume that the model !0

is at a stable combination at its state #i with the input
character w0, while ! is at a stable combination at its
generalised state x2'i with the input character u0.
Recalling that ' is a subordinate list of the generalised
output equivalence list Eg(!,!0), the inclusion x2'i
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implies that the output character of ! is the same as
the output character of !0. Also, for the closed-loop
machine to operate in fundamental mode, the state x
must be the outcome of a stable and strongly detect-
able transition of !.

Assume now that the external input character
switches from w0 to the character w2A. Such
a switch causes the model !0 to move to the next
stable state #j¼ s0(#i,w). The presence of this transition
implies that Kij(!

0)¼ 1; consequently, as Dg(!,')+
K(!0), we have that Dgijð!,'Þ ¼ 1 as well. Hence, by
the definition of Dg(!,'), the inclusion x2'i entails
that there is an output feedback trajectory from x to
a member of 'j, say to the generalised state x 0 2'j.
Then, following the process described in the proof of
Theorem 3.12, build a feedback controller C(x, x0,w),
which takes the machine ! from the current stable
combination with x to a stable combination with x 0 in
fundamental mode operation, upon receiving the
command character w. By the definition of an output
equivalence list, the output character of the machine
! at the end of this process will be h(x 0)¼ h['j]¼ h0(#j),
i.e. it will be equal to the output of the model !0.

Now, given two controllers C(x1, x2,w1) and
C(x3, x4,w2) of the kind constructed in the proof of
Theorem 3.12, define a combination controller C_ :¼
C(x1, x2,w1)_C(x3, x4,w2) which operates as follows:
C_ is equal to C(x1, x2,w1) at the pair (x1,w1) and is
equal to C(x3, x4,w2) at the pair (x3,w2); at all other
pairs, C_ is transparent, applying to ! the external
command input character of the closed-loop machine.
In this notation, a controller C that solves our model
matching problem is given by the combination

C :¼
_

x2'1['2[...['q

w2A

Cðx, s0ðx,wÞ,wÞ:

According to the proof of Theorem 3.12, all controller
components C(x, s0(x,w),w) include the observer # and
operate in fundamental mode; consequently, the same
is true for the controller C. This concludes our
proof. œ

The construction of the controller C described in
the proof of Theorem 4.9 is based on the subordinate
list ' mentioned in condition (ii) of the Theorem. Such
a subordinate list can be obtained by an algorithm that
resembles Algorithm 54 of Geng and Hammer (2005).
In qualitative terms, the algorithm operates as follows.
Consider the generalised output equivalence list
Eg(!,!0) :¼{E1, . . . ,Eq} of the machine ! with respect
to the model !0, where !0 has the state set
{#1, #2, . . . , #q}. To simulate the response of !0 when
it occupies the state #i, the machine ! can be in any
generalised state belonging to the member Ei of the
generalised output equivalence list. Assume now that

!0 transitions to the state #j; then, to produce the same
output value, ! must move to a state belonging to Ej.
However, some states of Ei may not permit a transition
to a state of Ej. Such states cannot be used when
attempting to make the machine ! simulate the
behaviour of !0, which includes a transition from #i

to #j. The following algorithm eliminates all such
unsuitable states from the output equivalence list,
creating a subordinate list that is used in the solution of
the model matching problem.

Algorithm 3: Let ! and !0 be asynchronous
machines, where !0 is a minimal stable state machine
with the skeleton matrix K(!0), and let Eg(!,!0)¼
{E1, . . . ,Eq} be the generalised output equivalence list
of ! with respect to !0. The following steps yield
a decreasing chain '(0)-'(1)- . . . -'(r) of subor-
dinate lists of Eg(!,!0). The members of the list
'(i)¼ {'1(i), . . . ,'q(i)} are subsets of the generalised
state set ~X of !.

Start step: Set k :¼ 0 and '(0) :¼Eg(!,!0).
Recursion step: Assume that a subordinate list
'(k)¼ {'1(k), . . . ,'q(k)} of Eg(!,!0) has been con-
structed for an integer k+ 0. For each pair of integers
i, j2 {1, . . . , q}, let Sij(k) be the set of all states x2'i(k)
from which there is no feedback trajectory ending at
a state of 'j(k). Then, denote

TijðkÞ :¼
SijðkÞ if Kijð!0Þ ¼ 1;

1 if Kijð!0Þ ¼ 0:

(

Now, using n to denote set difference, define the subsets

ViðkÞ :¼
[

j¼1,...,q
TijðkÞ, i ¼ 1, . . . , q, and

'iðkþ 1Þ :¼ 'iðkÞ n ViðkÞ, i ¼ 1, . . . , q:

Then, the next subordinate list in our decreasing chain
is given by

'ðkþ 1Þ :¼ '1ðkþ 1Þ, . . . ,'qðkþ 1Þ
" #

:

Test step: The algorithm terminates if the list
'(kþ 1) is deficient or if '(kþ 1)¼'(k); otherwise,
repeat the Recursion Step, replacing k by kþ 1.

The following statement, which adapts
Corollary 66 of Geng and Hammer (2005) to our
present framework, indicates that Algorithm 3 gen-
erates an appropriate subordinate list, whenever such
a list exists.

Theorem 4.10: Let '(r) be the subordinate list of
Eg(!,!0) generated by Algorithm 3. Then, in the
notation of Theorem 4.9, the following two statements
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are equivalent:

(i) There is a controller C for which !c and !0 are
stably equivalent, with !c operating in funda-
mental mode.

(ii) The list '(r) is non-deficient and x02'd.

Furthermore, when (ii) is valid, then Dg(!,'(r))+
K(!0).

The proof of Theorem 4.10 is analogous to the
proof of Corollary 66 of Geng and Hammer (2005).
By combining Algorithm 3 with the proof of
Theorem 4.9, we obtain a constructive procedure for
solving the model matching problem and overcoming
the effects of critical races on input/output asynchro-
nous machines. The essential step in this procedure is
the derivation of a generalised realisation.

5. Example

Consider the problem of designing a controller for the
machine ! of Example 2.1 to match the model !0¼
(A,Y,X0, #0, f 0, h0) of Example 4.2. Let x0¼ x2 be the
initial state of !, while #0¼ #1 is the initial state of !0.
The generalised stable machine !g associated with !
was calculated in Example 2.7, and the generalised
skeleton matrix of ! was derived in Example 3.18.
The skeleton matrix of the model !0 can be derived
from the table of transitions of Example 4.2, and is
given by

Kð!0Þ ¼
1 0 1

1 1 1

1 0 1

0

B@

1

CA:

The generalised output equivalence list of ! with
respect to !0 was derived in Example 4.2, and is given
by Eg(!,!0)¼ {E1,E2,E3}, where E1¼ {x2, x3, x4}, and
E2¼ {x1}, E3¼ {x1}. Algorithm 3 then terminates at
the first step, yielding the subordinate list '(1)¼
{'1(1),'2(1),'3(1)}, where '1(1)¼ {x2, x3, x4},
'2(1)¼ {x1}, and '3(1)¼ {x1}. The generalised fused
skeleton matrix can then be calculated and is given by

Dgð!,'ð1ÞÞ ¼
1 1 1

1 1 1

1 1 1

0

B@

1

CA:

A direct examination shows that Dg(!,'(1))+K(!0);
consequently, by Theorem 4.9, there is a controller C
that solves the present model matching problem. We
calculate now such a controller C.

Recall that C is a combination of an observer # and
a control unit F, as described in Figure 2. The structure
of the observer # is given by (6). The states of the

observer # are {x1, x2, x3, x4}, reflecting the generalised
states of !; the initial state of # is x2, equal to the
initial state of !. According to Example 2.5, all pairs of
!g are strongly detectable. Consequently, the transi-
tion table of # is identical to the transition table of !g

given in Example 2.7. Thus, it only remains to
construct the control unit F, which we do next.

The construction of F follows the process and the
notation of the proof of Theorem 3.12, which indicates
that F ¼ ðA" ~X,A,&, "0,(, )Þ has the state set
{"0, "1, "

1(x2, #1, b), "1(x1, #3, a), "1(x4, #1, b)}, where "0 is
the initial state of F. In our case, the action of the
control unit starts from the initial state of !, so we can
combine the state "1 with the state "0; thus, the state set
of F is here

& ¼ "0, "
1ðx2, #1, bÞ, "1ðx1, #3, aÞ, "1ðx4, #1, bÞ

" #
:

Now, as the model is in a stable combination at the
initial state #1, the external command input character
must be a. For the machine !, we have U(x2)¼ {b}, so
F must generate the character b as input to ! in the
initial state. Thus,

(ð"0, ðx2, aÞÞ :¼ "0, )ð"0Þ :¼ b:

Next, assume that the external command input
character switches from a to b. This would make the
model !0 switch to the state #3 with the output value
h0(#3)¼ 0. The machine ! must then be moved from x2

to a generalised state of the subordinate list member
'3(1)¼ {x1}. According to the transition table of !g

(Example 2.7), we have sg(x
2, a)¼ x1, so the control

unit F must generate the character a as input to !:

(ð"0, ðx2, bÞÞ ¼ "1ðx2, #1, bÞ,

(ð"1ðx2, #1, bÞ, ðx2, bÞÞ ¼ "1ðx2, #1, bÞ,

)ð"1ðx2, #1, bÞÞ ¼ a:

Further, assume that the model is at the stable
combination (#3, b) with ! being at the stable combi-
nation (x1, a), when the external input character
switches to a. This causes the model to move to the
state s0(#3, a)¼ #1. To simulate this transition, the
system ! must move from x1 to a state of the set
'1(1)¼ {x2, x3,x4}. An examination of the transition
table of !g (Example 2.7) shows that the only available
option for !g is a move from x1 to the generalised state
x4; this requires an application of the input character
b to !. Note that the resulting transition is a critical
race: ! will move to one of the states x2 or x3 – it does
not matter which one of these states ! actually reaches.
To accomplish this transition, the recursion function
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of F is constructed as follows:

(ð"1ðx2, #1, bÞ, ðx1, aÞÞ ¼ "1ðx1, #3, aÞ,

(ð"1ðx1, #3, aÞ, ðx1, aÞÞ ¼ "1ðx1, #3, aÞ,

)ð"1ðx1, #3, aÞÞ ¼ b:

Continuing with our construction, consider the case
where the model is at the stable combination (#1, a)
with ! being at the stable combination (x4, b), when
the external input character switches to b. This
causes the model to move to the state s0(#1, b)¼ #3.
Therefore, the machine ! must move to a state of the
set '3(1), i.e. to the state x1 in this case. According to
the transition table of !g (Example 2.7), F must
generate a as the input character of ! in order to
accomplish this transition. To this end, we set

(ð"1ðx1, #3, aÞ, ðx4, bÞÞ ¼ "1ðx4, #1, bÞ,

(ð"1ðx4, #1, bÞ, ðx4, bÞÞ ¼ "1ðx4, #1, bÞ,

)ð"1ðx4, #1, bÞÞ ¼ a:

The recursion function and the output function of
F are then completed in this manner. Note that some
valid pairs of the controlled machine ! may not be
necessary to match the desired model; such pairs are
not activated by the closed-loop machine !c. Finally,
employing standard techniques for the reduction of
asynchronous machines (e.g. Kohavi 1970), the control
unit F can be implemented using the following two
state machine. In the diagram, the notation "0; b
indicates that the controller produces output b in state
"0, and "1; a indicates that the controller produces the
output a in state "1.

To summarise, we have presented a constructive
methodology for the design of output feedback
controllers that solve the model matching problem
for input/output asynchronous machines with critical
races. The vital step in this methodology is the
derivation of a generalised realisation of the controlled
machine. The generalised realisation makes it possible

to employ control techniques of deterministic asyn-
chronous machines for the control of non-deterministic
asynchronous machines.
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