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The problem of stabilizing linear continuous-time systems is revisited with the objective of

investigating the tolerance allowed in the implementation of stabilizing feedback controllers.

It is shown that, for high gain feedback, this tolerance can be described by a cone in the

feedback parameter space, called the ‘‘tolerance cone’’. The tolerance cone describes fractional

(percentage) errors the feedback controller can tolerate without jeopardizing the internal

stability of the controlled system. The larger the vertex angle of this cone, the more tolerance

is available when implementing the controller. The vertex angle of the tolerance cone is

determined by the proximity to singularity of a certain matrix derived from the controlled

system.

1. Introduction

It is often assumed that feedback controllers must be

designed and built with high accuracy. This is, of course,

true in situations where the purpose of the feedback

controller is to ensure performance accuracy of a closed

loop control system, as is the case, for example, when

designing a feedback amplifier with accurate gain.

However, in cases where the main objective of the

feedback controller is to stabilize a system, the situation

is quite different; frequently, stability is maintained

despite sizable inaccuracies in the feedback controller

parameters. In this paper, we show that, often, there is

a rather broad latitude in the selection of stabilizing

feedback parameters, especially when high gain feed-

back is used. In extreme cases, this latitude is so wide

that a stabilizing feedback controller can be obtained

simply by assigning any large positive values to the

feedback parameters, with no particular design plan.

This observation seems consistent with practical design

experience, where one frequently encounters systems

that seem to work well with almost any choice of large

feedback parameters.
The latitude available in assigning the parameter

values of a stabilizing feedback controller depends on

certain structural features of the system being con-

trolled. For the case of linear static state feedback, we

define in x 3 the notion of a normalized controllability

matrix. The normalized controllability matrix is

obtained by dividing the controllability matrix of the

controlled system by another matrix derived from the

same system. In addition, we introduce a measure that

gauges how close a matrix is to being singular. This

measure relates to the minimal angle between two

columns of the matrix (needless to say, a square

matrix becomes singular when the angle between two

of its columns is zero). Finally, we use the notion of

tolerance to describe the fractional (or percentage)

accuracy required of an implementation, where lower

tolerance means higher accuracy. In these terms, x 3

shows that the tolerance allowed in the implementation

of a stabilizing high-gain state feedback controller

diminishes as the normalized controllability matrix

gets closer to being singular. In addition to providing

a general quantitative assessment of the tolerance, this

observation highlights an important role of the normal-

ized controllability matrix: the closer this matrix is to

being singular, the higher is the accuracy required of

a stabilizing feedback controller.
The situation is very similar in the more general case

of linear dynamic output feedback. From the given

transfer matrix of the system being controlled, we derive

a certain real matrix, called the structure matrix.*Email: hammer@mst.ufl.edu
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The tolerance allowed in the implementation of a
stabilizing high-gain dynamic output feedback control-
ler is then determined by the proximity of this matrix
to singularity.
In somewhat more technical terms, we study stabiliza-

tion properties of high-gain feedback controllers using
the following property of polynomials derived in x 2.
Almost every monic polynomial with sufficiently large
positive coefficients has all its roots in the open left half
of the complex plane (here, a monic polynomial is a
polynomial in which the highest power of the indeter-
minate appears with a coefficient of 1). We show that
this set of polynomials gives rise to a set of stabilizing
feedback controllers whose parameters form the
unbounded end of an infinite cone in the feedback
parameter space. In the case of linear static state
feedback, the vertex angle of this cone is narrower the
closer the normalized controllability matrix is to
singularity. As a result, lower tolerance is available for
the parameters of a feedback controller, when the
normalized controllability matrix is close to being
singular.
From a general perspective, the discussion of this

paper can be viewed as a dual of Hammer (2004), where
the implications of high forward gain were investigated.
In that report, it was pointed out that, under rather
general conditions, high forward gain allows high
accuracy tracking with relatively little information
about the system being controlled. In the present
paper, we examine the implications of high gains in
the feedback path. As it turns out, high gains in the
feedback controller relieve some of the burden of
accuracy required to stabilize a system. Indeed, for a
‘‘typical’’ system (i.e., a system whose normalized
controllability matrix is not close to being singular),
there is a very substantial leeway in assigning the
parameters of a stabilizing feedback controller. In other
words, the same system can be stabilized by a relatively
large family of feedback controllers. This feature
achieves its full power when high gain feedback
controllers are employed.
The paper concentrates on linear continuous-time

systems, but the basic principles can be extended to
more general classes of systems. Section 2 examines a
certain class of monic polynomials with large positive
coefficients, showing that polynomials belonging to this
class have all roots in the open left half of the complex
plane. This feature is then used to investigate the
tolerance requirements of linear static state feedback
(x 3) and linear dynamic output feedback (x 4) under
conditions of high feedback gains.
Investigations of linear control systems have taken

a variety of different approaches over the last several
decades, with each approach contributing an important
aspect to the present understanding of the theory and

practice of linear control. The current discussion

employs mostly a selection of classical control techni-

ques (e.g., Newton et al. (1957)) combined with

algebraic techniques based on the theory of matrices

over principal ideal domains (Rosenbrock (1970),

Hammer (1983a–c)). These techniques are employed to

examine the consequences of a certain feature of

monic polynomials which forms the subject of the next

section.

2. A property of polynomials

We turn our attention to a special family of monic

polynomials with large positive coefficients. In the

course of this section, we show that members of this

family have all their roots in open left half of the

complex plane and that the family includes almost all

polynomials with large positive coefficients. In subse-

quent sections, this feature is used to investigate

properties of linear high gain feedback controllers

that stabilize a given system. Consider a monic

polynomial

pnðsÞ : ¼ sn þ a1s
n�1 þ a2s

n�2 þ a3s
n�3

þ � � � þ ais
n�i þ � � � þ an, ð1Þ

whose coefficients are given by the special formula

ai :¼ ki�
mðn, iÞ, i ¼ 1, 2, . . . , n, ð2Þ

where �, k1, k2, . . . , kn are strictly positive real numbers

with �!1, and where the power m(n,i) of � satisfies

the recursion

mðn, iÞ �mðn, i� 1Þ ¼ n� iþ 1,

mðn, 0Þ :¼ 0:

(
ð3Þ

The motivation behind considering this family of

polynomials comes from an analysis of the effects of

coefficient perturbations on a polynomial roots. The

family of polynomials described by (1)–(3) exhibits a

particularly transparent relationship in this regard, as

shown later in the proof of Lemma 3. Furthermore,

every monic polynomial can be represented in the form

(1) with (2) and (3) by selecting proper values of the

parameters �, k1, k2, . . . , kn (see (12) below); conse-

quently, an examination of this family of polynomials

carries general implications.
In preparation for studying the roots of this family

of polynomials, we examine some of its basic features.

First, note that, upon setting

a0 :¼ 1 and k0 :¼ 1,
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the recursion among the powers is structured so that the

ratio of consecutive coefficients satisfies the relation

ai
ai�1

¼
ki
ki�1

� �
�n�iþ1, i ¼ 1, 2, . . . , n:

To calculate the power of � from the recursion (3), we

can use the arithmetic series formula
Pn

i¼1 i ¼ nðnþ 1Þ=2
to obtain

mðn, iÞ ¼ in�
iði� 1Þ

2

� �
, i ¼ 1, 2, . . . : ð4Þ

Specifically, we have

mðn, 1Þ ¼ n, mðn, 2Þ ¼ 2n� 1,

mðn, 3Þ ¼ 3n� 3, . . . ,mðn, n� 1Þ

¼
ðn� 1Þðnþ 2Þ

2
, mðn, nÞ ¼

nðnþ 1Þ

2
:

An inspection of (3) shows that m(n, i)>m(n, i� 1) for

all i¼ 1, . . . , n. Consequently, the powers of � increase

from one coefficient of pn(s) to the next, as we move in

the direction of declining powers of s. It is convenient at

this point to look at some examples.

Example 1: For the case n¼ 2, we get p2(s)¼ s2þ

k1�
2sþ k2�

3, where k1 and k2 can be any strictly positive

numbers. For the case n¼ 3, we have p3(s)¼ s3þ

k1�
3s2þ k2�

5sþ k3�
6, where k1, k2, k3 can be any strictly

positive real numbers.

Now, let s1, s2, . . . , sn be the negatives of the roots of the

polynomial (1). Then, we can write

pnðsÞ ¼ ðsþ s1Þðsþ s2Þ . . . ðsþ snÞ

¼ sn þ k1�
nsn�1 þ k2�

2n�1sn�2 þ � � � þ kn�
nðnþ1Þ=2:

To study the properties of the family of polynomials

{pn(s)} as the parameter � approaches infinity, it is

convenient to define the following relationship.

Definition 1: Two polynomials A1(�) and A2(�) in the

variable � are �-equivalent (written A1(�)¼ |� A2(�)) if
the highest powers of � in A1(�) and in A2(�) are equal

and have the same coefficients.

Note that, when A1(�) and A2(�) are �-equivalent, then
their ratio A1(�)/A2(�)! 1 as �!1, i.e., �-equivalent
expressions tend to become equal for large values of �.
Consider now the quantities

s0i :¼
ki
ki�1

� �
�n�iþ1, i ¼ 1, 2, . . . , n: ð5Þ

Recalling that s1, s2, . . . , sn are the negatives of the roots

of the polynomial pn(s), we intend to show that, with

some mild exceptions,

si

s0i
! 1 as �! 1, i ¼ 1, 2, . . . , n: ð6Þ

In particular, this would indicate that, with some mild

exceptions, polynomials of the form pn(s) have all their

roots inside the open left half of the complex plane for

large values of �. To this end, consider the following

polynomial

qnðsÞ :¼ ðsþ s01Þðs
n�1 þ b1s

n�2 þ b2s
n�3 þ � � � þ bn�1Þ

¼ ðsþ k1�
nÞðsn�1 þ b1s

n�2 þ b2s
n�3 þ � � � þ bn�1Þ

ð7Þ

where

bi :¼
kiþ1

k1

� �
�mðn�1, iÞ, i ¼ 1, 2, . . . , n� 1, b0 :¼ 0: ð8Þ

More specifically,

b1 ¼
k2
k1

� �
�n�1, b2 ¼

k3
k1

� �
�2n�3,

and so on. For this choice of bi, we show that the

polynomial qn(s) is equivalent to the polynomial pn(s) for

large values of �. To this end, denote by �i the coefficient
of sn�i in the polynomial qn(s), i.e., set

qnðsÞ ¼ sn þ �1s
n�1 þ � � � þ �n; ð9Þ

then, the following is true.

Lemma 1:

�i ¼j� ai for all i ¼ 1, 2, . . . , n:

Proof: A brief calculation shows that

�i ¼ bi þ bi�1k1�
n ¼

kiþ1

k1

� �
�mðn�1, iÞ þ

ki
k1

� �
�mðn�1, i�1Þk1�

n,

i ¼ 1, 2, . . . , n:

Using (4), we obtain

�i ¼
kiþ1

k1
�½iðn�1Þ�ðiði�1Þ=2Þ� þ

ki
k1
�½ði�1Þðn�1Þ�ðði�1Þði�2Þ=2Þ�k1�

n

¼
kiþ1

k1
�½iðn�1Þ�ðiði�1Þ=2Þ�

þ
ki
k1
�½in�ðiði�1Þ=2Þ�, i ¼ 1, 2, . . . , n� 1,

and

�n ¼ �nkn�
mðn�1, n�1Þ:
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Using the fact that k1¼ 1 and simplifying, we get

�i ¼

ki�
½in�ðiði�1Þ=2Þ� þ kiþ1�

½iðn�1Þ�ðiði�1Þ=2Þ�,

i ¼ 1, 2, . . . , n� 1,

 !

kn�
nðnþ1Þ=2, i ¼ n:

8><
>: ð10Þ

In view of (2.4), we obtain �i¼ |�ki�
m(n, i), i¼ 1, 2, . . . , n,

so that, by (2), �i¼ |�ai, i¼ 1, 2, . . . , n, and our proof

concludes. œ

Lemma 1 shows that the ratios between the coefficients

of the polynomials qn(s) and pn(s) approach 1 as �!1.

Qualitatively, this means that, for any bounded value of

s, we have that qn(s)/pn(s)! 1 as �!1. Referring to

(7), we can define the polynomial p0n�1ðsÞ :¼ sn�1þ

b1s
n�2 þ b2s

n�3 þ � � � þ bn�1, so that

qnðsÞ ¼ ðsþ s01Þp
0
n�1: ð11Þ

Denoting the constants k0i :¼ kiþ1=k1, we obtain from (8)

that

bi ¼ k0i�
mðn, iÞ i ¼ 1, 2, . . . , n,

so that p0n�1ðsÞ has the same coefficient structure as the

polynomial pn�1(s) of (1). As the coefficients ki and k0i
represent arbitrary positive numbers, we can identify

them with each other. This allows us to rewrite (11)

in the form qnðsÞ ¼ ðsþ s01Þpn�1ðsÞ. Invoking Lemma 1,

we obtain that pnðsÞ ¼j� ðsþ s01Þpn�1ðsÞ: Iterating this

process gives rise to the relationships

piðsÞ ¼j� ðsþ s0n�iþ1Þpi�1ðsÞ, i ¼ 2, 3, . . . , n,

where s0n�iþ1 is given by (5). In qualitative terms, these

relationships imply that the roots of the polynomial pn(s)

tend toward the values �s01, � s02, . . . , � s0n as �!1.

Stating this fact in accurate form, finding its ramifica-

tions, and proving its validity are the main objectives of

the remaining part of this section.
Note that, since s0i > 0 for all i¼ 1, 2, . . . , n, the result

mentioned in the previous paragraph would yield a

family of monic polynomials whose roots are all in the

open left half of the complex plane. Clearly, when any

of these polynomials is assigned as the characteristic

polynomial of a linear system, the resulting system is

asymptotically stable for large values of �. This

observation leads us to the derivation of a rather large

family of stabilizing feedback compensators discussed

in subsequent sections of the paper.
Before continuing, we note that the family of

polynomials {pn(s)} of (1) and (2) is, in fact, a large

family of polynomials. Indeed, let Pþ denote the set of

all monic polynomials with positive coefficients, and

consider a member p(s) of Pþ, say

pðsÞ ¼ sn þ c1s
n�1 þ � � � þ cn,

where c1, c2, . . . , cn>0. We can bring p(s) into a
polynomial with coefficients given by (2) by setting
k1 :¼ 1 and determining the remaining constants �, k2,
k3, . . . , kn>0 from the equations

ki�
mðn, iÞ ¼ ci, i ¼ 1, 2, . . . , n, ð12Þ

where m(n, i) is given by (3). Setting k1 :¼ 1 has the effect
of normalizing the values of the remaining coefficients.

Example 2: Consider the polynomial pðsÞ ¼ s3 þ c1s
2þ

c2sþ c3, where c1, c2, c3>0. To bring the coefficients of
this polynomial into the form (2), we obtain the equations
k1�

3
¼ c1, k2�

5
¼ c2, k3�

6
¼ c3. Setting k1 :¼ 1, yields

� ¼
ffiffiffiffiffi
c13

p
, k2 ¼ c2=�

5, and k3¼ c3/�
6.

Needless to say, not all monic polynomials with
positive coefficients have roots that approach the values
(5); a restriction on the coefficients c1, c2, . . . , cn of p(s)
is required in order for that to happen as �!1.
Nevertheless, as our forthcoming discussion indicates,
this restriction excludes only a small subset of monic
polynomials with large positive coefficients. First, some
introductory notions.

Let v ¼ ðv1, v2, . . . , vnÞ and v 0 ¼ ðv01, v
0
2, . . . , v

0
nÞ be two

vectors in Rn. Using the Euclidean norm
jvj ¼

Pn
i¼1 v

2
i

� �1=2
and the inner product

v � v 0 :¼
Pn

i¼1 viv
0
i, the angle # between the two vectors

v and v0 is often defined by

# :¼ cos �1 v � v 0

jvjjv 0j
:

Now, for a real number �>0, let �(�) be the set of
all vectors w ¼ ðw1,w2, . . . ,wnÞ 2Rn satisfying the
following two conditions:

(i) w1>0, and
(ii) � � (wiþ1/wi)� 1/� for all i¼ 1, 2, . . . , n� 1.

Also, let Rþn be the set of vectors in Rn having strictly
positive coordinate values; i.e., Rþn consists of all
vectors ðx1, x2, . . . ,xnÞ 2Rn for which xi>0 for all
i¼ 1, 2, . . . , n. We refer to Rþn as a cone. The term
‘cone’ is used here in a generalized sense, meaning an
n-dimensional domain created by the motion of a
straight ray whose origin is attached to a fixed point.
Applying this definition to the set �(�), it follows that
�(�) forms an infinite cone within Rþn. The vertex angle
of �(�) approaches �/2 as �! 0.

Definition 2: A horn of a cone is the open end of the
cone: it is the set of all vectors of the cone whose length
exceeds r, where r is a positive real number.

Note that the value of r in the definition is unspecified
and may vary from case to case; when using the term
‘‘horn’’ in the sequel, we shall consider r to be arbitrarily
large. In intuitive terms, a horn is the open infinite end
of a cone.
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Let �(�,M) be the set of all vectors in �(�) whose

length exceeds M, i.e., all w2�ð�Þ satisfying |w|�M.

Then, the set �(�, M) forms a horn of the cone �(�).

Example 3: For n¼ 2, the set �(�, M) takes the form

of figure 1.

We apply now these notions to a monic polynomial

pðsÞ ¼ sn þ c1s
n�1 þ � � � þ cn of degree n with positive

coefficients. First, define the ratios between consecutive

coefficients

�i :¼
ci
ci�1

, i ¼ 1, 2, . . . , n where c0 :¼ 1,

and refer to �1, �2, . . . , �n as the slopes of the polynomial

p(s). Each set of slopes �1, �2, . . . , �n can be considered

as a point in the n dimensional space Rn. In this space,

we define the multivariable polynomials

�ið�1, �2, . . . , �nÞ : ¼ ðn� 1Þð��iÞ
n�2

þ ðn� 2Þ�2ð��iÞ
n�3

þ � � � þ �2 . . . �n�1,

where i¼ 1, . . . , n and n� 3. For each i2 f1, . . . , ng,

let �i(n) be the surface that consists of all slopes

ð�1, �2, . . . , �nÞ 2Rn that satisfy the equation

�ið�1, �2, . . . , �nÞ ¼ 0: ð13Þ

Note that the surface �i(n) is of measure zero with

respect to the standard Lebesgue measure in Rn for all

i¼ 1, 2, . . . , n. Consequently, the set

�ðnÞ :¼ [i¼1, 2,..., n�iðnÞ,

being the union of a finite number of sets of measure

zero, has the following property.

Lemma 2: �(n) is a set of measure zero in Rn (with

respect to the standard Lebesgue measure).

Example 4: For n¼ 3, we obtain

�1: 2ð��1Þ þ �2 ¼ 0, or �2 ¼ 2�1;

�2: 2ð��2Þ þ �2 ¼ 0, or �2 ¼ 0;

�3: 2ð��3Þ þ �2 ¼ 0 or �2 ¼ 2�3

As we can see, in this case, all three surfaces are planes.

They can be drawn as in figure 2.

Figure 2. The set �(n) for n¼ 3.

Figure 1. A cone.
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Now, for a real number �>0, build around the
surface �i(n) a domain Si(n, �) in Rn given by

Siðn, �Þ :¼ f�1, �2, . . . , �n 2Rn : j�ið�1, �2, . . . , �nj � �g,

i ¼ 1, 2, . . . , n:

Then, define the set

Sðn, �Þ :¼
[i¼1, 2,..., nSiðn, �Þ, for n � 3,

Ø for n ¼ 1, 2,

(
ð14Þ

where Ø denotes the empty set. Finally, consider the
difference set

Vð�,MÞ :¼ �ð�,MÞnSðn, �Þ, ð15Þ

where M, �>0. Then, it follows from Lemma 2 that, as
�! 0, the domain V(�, M) includes almost all vectors in
Rn having positive components and length exceeding M.
In the limit, as �! 0, the only vectors excluded from the
set are those whose slopes satisfy one of the relations
(13). Intuitively, this means that, as �! 0, a random
selection of an n dimensional vector of length M or
longer yields, with probability one, a vector in the set
V(�, M) (assuming all slopes are equally probable).
The following statement indicates that, for sufficiently

large M, a polynomial with coefficients in V(�, M) has
roots that are approximately given by (5). Consequently,
all roots of such a polynomial are located in the
open left half of the complex plane. Clearly,
assigning such a polynomial as the characteristic
polynomial of a linear system yields an asymptotically
stable system.

Lemma 3: Let �s1, �s2, . . . ,�sn be the roots of the
monic polynomial pðsÞ ¼ sn þ c1s

n�1 þ c2s
n�2 þ � � � þ cn,

and let V(�, M) be given by (15). Then, for every pair of
real numbers ", �>0, there is a real number M>0 such
that, for all coefficients ðc1, c2, . . . , cnÞ 2Vð�,MÞ, the roots
of p(s) satisfy

ki
ki�1

� �
�n�iþ1ð1� "Þ � si �

ki
ki�1

� �
�n�iþ1ð1þ "Þ,

i ¼ 1, 2, . . . , n,

where k0 :¼ 1, k1 :¼ 1, and k2, k3, . . . , kn, and � are
determined by the equation (12).

The proof of Lemma 3 is listed below. In intuitive terms,
Lemma 3 originates from the fact that the polynomial
p(s) stays close to the polynomial qn(s) of (9) in the limit
as �!1. The Lemma indicates that almost all monic
polynomials of degree n with sufficiently large positive
coefficients have roots that are approximately equal to
the ones given by (5). In particular, this implies that all
such polynomials have their roots inside the open left

half of the complex plane. This point underlies much of

our discussion in the following sections. It is convenient

to introduce the following notion (all measures are with

respect to the standard Lebesgue measure in Rn).

Definition 3: Let �(�)�Rn be a family of subsets

depending on a parameter �>0. Then, �(�) is a virtual

horn if the following conditions hold:

(a) There is a horn H�Rn such that the difference

set H\�(�) approaches a set of measure zero as

�! 0.
(b) �(�) is the union of a finite number m of simply

connected sets, where m is independent of �.

When (i) and (ii) are valid, we say that �(�) is virtually
equal to the horn H. If G is a subhorn of H, then we

say that �(�) virtually includes the horn G.

Note that the set V(�, M) of (15) forms a virtual

horn; it is virtually equal to the horn Rþn of all

vectors with positive coordinates in Rn. In these terms,

Lemma 3 can be restated in the following

somewhat briefer form.

Corollary 1: The set of real coefficients (c1, c2, . . . , cn)

for which the monic polynomial pðsÞ ¼ snþ

c1s
n�1 þ � � � þ cn has all its roots inside the open left half

of the complex plane virtually includes the horn Rþn.

We turn now to the proof of the Lemma 3.

Proof of Lemma 3: In view of (12), we can

assume without loss of generality that the monic

polynomial p(s) has coefficients of the form (2).

The roots of our polynomial are, of course, determined

by the equation

pðsÞ ¼ sn þ a1s
n�1 þ � � � þ an ¼ 0, ð16Þ

where we set ci¼ ai, i¼ 1, 2, . . . , n, with ai being given by

(2). Recall the polynomial qnðsÞ ¼ sn þ �1s
n�1 þ � � � þ �n

of (9), whose coefficients are given by (10). The

discrepancy between the coefficients of the polynomials

p(s) and qn(s) is given by

�aj :¼ �j�aj ¼ kjþ1�
½jðn�1Þ�ðjðj�1Þ=2Þ�, j¼ 1,2, . . . ,n: ð17Þ

Now, by the construction in (7), the first root of qn(s) is

�s01 where s01 is given by (5). The discrepancies �a1,

�a2, . . . ,�an between the coefficients of the two

polynomials cause the root �s1 of p(s) to deviate from

the root s01 of qn(s). Of course, the same discrepancies

between the coefficients will also cause each one of the

roots �si of p(s) to deviate from the value of the

corresponding root s0i of qn(s). Our proof will be

complete upon showing that these root deviations satisfy

the relations stated in the lemma. To derive a bound on
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the root deviations, we use the Taylor series first order

error bound.
Write

si ¼ s0i ð1þ "iÞ, ð18Þ

where "i describes the ‘‘fractional’’ impact of the

deviations �a1, . . . ,�an on root i. Considering "i as a

function of the coefficients a1, a2, . . . , an, we can write

@si=@aj ¼ s0i ð@"i=@ajÞ, or

@si
@aj

¼
1

s0i

@si
@aj

� �
ð19Þ

To obtain the derivative @si/@aj, we can differentiate

equation (16) which characterizes the roots. This yields

@

@aj
½sni þ a1s

n�1
i þ � � � þ an�

¼ nsn�1
i

@si
@aj

þ a1ðn� 1Þsn�2
i

@si
@aj

þ � � � þ sn�j
i

þ ajðn� jÞsn�j�1
i

@si
@aj

þ � � � þ an�1
@si
@aj

¼ 0,

so that

@si
@aj

¼
�sn�j

nsn�1 þ a1ðn� 1Þsn�2 þ a2ðn� 2Þsn�3 þ � � � þ an�1
:

Evaluating the derivative at the point s ¼ �s0i of (5) and

assuming that the denominator is not zero, we obtain (20)
Let �"ij be the contribution of the discrepancy �aj to

the deviation "i. Then, using the first order Taylor series

error bound together with (17) and (19), we obtain (21)
To obtain better insight, we express the last formula in

terms of the slopes of the coefficient vector, as follows.

Define the ith coefficient slope

�i :¼
ai
ai�1

, i ¼ 1, 2, . . . , n where a0 :¼ 1:

At the nominal coefficients (2), we obtain

�i ¼ ðki=ki�1Þ�
n�iþ1, so that, by (5), we have

�i ¼ s0i , i ¼ 1, 2, . . . , n: Substituting into (21), yields (22)
where we assume that the denominator is not zero, i.e.,

that no roots of the denominator polynomial are among

the slopes �1, �2, . . . , �n. Further, note that

�jþ1�j . . . �2 ¼
kjþ1

kj

kj
kj�1

. . .
k2
k1
�n�j�n�jþ1�n�jþ2 . . .�n�1

¼ kjþ1�
Pj�1

i¼0
ðn�jþiÞ

¼ kjþ1�
½jðn�jÞþ

Pj�1

i¼0
i�

¼ kjþ1�
½jðn�jÞþðjðj�1Þ=2Þ� ¼ kjþ1�

½jn�ðjðjþ1Þ=2Þ�:

Also, since m(n� 1, j)� [jn� (j(jþ 1)/2)]¼

j(n� 1)� (j(j� 1)/2)� [jn� (j(jþ 1)/2)]¼ 0 we obtain

@si
@aj

¼
� � ki

ki�1

� 	
�n�jþ1

� 	n�j

 
n � ki

ki�1

� 	
�n�iþ1

� 	n�1

þk1�
n n� 1ð Þ � ki

ki�1

� 	
�n�iþ1

� 	n�2

þk2�
2n�1 n� 2ð Þ � ki

ki�1

� 	
�n�iþ1

� 	n�3

þ � � � þ kn�1�
n�1ð Þn� n�1ð Þ n�2ð Þ=2ð Þ

!

2
6666664

3
7777775
:

ð20Þ

j�"ijj � sup
@"i
@aj

�aj










 ¼ sup

1

s0i

@si
@aj

�aj












¼ sup
� ki

ki�1

� 	
�n�iþ1

� 	n�j�1
kjþ1

k1

� 	
� j n�1ð Þ� j j�1ð Þ=2ð Þ 

n � ki
ki�1

� 	
�n�iþ1

� 	n�1

þk1�
n n� 1ð Þ � ki

ki�1

� 	
�n�iþ1

� 	n�2

þk2�
2n�1 n� 2ð Þ � ki

ki�1

� 	
�n�iþ1

� 	n�3

þ � � � þ kn�1�
n�1ð Þn� n�1ð Þ n�2ð Þ=2ð Þ

�

2
666664

3
777775

















































: 21ð Þ

�"ij


 

 � sup

�n�j�1
i�

nð��iÞ
n�1

þ ðn� 1Þ�1ð��iÞ
n�2

þ ðn� 2Þ�1�2ð��iÞ
n�3

þ � � � þ �1�2 . . . �n�1

	 kjþ1�
mðn�1, jÞ

� �














, ð22Þ
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that kjþ1�
mðn�1, jÞ ¼ �jþ1�j . . . �2: Substituting into

(22) yields

for all n� 3; for n¼ 2, the last term in the denominator
is �n�2, since �1¼ �

n was already inserted earlier.
Consequently, for fixed slopes �1, �2, . . . , �n, we have
|�"ij|! 0 when �!1, as long as none of the slopes �1,
�2, . . . , �n is a root of the denominator.
Recall that, by the definition of the set �(�,M), we

have �� � i� (1/�) for all i¼ 1, 2, . . . , n, where we have
assumed (without loss of generality) that �� (1/�). Also,
recalling (14), we obtain from (23) that, for all slopes
�1, �2, . . . , �n =2Sðn, �Þ and for sufficiently large �, we can
write

�"ij


 

 � ð1=�Þn�1

�n�� n�n�1












 ¼ 1

�n�n � n�2ðn�1Þ












for all i, j¼ 1, 2, . . . , n. Taking into account the contribu-
tions of the deviations in all n coefficients, the total
relative error "i in the root si satisfies j"ij �

Pn
j¼1

j�"ijj � n=j�n�n � n�2ðn�1Þj. The last expression is clearly
independent of the index i; setting " :¼ maxi¼1,..., n j"ij
we can rewrite the last inequality in the form
" � n=j�n�n � n�2ðn�1Þj: Finally, taking � :¼N, we con-
clude that our lemma is valid for all real numbersM�N,
whereN satisfies the inequality 1=jNn�n � n�2ðn�1Þj ¼ "=n.
This completes the proof. œ

Furthermore, it is well known that all monic poly-
nomials whose roots are in the open left half of the
complex plane must have positive coefficients.
Combining this with Corollary 1 yields the following
conclusion, which summarizes the discussion of this
section.

Theorem 1: The set of real coefficients (c1, c2, . . . , cn) for
which the monic polynomial pðsÞ ¼ sn þ c1s

n�1 þ � � � þ cn
has all its roots inside the open left half of the complex
plane is virtually equal to the horn Rþn.

3. State feedback and tolerance horns

We consider now the implications of Lemma 3 on the
tolerance allowed in the implementation of stabilizing
static state feedback controllers. To that end, consider
a linear time-invariant input/state system, namely, a
system described by the realization

� : xðtÞ ¼ AxðtÞ þ BuðtÞ: ð24Þ

Here, A and B are constant matrices. Let n be the

dimension of the state vector x and let m be the

dimension of the input vector u. Assume that the

realization is reachable, and apply a static state feedback

around the system � (figure 3). This results in the input

uðtÞ ¼ vðtÞ � KxðtÞ,

where K is an m� n constant matrix of real numbers and

v(t) is the external input function. In the diagram, �

represents the input/state system (24). The state feed-

back matrix K is selected so as to stabilize the system �,

and the objective is to examine the tolerance allowed in

the implementation of K. We concentrate on the case of

high feedback gains, i.e., the case when the matrix K has

entries with large absolute values. First, some prelimin-

ary notions, starting with the familiar notion of a

circular cone.

Definition 4: Let v2Rn be a nonzero vector, and let

0� ��� be a real number. The circular cone �(v, �) with
vertex angle � around the vector v is the set of all vectors

w2Rn satisfying

�ðv, �Þ :¼ w 6¼ 02Rn : cos �1 v � w

jvjjwj
� �

� �
:

Let S�Rn be a set containing a straight ray. The inner

span � of S is the vertex angle of the largest circular cone

that can fit into S, i.e., � :¼ supf’ : �ðv, ’Þ � S, v2Sg.

The inner span of a horn is the inner span of the cone

generating the horn.

In the special case when S is a circular cone, the inner

span is the same as the vertex angle of S. It is interesting

to look at the inner span of a matrix image of Rþn.

Definition 5: Let Q be a real matrix with n columns,

and let Q[Rþn] be the image of Rþn through the matrix

Q. The column inner span of Q is the inner span of the

�"ij


 

 � sup

�n�j�1
i �jþ1�j . . . �2�

nð��iÞ
n�1

þ ðn� 1Þ�nð��iÞ
n�2

þ ðn� 2Þ�n�2ð��iÞ
n�3

þ � � � þ �n�2 . . . �n�1

	
















 ð23Þ

Figure 3. State feedback.
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set Q[Rþn]. The row inner span of a matrix is the column

inner span of its transpose.

Example 5: Consider the matrix

Q ¼
1� " 1
1 1

� �
,

where 0< "<1. The image set Q[Rþ2] is then the set

of all linear combinations with positive coefficients of

the two vectors (1� ", 1)T, (1, 1)T, i.e., the set of vectors
(a(1� ")þ b, aþ b)T, where a, b>0. Using the paralle-

logram rule, it can be seen that the column inner span 	
of the matrix Q is given by half of the angle between the

two columns of Q, i.e., by

	 ¼
1

2
cos �1 2� "ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2� 2"þ "2Þ
p
 !

:

As we can see, the angle 	 approaches 0 as "! 0 i.e.,

as the matrix Q approaches singularity.

Consider the reachable linear input/state system of (24),

and let C0 ¼ (B,AB,A2B, . . . ,An�1B) be its controllabil-

ity matrix. As the realization is reachable, we have

rankC 0 ¼ n,

where n is the dimension of the state. When the system

� has more than one input variable, the matrix C0 is not

a square matrix. The following process (see also

Brunovski (1970) and Popov (1972)) extracts from C0

an n� n non-singular matrix C, called the reduced

controllability matrix.

Algorithm 1: Derivation of the reduced controllability

matrix of the realization (24).

Step 1: Let B1, B2, . . . ,Bm be the columns of the input

matrix B. Define the n� n sub-matrices

C0
i :¼ ðBi,ABi, . . . ,A

n�1BiÞ, i ¼ 1, . . . ,m:

set k:¼ 1:

Step 2: Derive a list of integers by the following

recursive process.

(a) First, set

n1 :¼ max
i¼1,...,m

rankC0
i,

and let i1 be an integer for which rankC0
i1
¼ n1. If

n1¼ n, then go to Step 3; otherwise continue to (b).
(b) Using recursion, assume that the integers

n1, n2, . . . , nk and i1, i2, . . . , ik have been derived;

define

n0kþ1 :¼ max
i¼1,...,m

rank C0
i1
,C0

i2
, . . . ,C0

ik
,C0

i

� 	
,

and let ikþ1 2 f1, . . . ,mg be an integer for which

rankðC0
i1
,C0

i2
, . . . ,C0

ik
,C0

ikþ1
Þ ¼ n0kþ1. Set nkþ1 :¼ n 0

kþ1�

ðn1þn2þ�� �þnkÞ.
(c) If n1þ n2þ � � � þ nkþ1¼ n, then go to Step 3; other-

wise, repeat Step 2 with the value of k increased

by 1.

Step 3: Define the matrices Cij :¼ ðBij ,ABij , . . . ,

Anj�1BijÞ, j¼ 1, 2, . . . , k. The reduced controllability

matrix is then given by

C :¼ Ci1 ,Ci2 , . . . ,Cik

� �
:

Note that the reduced controllability matrix of a

reachable realization is invertible by construction.

Consequently, it can be used to induce a similarity

transformation on the realization (24); defining the

matrices

A0 :¼ C �1AC, B 0 :¼ C �1B,

we obtain the so-called controllability canonical form

realization

_x ¼ A 0xþ B 0u: ð25Þ

It can be shown from our construction that the reduced

controllability matrix of the controllability canonical

form is the identity matrix.
Now, let Tp be a similarity transformation that takes

the realization (25) into the controller form (see Popov

(1972) for a construction of the matrix Tp). Applying

the similarity transformation Tp to the realization (25),

we obtain the realization

_z ¼ Aczþ Bcu, ð26Þ

where the matrices Ac :¼ T �1
p A 0Tp and Bc :¼ T �1

p B 0 are

of the form

Ac ¼

ðA1Þ
a1, 1

0

� �
a1, 2

0

� �
� � �

a1, k

0

� �

ð0Þ ðA2Þ
a2, 1

0

� �
� � �

a2, k�1

0

� �
� � � � � � � � � � � � � � �

ð0Þ ð0Þ � � � ð0Þ ðAkÞ

0
BBBBBBB@

1
CCCCCCCA
,

Bc ¼

1

0

� �
0

0

� �
0

0

� �
� � �

0

0

� �
0

0

� �
1

0

� �
0

0

� �
� � �

0

0

� �
� � � � � � � � � � � � � � �

0

0

� �
0

0

� �
� � �

0

0

� �
1

0

� �

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Here, the blocks A1, A2, . . . ,Ak on the main diagonal

are matrices in companion form; the dimension of the

matrix Aj is ij� ij, and ai,j are scalars. In fact, (26) is a

Stabilization of linear systems 601



combination of single input systems in the controller

form, where each single input system is given by

�j : _xj ¼ Ajx
j þ bju

j, ð27Þ

where

Aj ¼

�a1j �a2j � � � �a
ij�1
j �a

ij
j

1 0 � � � 0 0

0 1 � � � 0 0

� � � � � � � � � � � � � � �

0 0 � � � 1 0

0
BBBBBB@

1
CCCCCCA
, bj ¼

1

0

� � �

0

0

0
BBBBBB@

1
CCCCCCA
,

j ¼ 1, . . . , k: ð28Þ

Furthermore, it can be verified that the similarity

transformation is given by Tp ¼ C �1
c , where Cc is the

controllability matrix of the controller form realization

(26). The matrix Cc is composed of the controllability

matrices of the sub-realizations �1, . . . ,�k of (26). Let

Cj be the controllability matrix of the sub-realization

(27); being the controllability matrix of a single-input

realization in controller form, Cj is in the lower

triangular form

Cj ¼

1 � � � � � �

0 1 � � � � �

� � � � � � � � � � � � � � �

0 � � � 0 1 �

0 0 � � � � � � 1

0
BBBBBB@

1
CCCCCCA
,

where all elements on the main diagonal are 1 (and *

represents an unspecified entry). A direct examination

shows then that

Cc ¼

C1 � � � � �

0 C2 � � � �

� � � � � � � � � � � �

0 0 � � � Ck

0
BBB@

1
CCCA:

In other words, Cc is a lower triangular matrix with ones

on its main diagonal, so that detCc¼ 1. Thus, the matrix

Cc never gets close to being singular.

Example 6: Consider the case of (26) with k¼ 1 and

i1¼ 3. Then,

Ac ¼

�a1 �a2 �a3

1 0 0

0 1 0

0
B@

1
CA, b ¼

1

0

0

0
B@

1
CA,

so the controllability matrix is

Cc ¼

1 �a1 a21 � a2

0 1 �a1

0 0 1

0
B@

1
CA:

Consequently, we always have detCc¼ 1, irrespective
of the values of a1, a2, and a3.

The combined similarity transformation

CN :¼ CC�1
c ð29Þ

takes the original realization (24) to the multivariable
controller form (26).

Definition 6: The matrix CN ¼ CC �1
c is the normalized

controllability matrix of the realization (24).

As we have seen, the normalized controllability matrix is
the similarity transformation that takes a realization
into its controller canonical form. It plays a critical role
in determining the tolerance allowed for the parameters
of a stabilizing state feedback controller, as we now
explain. Consider first the stabilization of an input/state
system in the multivariable controller form (26). To this
end, apply the static state feedback

Kc, j ¼ k1c, j, k
2
c, j, . . . , k

ij
c, j

� 	
ð30Þ

to subsystem j of (27), j¼ 1, . . . , k. When these feedback
vectors are combined into one static state feedback
matrix, we obtain the feedback matrix represented by
the direct sum

Kc ¼ Kc, 1 	 Kc, 2 	 � � � 	 Kc, k,

i.e., by the matrix

Kc ¼

Kc, 1 0 0 � � � 0

0 Kc, 2 0 � � � 0

0 0 0 � � � Kc, k

0
B@

1
CA: ð31Þ

Now, let k c be the class of static state feedback matrices
that stabilize the system (26). Clearly, the class k c

depends on the values of the entries a1j , . . . , a
ij
j of (28),

j¼ 1, 2, . . . , k. It is convenient to consider first the case
where all these entries are equal to zero, i.e., the case
where

aij ¼ 0, i ¼ 1, . . . , ij, j ¼ 1, . . . , k: ð32Þ

Denote by �0
j the instance of �j satisfying (32).

Applying the feedback (30) to �0
j , we obtain the

transition matrix

A0ðKc, jÞ ¼

�k1j �k2j �k3j � � � �k
ij
j

1 0 0 � � � 0

0 1 0 � � � 0

� � � � � � � � � � � � � � �

0 0 � � � 1 0

0
BBBBBB@

1
CCCCCCA
,

whose characteristic polynomial is

a0j ðsÞ :¼ sij þ k1j s
ij�1 þ � � � þ k

ij
j :
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Let S0(ij) be the set of all vectors Kc,j for which the

polynomial a0j ðsÞ has all its roots in the open left half

of the complex plane, i.e., S0(ij) describes the set of all

stabilizing feedback compensators for this subsystem. In
view of Lemma 3, the set S0(ij) includes the virtual horn

V(�,M) of (15). The set of all stabilizing feedback

vectors for the system (27) is then given by

ScðijÞ :¼ S0ðijÞ þ ða1j , a
2
j , a

3
j , . . . , a

ij
j Þ:

In view of (31), this yields the set of stabilizing static

state feedback compensators for the system (26) in the

form

Sc :¼ Scði1Þ 	 Scði2Þ 	 � � � 	 ScðikÞ:

Recalling the similarity transformation CN of (29), it

follows by a direct calculation that the static state
feedback compensator

K :¼ KcCN ð33Þ

stabilizes the original realization (24), with Kc being any
static state feedback that stabilizes the controller form

(26). Consequently, the set of static state feedback

compensators

S :¼ ScCN

forms a set of stabilizing static state feedback matrices

for the original realization (24).
In view of Corollary 1, the set of row vectors Sc(ij)

virtually includes the horn ðRþijÞ
T, where ðRþijÞ

T denotes

the set of all row vectors of dimension ij with positive
coefficients. Let C1

N be the submatrix of CN that consists

of the top-left i1� i1 block; let C2
N be the submatrix of

CN consisting of the next i2� i2 block along the main

diagonal, and so on. Let

Cþð jÞ :¼ Rþij

 �T

Cj
N

be the horn spanned by the rows of the matrix Cj
N,

i ¼ 1, 2, . . . , k. Applying Theorem 1, we obtain the

following.

Theorem 2: The set of stabilizing static state feedback

controllers of the system � is virtually equal the sum of

horns

Cþ :¼ Cþð1Þ 	 Cþð2Þ � � � 	 CþðkÞ: ð34Þ

Further, let �i be the inner row span of the matrix

Ci
N, i ¼ 1, 2, . . . , k: It follows then from (31) and (34)

that the non-zero entries of the class of stabilizing static

state feedback controllers for the system � virtually

include a horn with the span

� :¼ min
i¼1, 2,..., k

�i:

The number � provides an overall indication of the

tolerance available in the implementation of high-gain

stabilizing state feedback controllers for the system �.

We refer to � as the controllability inner span of the

system �. The discussion so far can be summarized in

the following brief statement.

Corollary 2: Let � be a reachable input/state system, let

� be the controllability inner span of �, and let S be the

family of stabilizing static state feedback controllers of �.

Then, the non-zero entries of the family S virtually include

a horn with row span equal to �.

In intuitive terms, the combination of Theorem 2 and

Corollary 2 indicates that the set of high-gain stabilizing

state feedback controllers is almost equal to the horn

spanned by the normalized controllability matrix CN.

The closer CN is to being singular, the less tolerance is

available when implementing stabilizing state feedback

controllers. This fact brings to light an important

connection between the implementation tolerance and

features of the normalized controllability matrix. We

conclude this section with a simple example.

Example 7: Consider the realization _x ¼ Axþ Bu,

where x is of dimension 2. Assume that this realization

has the normalized controllability matrix

CN ¼
1 0
1 1

� �
,

and that, after applying the similarity transformation

CN, we obtain the controller form

_x ¼
0 0
1 0

� �
xþ

1
0

� �
u:

Using a negative state feedback configuration with

the state feedback vector kc¼ (a, b), we obtain the

realization

_z ¼
�a �b
1 0

� �
zþ

1
0

� �
u:

The characteristic polynomial is given by

a(s) :¼ s2þ asþ b. Both roots of this polynomial have

negative real parts whenever a, b>0 (there is no need to

consider horns in this case). Thus, the set of stabilizing

feedback vectors {Kc} covers the entire first quadrant of

our feedback vector space, as depicted in figure 4. (In

this case, there is no need to restrict to high gain

feedback.)
Now, let us transform the feedback back to the

original coordinate system. Denoting by K :¼ (�, �) the
feedback vector in the original realization, we obtain

from (33) that

K ¼ ð�,�Þ ¼ KcCN ¼ ða, bÞ
1 0
1 1

� �
:

Stabilization of linear systems 603



Consequently, the set of stabilizing feedback controllers
for the original realization is given by the set

SK ¼ ða, bÞ
1 0
1 1

� �
: a, b > 0

� �
¼ fððaþ bÞ, bÞ: a, b > 0g,

i.e., the set of stabilizing feedback vectors K¼ (�, �) is
equal to the domain �>�, �>0. This domain is
depicted in figure 5.
As we can see, in this case, the process of transforming

back to the original realization narrows the cone of
stabilizing feedback controllers.

4. Output feedback and tolerance horns

We turn now to an examination of the tolerance of high-
gain linear dynamic output feedback compensators,
using Theorem 1 as our starting point. We consider an
output feedback configuration of figure 6. Here, the
system � being controlled is a strictly causal time-
invariant linear system, given by the equations

�:
_x ¼ Axþ Bu,
y ¼ cx:

The feedback compensator ’ is also a strictly causal
linear time-invariant system, described by the equations

’ :
_z ¼ Dzþ Ey,
w ¼ fz:

The closed loop system is denoted by �’. It is convenient
to describe the transfer matrices of � and of ’ in terms
of fraction representations over the polynomials
� ¼ PQ �1, ’ ¼ S �1T, where �¼PQ�1 is a right
coprime fraction representation and ’¼S�1T is a left
coprime fraction representation. As usual, we assume
that the transfer matrix of � is given, and we seek to
compute the transfer matrix of ’. Our objective is to
examine the tolerance allowed in the implementation of
the feedback compensator ’.

Referring to figure 6, a direct calculation yields

�’ ¼ �½Iþ ’��
�1

¼ P½SQþ TP� �1S:

Of course, we are interested only in internally stable
control configurations, namely, configurations that can
be implemented in a stable manner. (Needless to say, a
transfer matrix is stable if all its poles are located in the
open left half of the complex plane.) In this context, the
following fact is well known (e.g., Hammer (1982)).

Proposition 1: Figure 6 is internally stable if and only
if the polynomial matrix SQþTP has a stable inverse
matrix.

4.1 The case of single-input single-output systems

To make the presentation more transparent, we examine
first the case where � is a single-input single-output
system. We show later that the general case of multi-
input multi-output systems can be reduced to a
collection of single-input single-output cases. Suppose
then that the transfer function of the system being
controlled is given in the form

� ¼
pðsÞ

qðsÞ
,

Figure 6. Output feedback.

Figure 4. Stabilizing feedback vectors. Figure 5. Stabilizing feedback vectors.
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where p(s) and q(s) are coprime polynomials. The

coefficients of p(s) and q(s) are normalized so as to

make the denominator q(s) into a monic polynomial.

In view of the fact that � is strictly causal, we have

deg p(s)<deg q(s). The objective is to find feedback

compensators ’ that internally stabilize �. Explicitly,

since ’(s) is strictly causal, we can always write

’ ¼
�ðsÞ

�ðsÞ
¼
�1s

n�1 þ �2s
n�2 þ � � � þ �n

sn þ �1sn�1 þ � � � þ �n
ð35Þ

where �(s) and �(s) are polynomials with �(s) being

a monic polynomial. In view of Proposition 1, in order

to obtain an internally stable closed loop configuration,

we need to find polynomials �(s) and �(s) such that

deg�(s)<deg�(s) and the polynomial

rðsÞ :¼ �ðsÞqðsÞ þ �ðsÞpðsÞ ð36Þ

has all its roots in the open left half of the complex

plane. Note that, in view of the strict causality of � and

of ’, we have that deg�(s)q(s)>deg�(s)p(s); this implies

that, in (36),

degrðsÞ ¼ deg�ðsÞqðsÞ ¼ deg�ðsÞ þ degqðsÞ ð37Þ

Consequently, r(s) is a monic polynomial, since �(s) and
q(s) are both monic polynomials. Note that r(s) is the

characteristic polynomial assigned to the closed loop

system; it is the denominator of the closed loop system,

and its roots are the poles of the closed loop system. The

polynomial r(s) is often specified as a design objective.
Now, let n be the dynamical order of the system �,

so that deg q(s)¼ n, and let r(s) be the specified

denominator of the closed loop system �’. The fact

that the polynomials p(s) and q(s) are coprime implies

that one can always find polynomials �0(s) and �0(s)
satisfying the equation

rðsÞ ¼ � 0ðsÞqðsÞ þ � 0ðsÞpðsÞ: ð38Þ

Using the polynomial division algorithm, we can

find polynomials a(s) and �(s) such that

�0(s)¼ a(s)q(s)þ �(s), where

deg�ðsÞ < n: ð39Þ

Then, (38) can be recast in the form

r(s)¼ [�0(s)þ a(s)p(s)]q(s)þ�(s)p(s). Defining �(s) :¼
�0(s)þ a(s)p(s), we have r(s)¼ �(s)q(s)þ �(s)p(s). In

order to be able to implement the compensator ’(s) as
a strictly causal system ’(s)¼ �(s)/�(s), we need

deg�ðsÞ > deg�ðsÞ: ð40Þ

Letting 
 be the dynamical order of the compensator

’(s), i.e., 
¼deg �(s), it follows from (39) that (40) is

always valid when


 � n: ð41Þ

Now, let � :¼ deg r(s) be the dynamical order of the

closed loop system �’. Then, in view of (37), we have

� ¼ 
þ n: ð42Þ

Combining (42) with (41), we obtain that �� n� n,

or �� 2n; using (42), this yields


 � n:

Thus, by choosing the denominator r(s) of the

closed loop system to have the degree �¼ 2n, we can

always derive a strictly causal feedback compensator

’ of order n that stabilizes �. In other words,

the following is true.

Proposition 2: In figure 6, a strictly causal system �

of dynamical order n can always be internally stabilized by

a strictly causal feedback compensator ’ of dynamical

order n.

In view of Proposition 2, we can confine our attention to

feedback compensators of dynamical order n when

considering the stabilization of a system of order n.

In such case, the dynamical order of the closed loop

system �’ will be 2n. Consider then a strictly causal

feedback compensator ’¼ �(s)/�(s) of order n. Recalling

that the denominator �(s) was normalized as a monic

polynomial and that the degree of �(s) is strictly lower

than the degree of �(s), we write

�ðsÞ ¼ �1s
n�1 þ �2s

n�2 þ � � � þ �n,

�ðsÞ ¼ sn þ �1s
n�1 þ � � � þ �n:

Then, we can represent the compensator ’ by a real

column vector v(’) of dimension 2n, where the top n

entries are given by the coefficients �1, �2, . . . ,�n of the
numerator polynomial, and the bottom n entries are

given by the coefficients �1, �2, . . . ,�n of the denomi-

nator polynomial, i.e.,

vð’Þ ¼ ð�1, . . . ,�n,�1,�2, . . . ,�nÞ
T: ð43Þ

Further, we have seen that under these circumstance the

denominator of the closed loop system �’ is the monic

polynomial r(s) of degree 2n, i.e., rðsÞ ¼ s2n þ r1s
2n�1þ

r2s
2n�2 þ � � � þ r2n. This polynomial can be represented

by the column vector

vðrÞ ¼ ðr1, r2, . . . , r2nÞ
T:

Writing qðsÞ ¼ sn þ q1s
n�1 þ � � � þ qn and pðsÞ ¼

p1s
n�1 þ p2s

n�2 þ � � � þ pn for the denominator and the

numerator polynomials, respectively, of the given

system �, it follows from (36) that s2n þ

r1s
2n�1 þ r2s

2n�2 þ � � � þ r2n ¼ ðsn þ �1s
n�1 þ � � � þ �nÞ �

ðsn þ q1s
n�1 þ � � � þ qnÞ þ ð�1s

n�1 þ �2s
n�2 þ � � � þ �nÞ�

ðp1s
n�1þ p2s

n�2 þ � � � þ pnÞ. Equating the coefficients of
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corresponding powers, this leads to the relations

r1 ¼ q1 þ �1,

r2 ¼ q2 þ �1q1 þ �2 þ �1p1,

r3 ¼ q3 þ �1q2 þ �2q1 þ �3 þ �1p2 þ �2p1,

� � �

rn ¼ qn þ �1qn�1 þ . . .þ �n�1q1 þ �n

þ �1pn�1 þ . . .þ �n�1p1,

rnþ1 ¼ �1qn þ � � � þ �nq1 þ �1pn þ � � � þ �np1,

� � �

r2n ¼ �nqn þ �npn:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð44Þ

The relations (44) can be rewritten in the form

vðrÞ ¼ Dvð’Þ þ #, ð45Þ

where # ¼ ðq1, . . . , qn, 0, 0, . . . , 0Þ
T and D is the 2n� 2n

matrix

D¼

0 � � � 0 0 0 1 0 � � � 0 0 0

p1 0 � � � 0 0 q1 1 0 � � � 0 0

p2 p1 0 � � � 0 q2 q1 1 0 � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

pn�1 � � � p2 p1 0 qn�1 � � � q3 q2 q1 1

pn pn�1 � � � p2 p1 qn qn�1 � � � q3 q2 q1

0 0 0 � � � 0 pn 0 0 � � � 0 qn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð46Þ

As we can see, the matrix D is determined by the given

coefficients q1, q2, . . . , qn, p1, . . . , pn of the transfer

function of �. We refer to D as the transformation
matrix of �. Defining the vector

� :¼ vðrÞ � #, ð47Þ

we obtain the linear relationship

� :¼ Dvð’Þ: ð48Þ

An important feature of this relationship is the following
fact.

Proposition 3: The matrix D of (46) is non-singular
when � is not the zero system.

Proof: In view of the relation (48), our proof will
conclude upon showing that �¼ 0 if and only if v(’)¼ 0.

The ‘if’ direction follows immediately from (48); thus, it

only remains to prove that �¼ 0 implies that v(’)¼ 0. We

prove the latter by examining the polynomial equation

�ðsÞqðsÞ þ �ðsÞpðsÞ ¼ rðsÞ: ð49Þ

Assume then that �¼ 0. Recalling that �(s) is a monic
polynomial, write �ðsÞ ¼ sn þ � 0ðsÞ so that

deg� 0ðsÞ � n� 1

Substituting into (49), we get

snqðsÞ þ � 0ðsÞqðsÞ þ �ðsÞpðsÞ ¼ rðsÞ: ð50Þ

Defining the polynomial �ðsÞ :¼ �1s
2n�1 þ � � � þ �2n, it

follows from (47) that �ðsÞ ¼ rðsÞ � snqðsÞ: Using (50),

we obtain �(s)¼ �0(s)q(s)þ�(s)p(s). When �¼ 0, we

have �(s)¼ 0, so that �0(s)q(s)þ �(s)p(s)¼ 0, or

� 0ðsÞqðsÞ ¼ ��ðsÞpðsÞ: ð51Þ

The last equation describes a common multiple of q(s)

and p(s). Now, let 
(s) be the least common multiple of

p(s) and q(s). Then, since p(s) and q(s) are coprime

polynomials, 
(s) is an associate of the product p(s)q(s).

Hence,

deg
ðsÞ ¼ degpðsÞ þ degqðsÞ ¼ degpðsÞ þ n: ð52Þ

Further, since deg�(s)¼ n, the strict causality

of ’ implies that deg�(s)< n. Consequently,

deg�(s)p(s)<deg p(s)þ n, which shows that �(s)p(s)
cannot be a non-zero multiple of 
(s). As a result, the

validity of both (51) and (52) implies that

� 0ðsÞqðsÞ ¼ ��ðsÞpðsÞ ¼ 0:

In view of the fact that � is not the zero system, we

have that p(s) 6¼ 0 and q(s) 6¼ 0, and it follows that

�(s)¼ 0 and �0(s)¼ 0. But then, v(’)¼ 0, and our proof

concludes. œ

In view of (45) and Proposition 3, we can express the

coefficients v(’) of the feedback controller ’ in terms of

the desired denominator coefficients v(r) of the closed

loop system in the form

vð’Þ ¼ D �1½vðrÞ � #�: ð53Þ

Example 8: Consider an order 2 system with the

transfer function

�¼
3sþ 2

s2 þ sþ 1
,

and let rðsÞ ¼ s4 þ r1s
3 þ r2s

2 þ r3sþ r4 be the desired

characteristic polynomial of the closed loop system �’
(here, r1, r2, r3 and r4 are given real numbers). To find a

strictly causal feedback compensator ’ that implements

this characteristic polynomial for the closed loop system,

write

’ðsÞ ¼
�1sþ �2

s2 þ �1sþ �2
: ð54Þ

Then, vð’Þ ¼ ð�1,�2,�1,�2Þ
T. Using (36), we get r(s)¼

�(s)p(s)þ�(s)q(s)¼ (�1sþ �2)(3sþ 2)þ (s2þ�1sþ �2)�
(s2þ sþ 1)¼ s4þ (�1þ 1)s3þ (3�1þ �1þ �2þ 1)s2þ

(2�1þ 3�2þ �1þ �2)sþ (2�2þ �2).
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Equating coefficients of corresponding powers of s,

we get

r1

r2

r3

r4

0
BBBB@

1
CCCCA ¼

�1

3�1 þ �1 þ �2

2�1 þ 3�2 þ �1 þ �2

2�2 þ �2

0
BBBB@

1
CCCCAþ

1

1

0

0

0
BBBB@

1
CCCCA:

Comparing to (45), we obtain

vðrÞ ¼

r1

r2

r3

r4

0
BBBB@

1
CCCCA, D ¼

0 0 1 0

3 0 1 1

2 3 1 1

0 2 0 1

0
BBBB@

1
CCCCA, and # ¼

1

1

0

0

0
BBBB@

1
CCCCA:

A direct calculation verifies that D is indeed an invertible

matrix. Thus, we can solve for the coefficients �1, �2, �1,
�2 of the transfer function ’ for any choice of r1, r2, r3
and r4. This implies that a compensator ’ of the form

(54) can assign any monic polynomial of degree 4 as the

denominator of the closed loop system �’.
Let us turn now to the issue of stabilizing the given

system � by using figure 6. To accomplish this objective,

it is sufficient to assign as the characteristic polynomial

of the closed loop system a monic polynomial with

coefficients in the set V(�,M) of Lemma 3. In connection

with (47), define the set

 ð�,MÞ :¼ Vð�,MÞ � #, ð55Þ

which is obtained by simply shifting V(�,M) by #; recall
that # is given in terms of the parameters of the system

�. Clearly, the process of shifting V(�,M) by # has no

impact on its inner span. Consequently, the set  (�,M)

has the same inner span as the set V(�,M).
Further, considering (53), we conclude that any

feedback compensator ’ of the form (35) with coeffi-

cients vector

vð’Þ 2D �1½ ð�,MÞ� ð56Þ

creates an internally stable closed loop system �’. In

close analogy to our derivation of Theorem 2, we obtain

then the following characterization of the tolerance

permitted in the implementation of a stabilizing output

feedback compensator ’.

Proposition 4: Let � be a strictly causal single-input

single-output system, and let D be the transformation

matrix of �. Let f n be the set of all strictly causal

feedback controllers ’ of dynamical order n that internally

stabilize the system �, and let Vn be the set of all 2n

dimensional vectors v(’), ’2 fn. Then, Vn includes a

virtual horn whose span is the column span of the

matrix D�1.

The fact that a polynomial whose roots are inside the
open left half of the complex plane must have strictly
positive coefficients directly implies the following.

Corollary 3: Let � be a strictly causal scalar system
with the transformation matrix D. Let fn be the set of all
strictly causal feedback controllers ’ of dynamical order n
that internally stabilize �, and let Vn be the set of all 2n
dimensional vectors v(’), ’2 f n. Then, the horn of Vn is
virtually equal to the horn D�1Rþn.

Corollary 3 shows that the transformation matrix D of
the given system � characterizes the accuracy required
of an internally stabilizing output feedback controller
for �. Our next objective is to generalize these
statements to the case of multi-input multi-output
systems.

4.2 Multivariable systems

Consider a strictly causal system � with m input
variables and p output variables being controlled by a
strictly causal output feedback controller ’ in figure 6.
The controller ’ is then represented by an m� p transfer
matrix ’(s), whose entries ’ij(s) are strictly causal
rational functions. With each non-zero entry ’ij(s), we
associate a vector v(’ij) of real numbers, following the
process used in (43). It is convenient to combine all these
vectors into one long vector v(’). The vector v(’)
contains then all the design parameters required for the
stabilization of the system �. We are interested in
the tolerances around the values of these parameters.
The next statement generalizes Proposition 4 to the case
of multi-input multi-output systems.

Theorem 3: Let � be a strictly causal system of order n,
let f n be the set of all strictly causal feedback controllers ’
of dynamical order n that internally stabilize �, and let V
be the set of all vectors v(’), ’2 f n: Then, V includes
a virtual horn H of strictly positive span.

The calculation of the span of the horn H mentioned in
the theorem is described in the proof (see (67) below).

Proof of Theorem 3: Consider a strictly causal system
with a p�m transfer matrix �, and let � ¼ PQ �1 be a
right coprime fraction representation over the polyno-
mials. Here, P is a p�m polynomial matrix, Q is an
m�m polynomial matrix that is invertible over the
rational functions, and P and Q are right coprime. For
notational simplicity, we assume here that p�m; the
case p<m is treated similarly. Consider the control of
� by a dynamic output feedback compensator ’ as
depicted in figure 6, so that ’ has an m� p transfer
matrix. It is convenient to represent ’ in terms of a left
coprime fraction representation over the polynomials
’¼S�1T. In view of Proposition 1, internal stability of
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figure 6 is achieved when the determinant of the

polynomial matrix M :¼TPþSQ has all its roots

inside the open left half of the complex plane. In the

course of the proof, we show that the case of a

multivariable system can be reduced to several single-

input single-output systems. This will allow us to

generalize the results of x 4.1 to multivariable systems.
To this end, let ��

s R be the set of all scalar, stable, and

causal rational functions; recall that ��
s R forms a

principal ideal domain (e.g., Hammer (1983a)). An

invertible in ��
s R is a non-zero element for which the

inverse is also stable and causal. A unimodular matrix A

over ��
s R is an invertible matrix of rational functions

for which all entries (of A and) of A�1 belong to ��
s R.

A matrix B of rational functions is bicausal if it is

invertible, and if all entries of B and of B�1 are causal.

Similarly, a matrix C of rational functions is bistable if

all entries of C and of C�1 have all their poles in the

open left half of the complex plane. Clearly, a

unimodular matrix over ��
s R is bicausal and bistable.

From the fact that the given transfer matrix � is

rational, it follows that there is a bicausal element

 ðsÞ 2��
s R for which the product f(s) :¼� (s) is a

stable and causal transfer matrix. Then, f(s) is a matrix

over the principal ideal domain ��
s R. By the Hermite

Normal Form Theorem (e.g., Macduffee (1946)), it

follows that there is a unimodular matrix ‘ over ��
s R for

which the product ‘f(s) is in lower triangular form (i.e.,

is zero below its main diagonal). Since  (s) is a scalar,

the transfer matrix

� 0 :¼ ‘� ¼
1

 ðsÞ

� �
‘fðsÞ ð57Þ

is still in lower triangular form. Furthermore, since ‘ is
bicausal and � is strictly causal, it follows that �0 is

strictly causal as well.
Next, let � 0 ¼ P 0Q 0�1 be a right coprime fraction

representation over the polynomials. Applying again the

Hermite Normal Form Theorem, we can derive a

polynomial unimodular matrix N for which the product

Q00 :¼Q0N is in lower triangular form. Define the matrix

P00 :¼P0N, so that

� 0 ¼ P 00Q 00�1: ð58Þ

Noting that �0 and Q00 are both lower triangular

matrices and that P00 ¼�0Q00, we conclude that the

matrix P00 is also in lower triangular form. Thus, P00 and

Q00 are both polynomial matrices in lower triangular

form.

To simplify our discussion while sacrificing generality

only slightly, we make the following assumption, which

is valid in the generic case of polynomial matrices P00 and

Q00 (we indicate later how to handle cases in which this

assumption is not valid). Let pij and qij be the i, j entries

of the matrices P00 and Q00, respectively.

Assumption 1 (generic case): Corresponding main diag-

onal entries of P00 and Q00 are coprime polynomials, i.e., pii
and qii are coprime for all i¼ 1, 2, . . . ,m.

Now, since Q00 is lower triangular, so is its inverse matrix

Q00�1, and the ith entry on the main diagonal of Q00�1 is

1/qii, i¼ 1, 2, . . . ,m. Thus, recalling that P00 is lower

triangular as well, it follows that the main diagonal

entries of the product �0 ¼P00Q00�1 are pii/qii, i¼ 1,

2, . . . ,m. In view of the strict causality of �0, this leads

us to the conclusion that deg pii < deg qii, i ¼ 1, . . . ,m.

Thus, the system fii :¼ pii/qii satisfies the requirements

of Proposition 2. Consequently, there is a strictly causal

output feedback compensator ’ 0
ii that internally stabi-

lizes the scalar system represented by the transfer

function fii. Let ’ 0
ii ¼ �ii=�ii be a coprime polynomial

fraction representation, where we take �kk :¼ 1 if

’ 0
kk ¼ 0. The fact that ’ 0

ii internally stabilizes the scalar

system fii implies that the polynomial


ii :¼ �iipii þ �iiqii ð59Þ

has all its roots in the open left half of the complex

plane, i¼ 1, . . . ,m.
Next, build the m�m diagonal matrix B, having

�11,�22, . . . ,�mm on its diagonal, and note that B is a

non-singular matrix. Build the m� p diagonal matrix A,

having the entries �11,�22, . . . ,�mm on its main diagonal

and zeros everywhere else (recall that we consider the

case p�m). Taking into account the fact that P00 and Q00

are triangular matrices, that A and B are diagonal

matrices, and that (59) is valid, it follows that the matrix

M :¼ AP 00 þ BQ 00 ð60Þ

is an m�m triangular matrix with the entries


11,
22, . . . ,
mm on its main diagonal. Consequently,

detM¼
11, 
22, . . . ,
mm, namely, detM is a polyno-

mial having all its roots in the open left half of the

complex plane. By Proposition 1, we conclude then that

the m� p diagonal feedback compensator

’ 0 :¼ B �1A ¼

’ 0
11 0 � � � � � � 0 0 � � � 0

0 ’ 0
22 0 � � � 0 0 � � � 0

0 0 � � � � � � 0 0 � � � 0

0 0 � � � 0 ’ 0
mm 0 � � � 0

0
BBB@

1
CCCA

internally stabilizes the system �0. Applying now

Proposition 4 and Corollary 3 to each one of the

scalar feedback compensators ’ 0
ii, i ¼ 1, 2, . . . , n, it

follows that the set of permissible coefficients of each

non-zero entry of ’0 virtually includes a horn with

strictly positive span.
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Returning now to the given system �, we have from
(57) and (58) that � ¼ ð‘ �1P 00ÞQ 00�1. Defining the
matrices

P :¼ ‘ �1P 00 and Q :¼ Q 00,

it follows that P00 ¼ ‘P and (60) takes the form

ðA‘ÞPþ BQ ¼ M: ð61Þ

Now, let �sR be the ring of all stable scalar transfer
functions. Recalling that ‘ is bistable and that M is a
polynomial matrix whose determinant has only stable
roots, it follows that the matrices ‘ and M are both
unimodular over the ring �sR. Furthermore, the fact
that ‘ is unimodular over �sR, together with the
fact that P00 and Q00 are coprime polynomial matrices,
implies that P and Q are right coprime matrices over
�sR. Thus, (61) represents a solution of the coprimeness
equation (the Bezout Identity) over the ring �sR. In
view of Hammer (1983b), this implies that the feedback
compensator ’ given by

’ :¼ B �1ðA‘Þ ¼ ðB �1AÞ‘ ¼ ’ 0‘

internally stabilizes the original system �.
Note that, since ‘ is bicausal and B �1A is strictly

causal, it follows that ’ is strictly causal as well.
Furthermore, since B �1A is diagonal, each entry of ’
is obtained by multiplying one entry of the diagonal
compensator ’0 by one of the entries of ‘. Specifically,
letting ‘ij be the i, j entry of ‘, it follows that the i, j entry
of ’ is given by

’ij ¼ ’ 0
ii‘ij, i ¼ 1, 2, . . . ,m, j ¼ 1, 2, . . . , p:

Let us write the terms as coprime polynomial fraction
representations in the form

’ 0
ii ¼

�ii
�ii

, ‘ij ¼
lij
�ij

, ð62Þ

where �ii, �ii and lij, �ij are pairs of coprime polynomials.
Defining the two polynomials �ij :¼ �iilij and �ij¼ �ii�ij,
we obtain that ’ij¼ �ij/�ij. In analogy with (43), we
create a real vector v(’ij) from the coefficients of the two
polynomials �ij and �ij. Similarly, we create a real vector
vð’ 0

iiÞ from the coefficients of the polynomials �ii and �ii.

Fact 1: v(’ij) is a linear function of vð’ 0
iiÞ, as long as the

dynamical orders of ’ij and ’
0
ii remain constant.

Proof of Fact 1: Consider two rational functions

’ 0
1, ii ¼

�1, ii
�1, ii

and ’ 0
2, ii ¼

�2, ii
�2, ii

of the same dynamical order, and let a and b be two real
numbers. Also, denote

’1, ij :¼ ’ 0
1, ii‘ij, ’2, ij :¼ ’ 0

2, ii‘ij ð63Þ

and assume that ’1, ij and ’2, ij have the same dynamical

order. Explicitly, by (62), we can write

’1, ij ¼
lij�1, ii
�ij�1, ii

and ’2, ij ¼
lij�2, ii
�ij�2, ii

: ð64Þ

Now, according to the construction (43) of the real

vector v(’), it follows that the rational function ’ 0
ii that

corresponds to the combination avð’ 0
1, iiÞ þ bvð’ 0

2, iiÞ is

given by ’ 0
ii :¼ ða�1, ii þ b�2, iiÞ=ða�1, ii þ b�2, iiÞ. Using

(62), this leads to

’ij ¼ ‘ij’
0
ii ¼

lijða�1, ii þ b�2, iiÞ

�ijða�1, ii þ b�2, iiÞ
¼

aðlij�1, iiÞ þ bðlij�2, iiÞ
að�ij�1, iiÞ þ bð�ij�2, iiÞ

:

Using again the construction (43) and (64), it follows

from the last equality that vð’ijÞ ¼ avð’1, ijÞ þ bvð’2, ijÞ.
This shows that our fact is valid. œ

In view of Fact 1, under conditions of constant

dynamical order, there is a matrix L(i, j) such that

vð’ijÞ ¼ Lði, jÞvð’ 0
iiÞ, i ¼ 1, 2, . . . ,m, j ¼ 1, 2, . . . , p: ð65Þ

Furthermore, the following is true.

Fact 2: If ‘ij 6¼ 0, then the matrix L(i, j) of (65) is non-

singular.

Proof: Assume that there are two vectors vð’ 0
1, iiÞ and

vð’ 0
2, iiÞ for which Lði, jÞvð’ 0

1, iiÞ ¼ Lði, jÞvð’ 0
2, iiÞ ¼: vð’ijÞ.

Using (63), this yields ’ij ¼ ’ 0
1;ii ‘ij ¼ ’ 0

2, ii ‘ij; since

‘ij 6¼ 0, we conclude that ’ 0
1, ii ¼ ’ 0

2;ii. Thus, we must

have vð’ 0
1, iiÞ ¼ vð’ 0

2, iiÞ, and it follows that L(i, j) is a

non-singular matrix. œ

Next, using (59) and implementing the process outlined

in (53), (55), (56), and Proposition 4, we derive the set

 ii(�, M) having the following feature: all dynamic

feedback compensators ’ 0
ii whose coefficients satisfy

vð’ 0
iiÞ 2D �1

ii ½ iið�,MÞ�,

internally stabilize the scalar system fii¼ pii/qii.

Combining this with (65), we conclude that any

feedback compensator ’ whose i, j entry has coefficients

v(’ij) satisfying

vð’ijÞ 2 ðLði, jÞD �1
ii Þ½ iið�,MÞ� ð66Þ

internally stabilizes the given system �. Since the matrix

L(i, j) is not singular by Fact 2, this shows that the

coefficients of each non-zero entry of the internally

stabilizing feedback compensator ’ include a virtual

horn of strictly positive span.
More explicitly, let �ij be the inner span of the

cone ðLði, jÞD �1
ii Þ½ iið�,MÞ�. As the matrix L(i, j) is non-

singular for all non-zero entries of ‘ij (Fact 2), we
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conclude that �ij>0 for all nonzero entries of ’.
Defining

� :¼ minf�ij : ‘ij 6¼ 0, i ¼ 1, . . . ,m, j ¼ 1, . . . , pg, ð67Þ

we have that �>0. Thus, the nonzero entries of
the feedback compensator ’ allow a tolerance that
corresponds to a virtual horn with the inner span �.
This concludes the proof of Theorem 3 in the generic
case (i.e., under Assumption 1).
Finally, we provide a sketch of the proof of

Theorem 3 in the non-generic case, i.e., when
Assumption 1 is not valid. Recall the bicausal element
 ðsÞ 2��

s R for which the transfer matrix f(s) :¼ (s)� is
stable. As ��

s R is a principal ideal domain, e.g.,
Hammer (1983a), there are unimodular matrices ‘1
and ‘2 over �

�
s R for which the transfer matrix ‘1f(s)‘2 is

in Smith normal form over ��
s R (Macduffee 1946).

Dividing the last expression by the scalar  (s), we obtain
the diagonal transfer matrix

� 00 :¼ ‘1�‘2: ð68Þ

Let �11, �22, . . . , �mm be the diagonal entries of �00; note
that �11, �22, . . . , �mm are all strictly causal, since � is
strictly causal and ‘1 and ‘2 are both bicausal.
Next, let � 00 ¼ P 00Q 00�1 be a diagonal coprime

fraction representation over the polynomials (i.e., P00

and Q00 are diagonal polynomial matrices). The corre-
sponding diagonal entries of P00 and of Q00 are then
coprime polynomials. Let E and F be diagonal
polynomial matrices for which the combination

EP 00 þ FQ 00 ¼ M ð69Þ

is a diagonal polynomial matrix whose determinant has
all its roots in the open left half of the complex plane.
In view of Proposition 2, we can choose the diagonal
matrices E and F so that the transfer matrix �00 :¼F�1E
is strictly causal. Further, using (68), we can write
� ¼ ‘ �1

1 � 00‘ �1
2 ¼ ð‘ �1

1 P 00Þð‘2Q
00Þ

�1
¼ PQ �1, where

P :¼ ‘ �1
1 P 00 and Q :¼ ‘2Q

00:

Referring now to (69), we can write
M ¼ ðE‘1ÞPþ ðF‘ �1

2 ÞQ, from which we conclude, as
earlier in this proof, that

� :¼ ðFð‘2Þ
�1
Þ
�1E‘1 ¼ ‘2�

00‘1

is a strictly causal feedback compensator that internally
stabilizes the system �. Finally, since the non-zero
coefficients of �00 include the horn of a cone with strictly
positive span, an argument based on the one leading to
(66) implies that the same also holds true for the nonzero
coefficients of �. This concludes our proof. œ

5. Conclusion

We have discussed the accuracy required of stabilizing
feedback controllers for linear time-invariant systems.
We have seen that each system is naturally associated
with a tolerance cone, which describes the class of
high-gain feedback controllers that stabilize the system.
The tolerance cone can be computed from the given
description of the system being controlled, and its vertex
angle determines the relative (or ‘‘percentage’’) accuracy
required of the parameters of a stabilizing high-gain
feedback controller. In the case of static state feedback,
the vertex angle of the tolerance cone is small when the
normalized controllability matrix of the controlled
system is close to being singular. This indicates that
higher accuracy is required of the feedback parameters
when controlling a system that is close to losing
reachability, making it harder to stabilize input/state
systems that are nearly non-reachable. The situation for
dynamic output feedback is analogous.
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