
Abstract –– The classical control principle of using high
forward gain to improve tracking accuracy of linear control
systems is revisited in a nonlinear context. It leads to a
simple methodology for the design of nonlinear tracking
systems and to a solution of certain nonlinear approximate
model matching problems.

I. INTRODUCTION

A. Ideas from classical control theory.

An important design principle of classical control theory

is the use of high forward gain in the following Black

diagram ([2]).

e+

–

A
u y

Σ

(1)

Here, Σ  is the system being controlled, and  A  is an ideal

amplifier with gain  A. The use of unity feedback in the

diagram requires that the number of outputs of  Σ  be equal

to the number of inputs (single input/single output is used

in classical control). Letting ΣA  be the input/output

relation of the closed loop (1), a simple calculation yields

ΣA = Σ[(1/A)I + Σ]– 1. (2)

In fact, (2) is valid even when  Σ  is a nonlinear system.

Ignoring for a moment mathematical rigor (see later

sections for a rigorous discussion), one may presume that

limA→∞ [(1/A)I + Σ] = Σ. (3)

If (3) is accepted as correct and substituted into (2), and if

Σ  is continuous and invertible, one obtains

limA→∞ Σ[(1/A)I + Σ]– 1 = ΣΣ– 1 = I. (4)

In other words, when  A  is sufficiently large, we have

y ≈ u, (5)

i.e., for large  A, Configuration 1 is an accurate tracking

system, as long as  Σ  is invertible and strictly causal.

Great caution has to be exercised when drawing such far

reaching conclusions. A brief examination of (4) reveals a

major difficulty in case the system  Σ– 1  is not Bounded-

Input Bounded-Output (BIBO) stable. Indeed, the

expression  ΣΣ– 1  implies that, for large gain  A, the input

signal of  Σ  in (1) is (almost) equal to the output signal of

Σ– 1. Consequently, when  Σ– 1  is not BIBO-stable, the

input of  Σ   in (1) will be unbounded for at least some

input signals  u. This makes Configuration 1 unusable, as

it will not be internally stable. In other words,

Configuration 1 cannot be used with large gain  A  when

Σ– 1  is not BIBO-stable.

The present note shows that this difficulty can be

alleviated by introducing a certain form of hysteresis into

the control configuration (1) (see also [10]). With this

modification, it is possible to control a rather large class of

nonlinear systems and achieve accurate tracking.

Alternative approaches to the control of nonlinear

systems can be found in [11], [12], [6], [7], [8], [9], [4],

[19], [18], [3], [15], [20], [17], [16], [1], [5], [13], the

references cited in these publications, and others.

ΙΙ. BASIC CONSIDERATIONS

Consider the closed loop control configuration

ΣC
u yw

(6)

 
Here, Σ  is the system being controlled, C  is a controller,

and  Σc  is the system represented by the closed loop. For

notational convenience, we assume that  C  is constructed

so that  Σc  has the same input space as  Σ.

To investigate the stability of Configuration 6, we limit

our attention to bounded input signals  u. We define the

bounded-input image  Imb Σ c  as the set of all output

signals of  Σ c  generated by bounded input signals.

Similarly, the bounded-input image  Imb Σ   of  Σ   is

formed by all responses of  Σ  to bounded input sequences.

As the output of  Σc  is the output of  Σ, we conclude that

Imb Σc ⊂ Imb Σ.

(7) DEFINITION. THE APPROXIMATE MODEL

MATCHING PROBLEM. Given a system  Φ, a bounded

domain  S, and a real number  ε > 0, determine whether

there is a controller  C  such that

|Φu – Σcu| ≤ ε  for all  u ∈ S. (8)

If such a controller exists, then  Σc  is an  ε-approximant of

Φ  over  S, and  Φ  is called the model. ♦
When the model is the identity system  Φ = I, then the

approximate model matching problem reduces to the

classical problem of designing a tracking system.

For a real number  ε > 0  and an element  v  of a normed

space, denote by  Nε(v)  the neighborhood of  v  given by

Nε(v) = {w : |w – v| ≤ ε}.

For a set  A, the corresponding neighborhood is

Nε(A) = Uv∈A Nε(v).

Assume now that  Σc  is a  ε-approximant of the system

Φ. By (8), we have  Φu ∈ Nε(Σcu)  for all  u ∈ S, so that
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Φ[S] ⊂ Nε(Σc[S]). Recalling that  S  is a bounded domain,

we clearly have  Nε(Σc[S]) ⊂ Nε(Imb Σc), so that

Φ[S] ⊂ Nε(Imb Σ). When  Φ  is an invertible system, this

leads to the relation

S ⊂ Φ– 1[Nε(Imb Σ)].

For tracking systems, i.e., for  Φ = I, this yields

S ⊂ Nε(Imb Σ). (9)

Inclusion (9) implies that only signals that are within  ε
of the bounded-input image of  Σ  can be tracked with an

error not exceeding  ε . This simple fact imposes a

fundamental restriction on the operation of tracking

systems. It plays an important role in our ensuing

discussion. Setting  ε = 0  in (9), we obtain the following

requirement for accurate tracking

S ⊂ Imb Σ. (10)

The performance limitation (9) brings into focus the need

to properly specify tracking signals. It highlights a

distinction between the present approach and the traditional

method of designing tracking systems. Traditionally,

tracking signals are specified without regard to the

restriction (9), and, consequently, cannot usually be tracked

in their entirety. Instead, one lets the tracking system

choose a path that converges asymptotically to the tracking

signal. This leaves the designer with incomplete control

over the tracking process. In the approach taken in this

paper, the tracking signal is selected so that it satisfies the

inclusion (9). In this way, the system does not deviate from

the tracking signal by more than the permissible error

throughout the entire tracking process.

As an example, consider the case of a ground-to-air

missile tracking an airplane. In traditional tracking, the

missile is given the airplane's flight data, and is left to

create its own approach path to the airplane. This leaves the

operator without control over the initial part of the tracking

process. In the approach developed in this paper, the entire

path of the missile, including takeoff, is specified, subject

to the constraint (9). This allows the operator more

complete control over tracking and missile performance.

In many applications, selecting a tracking signal near the

image of the system is not an overly taxing process. Often,

appropriate signals can be selected based on general

characteristics, such as bandwidth, signal magnitude

bounds, or maximal rates-of-change.

A. Preliminaries

The presentation here is for discrete-time systems, but

similar principles apply to continuous-time systems. Let  R

be the set of real numbers, let  Rm  be the set of all m-

dimensional real  vectors, and let  S(Rm)  be the set of all

sequences  u = {u0, u1, u2, ... }  of  m-dimensional real

vectors. A system  Σ   with specified initial conditions

induces a map  Σ  : S(Rm) →  S(Rp), transforming input

sequences of  m  dimensional real vectors into output

sequences of  p  dimensional real vectors. The output

sequence  y  generated by  Σ  from the input sequence  u  is

y = Σu. It will be convenient to assume that  Σ0 = 0.

As usual, a system  Σ  is causal if its response does not

depend on future input values. The system is strictly causal

if there is a delay of at least one step before input changes

are reflected in its response. Finally, the system  Σ   is

bicausal if it is invertible, and if  Σ  and its inverse  Σ– 1

are both causal systems (e.g., [6]).

The systems we consider are given in terms of a state

representation

xk+1 = f(xk,uk)
yk = h(xk), k = 0, 1, 2, ...

 (11)

Here, xk ∈  Rn  is the state of the system at the step  k,

while  uk  and  yk  represent the input value and the output

value, respectively, at that step. The function  f : Rn×Rm →
Rn  is the recursion function and  h : Rn →  Rp  is the

output function. For convenience, we use the initial

condition  x0 = 0  for the system. A system described by

(11) is strictly causal, since the output function  h  does not

depend on the input value (e.g., [6]). The realization (11) is

uniformly continuous  if  f  and  h  are uniformly

continuous functions. The input/state part  Σs  of  Σ   is

given by  xk+1 = f(xk,uk), k = 0, 1, ...

For a real number  a, let  |a|  be the absolute value of  a.

For a vector  r = (r1, r2, ..., rq) ∈ Rq, denote

|r| := max {|ri|, i = 1, ..., q};

it will be convenient to refer to  |r|  as the  l∞-norm of  r.

The  l∞-norm of an element  s ∈ S(Rq)  is

|s| := supi≥0 |si|.
A subset  S ⊂ S(Rq)  is l∞-bounded (or, simply, bounded)

if there is a real number  M ≥ 0  such that  |s| ≤ M  for all

elements  s ∈ S; when the latter holds, we write  |S| ≤ M.

Given a real number  θ ≥ 0, denote by  S(θq)  the set of all

sequences  s ∈ S(Rq)  satisfying  |s| ≤ θ, i.e., the set of all

sequences of  q-dimensional real vectors bounded by  θ.
The  l1-norm is, for a vector  v = (v1, v2, ..., vp) ∈ Rp,

given by

|v|1 := |v1| + |v2| + ... + |vp|.

The weighted  l1-norm  |•|1w  is defined, for a sequence  y

∈ S(Rp), by

|y|1w:= Σ
∞
i=0 2

–i|yi|1. (12)

It is easy to see that the weighted  l1-norm exists for every

bounded sequence  y ∈ S(Rp).

A norm  〈•〉   over  S(Rp)  is compatible  with the

weighted  l1-norm if there is a constant  a > 0  such that

〈u〉 ≤ a|u|1w  for all  u ∈ S(Rp). Denote by  ||•||  a norm that

has the following properties: (i) it is compatible with the

weighted  l1-norm, and (ii) under it, every closed and l∞-

bounded subset of  S(Rp)  is compact. The weighted  l1-

norm (12) is an example of such a norm  ||•||.

A system  Σ  : S(Rm) →  S(Rp)  is BIBO-stable

(Bounded-Input Bounded-Output stable) if, for every real

number  M ≥ 0, there is a real number  N  ≥ 0  such that

|Σu| ≤ N  whenever  |u| ≤ M. The notion of BIBO-stability



underlies every other stability concept. We say that  Σ  is

stable if it is BIBO-stable, and if it is continuous with

respect to the norm  ||•||.

Let  Σ  be an invertible system. If  Σ– 1  is BIBO-stable,

then  Σ  is a BIBO-minimum phase system. When  Σ   is

both BIBO-stable and BIBO-minimum phase, then it is a

BIBO-unimodular system. Similarly, if  Σ– 1  is stable, then

Σ  is a minimum phase system, and if  Σ  is both stable and

minimum phase, then it is a unimodular system.

For composite systems, stronger notions of stability are

needed. Consider a composite system  Ψ   that consists of

q  subsystems. Add an external signal to the output of each

subsystem. This results in a system with  q+1  external

input signals - the original input signal and the  q  newly

added signals. Then, the composite system  Ψ   is

internally BIBO-stable if the following holds for each one

of the  (q+1)  external input signals: the map from the

external signal to any signal within the configuration is a

BIBO-stable system. Further,  Ψ   is internally stable if

each such map is a stable system. Internal stability

guaranties that a composite system is implementable.

To investigate stability properties as the gain approaches

infinity requires the following stronger notions.

(13) DEFINITION. Let  Ψ(A)  be a system depending on a

real parameter  A. Then, Ψ(A)  is uniformly BIBO-stable if

there is a real number  A0  such that the following is true

for all  A ≥ A0: for every real  M ≥ 0, there is a real  N ≥ 0

such that  |Ψ(A)u| ≤ N  for all input sequences  |u| ≤ M.

The system  Ψ(A)  is uniformly BIBO-minimum phase if

there is a real number  B0  such that  Ψ (A)  is invertible

and  Ψ– 1(A)  is uniformly BIBO-stable for all  A ≥ B0.

Finally, Ψ(A)  is uniformly BIBO unimodular if it is

uniformly BIBO-stable and uniformly BIBO-minimum

phase. ♦
(14) DEFINITION. Let  Φ(A)  be a composite system

composed of subunits  Φ1(A), ..., Φq(A)  that depend on a

parameter  A. Insert an adder at the output of each subunit,

and add an external signal  ui  to the output of  Φi(A), i =

1, ..., q. Denote by  u0  the input sequence of the

composite system. For a given value of the parameter  A,

let  v0(A)  be the output sequence of the composite system,

and let  vi(A)  be the output sequence of the subunit  Φi(A),

i = 1, ..., q. Then, Φ(A)  is uniformly internally BIBO-

stable if there is a real number  A0  such that the following

is true for all  A ≥ A0: for every real  M > 0, there is a real

N > 0  such that  |vi(A)| ≤ N  for all  i = 0, ..., q  whenever

|ui| ≤ M  for all  i = 0, ..., q. ♦

III. HIGH GAIN CONTROL

A. General considerations

In order to use high gain compensators with non-

minimum-phase systems, we must depart from one of the

basic tenets of traditional control theory: the requirement to

have a unique response. This will lead to a broader class of

compensators and to improved performance. Needless to

say, there is no harm in allowing a non-unique response, as

long as possible responses do not differ by more than a

permissible error bound. Specifically, we shall use a control

configuration with a hysteresis-type response. Let  Σ :

S(Rm) → S(Rm)  be the system that needs to be controlled,

let  A  be a constant gain compensator, let  ε > 0  be a real

number, and consider the configuration

⊕ε

yu  e+

–

A Σ
 z

(15)

Here, the symbol  ⊕ε  indicates the following operation:

given two real numbers  a  and  b,

a ⊕ε b := 


0  if  |a+b| ≤ ε,
a+b–εsign(a+b)  if  |a+b| > ε.

In words, the outcome of the operation is zero if the sum is

ε  or less; otherwise, the operation reduces the magnitude

of the regular sum by  ε. This can be restated as follows.

(16) LEMMA. a ⊕ε b  is the number  v  of minimal

magnitude for which  |a+b–v| ≤ ε. ♦
For two vectors  x = (x1, x2, ..., xp), z = (z1, z2, ..., zp)

∈ Rp, we define the operation componentwise:

x ⊕ε z := (x1 ⊕ε z
1, x2 ⊕ε z

2, ..., xp ⊕ε z
p). (17)

The next statement is a consequence of Lemma 16.

(18) LEMMA. For vectors  x, z ∈ Rp, set  w := x ⊕ε z,

and let  A(x,z)  be the set of all vectors  v ∈ Rp  for which

|x+z–v| ≤ ε. Then, w  is the vector of minimal  l1-norm in

A(x,z); it also has the minimal  l∞-norm in  A(x,z). ♦

Finally, let  v, w ∈ S(Rp)  be two sequences of vectors.

The sequence  y := v ⊕ε w  is defined elementwise by

yk := vk ⊕ε wk, k = 0, 1, 2, ...

Then, Lemma 18 leads to the following.

(19) LEMMA. For two bounded sequences  v, w ∈ S(Rp),

set  s := v ⊕ε w, and let  S(v,w)  be the set of all sequences

t ∈ S(Rp)  satisfying  |v+w–t| ≤ ε. Then, s  is the sequence

of minimal weighted  l1-norm in  S(v,w); it also has the

minimal  l∞-norm in  S(v,w). ♦

In Configuration 15, the minus sign indicates that

e = u ⊕ε (–y). (20)

We denote the input/output map of (15) by  Σ
ε
A, to indicate

its dependence on the gain  A  and on the parameter  ε > 0.

For a preliminary examination of the control loop (15),

assume that all signals are scalar, and that the system  Σ
represents a scalar constant gain amplifier. Then, the

combination  ΣA  is again a constant gain amplifier, say

ΣA = a. To examine the response, consider the case when

the input signal  u > ε > 0. Then, two output values are

possible:  y′ > u  and  y″ < u, as follows. In the first case,

the loop induces the equation  (u – y′ + ε)a = y ′, which

yields

y′ = a(u+ε)/(1+a). (21)

In the second case, we have  (u – y″ – ε)a = y″, or



y″ = a(u–ε)/(1+a).

As we can see, the output value of Configuration 15 is

not uniquely determined by its input value. In this

example, the output value of (15) depends on the "initial

value" of the output  y. In other words, the system exhibits

a hysteresis property. Since the discrepancy between the

two output values converges to zero when  ε  →  0, this

non-uniqueness of the response causes no adverse effects, as

long as  ε  is sufficiently small. Still, mathematically, the

non-uniqueness broadens the class of controllers, leading to

potential performance improvements.

We turn now to a more general examination of

Configuration 15. First, in view of Lemma 19, we can

write

|u – (y + e)| ≤ ε.
By the same Lemma, e  is the signal  µ  ∈  S(Rm)  of

minimal weighted  l1-norm for which  (y + µ)  is within an

ε-neighborhood of the input signal  u. Also, since  e = z/A

with  A  being a scalar constant gain, we can say that  z  is

the signal  ϖ  ∈ S(Rm)  of minimal weighted  l1-norm for

which  (y + ϖ/A)  is within an  ε-neighborhood of the

input signal  u. Further, since  y = ΣAe  and  A  represents

a scalar constant gain, we have  e + y = [I + ΣA]e = [(1/A)I

+ Σ]Ae = [(1/A)I + Σ]z. This implies

(22) LEMMA. For a system  Σ : S(Rm) →  S(Rm)  and a

sequence  u ∈ S(Rm), let  S(u)  be the set of all sequences

µ ∈ S(Rm)  for which  |[(1/A)I + Σ]µ – u| ≤ ε . Assume that

S(u)  is not empty. Then, the signal  z  of Configuration 15

is the sequence of minimal weighted  l1-norm in  S(u).

Also, z  has minimal  l∞-norm in  S(u). ♦

In the next subsection we show that, under appropriate

conditions, the signal  z  remains bounded as  A →  ∞.

This implies that  e = z/A → 0  as  A → ∞. Accordingly,

the discrepancy between the tracking signal  u  and the

output signal  y  approaches  ε  as  A → ∞.

B. Tracking

Recall that a system  Σ  is stable if it is BIBO-stable and

continuous with respect to the norm  ||•|| (subsection II.A).

The following shows that tracking can be achieved with

Configuration 15 simply by using a high gain  A.

(23) THEOREM. Let  Σ : S(Rm) →  S(Rm)  be a strictly

causal and stable system, let  ε > 0  be a real number, and

let  u ∈  Nε/2(Imb Σ )  be a tracking signal. Then,

Configuration 15 is uniformly BIBO-internally stable, and

its response satisfies  limA→∞ |u – Σ
ε
Au| ≤ ε.

Proof. First, by (20),

Nε(u) ⊃ e + y = e + ΣAe = [I + ΣA]e = [(1/A)I + Σ](Ae) =

[(1/A)I + Σ]z. (24)

Since  Σ   is strictly causal, the inverse  [(1/A)I + Σ]– 1

exists (e.g., [6]). Consider the set

Ω := [(1/A)I + Σ]– 1[Nε(u)].

Note that  [(1/A)I + Σ ]  is continuous since  Σ   is

continuous. Consequently, the fact that  Nε(u)  is a closed

set, implies that  Ω  is a closed subset of  S(Rm).

Next, as  u ∈  Nε/2(Imb Σ)  by assumption, there is a

bounded sequence  v ∈ S(Rm)  for which  |u – Σv| ≤ ε/2;

set  χ  := |v| < ∞ . Denoting  w := Σv, we have  w ∈
Nε/2(u). Now, consider a gain  A ≥ 2χ/ε, so that  |v|/A ≤

ε/2. Then, |[(1/A)I + Σ]v – u| = |(1/A)v + (Σv – u)| ≤ |v|/A

+ |Σv – u| ≤ ε, so that  [(1/A)I + Σ]v ∈ Nε(u). This shows

that  v ∈ [(1/A)I + Σ]– 1[Nε(u)] = Ω, i.e., that  Ω   includes

the bounded sequence  v. Consequently, the bounded

intersection  Ω I S(χm)  is not empty; since  Ω  is closed,

so is this intersection. Recalling that, in our topology,

every closed and bounded set is compact, we conclude that

Ω  I  S(χm)  is a compact set. Together with the fact that

the norm  ||•||  is compatible with the weighted  l1-norm,

this implies that every sequence of elements of  Ω  I S(χm)

with decreasing weighted  l1-norms must have a convergent

subsequence with a limit in  Ω  I  S(χm). This further

implies that  Ω  I S(χm)  contains an element of minimal

weighted  l1-norm, which we denote by  ω+; since  ω+ ∈

Ω  I S(χm), it follows that  |ω+| ≤ χ.

We return now to Configuration 15. By Lemma 22, the

sequence  z  is of minimal  l1-norm in  Ω , so we have,

say,  z = ω+ ∈ Ω I S(χm). This directly implies that

|z| ≤ χ. (25)

As  χ   is independent of  A, this shows that  z  is

bounded with a bound independent of  A, for all  A ≥ 2χ/ε.

Thus, z  is uniformly bounded as a function of  A. An

examination of (15) leads to the following conclusions:

(i) The stability of  Σ  gives rise to a real number  M > 0

such that  Σ[S(χm)] ⊂ S(Mm); by (25), this implies that  |y|

≤ M  for all  A ≥ 2χ/ε, i.e.,  y  is uniformly bounded.

(ii) From  e = z/A, we obtain  |e| = |z|/A ≤ χ/A, (26)

so that  |e| ≤ χ  for all  A ≥ 1. Consequently, the signal  e

is uniformly bounded for all  A ≥ max {2χ/ε, 1}.

Thus, Configuration 15 is uniformly internally BIBO-

stable. Furthermore, using (26),

limA→∞ |e| = limA→∞ |z|/A ≤ limA→∞ χ/A = 0 (27)

From (24) we have  |u – (e + y)| ≤ ε, so that  |u – y)| – |e| ≤

|u – (e + y)| ≤ ε, or  |u – y| ≤ ε + |e|. Invoking (27),

limA→∞ |u – y| ≤ ε + limA→∞ |e| ≤ ε, (27)

and the proof concludes. ♦
Theorem 23 indicates that Configuration 15 can track a

prescribed signal  u  with an error of about  ε  or less, as

long as the forward gain  A  is sufficiently large.

An examination of the proof of Theorem 23 reveals the

following point: the appropriate gain  A  may vary from

one tracking signal  u  to another. In [10], we show that the

gain  A  can be selected independently of the tracking

signal  u, when  Σ  possesses a certain common reachability

property. In the same report, it is also shown that a similar

methodology leads to a solution a class of approximate

nonlinear model matching problems.



IV. CONCLUSION

Starting from the classical control principle that

advocates the use high forward gain in feedback control

loops, we have developed a general methodology for the

design of nonlinear tracking systems. An important

advantage of the resulting design technique is its

simplicity: it requires only two design parameters - the gain

A  and the hysteresis parameter  ε. This makes the resulting

approach particularly convenient for design through

simulation, as one can easily experiment with the parameter

values until a desirable outcome is obtained.
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