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Handling disturbances in nonlinear control: the use of state feedback 

JACOB HAMMERt 

The problem of controlling a nonlinear system in the presence of disturbances and 
modelling inaccuracies is considered. The objective is to design a static state feed
back controller that controls the system so that the combined effect of all disturb
ances and inaccuracies on the response of the closed loop system is below a 
specified bound. The results include a characterization of the largest disturbance 
amplitude for which the design objective can be met. This result can be used to find 
the largest discretization step for a digital controller. Note that a larger discretiza
tion step lowers the computational burden of the controller. By exploring a basic 
connection to reachability, a procedure for the computation of appropriate static 
state feedback controllers is described. The state feedback controllers are calculated 
through the solution of a system of algebraic inequalities. 

1. Introduction 

A common difficulty in the utilization of digital controllers for nonlinear systems 
is the extensive computational burden imposed by the controller. Even with modern 
computer systems, the implementation of controllers for nonlinear systems of 
moderate to high dimensionality is a daunting task. This difficulty has only been 
partly alleviated by modern design techniques, and it still constitutes an obstacle in 
the practice of nonlinear control engineering. 

An important parameter in the design of a discrete controller for a system with 
continuously valued signals is the size of the discretization step used in the analogue
to-digital conversion process. For a fixed signal amplitude, a larger discretization 
step leads to fewer points in the discrete space over which the discrete controller 
operates, thus lowering the computational requirements of the controller. The 
present paper concentrates on the problem of finding the largest discretization 
step that is compatible with specified performance requirements. At the same time, 
it also describes the design of a controller appropriate for this discretization step. 

The system being controlled is a nonlinear discrete-time system 1:, represented by 
a recursion of the form 

xk+I = f (xk, uk) 

Yk = xk, k = 0, 1, 2, ... 
(1) 

Here, the initial condition is x 0. The variable xk is an n-dimensional real vector, 
usually called the 'state' of l: at the step k; the input value of J; at the step k is given 
by uk, an m-dimensional real vector. The function! is called the recursion function of 
1:, and is required to be a continuous function. We concentrate here on the control of 
systems whose state is provided as output, so the output value Yk at the step k is 
equal to the state of the system at that step. 
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The system I: is subject to a variety of disturbances and modelling inaccuracies. 
These consist of an input disturbance signal v 1, an output disturbance signal v 3 , and 
a modelling error v 2 • When these disturbances and errors are taken into account, the 
recursive representation of the system becomes 

Xk+I = f (xk, Uk+ V1k) + V2k (2) 
Yk = xk + v3k, k = 0, l, 2, ... 

Here, v 1k is the value of the disturbance signal v; at the step k. The only a priori 
information available about the disturbances v 1, v2, and v3 is a bound on their 
largest amplitude. Thus, we assume that there is a specified real number d0 > 0 
such that the amplitudes of the disturbances v 1, v2, and v3 do not exceed d0. No 
other assumptions are made about the nature of the disturbances. 

The class of controllers considered in the present paper is the class of static state 
feedback controllers, as represented by figure 1. 

X 

s 

Figure 1. 

u 

+ +f' y 

Here, a is a static state feedback function, v is an external reference input, and v4 

is an input disturbance. The amplitude of the disturbance v4 is also bounded by 
d0 > 0, as the other disturbance amplitudes are. The closed loop system described by 
the diagram is denoted by Ea. 

We emphasize that the disturbance signals v1, v2, v 3, and v 4 are not assumed to 
be infinitesimal. The design framework development below is of a global nature, and 
allows the treatment of large disturbances and deviations. 

Generally speaking, the disturbances v1, v 2, v 3, and v4 may originate from a 
variety of different sources. When the feedback function a is implemented on a 
digital computer, one important disturbance source is the discretization noise, 
caused by the analogue-to-digital and digital-to-analogue conversion processes. 
The maximal amplitude of this disturbance source is the size dct of the discretization 
step. When this disturbance is added to the existing disturbances in the system, one 
obtains the bound 

d := d0 + dct (3) 

on the amplitudes of the combined disturbances. For the sake of simplicity, we have 
assumed here that the same discretization step size is used for all signals. Similar 
techniques apply to the more general case where each signal has its own discretiza
tion step size. 
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The objective is to find the largest possible value of d that is compatible with 
given design specifications. Once the maximal value of d has been found, one can 
obtain the size of the largest permissible discretization step from the equality 

(4) 

Note that a larger discretization step reduces the computational burden required of 
the digital controller that implements the feedback function a. 

The specific design problem considered here is the calculation of a state feedback 
function a that drives the system L along a prescribed nominal path. The nominal 
path is obtained when the external reference signal v of the closed loop system is set 
to zero, and no disturbances are active. 

When active, the disturbances v 1, v2, v3, and v4 may cause the closed loop system 
Lu to deviate from its specified nominal path. The largest magnitude of this deviation 
determines the performance accuracy of the closed loop system. The design require
ment is that the deviation does not exceed a prescribed bound LI > 0. Our aim is to 
find the largest disturbance amplitude bound d for which there is a feedback function 
a that fulfils this requirement. When the maximal value of d is substituted into ( 4), 
one obtains the size of the largest permissible discretization step dd which is compa
tible with the design requirements. 

After possibly inducing a shift on the state variables of L, we shall assume that 
the required nominal path is the zero output sequence. In these terms, we can state 
our design objective as follows. 

Design objective: 

(a) Given a real number LI > O,.find the largest real number d > 0 for which there is 
a state feedback function a satisfying the property: 

(*) The output amplitude of the closed loop system Lu does not exceed LI for any 

disturbance signals v 1, v2, v3, and v4 of amplitude not exceeding d (if such ad 
exists); and 

(b) Construct a state feedback function a with the property (*). 

The techniques developed in the paper are general in nature, and can be utilized 
for the design of controllers that fulfil other design objectives as well. However, we 
shall concentrate solely on the design objective listed above. Throughout our dis
cussion, we assume that the external reference signal v is set to its zero nominal value; 
possible deviations from this value are represented by the disturbance signal v4• 

Our discussion provides a link between the accuracy requirements imposed on 
the performance of the closed loop system, and the computational burden required 
for the implementation of the controller a. A larger value of the closed loop error LI 
normally leads to a larger value of the disturbance amplitude bound d, and whence, 
via (4), to a larger discretization step dd. This reduces the number of points in the 
discrete implementation of a, and lowers the computational burden. 

The bound don the maximal permissible disturbance amplitude is characterized 
in section 3. In principle, the calculation of the bound d involves the solution of a set 
of algebraic inequalities that are derived from the given recursion function f of the 
system J;. Section 3 also contains the construction of state feedback functions a that 
permit disturbances of amplitudes up to the maximal value d. 

As mentioned earlier, our main interest here is in the derivation of state feed
back functions for digital computer implementation, as other implementations of 
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nonlinear controllers are usually impractical. In such an implementation, the feed
back function a operates over a discrete grid, where the interval size of the grid is 
given by the discretization interval dd. Thus, there is no need to require the function 
a to be a continuous function, and we can permit a to possess Jumps. The only 
requirement imposed on the feedback function a is that it control the system L so 
that the output deviations caused by permissible disturbances do not exceed 
the specified bound LI. Allowing the function a to be discontinuous considerably 
simplifies its construction, while being of no adverse consequence in a discrete 
implementation. (The derivation of continuous feedback functions is discussed in 
Hammer (1989b).) 

In general terms, the discrete implementation of the feedback function a is con
structed as follows. First, one calculates the permissible disturbance amplitude d, 
and then, through (4), the permissible discretization step dd. This defines the step size 
of the grid over which the values of a need to be calculated. The values of a over the 
grid are then calculated on a point by point basis, from the solution of a set of 
algebraic inequalities (see sections 3 and 4 below). Since most practical systems 
operate over bounded spaces, the values of a need to be calculated only over a finite 
set of argument values; the number of such argument values is clearly smaller for a 
larger discretization step size dd. 

In section 4 we show that the calculation of permissible disturbance amplitudes, 
as well as the derivation of appropriate state feedback functions a, is simplest when 
the system L satisfies certain reachability requirements. This observation generalizes 
to the nonlinear case a well known principle of linear control theory, where the 
design of state feedback is closely linked to reachability properties. 

The notion of nonlinear reachability used in our discussion is based directly on 
properties of the recursion function f of the system. Specifically, let 

f 
11(xo, uo, · ·., Un- 1) := f ( ... f (f (xo, uo), ui) · · ·, Un- 1) 

be the nth iteration of the recursion function f. In this notation, when the system 
starts at an initial condition x 0 and is driven by an input list u0 , ... , u11_ 1, the state it 
reaches at the nth step is given by 

Then, in crude terms, the realization xk+l = f (xk, uk) is reachable if the function/ 11 

is an open function. This definition reduces to the standard notion of reachability in 
the linear case .. 

Using this notion of reachability, we develop in section 4 a general computational 
framework for the calculation of permissible disturbance amplitudes and appropri
ate state feedback controllers for nonlinear systems. The resulting computational 
framework relies on the solution of a set of algebraic inequalities, derived directly 
from the given recursion function f of the system L. 

The discussion presented here builds on results presented in Hammer (1989b, 
1991). Alternative studies on the global control of nonlinear systems are given in 
Hammer (1984a,b, 1985, 1989a, 1994), Desoer and Kabuli (1988), Verma (1988), 
Sontag (1989), Chen and de Figueiredo (1990), Paice and Moore (1990), Verma and 
Hunt (1993), Paice and van der Schaft (1994), Baramov and Kimura (1995) and the 
references cited in these and other papers. 
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2. Preliminaries 

The present section introduces the basic notation and set-up. Let R denote the set 
of all real numbers, and let Rm be the set of all m-dimensional real vectors, where mis 
a positive integer. Denote by S(Rm) the set of all sequences u0, u1, u2 , ••• of real 
vectors ui E Rm, i = 0, I, 2, . . . It is convenient to use the letter u to denote the 
sequence u0, ui, u2, ..• Then, u; is the ith element of the sequence u. 

Our discussion relates to systems E that are given in terms of a state representa
tion of the form (1). Here, u = u0 , u1, u2 , ••. E S(Rm) is the input sequence of E, and 
x = x 0, x 1, x2 , ... E S(Rn) is the sequence of states through which the system E 
passes. The initial condition of the system is then x 0. The recursion function 
f: Rn x Rm ~ Rn of E is a continuous function. In the present paper we restrict 
our attention to time-invariant systems, namely, to recursion functions/ that do not 
depend directly on the step counter k. However, many aspects of our discussion can 
be directly generalized to time-varying recursion functions. It will be convenient to 
denote by E(x 0 ) the response of the system E from the initial condition x0 . 

The main topic of our discussion relates to the effects of disturbances on non
linear control systems. In order to describe the magnitude of disturbances or of their 
effects, we shall use the standard l 00 -norm, which is defined as follows. Given a 
vector v E Rm with the components ( v1

, ... , vm), denote by 

JvJ :=. max J/J 
1=1,2, ... ,m 

the maximal absolute value of a component. For a sequence 
u = (uo, u1, ... ) E S(Rm), set 

Jul := sup Ju;J 
i~O 

so that Jul is the standard 100 -norm of the sequence u. 
For a real number (} > 0, we denote by [-B, Bt the set of all vectors v E Rm 

satisfying JvJ ~ B, and by S(~) the set of all vector sequences u E S(Rm) satisfying 
JuJ ~ B. 

According to figure I and (2), there are four disturbance signals that affect our 
configuration, namely, the signals v1, v2, v3 , and v4 . Of these, two disturbance 
signals ( v2 and v3) affect the state value, and two ( v1 and v4) affect the input 
value. It will be convenient to combine v1 and v4 into one total disturbance that 
acts on the system input, by defining 

We then impose an amplitude bound on the total input disturbance by requiring 
JvuJ ~ 8. 

The disturbance signals v2 and v3 of (2) affect the state value of the system E. As it 
turns out, the disturbance v2 representing the modelling errors, has a double effect; 
intuitively spreaking, this occurs since v2 affects both the value of the recursion (2) 
and the value of the state feedback function a. In this sense, the total disturbance 
amplitude relating to the state xis in fact equivalent to 2Jv2J + Jv3J. Allowing each of 
these two disturbance sources the same amplitude, and requiring the combined effect 
not to exceed 8, we restrict Jv2J ~ 8/3 and Jv3J ~ 8/3, so that 2Jv2J + Jv3J ~ 8. We can 
then summarize the combined disturbance restrictions in the form 

Jv1 +v4J ~ 8 (5) 
Jv2 + v3J ~ 28/3 
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Our objective is to find the largest value Om of the real number b > 0 that is 
compatible with the design specifications. The largest uniform bound on the ampli
tudes of the individual disturbances is then d = bm/3 (although for the input disturb
ances v 1 and v4, amplitudes up to 0111/2 are allowed). For the sake of simplifying the 
terminology, the term 'disturbance amplitude' will refer in the sequel to the number 
b, rather than to the individual amplitudes of the disturbances v 1, v2, v3, or v4. 

The term 'nominal' is used below to refer to the response of the configuration 
(figure 1) when all disturbances are set to zero, and the external input sequence v is 
the zero sequence. We denote by Eu(x 0) the nominal response of the closed loop 
system when started at the initial condition x0 E R 11

• When disturbances v 1, v2, v3 or 
v4 are present, it is sometimes convenient to denote the response of the closed loop 
system by l'u(x 0 ) * (v 1,v 2,v 3,v 4 ); the initial condition here is still x 0 , and the exter
nal input sequence is still v = 0. Of course, the exact value of the output sequence y 
in this case depends on the particular values of the disturbance sequences v 1, v2, v3, 
and v4 . 

We conclude this section with a further note on notation. Throughout our dis
cussion we shall need to study subsets of the cross product space R11 x Rm. As usual, 
given a function f: R11 x Rm --+ R 11 and a subset S c R11 x Rm, we shall denote by 
f [SJ the image of S through the function/. Thus,/ [S] is the set of all values/ (x, u) 
for pairs (x, u) ES. Given two subsets X c R 11 and Uc Rm, it will be convenient to 
denote by (X, U) the cross product set Xx U, so that 

(X, U) = { (x, u): x E X and u E U} 

Then,/ (X, U) is simply the subset of R11 consisting of all values/ (x, u) where x EX 
and u EU. 

3. State feedback 

We turn now to a more detailed examination of the control configuration (figure 
1). Here, Eis the system that needs to be controlled. Its nominal model is given by 
(1), while its model with the disturbances active is represented by (2). The feedback is 
created by the feedback function a: Rn --+ Rm: sk = a(yk), k = 0, 1, 2, ... With no 
disturbances present, we have Yk = xk, k = 0, 1, 2, ... , and the input sequence u of 
E satisfies uk = vk + sk, so that xk+I = f (xk, vk + sk). Thus, without disturbances, 
the closed loop system Eu is described by the recursion 

xk+I = J (xk, (a(xk) + vk)), k = 0, 1, 2, ... 

With all disturbances active, the recursive representation of the closed loop system 
Eu takes the form 

Xk+I = f (xk, (a(xk + V3k) + vk + V1k + V4k)) + V2k, k = 0, I, 2,... (6) 

Recall that our objective is to find a feedback function a that drives the system E 
so that the output of the closed loop system 'Eu does not deviate by more than L1 > 0 
from the zero output sequence. This has to be achieved over a range of initial con
ditions and disturbance signals, while the nominal external reference sequence vis set 
to zero. In specific terms, the problem can be stated as follows. 

Design problem: Given a pair of real numbers p, L1 > 0, find the largest real number 
b > 0 ( if one exists) for which there is a feedback function a: Rn --+ Rm satisfying 

IYk+il = I/ (xk, ( a(xk + V3k) + V1k + V4k)) + V2k + v3k+il :::; L1, k = 0, I, 2,. . . (7) 
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for all disturbance signals satisfying lv1 I :S; 8/2, lv4I :S; 8/2, lv2I :S; 8/3, and lv3I :S; 8/3, 
and for all initial conditions x 0 with lx0 I :S; p. For this value of 8, find an appropriate 
state feedback function rJ. 

The number p represents here a permissible magnitude range for the initial con
dition x0 . To comply with the requirement IYol :S; L1, while permitting a total discre
pancy of magnitude 8 between the initial condition x 0 and the initial output value y0 , 

we restrict p :S; L1 - 8. 
The main results of the present paper are the derivation of necessary and suffi

cient conditions for the existence of appropriate state feedback functions rJ; the 
development of computational techniques for the calculation of appropriate state 
feedback functions rJ; and the characterization of the maximal permissible disturb
ance amplitude bound 8. We turn now to an examination of some concepts that 
underlie our discussion. 

3.1. Static state feedback and eigensets 

In this subsystem we review and refine the notion of an eigenset (introduced in 
Hammer (1989b)), and we point out the relation between eigensets and the control 
problem at hand. We start with some notation. Given a real number 8 > 0 and a 
vector x E Rq, denote by B(8, x) the ball of radius 8 in Rq that is centred at the point 
x, namely, 

B(8,x) := {z E Rq: lz- xi :S; 8} 

Note that since we are using the 100 -norm, a ball is in fact a rectangular cube. The 
term 'the open ball B(8,x)' refers to the set B(8,x) := {z E Rq: lz - xi< 8}. 

Next, for a subset Sc Rq, denote by N8(S) the '8-neighbourhood' of Sin Rq, i.e. 
the set 

N8(S) := LJ B(8, x) 
xES 

Of course, when the set S consists of a single point x E Rq, we have N8(x) = B(8, x). 
The radius ISi of a subset Sc Rq is the radius of the smallest ball around the 

origin that contains S, and is given by 

ISi := sup lxl 
xES 

Given a pair of subsets Sx C Rn and Su C R'\ and a function/: Rn x Rm ---+ R'\ 
we denote by f [Sx, Su] the image of the cross product set Sx x Su through/, namely, 

f [Sx, Su]= {f (x, u): x E Sx, u E Su} 

Note that/ [Sx, Su] is a subset of Rn. 
Finally, denote by IIx : Rn x Rm ---+ R11 

: (x, u) 1----+ x the standard projection onto 
the first n coordinates. 

We can now define the basic concept on which our discussion is based. This 
concept is a slight variant of the concept of an eigenset introduced in Hammer 
(1989b). 

Definition 1: Let f: R11 x Rm ---+ Rn be a function, and let 8, L1 > 0 be a pair of real 
numbers, where 8 :S; L1. A non-empty subset SC R11 x Rm is a (8, L1)-eigenset of the 
function f if it satisfies the following conditions: 
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(i) IJJxSI ::; L1 - 8 

(ii) f [N5(S)] C lixS 

J. Hammer 

The number L1 is called the bound of the eigenset S, whereas 8 is called the contraction 
value. 

Property (ii) of Definition 1 means that Sis a conditional invariant subset of the 
function f. Furthermore, deviations of magnitude not exceeding 8 in the state x, as 
well as in the input value u, do not destroy this conditional invariance property. The 
notation of an eigenset is a refinement of the classical concepts of invariant subset 
and conditional invariant subset, which have played important roles in the evolution 
of nonlinear as well as linear system theory ( e.g. Lasalle and Lefschetz 1961, 
Lefschetz 1965, Wonham 1974). Before discussing the calculation of (8, L1)-eigensets, 
we discuss their significance to the control problem at hand. 

Let Sc R11 x R111 be a (8, L1)-eigenset of the recursion function/: R11 x Rm----+ R11
• 

With each state x E N6(1IxS), we associate a set of input values U(x, S) C Rm for 
which the next state of the system is in lixS as follows. 

(i) For a state x E lixS, the set U(x, S) consists of all vectors u E R 111 for which 
(x, u) ES. 

(ii) For a state x ¢ lixS, we distinguish between the following two cases. 
(a) When x E N26; 3(1IxS), then U(x, S) consists of all vectors u E Rm for 

which (y, u) E S for some y E R 11 satisfying IY - xi ::; 28/3. 

(b) When x ¢ N26; 3(1IxS), then U(x, S) consists of all vectors u E Rm for 
which (y, u) E S for some vector y E R 11 satisfying IY - xi ::; 8. 

The set U(x, S) is critical to our discussion, and we list now a few of its technical 
features. 

Lemma 1: The set U(x, S) has the following properties. 

(i) U(x, S) #-0 for all x E N5(lixS). 

(ii) (x, N6[U(x, S)]) C N6(S) for every vector x E N6(1IxS). 

(iii) (z, N6[U(x, S)]) C N6(S) for all vectors x, z E N26; 3 (IIxS) satisfying 
lz - xi ::; 8/3. 

Proof: Part (i) follows directly from the construction of the set U(x, S), com
bined with the fact that S -1-0 according to Definition 1. 

Next, regarding (ii), consider a point x E N6(1IxS), and let u E U(x, S) be an 
input value. Then, by construction of U(x, S), there is a vector y E N 6(x) such that 
(y, u) ES. But then clearly N6(y, u) C N6(S); since N6(y, u) = (N6(y), N6(u)) and 
x E N6(y), it follows that (x, N6(u)) c N6(S). The latter holds for all u E U(x, S), 
and therefore (x, N6[U(x, S)]) C N6(S), as required. 

Finally, in order to prove (iii), consider a point x E N26; 3(1IxS), and let 
u E U(x, S) be an input value. Then, by construction of U(x, S), there is a vector 
y E N 26; 3(x) such that (y, u) E S. As in the previous paragraph, this implies that 
(N5(y), N5(u)) C N5(S). Now, lz - YI= l(z - x) - (y - x)I ::; lz - xi+ IY - xi ::; 
8 /3 + 28 /3, where we have used the Lemma assumption lz - xi ::; 8 /3 combined 
with the fact that y E N26; 3(x). Thus, lz - YI::; 8, so that z E N6(y), and we obtain 
that (z, N6(u)) c N6(S). Since this holds for all u E U(x, S), we obtain 
(z, N 6[U(x, S)]) c N 6(S), and our proof is complete. D 
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Consider a system I:: S(Rm) ---+ S(Rn) having the recursive representation 
xk+I = f (xk, uk)- Assume the recursion function f has a (8, Ll)-eigenset S, and 
that the system is started from an initial condition x 0 E llxS. We can construct an 
input sequence u = (u0, u1, ••• ) E S(R 111

) for I: that drives I: so that all the states 
along the resulting path in state space belong to llxS. Indeed, using the fact that 
x 0 E llxS, we construct the input sequence u recursively as follows: whenever 
xi E llxS, take an input value 

(8) 

This yields xi+ 1 = f (xi, ui) E llxS. Since x 0 E S, this implies xi E llxS for all inte
gers i 2:: 0, and the required input sequence u is obtained. Note that since 
lllxSI ~ Ll - 8, the sequence x of states also satisfies Ix+ vi ~ Ll for any disturbance 
v of amplitude not exceeding 8. 

The input sequence u constructed according to (8) has a property that is critical 
to our discussion: at each step i 2:: 0, the input value ui is assigned based on the value 
xi of the state at that step. In other words, the input value is assigned through a state 
feedback mechanism. 

The assignment (8) yields a general methodology for the design of static state 
feedback controllers for nonlinear control systems, as pointed out in Hammer 
(1989b). Our present situation, however, is somewhat simpler than that of Hammer 
(1989b), since presently we do not require the feedback function (1 to be a continuous 
function. When the continuity requirement on the state feedback function (1 is 
released, the main result of Hammer (1989b) simplifies into the following form. 

Theorem 1: Let I: be a system with the recursion function f: Rn x R111 ---+ Rn, and 
assume f has a (8, Ll)-eigenset S for some real numbers 8, Ll > 0. Define a state 
feedback function e5: R 11 ---+ Rm as follows. 

(i) For a state x E N 8(llxS), set e5(x) := u, where u is any element of the set 
U(x, S). 

(ii) For all other states x E Rn, set e5(x) := 0. 

Then,for any initial condition x 0 E llxS and for any disturbances satisfying lv1 I ~ 8/2, 
lv4I ~ 8/2, lv2I ~ 8/3, and lv31 ~ 8/3, the closed loop system satisfies 
II:a(xo)*( V1, Vz, V3, v4) I ~ Ll. 

Proof: Let S be a (8, Ll)-eigenset of the recursion function f of I:. Then, by defi
nition, f [N8(S)] C llxS and lllsSI ~ Ll - 8. 

Consider now a state ~ E llxS, and, referring to (6) and (7), consider the 
point (~ + v0, (er(~+ v0 + v3,0) + v1,0 + v4,0)), where an extra disturbance v0 has 
been added to the state ~, and where the amplitudes satisfy lvol ~ 8/3, lv3,ol ~ 8/3 
and lv1,0 + v4,ol ~ 8. Setting z := ~ + v0 and x := ~ + v0 + v3,0, we obtain 
lz - ~I= lvol ~ 8/3, Ix - ~I~ lvo + V3,ol ~ 28/3, and lz - xi= lv3,ol ~ 8/3. The 
first two inequalities imply that x, z E N 28;3(llxS), and whence, invoking Lemma 
1 (iii), it follows that (z, N8(U(x, S))) c N8(S). But then, the definition 
of (1 combined with the fact that lv1,0 + v4,ol ~ 8 directly yields that 
(~ + vo, (e5(~ +Vo+ v3,0) + v1,0 + v4,0)) E N8(S). Since S is a (8, Ll)-eigenset off, 
we obtain that 

(9) 
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Now, set v 0 = 0, ( := x 0 and ( 1 := f (x 0, (a(x 0 + v 3,0) + v 1,0 + v4,0 )). Then, since 
x0 E IlxS by the assumption of Theorem 1, (9) yields ( 1 E IlxS. Since the first output 
value y 1 satisfies 

we have 

as required. 
In preparation for an induction, assume the vector(; E IlxS has been obtained 

for some integer i 2'.: 0, and set 

(;+J := f ((; + V2,i- l, (a((+ V2,i-l + V3,;) + VJ,i + V4,;)) 

It then follows from (9) that (;+1 E IlxS for all disturbances satisfying Jv1 I :S 8/2, 
Jv4J :S 8/2, Jv2J :S 8/3, and Jv3 J :S 8/3, where v2,_ 1 := 0. In particular, this implies 
that J(;+i I :S L1 - 8. The output value of the system then satisfies 

so that 

IY;+1 I = J(;+1 + V2,i + v3,;+1 I :S J(;+1 I+ Jv2,; + v3,i+I I :S L1 - 8 + 28/3 < L1 

This completes our proof. D 

Thus we see that a (8, L1)-eigenset of the recursion function f gives rise to state 
feedback functions a that satisfy our design requirements. Note that for this to be 
valid, the system J; must start from an initial condition x 0 E llxS. It is usually 
desirable in applications to have a range of permissible initial conditions, namely, 
that the set of permissible initial conditions contain a ball B(p, 0) of some radius 
p > 0. This requirement has been incorporated into the statement of Design problem 
(7). From our present discussion, it leads to the condition B(p, 0) c IlxS. We con
tinue now with our investigation of general properties of eigensets. 

A slight reflection shows that the union of (8, L1)-eigensets of the function f is 
again a (8, L1)-eigenset of the same function/. This implies that there is a maximal 
(8, L1)-eigenset S(8, L1) C Rn x R 111 of the function/, given by the union 

S(8,L1) := {US: Sis a (8,L1)-eigenset off} (10) 

Recall that by definition, a (8, L1)-eigenset is not empty, so that there are recur
sion functions f that do not possess (8, L1)-eigensets. We discuss later general con
ditions on the function f that guarantee the existence of (8, L1)-eigensets (see in 
particular Theorem 4 below). 

We mention next a property of the maximal (8, L1)-eigenset S(b', L1) that helps 
enlighten its intuitive meaning. Consider a system J; having the recursion function/. 
We have seen in Theorem 1 that the closed loop system I:u satisfies the design 
requirements (7) when it is started from an initial condition x 0 that belongs to the 
projection IlxS(8, L1) onto the state space. In fact, as indicated by the next statement, 
more is true: the set IlxS(8, L1) consists ofall initial conditions from which the system 
can tolerate disturbances of amplitude 8 on its state and input variables, without 
exceeding the bound L1 with its state amplitudes. 



Disturbances in nonlinear control 771 

Proposition 1: Let E be a system with the recursion function f, and assume that f 
has a maximal (8, L1)-eigenset S(8, L1). Then, IIxS(8, L1) consists of exactly all initial 
conditions xo E Rn for which the following holds: there is an input sequence 
u E S(Rm) for which the sequence x E S(R 11

) given by the recursion 

xk+l = f (xk +vk,uk +wk), k = 0, 1,2, ... 

satisfies lxl ::; L1 - 8 for all pairs of sequences v E S(8n) and w E S(8111
). 

Proof: Consider first an initial condition x 0 E IIxS(8, L1). In preparation for in
duction, let k ~ 0 be an integer for which Xk E IIxS(8, L1). Then lxkl ::; L1 - 8, and 
there is a vector Uk E Rm such that (xk, Uk) E S(8, LI). Further, since v E SW1

) and 
w E S(8111

), we have that (xk + Vk, Uk+ wk) E N8(S(8, L1)), and it follows that 
Xk+I = f (xk + vk, Uk+ wk) E f [N8(S(8, L1))] c S(8, L1), so that lxk+r I ::; L1 - 8. 
Thus, by induction, for every initial condition x0 E IIxS(8, L1) there is an input se
quence u E S(Rm) for which the state sequence x of Proposition 1 satisfies 
lxl ::; L1 - 8. 

Conversely, let x0 E Rn be an initial condition, and assume there is an input 
sequence u E Rm for which the sequence x(v, w) obtained by the recursion 

(11) 

satisfies lx(v,w)I::; L1 - 8 for all pairs of sequences v E S(8'1) and w E S(8m). Define 
the set 

S := LJ (x(v, w\, uk) 
k~O,vESW),wESW') 

which is a subset of R11 x Rm. It follows then directly from (3.1.8) that/ [N8(S)] c 
IIxS and IIIxSI ::; L1 - 8. Consequently, S is a (8, L1)-eigenset off, and, in view of 
(10), we have Sc S(8, LI). Thus, x0 E IIxS(8, LI), and our proof concludes. D 

3.2. A characterization of eigensets 

Having discussed the control theoretic significance of (8, L1)-eigensets, we turn 
now to the derivation of a direct characterization of eigensets. We show that, in 
principle, the maximal (8,L1)-eigenset S(8,L1) of the functionf: Rn x Rm--+ Rn is 
determined by the solution of a system of algebraic inequalities. In general, however, 
this system of inequalities is infinite. In the second half of this subsection and in 
section 4 we discuss techniques that yield (8, L1)-eigensets of the function! through 
the solution of a finite set of algebraic inequalities. These techniques, in combination 
with the construction of feedback functions described in Theorem 1, provide com
putational means for the derivation of state feedback functions that solve the design 
problem (7). 

From this point on, it will be convenient to adopt the realistic assumption that 
the system E being controlled accepts only input values of amplitude not exceeding a 
specified bound µ > 0. The value of the bound µ is usually determined by physical 
characteristics of the components of the system E. Then, only input values 
u E [-µ, µ]'11 are permitted, and the recursion function f of E has the domain 
Rn x [-µ,µ]'11. Let S(8,L1,µ) be the maximal (8,L1)-invariant subset off, with 
input values bounded by µ. 
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Fora function/: Rn x [-µ,µ]'11---+ R11,let/*denotetheinversesetfunction, which 
maps subsets of Rn into subsets of Rn x [-µ, µ]'11. Explicitly, for a subset X c Rn, the 
subset/ *[X] consists of all pairs (x, u) E Rn x [-µ, µ]'11 satisfying! (x, u) EX. 

Now, let Ebe a system with the recursive representation xk+I = f (xk, uk), where 
f: R11 x [-µ, µ]'11 ---+ Rn is a continuous function. Given a pair of real numbers LI, 
8 > 0, where 8 ::S; LI, let P(8, LI) c Rn x [-µ, µ]'11 be the set of all pairs (x, u), where 
x E Rn and u E [-µ, µ]'11, for which the following hold: 

lxl ::S; LI - 8 
( 12) 

If (y, v)I ::S; LI - 8 for ally, v satisfying IY-xi ::S; 8, Iv - ul ::S; 8 

Note that (12) is a set of algebraic inequalities based on the given recursion function 
f of E, and P(8, LI) can be found by direct calculation. Note also that every point 
(x, u) E P(8, LI) must satisfy lxl ::S; LI - 8 and lul ::S; µ, so that P(8, LI) is a bounded set. 
The continuity of the function/ implies that P( 8, LI) is a closed subset. Furthermore, 
since P( 8, LI) consists of all points lxl ::S; LI - 8 for which there is a u E [-µ, µ]'11 such 
that I/ [N8(x), N8(u)] I ::S; LI - 8, it follows directly that the maximal (LI, 8)-eigenset 
S(8,LI,µ) off is a subset of P(8,LI). 

Next, define a sequence P;(8, LI), i = 0, 1, 2, ... , of subsets of Rn x [-µ, µ]'11 based 
on P, as follows. 

P0 (8, LI) = P(8, LI) 

B;+i = P;(8, LI) n / *[II_,P;(8, LI)] (13) 

P;+1(8,LI) = {(x,u) E B;+1: f[N 8(x,u)] c II_J9;+i} 

i = 0, I, 2, ... In particular, it is a direct consequence of (13) that the sets {P;(8, LI)} 
satisfy 

( 14) 

Furthermore, (13) implies directly that {P;(8, LI)} is a monotonic non-increasing 
sequence of sets, i.e. that P0 (8, LI) ::) P1 (8, LI) ::) P2(8, LI) ::) ... An inspection of 
(13) also shows that if there is an integer k 2: 0 for which Pk+I (8, LI) = Pk(8, LI), 
then P;(8, LI) = Pk(8, LI) for all integers i 2: k. Also, combining our earlier observa
tion that P(8, LI) is a bounded and closed subset with the fact that/ is a continuous 
function, it follows from (13) that all subsets P;(8, LI) are bounded and closed (i.e. 
compact) subsets. 

Finally, define the intersection set 

P 00 (8,LI) := nP;(8,LI) 
i'?.0 

Then, the following is true. 

Theorem 2: Let 8, LI > 0 be two real numbers, where 8 ::S; LI, and let 
/: R11 x [-µ, µr ---+ Rn be a continuous function. Then, the maximal (8, Ll)-eigenset 
off is given by S(8,LI,µ) = P00 (8,LI), and f has no (8,Ll)-eigensets when 
Poo(8, LI)= 0. 

Proof: We first show that S(8, LI,µ) c P00 (8, LI). To this end, it has been indi
cated earlier that S(8,LI,µ) c P0 (8,LJ)(= P(8,LI)). Also, since S(8,LI,µ) is a (8,Ll)
eigenset off, we have 

(15) 
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which implies that 

S(8,L1,µ) Cf *[llxS(8,L1,µ)] (16) 

Now, if S(8,L1,µ) c Pi(8,L1) for some integer i ~ 0, it follows from (15), (16), and 
(13) that S(8, L1, µ) c P;+i (8, L1). Since S(8, L1, µ) c P0(8, L1), this implies that 
S(8,L1,µ) c P;(8,L1) for all integers i ~ 0, so that S(8,L1,µ) c P00 (8,L1). 

Next, we show that P 00(8, L1) c S(8, L1, µ). Note that by (13), we have 
N 8(P;+i (8, L1)) C PM, L1) n f *[llxP;(8, L1)]. Then, starting with the definition of 
p 00(8, L1), 

f [N5(P 00(6, '1))] = f [ N5 (o P;+1 (6, '1)) l 
Cf [0N5(P;+1(6,'1))] 

C nf [N0(Pi+1 (8, L1))] 
i2'.0 

C nnxP;(8,L1) 
i2'.0 

= llx [n P;(8, L1)] 
i2'.0 

where the step before last is a consequence of (14), and the last equality is a conse
quence of the fact that {P;(8, L1)} is a monotonic decreasing sequence of compact 
sets. But the last term is simply llxP 00(8, L1), so we obtain 

f [N0(P00 (8,L1))] C llxP 00 (8,L1) 

Finally, since P 00( 8, L1) c P( 8, L1) and P( 8, L1) is given by (12), it follows that P = ( 8, L1) 
is a (8, L1)-eigenset of the recursion function f. In view of (10), this implies that 
P00 (8,L1) c S(8,L1,µ). Thus, combining with the first part of the proof, we have 
P 00 ( 8, L1) = S ( 8, L1 , µ), as required. D 

The characterization of the maximal (8, L1)-eigenset S(8, L1, µ) given by Theorem 
2 involves, in general, an infinite computational process. Still, one can derive from 
this characterization a finite process that yields an eigenset off that is an 'approx
imation' of S(8, L1, µ), as follows. 

Corollary 1: Let f: Rn x [-µ, µf1 ---+ Rn be a continuous function, and let 8, L1, 
c > 0 be real numbers, where 8 + c < L1. Assume f has a (8 + c, L1)-eigenset. Then, 
there is an integer n(c) ~ 0 such that Pn(e;) (8 + c, L1) is a (8, L1)-eigenset off 

Proof: Recall that the sequence {P;(8 + c, L1)} is a monotone non-increasing 
sequence of compact subsets of Rn x [-µ, µf1. In view of Theorem 2 and the fact 
thatf has a (8 + c, L1)-eigenset, it follows that P;(8 + c, L1) =I-0 for all i ~ 0. 

Let S1 c S2 c Rq be two compact subsets. For each point x E S2 , let d(x) be the 
distance to the closest point in S1, i.e. 

d(x) := inf {Ix - yl: y E Si} 
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Then, define the discrepancy d(S 1, S2) as the largest distance between a point in S2 

and its closest neighbour in S1, i.e. 

d(S 1, S2) := sup { d(x): x E S2 } 

Now, for each integer i 2 0, let 

Since {Pi(8 + E:, LI)} is a monotone non-increasing sequence of compact sets having 
the limit P 00 (8 + E:, LI), it follows that the sequence { dJ ofreal non-negative numbers 
must also be monotone non-increasing. Consequently, it has a limit, say 

d := ~im di 
1--+00 

Since p 00(8 + E:, LI) = ni>O Pi(8 + c, LI) is the intersection of the monotone non
increasing sequence of compact sets, it follows that d = 0. There is then an integer 
n(c) 2'.: 0 such that d1 < E: for all j 2 n(c), which implies 

N5(Pn(c)(8 + c, LI)) C N8+c(P 00 (8 + c, LI)) 

Taking into account the fact that f [N8+c(P 00 (8 + c, LI))] C II_,P 00 (8 + E:, LI) by 
Theorem 2, it follows that 

f [No(Pn(c)(8 + E:, LI))] Cf [N8+c(P 00 (8 + c, LI))] C IlxP 00 (8 + c, LI). 

Since P 00 (8+c,LI) C P11(c)(8+c,LI), we obtain 

f [N5(Pn(c)(8 + E:, LI))] C IlxPn(c)(8 + c, LI) 

which, combined with (12), shows that Pn(c)(8 + c:, LI) is a (8, Ll)-eigenset off. D 

In intuitive terms, Corollary 1 shows that one can obtain a (8, Ll)-eigenset of the 
function f in a finite number of steps. This can be achieved by performing the first 
n(c) steps of the process of calculating the maximal eigenset off with respect to the 
somewhat larger contraction radius 8 + E:. In practice, however, the value of n(c) 
may not be known in advance. In the next section we revisit the question of provid
ing a finite technique for the calculation of (8, Ll)-eigensets. Using the notion of 
reachability, we develop there an explicit finite algorithm for the calculation of 
(8, Ll)-eigensets. In the meantime, we continue with our general discussion of eigen
sets. 

Let E be a system represented by the recursion xk+l = f (xk, uk), where 
f: R11 x [-µ,µrz-+ R11 is a continuous function, and assume thatf has a (8,Ll)
eigenset for some real number 8 > 0. It follows then from Theorem 1 that one can 
construct a static state feedback controller a so that the closed loop system Ea 
tolerates disturbances of amplitude not exceeding 8. This fact can be used to char
acterize the maximal disturbance amplitude for which the design problem (7) can be 
solved, as follows. Let S(8, LI,µ) be the maximal (8, Ll)-eigenset of f, set 
S(8, LI,µ) := 0 when f has no (8, Ll)-eigensets, and assume there is a value 8 > 0 
for which S(8, LI,µ) f:. 0. Define the real number 8M > 0 by the relation 

8M := sup{8: S(8,LI,µ) f:. 0} 

If there is no 8 > 0 for which S(8, LI) f:. 0, set 8M := 0. We call 8M the eigenset 
contraction bound of the function f, relative to LI. In view of the fact that f is a 
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continuous function, part (i) of the following statement is a consequence of Theorem 
1; part (ii) follows from Proposition 1. 

Corollary 2: Let E: S(µm) ----+ S(R 11
) be a system with the recursive representation 

Xk+I = f (xk, uk), where f: R11 x [-µ, µt1----+ R11 is a continuous function. Assume f 
has an eigenset contraction bound 8M > 0 relative to LL Then, the following are true. 

(i) There is a feedback function er: R11 
----+ Rm that satisfies (7) with 8 := 8M. 

(ii) If there is a real number 8 > 0 and an input sequence u E S(µ111
) for which the 

state sequence x E S(R 11
) given by the recursion xk+I = f (xk + Vk, uk + wk), 

k = 0, l, 2, ... , satisfies Ix+ vi :::; L1 for all disturbance sequences v E S( 811
) 

and w E S(8m), then 8:::; 8M. 

Corollary 2 shows that, in fact, 8M characterizes the largest disturbance ampli
tude that our system can tolerate. 

To summarize, the theory of eigensets allows us to develop a methodology for 
the design of nonlinear state feedback controllers, which is entirely based on char
acteristics of the known recursion function f of the system E being controlled. It is 
therefore important to develop effective techniques for the calculation of eigensets. 
In the next section we show that one can exploit the notion of reachability to obtain 
such a technique. 

4. Reachability and eigensets 

In the present section we show that the notion of reachability is instrumental for 
the calculation of eigensets in the general nonlinear case. This result sheds light on 
the connection between reachability and the problem of disturbance handling in 
control theory. First, of course, we have to clarify what is meant by the term 'reach
ability' in the nonlinear case, as numerous definitions have been used in the litera
ture. The definition employed here is a direct adaptation of the linear notion of 
reachability. 

4.1. Local and global reachability 

Let E be a system described by the recursive representation 

xk+I =f(xk,uk), k=O,l,2, ... (17) 

where xk E R11 and uk E Rm, and consider the behaviour of E for the first i steps, 
where i 2: 1 is an integer. Assume the system is started from the initial condition 
x 0 = x E R 11

, and is driven by the input list u0 , u1, .•• , ui-I · The states Xk, k = l, ... , i, 
through which the system passes can be calculated recursively; we have 
x1 = f ( x, u0), x 2 = f (x 1, ui) = f (f (x, u0), u1), ... , and, in general, 

xi= f (f ... f (f (x, uo), ui), ... , ui_ i) 

where the recursion function/ is iterated i times. It is convenient to use the following 
shorthand notation for this iteration 

f i(x, u0 , ••• , ui_1) := f (f ... f (f (x, uo), ui), ... , ui-I) 

so that xi= f i(x, u0, ... , ui_i). 
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In some instances we shall be interested in properties of the function f i for a 
fixed value of the initial state x . In such cases, we shall consider the partial function 
f i(x, ·): (R 111/----+ R11

: (u0 , ... , ui_1) 1----+ f i(x, uo, ... , ui 1), 
We say that a state x' E R 11 is reachable from the state x E R 11 in i steps if there 

is an input list u0 , ... ,ui - t for which f i(x,u 0 , ... ,ui - t) = x' . In other words, x' is 
reachable from x whenever x' is an element of the image of the partial function 
f i(x, ·). We denote this image by Im f i(x, ·), i.e. 

Im/ i(x, ·) := {f i(x, u0 , ... , ui- 1): uo, ... , ui- 1 E R 111
} 

Recall that a function g: Rq ----+ R 11 is an open function if it maps every open subset 
of Rq onto an open subset of R 11

; explicitly, for every open subset Sc Rq, the image 
g(S] is an open subset of Rn . 

Definition 2: The realization ( 17) is everywhere locally reachable if there is 
an integer p ~ 1 for which the function f P(x, ·) is an open function for all states 
XE Rn. 

The following statement provides an example of a common class of recursion 
functions f that induce realizations that are everywhere locally reachable. For a 
proof, see e.g. the work of Buck (1978, Chapter 7, in particular the generalizations of 
Theorem 15 therein). Note that in this case, the integer p of Definition 2 is taken as 
p = n, where n is the dimension of the state vector xk. 

Proposition 2: Assume that the recursion function f of ( 17) is continuously differen
tiable. For a point (x, uo, ... , Un 1) E Rn x (R 111)11, define then x (mn) matrix 

C( ) 
·- 8fn(x, Uo,, .. , Un- 1) 

X, Uo, ... 'Un-I .- 8( ) 
Uo, ··· , Un- I 

(18) 

If the matrix C(x, u0 , ... , u11 i) is of full rank at all points (x, uo, .. . , u11_i) E 

R11 x (R 111)'1, then the realization (17) is everywhere locally reachable. 

In the particular case where f is a linear function of the form 

f(x,u) = Au+Bu 

where A and Bare constant matrices, the matrix C(x, u0 , ..• , u11_ 1) of Proposition 2 
is a constant matrix, equal to the controllability matrix of the realization. Thus, in 
the linear case, Proposition 2 reduces to the well known characterization of reach
ability. 

Consider a realization (17) that is everywhere locally reachable. Then, by defini
tion, there is an integer p for which the partial function f P(x, ·) is an open function 
for all x E Rn. We denote by 1J the smallest possible value of the positive integer p, 
and we call 1J the reachability integer of the recursion function f. 

Assume then that the realization (17) is everywhere locally reachable, with the 
reachability integer ry. We say that this realization is globally reachable if every state 
x' E Rn is reachable from every state x E R 11 in 1J steps. 

Let 1: be a recursive system with the realization (17), and assume 1: is everywhere 
locally reachable with the reachability integer ry. We denote by R;r(x) the set of all 
states that are reachable from the state x in 1J steps, i.e. 
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Clearly, the realization is globally reachable if and only if R1; ( x) = Rn for all x E Rn. 
The following statement indicates a large class of systems that are globally reachable. 

Proposition 3: Let I: be a system with the recursive representation 
Xk+l = f (xk, Uk). Assume that I: is everywhere locally reachable, and that R1:(x) is 
a closed set for all x. Then, I: is globally reachable. 

Proof: Assume that the realization (17) of I: is everywhere locally reachable, and 
let 'T/ be its reachability integer. Let Mc Rn be a compact set, let x EM be a 
point, and let 

R1:(x, M) := R1;(x) n M = lmf 1/(x, ·) n M 

be the set of all points of M that are reachable from x in T/ steps. Assume that 
R1:(x, M) -:/-0- Since R1;(x) is a closed set and M is compact, it follows that 
R1;(x, M) is a compact set. 

Next, consider a point x' E R1;(x, M). There is then a list of input values 
u0 , •.. , u1/_1 E Rm such that x' = f 1/(x, u0 , ••. , u1/_i). The fact that (17) is everywhere 
locally reachable implies that there is a real number a(x') > 0 for which the ball 
B(a(x'),x') in Rn (of radius a(x') and centre x') is contained in Im/ 1/(x, ·). 
Furthermore, we claim that there is a real number {3 > 0 so that one can take 
a(x') ~ {3 for all x' E R1;(x, M). Otherwise, there is a sequence of points 
xi E R1;(x, M), i = I, 2, ... , and a sequence of real numbers /3i -+ 0 such that every 
ball B(a, xi) c Im/ 1/(x, ·) must have a radius a~ /3i· Since Rr;(x, M) is compact, 
the sequence {xJ has an accumulation point x" E R1;(x, M). But, then, since /3i-+ 0, 
the only ball centred at x" and contained in Im/ 1/(x, ·) is the ball of zero radius, 
contradicting the fact that f 1/(x, ·) is an open function by local reachability. 

We now show that every point of Mis reachable from x in T/ steps. By contra
diction, assume there is a point z E M that is not reachable from x in T/ steps. Then, 
in view of the previous paragraph, no point of the ball B(/3, z) of radius {3 around z is 
reachable from the state x in T/ steps. But then it follows by the same argument that 
every point of B(/3,z) n M must be contained in a ball of radius /3 all of whose points 
are not reachable from x in T/ steps; in other words, all points of the set B(2{3, z) n M 
are not reachable from x in 'T/ steps. Repeating this argument again and again, we 
obtain that for all integers j ~ I, the points of the set B(J/3, z) n M are all not 
reachable from x in T/ steps. When the latter is combined with the fact that M (as 
a compact set) is bounded, it follows that no point of M is reachable from x in 'T/ 
steps. Thus, if M contains a point that is not reachable from x in T/ steps, then no 
point of M can be reachable from x in 'T/ steps. Or, equivalently, if M contains a point 
that is reachable from x in T/ steps, then all points of M must be reachable from x in 
T/ steps. 

Now, there clearly is a state x' E Rn that is reachable from the state x. Let e be a 
real number satisfying e > lx'I. Then, using the compact set M := [-e, er, it follows 
from the conclusion of the last paragraph that the entire set [-e, er is reachable from 
the state x in 77 steps. Since this is true for every e > lx'I, it follows that every state 
x" E Rn is reachable from the state x in T/ steps. Finally, since xis an arbitrary state, 
we conclude that the realization is globally reachable (in T/ steps). D 

Using Propositions (2) and (3), we can easily determine in many cases of practical 
interest whether or not a system is locally and globally reachable. Here is a simple 
example that demonstrates the procedure. 
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Example 1: Consider the following system with the two dimensional state vector 
Xk = (ek, (k? and a single dimensional input Uk. 

Here, we have n = 2, and the iterated recursion function becomes 

2 ( me+1)(]
2

+1}[e(+(e+1)uo] ) 
f (e, (, Uo, U1) = (e + l)([e( + (e + l)uo] +me+ 1)(]2 + l}u1 

The matrix C of (18) is given by: 

(
me+ 1)(]2 + 1}(f + 1) 

C(e, (, Uo, ui) = (e + l)((e + 1) [ ( e + ,~ cl' + , ) 

As one can see, we have <let c(e, (, Uo, U1) /=-0 for all values of e, (, Uo, U1, and whence 
the system is everywhere locally reachable. A slight reflection shows that the reach
ability integer in this case is T/ = 2. 

Finally, direct observation shows that Im f 2(e, (, ·) = R2 for all values of e, 
(ER, and whence the system is globally reachable. D 

Remark 1: In many cases, one is interested in the behaviour of the system only 
over a bounded subset S of R11

• The present discussion can be directly adapted to 
such case by taking all notions relative to the subset S. D 

By definition, a globally reachable system has the property that every state x' can 
be reached from every other state x within T/ steps. It is, of course, important to 
investigate the input lists that take the system from x to x'. The next statement shows 
that, for any compact subset M of R11 and for any states x, x' EM, one can reach x' 
from x using an input list whose amplitudes do not exceed a bound that depends 
only on the set M, and not on the specific states x, x'. 

Proposition 4: Let I: be a system having a realization of the form ( 17) with a con
tinuous recursion function f Assume the realization is everywhere locally reachable, 
as well as globally reachable, and let TJ be the reachability integer. Then, for every 
compact subset M C R11

, there is a real number µ ~ 0 for which the following holds: 
for every pair of states x, x' E M, there is an input list uo, ... 'Uri- I E [- µ, µr that 
takes the system from the state x to the state x'. 

Proof: Let (17) be a realization with a continuous recursion function that is 
everywhere locally reachable, as well as globally reachable, and let TJ be the reach
ability integer. Consider a compact subset M c R11

• Since the realization is glob
ally reachable with reachability integer T/, the following is true: for every pair 
of points x, e EM, there is a list of input values uo(x, e), ... 'Uri- I (x, e) E R 111 such 
that e=fri(x,uo(x,e), ... ,Uri- 1(x,e)). We have to show that there is a real 
number µ > 0 so that one can choose this input list to satisfy 
uo(x, e), ... , u11- 1 (x, e) E (- µ, µr for all x, e EM. 
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By contradiction, assume that there is no such real numberµ> 0. Then, there is a 
sequence of pairs of states ~i, xi EM, i = 1, 2, 3, ... for which the following holds: 

(*) Every list of input values u0(i), ... , u77_1 ([) E R111 for which ~i = f 77(x;, u0(i), ... , 
u77_1 (i)) satisfies I (u0 (i), ... , u77_1 (i)) I ~ 21, i = 1, 2, ... 

By the compactness of M, the sequence of pairs {(~i,xi)}~ 1 has an accumulation 
point (~, x) in M x M i.e. there is a subsequence of the sequence {(~i, xi)}~ 1 that 
converges to the point(~, x) EM x M. For the sake of notational simplicity, assume 
that the entire sequence converges to this point, i.e. that limithoo ((, xi) = (~, x). 
Since the realization is globally reachable, there is an input list v0 , ••• , v77_1 E R111 such 
that~= f 77(x, v0 , ••• , v77_1). 

Now, let c > 0 be a real number, and denote by B(c, v0 , •.. , v77_ 1) c (R111)17 the 
open ball of radius c centred at the point (v0 , .•. , v77_i) E (R111)17. Since/ 77(x, ·) is an 
open function, it follows that the image/ 77(x,B(c,v 0 , ••• ,v77_ 1)) contains a neigh
bourhood of the point ( There is then a real number a> 0 such that the ball 
B(a, ~) c R 11 of radius a centred at~ satisfies B(a, ~) Cf 77(x, B(c, v0 , ... , v77_1)). 

The continuity of the recursion function f ·implies that the iterated function 
f 77-is continuous as well, and, since M is compact, f 77 is uniformly continuous 
over M. Consequently, there is a real number {3 > 0 such that 
If 77(x, v0, ... , v77_1) - f 77(x', v0, ... , v77_ 1)1 < a/2 for all points x, x' EM satisfying 
Ix - x'I < {3. 

Define the positive number 'Y := min { a/2, {3}. Since limithoo (~i, xi) = (~, x), 
there is an integer j ~ 1 such that I (~i, x;) - (~, x) I < 'Y for all i ~ j. Then, for 
every integer i ~ j we have 

I( - ~I < 'Y ::; a/2 and Ix; - xi < 'Y ::; {3 

and it follows that 

Combining these facts, we obtain, for all i ~ j, 

I( - f 77(x;, Vo, ... , v11_1)I = I[~; - ~] - [! 17(x;, Vo, ... , v17_1) - ~]I 

= I[~; - ~] - [! 11(x;, Vo, ... ' v77-1) - f 17(x, vo, ... 'v?J_i)]I 

::; I[~; - ~]I+ If 11(xi, Vo, ... , v11-1) - f 11(x, Vo,···, v17_1)I 

< a/2 + a/2 

=a 

Thus,~; E B(a,f 11(xi, v0 , ... , v17_ 1)) for all integers i ~ j. But then, by the definition 
of the radius a, this implies that ~i E / 17(x;, B(c, v0, ... , v17_1)) for all i ~ j. This 
means that, for every i ~ j, the state ~i can be reached from the state xi by using 
an input list that belongs to the ball B(c, v0 , ... , v77_ 1). The amplitude of this input list 
is clearly bounded by the number 

[l(vo, · · ·, v17_1)I + cl 
in contradiction to (*). This proves our assertion. D 
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We comment that in Proposition 4, the path from x to x' is not necessarily 
contained in the compact set M; only the starting point x and the end point x' 
are in M. 

The next subsection deals with the connection between reachability and eigensets. 
We show that for reachable systems, eigensets can be calculated in a relatively simple 
manner. As eigensets form the foundation for the derivation of state feedback func
tions (see Theorem 1), the notion of reachability takes on a prominent role in the 
theory of robust control for nonlinear systems. 

4.2. Reachability, disturbances, and eigensets 

Let I: be a system having the nominal recursive representation xk+l = f (xk, uk), 
k = 0, 1, 2, ... Throughout the ensuing discussion we assume that the recursion func
tion J of 1: is a continuous function, that .E is everywhere locally reachable as well as 
globally reachable, and we let TJ be the reachability integer. The objective of 
this subsection is to present an effective computational technique for the calculation 
of eigensets of the recursion function f of 1:. As seen in Theorem 1, these 
eigensets can be used to construct state feedback functions that solve the design 
problem (7). 

The fact that the system I: is globally reachable implies that its state values can be 
assigned arbitrarily at steps that are integer multiples of the reachability integer 
TJ. In other words, for any sequence of vectors ea, e1, 6, ... E R'1, there is an 
input sequence u that drives .E in such a way that the resulting trajectory x satisfies 
Xo = eo, xrJ = e1' X2rJ = 6, X3rJ = 6' ... ' or xirJ = ( for all integers i 2:: 0. Indeed, 
global reachability implies that for every integer i = 0, l, 2, ... , there is an input 
list u0 (i), ... , urJ 1 (i) E R111 such that 

( 19) 

The concatenated input sequence 

u = u0 ( 0), ... , urJ_ 1 ( 0) , u0 ( 1 ) , ... , urJ_ 1 ( 1 ) , u0 ( 2) , ... , urJ_ 1 ( 2), . . . ( 20) 

clearly achieves the desired result. The availability of this input sequence is a basic 
tool for our ensuing discussion. 

Note that although the states can be assigned arbitrarily at steps that are integer 
multiples of T/, there is usually little choice when it comes to selecting the states 
through which the trajectory passes at steps that are not integer multiples of 'T/· 
These states are restricted by system characteristics, and cannot be assigned arbi
trarily. In order to satisfy the design problem (7), one has to guarantee, among 
others, that the amplitudes of these states do not exceed LI. Whether or not this 
requirement can be satisfied depends on the value of LI and on the characteristics of 
the recursion function f of 1:. 

Consider now the problem of finding a state feedback function a that satisfies 
(7) for some real numbers 8, LI > 0, where 8 ::; LI. According to Theorem 1, the 
existence of such a feedback function is guaranteed when the initial condition 
of the controlled system I: is within the maximal (8, Ll)-eigenset of the recursion 
function/ of 1:. 

Now, in order to be of practical significance, the set of permissible initial 
conditions of I: should contain a ball around the origin, so that a range of initial 
conditions is admissible. This requirement is incorporated into design problem (7), 
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and it requires the use of (8, Ll)-eigensets that contain a ball B(p, 0) of radius p ~ 0 
around origin of R11

• 

Note that for a given value of p, the actual set of possible initial conditions of E 
includes a ball of radius (p + 8), since an uncertainty of amplitude not exceeding 8 is 
always permitted around each initial condition. Thus, the value p = 0 is a permissible 
selection here, and does not require absolute accuracy in the setting of the initial 
condition. Also, since all states used by the closed loop system must be of amplitude 
not exceeding LI, we have the additional requirement that p + 8 ~ LI. 

Assume now that the system Eis started from an initial conditions x 0 E B(p, 0). 
In general, it is not possible to find an input sequence u that drives E(x 0) so that 
all states along the resulting trajectory are within B(p, 0), even in the case where no 
disturbances are present. In other words, as much as one would like to prevent 
further dispersion of the trajectory from the origin, it is usually impossible to 
maintain the entire trajectory within the ball of radius p, for every initial condition 
in that ball. 

Now, when E is globally reachable with reachability integer T/, and no disturb
ances are present, it follows by (19) and (20) that an input sequence u for r can be 
found for which the resulting nominal state sequence x satisfies 

xkr, E B(p, 0) for all integers k ~ 0 (21) 

In other words, for this input sequence, the nominal trajectory re-enters the ball 
B(p, 0) at least once every rJ steps. 

Of course, since the values xkr,, k = I, 2, ... , can be assigned arbitrarily (by 
choosing an appropriate input sequence u), one could restrict these values even 
further, and force them to be within a ball of radius smaller than p. In the present 
discussion, however, we use (21) as our guiding requirement. We also assume that p 
is a specified design parameter. 

To summarize, we require the nominal trajectory x of the closed loop system 
(figure 1) to satisfy 

lxkl ~ LI - 8 and lxkr,I ~ p, k = 0, I, 2, ... 

where the first inequality takes into account the fact that a disturbance of amplitude 
not exceeding 8 may be added to the nominal trajectory at each step. 

In addition to the practical significance discussed so far, condition (21) also has 
important mathematical implications. As discussed below, this condition allows us 
to calculate a (8, Ll)-eigenset of the recursion function/ by examining only the first 
rJ steps of the recursion xk+I = f (xk, uk). This then yields a finite technique for the 
calculation of (8, Ll)-eigensets. 

To be somewhat more specific, but still assuming no disturbances are active, 
construct the following set of input lists. For every state x E B(p + 8, 0), let o?tµ(x) 
be the set of all input lists u0 , ... , ur,-I E R111 for which the state f Tl(x, u0, ... , uT/_1) 
belongs to B(p, 0). Of these input lists, let o/t(x) be the set of all input lists 
u0 , ••• , u77_ 1 E o// p(x) for which 

If i(x, uo(x), ... , ui-1 (x))I ~ LI - 8, i = 1, ... , rJ 

so that the state amplitude bound is not violated. Assume that o/t(x) -=I-0 for all 
x E B(p + 8, 0) ( otherwise, the design objective cannot be met). 
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For each list u0, ••• , u17_1 E 1?/t(x), construct the following set of (state, input) pairs 
through which the system passes 

S ( X, Uo, ... , U17- I ) : = { ( X, Uo), (f ( X, Uo) , U I ) , ••• , (/ 77- l ( X, Uo, ... , U17- 2) , U17- I )} 

which is a subset of R11 x R111
• Finally, combine all these (state input) pairs into one 

set 

S := LJ S(x, u0 , ..• , u17_1) 

xEB(p,0),110 , ••• ,u,1_ 1 Eo/l(x) 

which is again a subset of R11 x R111
• In view of the fact that for all x E B(p + 8, 0) we 

have f 17(x, u0 , .•. , u17_i) E B(p, 0), it follows that f [SJ c llxS, so that S is a con
ditional invariant subset of the recursion function/. Note that the calculation of S 
involves only consideration of rJ iterations off. Every state obtained at step rJ is 
contained in the initial condition set B(p + 8, 0), and whence the previous input 
values can also be used for the steps rJ and beyond. Of course, this construction is 
facilitated by reachability. Incidentally, the set S also satisfies B(p, 0) c llxS and 
If [S]I :S; L1 - 8. 

The set S constructed above is not a (8, L1)-eigenset of the function/, since some 
effects of the disturbances have not been taken into account so far. Nevertheless, the 
technique used in the construction of S forms the basis of our derivation of a finite 
process for the calculation of (8, L1)-eigensets. We now proceed to develop this 
process. 

Consider a system E having the recursive representation X1c+i = f (x1c, uk). For an 
initial condition x E R11

, an integer i ~ 0, a list of input values u0 ,· ... , ui- l E Rm, and 
a real number 8 > 0, we construct recursively a subset f ~(x, u0, ... , ui_i) c R11 as 
follows. 

f ~ := N1lx) 

f ~(x, u0 , ... , uk_i) := f {N 0[f ~- I (x, u0 , ... , uk- 2)], N 8(uk- l )}, k = 1, ... , i 

In intuitive terms, the set/ ~(x, u0 , ... , ui-l) consists of all states the system can reach 
at the step i under the following conditions: the system is started from the nominal 
initial condition x and is driven by the nominal input list u0 , ... , u;- 1, while at each 
step the state value as well as the input value are disturbed by a disturbance of 
amplitude not exceeding 8. 

Now, let L1 > 0 be the specified bound on the disturbance effects, as in (7). Also, 
let fJ, p > 0 be two real numbers satisfying p + fJ::; L1. For a state x E B(p, 0), 
consider the set of all input lists u0(x), ... , u17_1 (x) E Rm for which the following 
hold. 

If ~(x, uo(x), ... , ui-1 (x))I ::; L1 - fJ for all i = 1, ... , rJ - 1 (22) 

and 

If J ( x, uo ( x) , ... , u11_ 1 ( x)) I ::; p (23) 

Note that these relations simply represent a finite set of inequalities based on the 
recursion function f of E. Using the solution of these inequalities we can build a 
(6, L1)-eigenset of the recursion function/ as follows. 
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First, for each state x E B(p, 0), let U(x, p, 6, L1) c (Rm)1' be the set of all input 
lists (u0 (x), ... , u1/_1 (x)) E (Rm)1' that satisfy (22) and (23). In other words, 
U(x, p, 8, L1) is the solution set of the inequalities (22) and (23). Assume that 
U(x, p, 8, L1) -I-0 for all x E B(p, O); conditions on the recursion function f of .r 
under which this assumption is valid are discussed later. 

Next, for a list (u0(x), ... , u1/_1 (x)) E U(x, p, 6, L1) and an integer i E 0, ... , 7J - 1, 
denote by 

·niuo(x), ... , u1J-l (x)) := ui(x) 

the projection onto the ith element of the list. Build the following subsets of 
R11 x R111

, consisting of state-input pairs. 

S0 := {(y,u): y E N8(x),x E B(p,O),u E 1r0 U(x,p,6,L1)} 

Si := {(y, u): y E / Hx, u0 (x), ... , ui-l (x)), x E B(p, 0), u E 1riU(x, p, 6, L1)}, 

i= 1, ... ,77- l 

Finally, combine these subsets into the set 

Sp(6, L1) := LJ Si (24) 
i=0, ... ,7)-l 

which is a subset of R11 x Rm. A slight reflection shows then that (22) and (23) imply 
the following. 

Theorem 3: Let E be a system with the recursive representation Xk+l = f (xk, uk), 
and assume there are real numbers L1 > 0, 6 > 0, and p > 0, where p + 6 ::; L1, for 
which the solution set U(x, p, 8, L1) of (22) and (23) is not empty for any x E B(p, 0). 
Then, the set Sp(6, L1) of (24) is a (8, L1)-eigenset of the recursion function f, and 
B(p, 0) c llxSp(6, L1). 

In view of the fact that Sp(6, L1) is obtained from the solution of the finite set of 
inequalities (22) and (23), we have a finite procedure for the calculation of (8, L1)
eigensets of the recursion function/. In general, Sp(6, L1) is not equal to the maximal 
( 8, L1 )-eigenset off. Nevertheless, the maximal ( 8, L1 )-eigenset is not needed in order 
to construct a state feedback function according to Theorem 1. Using the procedure 
of Theorem 1, the eigenset Sp(8, L1) allows us to build a state feedback function <7 for 
which the closed loop system .Ea-permits disturbances of amplitude not exceeding 6, 
and may be started from any initial condition of magnitude not exceeding p, all 
without violating the bound L1 on the output sequence. 

Of course, when solving the inequalities (22) and (23), one has to obtain the 
largest possible value of 8 for which a solution exists. For the largest value of 8, 
the closed loop system .ra-permits the largest disturbance amplitudes possible within 
the framework of the present section. In this way, we have obtained a computable 
solution for the design of a state feedback function (]". 

As we can see, the critical step in this process is the solution of the set of inequal
ities (22) and (23). It is therefore important to examine conditions under which these 
inequalities possess a non-empty solution set. Before turning to this examination, we 
provide an example. 

Example 2: Consider the system .r: S(R) -+ S(R2 ) with the following realization 



784 J. Hammer 

In this case, 

x= (:;) 

and the recursion function is 

Iterating the recursion function we obtain 

f 2( ) _ (4x 1 + 2[(x1)2 + l]u0 + {[2x1 + [(xi)
2 + l]uo]2 + l}u 1) 

XI ' X2' Uo' U I -
2x1 + [(x1 )2 + 1 ]uo 

Take L1 = 1 and p = I /2. Then, we must have 8 ::; L1 - p = I /2, and (22) and (23) 
in this case lead to the following: For each /x/ ::; 1 /2, find u0 , u1 for which the 
inequalities 

/f(Y1,Y2,vo)I::; 1-8 

/! 2 (Y1,Y2, Vo, v1)/::; 1/2 

(a) 

(b) 

are valid for all y 1, y2, v0, v1 satisfying /y1 - x 1 / ::; 8, /y2 - x 2/ ::; 8, /v0 - u0 / ::; 8 and 
/v1 - ui/ ::; 8. It is usually easiest to solve these inequalities sequentially, by first 
solving the inequality (a), and then invoking (b) on the solution of (a). We adopt 
this technique below. 

Consider first inequality (a). Since the second component of (a) is x 1, we need 
1 /2 + 8 ::; 1 - 8, which requires 8 ::; 1 / 4. For the first component, we assign the 
nominal input value 

-2x 1 

Ux = (x1)2 + 1 
(c) 

which leads to a nominal value of O for the first component. For a given nominal x 1 

and disturbances 81 on x 1 and 82 on u, the value of the first component of (a) 
becomes (note that ux is determined by the nominal value of x 1) 

12(x 1 + 81) = [(x1 + 81)2 + 1] ( - ;xi + 82) I=: a, 
(xi) + 1 

(d) 

where jx1 / ::; p = 1/2, /81 / ::; 8, and /82 / ::; 8. To satisfy inequality (a), we need 
a 1 ::; 1 - 8, which, since 8::; 1/4, requires a 1 ::; 0.75. 

Now, due to the particular form of the recursion function/, the number a 1 is also 
the magnitude of the second component off 2

• In view of (b), we need therefore to 
require a 1 ::; 1 /2. A numerical examination shows that the largest value of 8 that 
satisfies the last requirement is approximately 8 = 0.16; for this value of 8, one has 
a 1 ::; 0.49 for all /x1/::; 1/2. 

Consider next inequality (b), using the feedback assignment represented by (c). 
Namely, denoting by f 1(x 1,x 2 , v0) the first component off (x 1,x 2, v0), set 
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-2xI 
u ----

0 - (xI)2 +I' 

From the preceding paragraph we have that lfI(xI,x 2 ,u0)1 < 1/2; thus, the argu
ment used to show that inequality (a) holds for 8 = 0.16 implies that inequality (b) is 
also valid for 8 = 0.16. Consequently, 8 = 0.16 is a permissible value of 8 in this 
case; as mentioned earlier, this is approximately the maximal permissible value of 
8 in this case. According to (c), the feedback function here is given by 

-2xI 
O"(XI' Xz) = 2 

(xi) + I 
D 

We now turn to a discussion of some conditions under which the set of inequal
ities (22) and (23) is guaranteed to have a solution for some values of the real 
numbers L1, 8, and p. The next statement shows that reachability guaranties the 
existence of a solution. 

Theorem 4: Let I: be a system having the recursive representation Xk+I = f (xk, Uk) 
with a continuous recursion function f Assume I: is everywhere locally reachable 
as well as globally reachable. Then, for every real number p > 0, there are real 
numbers 8, L1 > 0, where p + 8::; L1, for which the inequalities (22) and (23) have 
a non-empty solution set. 

Proof: Assume that the system I: is everywhere locally reachable as well as 
globally reachable, and let rJ be its reachability integer. Let p > 0 be a real 
number, and consider the ball B(2p, 0) in Rn. Since B(2p, 0) is a compact set, it 
follows from Proposition 4 that there is a real number µ > 0 that satisfies 
the following condition. For every point x E B(2p, 0), there is an input list 
uo(x), ... , u11-I (x) E [-µ, µr such that f 17(x, uo(x), ... , u11-I (x)) = 0: Denote by 
Bi (2µ, 0) the ball of radius 2µ around the origin in the space (Rm)1

, i = 1, ... , 'f/, 
and note that Bi(2µ, 0) is also a compact set. 

The continuity of the function f: Rn x Rm --+ Rn implies that all iterations 
f i: Rn x (Rm/--+ Rn, i = 1, ... , 'f/, are continuous functions. Consequently, com
pactness of the above mentioned sets implies that, for each i = 1, ... , rJ, there is a real 
number Ni > 0 such that 

Let N := max {NI, ... , N 17, p }, and take 

LI:= 2N (25) 

Consider now the restriction of the function f i to the domain 
B(2p, 0) x Bi(2µ, 0) c Rn x (Rm)\ i =I, ... , rJ. Since this domain is compact and 
f i is a continuous function, it follows that f i is uniformly continuous over 
B(2p, 0) x Bi(2µ, 0). Consequently, for each i = 1, ... , 'f/ - 1, there is a real number 
Qi > 0 for which the following holds for all x E B(2p, 0): 

If i(x', v0 , ... , vi_i) - f i(x, u0 (x), ... , ui-I (x))I < Ni 

for all x' E B(2p, 0) satisfying Ix' - xi < Qi, and for all Vo, ... , vi-I E [-2µ, 2µr 
satisfying I ( v0 , ..• , vi-I) - (u0 (x), ... , ui-I (x) )I < Qi· Also, there is a real number 
Q 17 > 0 such that 
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If 71(x', v0 , ... , v71_ 1) - f 71(x, uo(x), ... , u71_ 1 (x))I < p 

for all x' E B(2p, 0) satisfying Ix' - xi < a 71, and for all v0 , ••. , v71_ 1 E [-2µ, 2µ]'11 
satisfying l(v0 , ... , v71_ 1) - (u0(x), ... , u71_ 1 (x))I < aw Set 

8 := min { a 1, ••• , a 71, p, µ, N} (26) 

It is then a direct consequence of (25) to (26) that (22) and (23) are satisfied for the 
present values of p, L1, and 8. This concludes our proof. D 

In particular, Theorem 4 shows that for a reachable system with a continuous 
recursion function, one can always find a robust state feedback controller that 
guarantees a bounded response over any prescribed range of initial conditions. 

Generally speaking, the largest disturbance amplitude 8 that can be permitted for 
a given system depends on the bound L1 imposed on the disturbance effects, on the 
characteristics of the recursion function f, and on the imposed initial condition 
radius p. For a specific recursion function f, there may be values of p and L1 for 
which the inequalities (22) and (23) have no solution. However, when the inequalities 
(22) and (23) have a solution for the desired values of L1 and p, the largest value of 8 
for which a solution exists can be calculated directly, as seen in Example 2. This 
value of 8 determines the largest disturbance amplitude within the framework of the 
present section. 
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