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Abstract— The novel notion of a ’generalized realization’
for asynchronous sequential machines with critical races is
presented as a tool for the design of output feedback controllers
that eliminate the uncertainty caused by critical races. A gen-
eralized realization helps represent the uncertainty induced by
critical races and creates a deterministic relationship between
input-output data and the generalized state. This makes it
possible to use deterministic techniques to design output feed-
back controllers for non-deterministic asynchronous sequential
machines.

I. INTRODUCTION
Asynchronous sequential machines serve as building

blocks of a wide variety of engineering systems, including
high speed computing systems, parallel computing systems,
and models of processes in molecular biology (e.g., HAM-
MER [1994]). This note deals with the development of
control techniques that help overcome an important potential
defect of asynchronous sequential machines - the presence
of critical races. Critical races cause a machine to exhibit
unpredictable behavior; they may originate from malfunc-
tions, design flaws, implementation flaws, or genetic flaws
in biological systems. Usually, the presence of critical races
makes it impossible to determine the exact state of an
asynchronous machine from input-output data.

The notion of a ’generalized realization’, introduced in
section III, facilitates a simple methodology for the design
of output feedback controllers that eliminate the effects of
critical races. A generalized realization helps represent the
uncertainty induced by critical races in a way that creates
a deterministic relationship between input-output data and
the generalized state of a machine. This allows us to adapt
output feedback control techniques of deterministic machines
for use in non-deterministic cases. The output feedback
configuration of interest is as follows.

Fig. 1. A Feedback Control Configuration

Here, ⌃ is the asynchronous machine being controlled and
C is another asynchronous machine that serves as an output
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feedback controller. The closed loop machine is denoted by
⌃

c

. The objective is to find a controller C for which ⌃
c

has
desirable behavior.

The desirable behavior of ⌃
c

is represented by a determin-
istic asynchronous machine ⌃0, called a model. We seek an
output feedback controller C for which ⌃

c

emulates ⌃0. As
⌃0 is deterministic, this eliminates the effects of uncertainties
caused by critical races of ⌃.

Recall that an asynchronous machine may occupy a stable

state or a transient state. A stable state is a state at which
the machine lingers until a change occurs in one of its
input variables. A transient state is a state through which
the machine passes very quickly, ideally in zero time. An
asynchronous machine may pass through several transient
states on its way from one stable state to another. In principle,
the controller C operates by turning undesirable stable states
of ⌃ into transient states of the closed loop machine ⌃

c

.
To avoid adding uncertainty to an asynchronous machine’s

behavior, care must be taken to keep its input constant while
the machine is in transition. Otherwise, input changes may
occur at unpredictable states during transition and result
in an unpredictable outcome. In this regard, asynchronous
machines are normally operated in fundamental mode, where
input changes are allowed only while a machine is in a stable
state. All asynchronous machines in this note are operated
in fundamental mode.

The string of outputs that an asynchronous machine gen-
erates on its way from one stable state to the next is called
a burst - a rapidly progressing string of output characters.
Often, control objectives can be achieved without utilizing
bursts. The present note concentrates on controllers that do
not utilize bursts, as this often leads to simpler controllers.

Other aspects of the control of asynchronous machines are
discussed in MURPHY, GENG, and HAMMER [2002 and
2003], VENKATRAMAN and HAMMER [2004], GENG
and HAMMER [2005], and YANG and HAMMER [2007a,
b]. The design of output feedback controllers for asyn-
chronous machines with critical races requires the devel-
opment of new theoretical notions, such as the notion of
generalized realization considered in this note.

Studies dealing with additional facets of the control of
sequential machines can be found in RAMADGE and WON-
HAM [1987] and THISTLE and WONHAM [1994], where
the theory of discrete event systems is investigated; in HAM-
MER [1994, 1995, 1996a and b, 1997], DIBENEDETTO,
SALDANHA, and SANGIOVANNI-VINCENTELLI [1994],
and BARRETT and LAFORTUNE [1998]), where issues
related to control and model matching for sequential ma-
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chines are considered. These discussions do not take into
consideration specialized issues related to the operation of
asynchronous machines, such as stable states, transient states,
and fundamental mode operation.

The paper is organized as follows. Section II explores re-
quirements for fundamental mode operation of asynchronous
machines with critical races; section III introduces general-
ized realizations; section IV covers estimation of generalized
states from input-output data; and section V provides a
perspective on the control configuration we employ. The
paper concludes in section VI with a discussion of the
reachability features of generalized realizations and their
applications to controller design.

II. STRONG DETECTABILITY

An asynchronous sequential machine is a sextuple ⌃ =
(A, Y, X, x0, f, h), where A is the input alphabet, Y is the
output alphabet, X is the state set, x0 2 X is the initial state
of the machine, f : AX ! X is the recursion function, and
h : X ! Y is the output function; all involved sets are finite.
The machine operates according to

⌃ :

(
x

k+1 = f(x
k

, u

k

)
y

k

= h(x
k

), k = 0, 1, 2, ...,

(1)

where x

k

2 X is the state, u

k

2 A is the input value, and
y

k

2 Y is the output value at step k. The step counter k

advances by one upon a change of the input or of the state
of ⌃. Iterations of the recursion function with constant input
u are defined by

f

i(x, u) := f(f i�1(x, u), u), f0(x, u) := x, i = 1, 2, ...

A valid pair (x, u) 2 X⇥A is a pair at which the recursion
function f is defined; (x, u) is a stable combination if x =
f(x, u). The machine ⌃ lingers at a stable combination until
the input character u is changed. When (x, u) is not a stable
combination, the machine generates a chain of transitions

x1 = f(x, u), x2 = f(x1, u), ... (2)

which may or may not terminate. If this chain of transitions
terminates, the last state, say x

q

, satisfies x

q

= f(x
q

, u);
then, (x

q

, u) is a stable combination and x

q

is the next stable

state of x with the input u. If the chain (2) does not terminate,
then it forms an infinite cycle. In this paper, we consider only
asynchronous machines with no infinite cycles.

A critical race is a valid pair (r, v) 2 X⇥A for which the
next stable state is not uniquely determined, but may be one
of several outcomes, say r1, r2, ..., rm

2 X (e.g., KOHAVI
[1970]). An asynchronous machine with critical races is non-
deterministic. Its recursion function f may have sets of states
as its values, and the symbols x

k+1 in (1) and x1, x2, ... in
(2) may represent sets of states.

State transitions of asynchronous machines occur very
quickly - ideally, in zero time. As a result, the observed
behavior of a machine is determined by its stable combi-
nations. Specifically, for a valid pair (x, u), let x

0 the next

stable state or, if (x, u) is a critical race, let r1, r2, ..., rm

be
the outcomes. Then, the stable recursion function s of ⌃ is

s(x, u) :=

(
x

0 if (x, u) is not a critical race,
r1, r2, ..., rm

if (x, u) is a critical race.

The stable state machine ⌃|s = (A, Y, X, x0, s, h) describes
the stable transitions of ⌃. Two asynchronous machines ⌃
and ⌃0 are stably equivalent if the stable state machines
⌃|s and ⌃0

|s have the same input/output behavior. Stably
equivalent machines are indistinguishable by a user, so we
write ⌃ = ⌃0 when ⌃ and ⌃0 are stably equivalent.

Example 2.1: Consider a machine ⌃ = (A, Y, X, x0, f, h)
with A = {a, b}, Y = {0, 1}, X = {x1, x2, x3}, and the
transitions:

⌃: Transition Table
X a b Y

x

1
x

1 {x2
, x

3} 0
x

2
x

1
x

2 1
x

3
x

2
x

3 1

⌃: Transition Diagram

x

3

a

a

b

b

b

a

x

1

x

2

Here, (x1
, b) is a critical race. The stable state machine ⌃|s

has the transitions:

⌃|s: Transition Table
X a b Y

x

1
x

1 {x2
, x

3} 0
x

2
x

1
x

2 1
x

3
x

1
x

3 1

⌃|s: Transition Diagram

a

a

b

b

b

a

x

1

x

2

x

3

To guarantee that no uncertainties are introduced by
improper operation, our asynchronous machines are
operated in fundamental mode: inputs are changed only
while the machine is in a stable combination (e.g.,
KOHAVI [1970]). Then, a machine is in a well defined
state when an input change occurs. Fundamental mode
operation is the most common mode of operating
asynchronous machines.

Condition 2.2: The configuration of Figure 1 operates in
fundamental mode when all the following hold.

(i) C is in a stable combination while ⌃ undergoes
transitions;

(ii) ⌃ is in a stable combination while C undergoes
transitions; and

(iii) The external input v changes only while ⌃ and C are
both in a stable combination. ⇤
To implement Condition 2.2(i), it must be possible for the
controller C to determine from input and output values of
⌃ whether ⌃ has completed its transitions and reached the
next stable state. This leads to the following notion.

Definition 2.3: Assume that the machine ⌃ is at a stable
combination with the state x, when the input character
switches to u. The pair (x, u) is strongly detectable if it can
be determined from input and output values of ⌃ whether
the next stable state has been reached.



Let S be a set of states of ⌃. Assume that ⌃ is at a stable
combination with an unspecified state x 2 S, when the input
character switches to u. The pair (S, u) is strongly detectable

if it can be determined from input and output values of ⌃
whether the next stable state has been reached. ⇤
To derive necessary and sufficient conditions for strong
detectability, let f be the recursion function of ⌃, and let
s be its stable recursion function. Assume that ⌃ is at a
stable combination with the state x when the input character
changes to u, resulting in the chain of transitions x =
f

0(x, u), x1 = f(x, u), x2 = f

2(x, u), ..., x0 = f

i(x, u),
where x

0 = s(x, u) is the next stable state (or set of states) of
⌃. Letting \ denote set difference, the set of transient states
included in this chain of transitions is

f

�(x, u) :=

8
<

:
[

j=0,1,2,...,i

f

j(x, u)

9
=

; \ s(x, u).

Similarly, let S ⇢ X be a set of states and let u be an input
value that forms valid combinations with all states x 2 S.
Then, the collection of transient states included in transition
chains triggered by pair (S, u) is

f

�[S, u] :=
[

x2S

f

�(x, u).

Now, the set h[f�[S, u]] includes all output values that
are generated by transient states, while the set h[s[S, u]]
includes all output values that are generated by the stable
states reached at the end of the transition process. Clearly,
to be able to determine whether transitions have ceased, these
two sets must be disjoint. A slight reflection shows that the
converse is also true:

Proposition 2.4: Let ⌃ = (A, Y, X, x0, f, h) be an asyn-
chronous machine with the stable recursion function s, let
S be a set of states of ⌃, and let u 2 A be an input
character for which (x, u) is a valid combination for all
x 2 S. Then, (S, u) is strongly detectable if and only if
h[f�[S, u]] \ h[s[S, u]] = ?, the empty set. ⇤

Example 2.5: Continuing with Example 2.1,
consider S = {x1

, x

3} and u = a. Then,
f

�[S, a] = {x2
, x

3} and s[S, a] = {x1}, so that
h[s[S, a]] = {0} and h[f�[S, a]] = {1}. Thus,
h[f�[S, a]] \ h[s[S, a]] = ?, and the pair ({x1

, x

3}, a)
is strongly detectable. A similar calculation shows that
(x1

, a), (x1
, b), (x2

, a), (x2
, b), ({x2

, x

3}, a), ({x2
, x

3}, b)
are all strongly detectable. ⇤

III. GENERALIZED REALIZATIONS

Generalized realizations are an important tool for con-
trolling asynchronous machines with critical races. First,
some terminology. Two states x, x

0 of a machine ⌃ =
(A, Y, X, x0, f, h) are output equivalent if they yield the
same output values, i.e., if h(x) = h(x0). On a set
S of states, we can induce an output equivalence par-

tition {S1, S2, ..., Sp

} which consists of disjoint classes
S1, S2, ..., Sp

of output equivalent states of S.

It is often convenient to group several states into one
entity. For example, consider a critical race whose outcomes
are all output equivalent. After such race, it is impossible
to determine the exact state of the machine from input
and output values. We group the set of all states that are
consistent with available data into one entity that includes
the uncertainty about the current state of the machine. This
leads to the following notion. (#S denotes the cardinality of
a set S and P (S) is the family of all subsets of S.)

Definition 3.1: Let ⌃ = (A, Y, X, x0, f, h) be an asyn-
chronous machine with the stable recursion function s, let �

be a set disjoint from X and including at least 2#X elements,
and let � : P (X) ! X[� be an injective function satisfying
�(x) = x for all states x 2 X . With an output equivalent
set S ⇢ X , associate the element ⇠ := �(S).

If #S > 1, then ⇠ is a group state of ⌃, while S is
the underlying set of ⇠ and is denoted S(⇠). For an input
character u 2 A, the pair (⇠, u) (or the pair (S, u)) is a valid

pair if (x, u) is a valid pair for all x 2 S.
An extended state set X̃ of ⌃ is the union of the original

state set X with a set of group states. A generalized state

set X̃ of ⌃ is an extended state set for which the following
is true for all valid pairs (⇠, u) 2 X̃ ⇥ A: every member of
the output equivalence partition of the set s[S(⇠), u] is either
a single state or is represented by a group state in X̃ . ⇤
The stable recursion function s of ⌃ = (A, Y, X, x0, f, h)
can be extended to group states. Let X̃ be a generalized
state set of ⌃. For a member ⇣ 2 X̃ , denote by S(⇣) the
underlying set of states. For a valid combination (⇣, u) 2
X̃ ⇥A, let {S1, ..., Sm

} be the output equivalence partition
of the set s[S(⇣), u], and let ⇣

i 2 X̃ be the generalized state
associated with S

i

, i = 1, ...,m. Then, the generalized stable

recursion function s

g

: X̃ ⇥ A ! X̃ and the generalized

output function h

g

: X̃ ! Y are defined by

s

g

(⇣, u) := {⇣1
, ..., ⇣

m} and h

g

(⇣) := h[S(⇣)] (3)

for all ⇣ 2 X̃ . Since S(⇣) is an output equivalence
class, h[S(⇣)] is a single output character. Then, ⌃

g

:=
(A, Y, X̃, x0, sg

, h

g

) is called a generalized machine as-
sociated with ⌃. By construction, a generalized machine
has exactly the same input/output behavior as the original
machine ⌃. Consequently, ⌃

g

is just another realization of
⌃, and we refer to it as a generalized realization.

Considering that a generalized state represents a known
output equivalence class, the generalized state of a machine
is uniquely determined by the machine’s input and output
values, even after a critical race. This fact imparts the signif-
icance of generalized realizations: a generalized realization
creates a deterministic relationship between input-output data
and the generalized states of a possibly non-deterministic
machine. The following algorithm, which follows from Def-
inition 3.1, builds generalized realizations.

Algorithm 3.2: Let ⌃ = (A, Y, X, x0, f, h) be an
asynchronous machine with the stable recursion func-
tion s, and assume that ⌃ has ⇢ critical race pairs
(r1, v1), (r2, v2), ..., (r⇢

, v

⇢

). Let � be a set that is disjoint
from the state set X and has at least 2#X elements, and



let � : P (X) ! X [ � be an injective function satisfying
�(x) = x for all x 2 X . The following steps build a
generalized realization ⌃

g

:= (A, Y, X̃, x0, sg

, h

g

) of ⌃.
Step 1. For every valid pair (x, u) 2 X ⇥ A that is not
a critical race, set s

g

(x, u) := s(x, u). If ⇢ = 0, then set
⌥ := ? and go to Step 9.
Step 2. Define the ordered family of pairs S :=
{(r1, v1), (r2, v2), ..., (r⇢

, v

⇢

)} and the sets ⌥ := ? and
⌥0 := ?. Assign i := 1 and q := �1.

Step 3. Let �

i

be the i� th member of the family S, and let
{G1, ..., Gk

} be the output equivalence partition of the set
of states s(�

i

).
Step 4. Let ⇠

j

:= �(G
j

), j = 1, 2, ..., k, and replace ⌥ by
the set ⌥ [ {⇠1, ..., ⇠k

}. Assign s

g

(�
i

) := {⇠1, ..., ⇠k

}, and
denote S(⇠

j

) := G

j

, j = 1, 2, ..., k.

Step 5. If i + 1  #S, then replace i by i + 1 and return to
Step 3.
Step 6. Define the difference set ⌥00 := [⌥ \ ⌥0] \ X; then
replace ⌥0 := ⌥.
Step 7. If ⌥00 = ?, then go to Step 9.
Step 8. Replace S by an ordered family consisting of all
valid pairs (S(⇣), u), where ⇣ 2 ⌥00 and u 2 A, and return
to Step 3.
Step 9. Terminate the Algorithm. The set ⌥ is the set of
group states, X̃ := X [ ⌥ is the generalized state set, and
s

g

is the generalized stable recursion function of ⌃. ⇤
Generalized realizations are usually not minimal realizations.
Nevertheless, they help in the process of designing output
feedback controllers for asynchronous machines with critical
races, since they create a deterministic relationship between
the input/output features of a machine and its generalized
state, even in the aftermath of a critical race. It can be
verified that Algorithm 3.2 has polynomial computational
complexity.

Example 3.3: We use Algorithm 3.2 to build a generalized
realization of the machine ⌃ of Example 2.1. Here, there
is one critical race �1 = (x1

, b) with outcomes s(�1) =
s(x1

, b) = {x2
, x

3}. As h(x2) = h(x3) = 1, the output
equivalence partition of s(�1) is the single class G1 =
{x2

, x

3}. Associating with G1 the generalized state x

4,
we set s

g

(�1) := x

4. Further, s

g

(x4
, a) := s[G1, a] =

{s(x2
, a), s(x3

, a)} = {x1}; s

g

(x4
, b) := s[G1, b] =

{s(x2
, b), s(x3

, b)} = {x2
, x

3} = x

4; and h

g

(x4) :=
h({x2

, x

3}) = 1. At other valid combinations s

g

is identical
to s and h

g

is identical to h; the transition table of ⌃
g

is

X a b Y

x

1
x

1
x

4 0
x

2
x

1
x

2 1
x

3
x

1
x

3 1
x

4
x

1
x

4 1

⇤
We consider next the question of how to determine the
current generalized state of an asynchronous machine.

IV. OBSERVERS

Following common control theoretic terminology, we use
the term observer to refer to an asynchronous machine whose
role is to estimate the state of another asynchronous machine.
Specifically, we use observers to determine the most recent
generalized state reached by an observed machine ⌃. The
observers considered here differ from the ones of GENG and
HAMMER [2004 and 2005], since presently our observed
machines are afflicted by critical races.

Consider a machine ⌃ = (A, Y, X, x0, f, h) associated
with the generalized realization ⌃

g

= (A, Y, X̃, x0, sg

, h

g

).
An observer # for ⌃ is a stable state input/state machine
# = (A⇥Y,Z, z0, �) having two inputs: the input u 2 A of
⌃ and the output y 2 Y of ⌃. The state set Z of # consists
of the same elements as the generalized state set X̃ of ⌃,
and the initial state of # is identical to the initial state of ⌃,
i.e., z0 = x0. The recursion function � : Z⇥A⇥Y ! Z of
# is defined by

�(z, u, y) :=

8
><

>:

⇣ 2 s

g

(z, u) if y = h

g

(⇣) and
(z, u) is strongly detectable,

z otherwise.
(4)

The recursion function �(z, u, y) is well defined since, when
starting from a strongly detectable pair (z, u), an output value
y 2 h

g

(s
g

(z, u)) is reached only when ⌃ arrives at its next
stable generalized state (see Proposition 2.4). Furthermore,
by construction, there is exactly one generalized state ⇣ 2
s

g

(z, u) that satisfies y = h

g

(⇣) for the current output value
y of ⌃.

By this definition of the recursion function, the state of the
observer # switches to the state ⇣ 2 s

g

(z, u) immediately
after the machine ⌃ has reached its next generalized state ⇣.
As the state of the observer # is also its output, the output
of # tracks the most recent generalized state reached by ⌃
through a strongly detectable transition. Needless to say, ⌃
must be restricted to strongly detectable transitions.

To describe the operation of the observer # in more detail,
assume that ⌃ is at a generalized stable combination (x, v)
when the input character changes to u, where (x, u) is a
strongly detectable generalized pair. This change of the input
character may give rise to a chain of transitions, ultimately
leading ⌃ to the generalized state ⇣ 2 s

g

(x, u). As the pair
(x, u) is strongly detectable, it follows by Proposition 2.4
that ⌃ displays the output value y 2 h

g

(s
g

(x, u)) right upon
reaching the state ⇣, and not before. According to 4, the
observer # transitions to the state ⇣ 2 Z when it detects the
output value y 2 h

g

(s
g

(x, u)), and it will linger at this state
until the end of the next strongly detectable transition. As #

is an input/state machine, ⇣ becomes the new output value
of #. In this way, # displays at its output the most recent
generalized state reached by ⌃ through a strongly detectable
transition.

V. CONTROLLERS

Recall that our ultimate objective is to control an asyn-
chronous machine to eliminate the effects of critical races



and make the machine follow a prescribed deterministic
model ⌃0. Adopting the control strategy used by GENG
and HAMMER [2004 and 2005] for output feedback control
of race-free machines, we decompose the controller C of
Figure 1 into two asynchronous machines: an observer #

and a control unit F , as follows.

Fig. 2. Controller Decomposition

Here, the observer # outputs the most recent generalized state
visited by the machine ⌃. This information is used by the
control unit F to generate an input string that drives ⌃ to
its next destination along the path necessary to match the
response of the model ⌃0. The controller C of Figure 1 is
formed by the combination C = (F,#).

The observer # helps achieve fundamental mode operation
of the closed loop control configuration of Figure 2. Indeed,
as we have seen in section IV, the state and the output of
# stay constant while ⌃ is in transition - they only change
upon ⌃ reaching its next generalized state. Thus, the control
unit F receives constant input while ⌃ is in transition,
and hence remains resting in its latest stable combination.
Consequently, the entire controller C = (F,#) remains in a
stable combination while ⌃ is in transition (recall that the
external input v is kept constant during transitions of the
composite machine ⌃

c

).
The moment the machine ⌃ has reached its next stable

combination via a strongly detectable transition, the observer
# undergoes a transition to its next stable state which is
represented by the same symbol as the generalized stable
state of ⌃ (see (4)). Upon reaching its next stable state, #

changes its output, inducing a change at the input of the
control unit F . Depending on the transition function of F ,
this may or may not induce transitions in F . The important
consequence of this chain of events is that transitions among
the three machines #, F , and ⌃ always occur sequentially
- one machine at a time. According to Condition 2.2,
this guarantees fundamental mode operation of composite
machine of Figure 2.

VI. REACHABILITY OF GENERALIZED REALIZATIONS

As we have just seen, fundamental mode operation of
a machine-controller combination can be guaranteed only
at strongly detectable pairs of the controlled machine. As

a result, the operation of a controlled machine must be
restricted to such pairs. This leads us to the following notion
(see also PENG and HAMMER [2008]).

Definition 6.1: Let ⌃ be an asynchronous machine with
the generalized realization ⌃

g

= (A, Y, X̃, x0, sg

, h

g

), where
X̃ = {x1

, x

2
, ..., x

µ}. For a pair of generalized states
x

i

, x

j 2 X̃, define the set of input characters

↵(xi

, x

j) : =

(
a 2 A : (xi

, a) is a strongly
detectable pair and x

j 2 s

g

(xi

, a).
(5)

Then, letting N be a character not in A, the generalized one-

step reachability matrix R

g

(⌃) is a µ⇥ µ matrix whose i, j

entry is

R

gij (⌃) :=

(
↵(xi

, x

j) if ↵(xi

, x

j) 6= ?,

N if ↵(xi

, x

j) = ?,

(6)

i, j = 1, 2, ..., µ. ⇤
Example 6.2: Considering the list of strongly detectable

transitions of Example 2.5, the generalized one-step reacha-
bility matrix for Example 3.3 is

R

g

(⌃) =

0

BB@

a N N b

a b N N

a N b N

a N N b

1

CCA . ⇤

In order to work with generalized one-step reachability ma-
trices, we define a few specialized operations (see VENKA-
TRAMAN and HAMMER [2006a, b, c]). Denoting by A

+

the set of all non-empty strings of characters of the alphabet
A, consider two elements w1, w2 2 A

+ [N , where N is a
character not in A. The operation [/ of unison is then defined
by

w1 [/ w2 :=

8
>>><

>>>:

w1 [ w2 if w1, w2 2 A

+;
w1 if w1 2 A

+ and w2 = N ;
w2 if w1 = N and w2 2 A

+;
N if w1 = w2 = N.

For two subsets �1, �2 ⇢ A

+ [N , the unison is defined by

�1 [/ �2 := {w1 [/ w2 : w1 2 �1 and w2 2 �2}.

Given two n⇥n matrices A and B whose entries are subsets
of A

+ [N , the unison C := A[/ B is the n⇥n matrix with
the entries C

ij

:= A

ij

[/ B

ij

, i, j = 1, ..., n. This operation is
similar to numerical matrix addition, with N taking the role
of the zero.

Next, an operation that mimics matrix multiplication: the
concatenation of two elements w1, w2 2 A

+ [N is

conc(w1, w2) :=

(
w2w1 if w1, w2 2 A

+;
N if w1 = N or w2 = N.

For two subsets W,V ⇢ A

+ [N, the concatenation is

conc(W,V ) := [/
w2W,v2V

conc(w, v).



Then, for two n⇥n matrices C, D whose entries are subsets
of A

+ [N , the product Z := CD is an n⇥n matrix whose
(i, j) entry Z

ij

is

Z

ij

:= [/
k=1,2,...,n

conc(C
ik

, D

kj

), i, j = 1, ..., n.

With this product, we can define powers of the generalized
one-step reachability matrix:

R

q

g

(⌃) := R

q�1
g

(⌃)R
g

(⌃), q = 2, 3, ...

By construction, the (i, j) entry of R

q

g

(⌃) consists of all
strings of q input characters that take ⌃

g

from a stable
combination with x

i to a stable combination with x

j in
exactly q stable and strongly detectable transitions.

To demonstrate the use of R

q

g

(⌃), let the string u1u2...uq

be a member of the (i, j) entry of R

q

g

(⌃). Then, we can
proceed from x

i to x

j as follows: at a stable combination
with the generalized state x

i

, apply the input character u1,

and hold it until the observer # of (4) displays a state
of the set s

g

(xi

, u1); then, apply the input character u2,

and again wait until the observer # displays a state of
the set s

g

(xi

, u1u2); and so on for q steps. If this string
of transitions includes critical races, then x

j is one of the
possible outcomes.

Further, for an integer q 2 {1, 2, ...}, define the matrix

R

(q)
g

(⌃) := [/
r=1,...,q

R

r

g

(⌃). (7)

The (i, j) entry of R

(q)
g

(⌃), if not N, includes all input
strings that may take ⌃ from a stable combination with the
generalized state x

i to a stable combination with the gener-
alized state x

j in q or fewer stable and strongly detectable
steps. The following statement is similar to MURPHY,
GENG, and HAMMER [2003, Lemma 3.9].

Lemma 6.3: Let ⌃ be an asynchronous machine with
the generalized state set X̃ = {x1

, x

2
, ..., x

µ} and the
generalized one-step reachability matrix R

g

(⌃). Then, the
following are equivalent:

(i) The generalized state x

j is stably reachable from the
generalized state x

i through a finite string of stable and
strongly detectable transitions, possibly as one outcome of a
critical race.

(ii) The (i, j) entry of the matrix R

(µ�1)
g

(⌃) is not N. ⇤
The Lemma shows that all strongly detectable stable tran-
sitions of the generalized realization of ⌃ are character-
ized by the generalized stable reachability matrix �(⌃) :=
R

(µ�1)
g

(⌃).
Example 6.4: Using the matrix R

g

(⌃) of Example 6.2, a
direct calculation yields

�(⌃) =

0

BB@

{a, ba, aba} N N {ab, bab, b}
{a, ba, aba} b N {ab, bab}
{a, ba, aba} N b {ab, bab}
{a, ba, aba} N N {ab, bab, b}

1

CCA . ⇤

As indicated earlier, the relationship between input values,
output values, and generalized states of an asynchronous

machine with critical races is similar to the relationship
between inputs, outputs, and states of a deterministic asyn-
chronous machine. Thus, once the generalized stable reach-
ability matrix is available, we are in a situation similar
to the one encountered in the deterministic case. We can
then utilize the generalized stable reachability matrix in
combination with the framework developed in GENG and
HAMMER [2005] to derive output feedback controllers for
asynchronous machines with critical races. Full details are
provided in PENG and HAMMER [2008].
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