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ABSTRACT 

Two broad issues in the theory of nonlinear control 
are discussed - nonlinear static state feedback and the 
construction of coprime fraction representations. First, a 
theory of static state feedback, valid for a wide class of 
nonlinear systems, is developed. The theory yields ex-
plicit formulas for the computation of static state feed-
back functions that internally stabilize a nonlinear sys-
tem. Next, it is shown that these stabilizing state feed-
back functions can be used to construct right coprime 
fraction representations for nonlinear systems, even in 
cases where the output of the system is not the state. 
The resulting coprime fraction representations have a 
particularly simple factorization space. 

1. INTRODUCTION 

The purpose of this note is to review the theory of 
nonlinear static state feedback developed in HAMMER 
[1989b], and to indicate its application to the construc-
tion of right coprime fraction representations of non-
linear systems, described in HAMMER [1989c]. Right co-
prime fraction representations are used to derive 
controllers that robustly stabilize and assign desirable 
dynamics to a nonlinear system (HAMMER [1988 and 
1989a]). The presentation here is brief and qualitative; 
Proofs and more detailed discussions are provided in the 
references. 

The theory of nonlinear state feedback of HAMMER 
[1989b] is valid for nonlinear discrete-time systems L 
of the form 
(1.1) xk+l = f(xk,uk), k = 0, 1, 2, .... 
Here, {uk};=O is the input sequence of m-dimensional 
real vectors; {xk};=O is the output sequence of p-di-
mensional real vectors; and f, called the recursion 
function, is continuous. A system described by (1.1) is 
called an input/state system. 

Let L be an input/state system, and consider the 
configuration 

u cr(x,v) i-----~91 
X 

(1.2) 

where the loop is closed through the continuous feed-
back function CJ(x,v). The closed loop has the input se-
quence {vk};=O of m-dimensional real vectors, and its 
input/output relation is denoted by L 0 . The recursive 
representation of L0 is 

(1.3) xk+l = f(xk,CJ(xk,vk)), k = 0, 1, 2, .... 
We explicitly derive the feedback functions CJ for 
which the closed loop (1.2) is internally stable, whenever 
they exist. 

Following HAMMER [1986], we restrict our attention 
to stabilization over bounded domains, by assuming that 
all possible input sequences v of the closed loop system 
(1.2) are of amplitude not exceeding a prespecified 
bound. This allows us to abide by realistic considerations 
relating to the maximal signal amplitudes permitted by 
the physical setup. It also yields a mathematical simpli-
fication of the stabilization problem. 

Using the stabilizing state feedback functions CJ, we 
then develop a method for the computation of right co-
prime fraction representations of nonlinear systems. 
These are representations of the form L = PQ- 1, where 
P and Q are stable and coprime nonlinear systems. 
The method is valid for systems L of the form 

Xk+l = f(xk,uk), 
(1.4) 

Yk = h(xk), k = 0, 1, 2, ... , 
where the input u is m-dimensional; the output y is 
p-dimensional; x is an intermediate q-dimensional 
'state' variable; and f and h are continuous functions. 
A system L of the form (1.4) is said to have a continu-
ous realization. The input/state part of L is the system 
Ls, induced by the recursion xk+l = f(xk,uk), k = 0, 1, 2, 
.... To construct a right coprime fraction representation 
of L, suppose Ls is inserted into the closed loop (1.2), 
yielding the input/output relation Lscr· Assume that CJ 
was chosen so that Lscr is stable. Then, using CJ, we 
construct in section 4 a right coprime fraction repre-
sentation of the original system L. Once such fraction 
representation is known, the methods developed in 
HAMMER [1986, 1988a and 1988b] can be used to 
robustly stabilize L and assign desirable dynamics to 
the closed loop, without accessing the state x. In this 
way, CJ is used only as a means to obtain a fraction 
representation, and the actual control configuration 
that stabilizes L requires no access to the state. 

The present note is written within the framework of 
HAMMER [1984, 1986, 1987, 1989a, b, and cl. Recent 
alternative studies of the theory of fraction representa-
tions for nonlinear systems can be found in DESOER and 
LIN [1984], DESOER and KABULI [1988], TAY and 
MOORE [1988], SONTAG [1989a and b], KRENER [1989], 
the references listed in these papers, and others. 

2. BASICS 

Let S(Rm) be the set of all sequences {u0, u 1, ... } 
of m-dimensional real vectors ui E Rm, i = 0, 1, 2, ... . 
Then, a system is simply a map L : S(Rm) - S(RP), 
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transforming m-dimensional input sequences into p-di-
mensional output sequences. The image of a subset S c 
S(R m) through L is denoted by L[S], and consists of 
all elements x E S(RP) satisfying x = LU for some el-
ement u E S. 

Let lul := max {luil, i = 1, ... , m} be the maximal 
absolute value of the coordinates of a vector u E Rm. 
For a sequence u E ..... S(Rm), denote lul := supi?:O luil, so 
that 1·1 is the usual ~00 -norm . We shall also employ a 
weighted 00 -norm p, given by p(u) := supi?:O riluJ. for 
all u E S(Rm). For a set Sc S(Rm), we denote by S its 
closure with respect to p. Unless stated otherwise, con-
tinuity of maps is with respect to p. 

To consider bounded spaces, denote by S( em), 
where e > 0, the set of all sequences u E S(Rm) sat-
isfying lul s e. A system L : S(Rm) - S(RP) is said to 
be BIBO (Bounded-Input Bounded-Output)-stabJe if, for 
every real number e > 0, there is a real number M > 0 
such that L[S(em)] c S(MP). A system L : S(Rffi) -
S(RP) is stable if the following hold : (i) L is BIBO-stable, 
and (ii) for every real number e > 0, the restriction L : 
S( em) - S(RP) is continuous (with respect to p) 
(HAMMER [1984, 1986, 1988)). This notion of stability 
conforms with Lyapunov theory. Given to subsets S1 c 
~(Rm) and s2 c S(RP) and a system M : S1 - S2 , we 
say that M is unimodular if it has a set theoretic in-
verse M-1, and if M and M-1 are both stable . 

Critical to our discussion is the following class of 
systems (HAMMER [1985, 1987]). 
(2.1) DEFINITION . L : S(Rm) - S(RP) is a homogeneous 
system if, for every real number ex > 0 and for every 
subset S c S(ocffi), the following holds true. Whenever 
there exists a real number e > 0 such that L[S] c 
S( eP), the restriction of )2 to the closure S of the set 
S in S(ocffi) is a continuous map L : S - S(eP) .o 

In qualitative terms, a system is homogeneous if it 
is continuous whenever its outputs are bounded. Thus, a 
homogeneous system is stable (i.e., bounded and contin-
uous) whenever it is BIBO-stable. In view of the follow-
ing statement (HAMMER [1987]), all the systems consid-
ered here are homogeneous. 
(2.2) PROPOSITION . A system L : S(Rm) - S(RP) having 
a continuous realization is a homogeneous system. 

We turn now to coprimeness and coprime fraction 
representations (HAMMER [1985, 1987)). (P*[S] denotes 
the set of all input sequences u for which Pu E S, 
namely, the inverse image.) 
(2.3) DEFINITION. Let S c S(Rq) be a subset. Two stable 
systems P : S - S(RP) and Q : S - S(Rm) are right 
coprime if the following conditions hold. 
(i) For every real number 'T > 0 there exists a real 
number e > 0 such that 

P"[S('TP)] n Q*[S('Tm)] C S(eq) . 
(ii) For every real number 'T > 0, the set 
S n S('Tq) is a closed subset of Shq) (with respect to 
p).o 

Intuitively, P and Q are right cop rime if, for ev-
ery unbounded input sequence u, at least one of the 
output sequences Pu or Qu is unbounded. A right co-
prime fraction representation of a system L : S(Rffi) -
S(RP) is of the form L = PQ- 1 , where P : S - S(RP) 
and Q : S - S(Rm) are stable right coprime systems, 
with Q being a set isomorphism. The space S, which is 
required to be contained in S(Rq) for some integer q > 
0, is called the factorization space . To indicate the sig-

nificance of right coprime fraction representations, con-
sider the following configuration. 

(2.4) 

cp 
~n:,tp) 

Here, L : S(ocm) - S(RP) is the given system that needs 
to be controlled (oc describes the largest input ampli-
tude the system L permits); n : S(Rm) - S(Rm) is a 
dynamic precompensator; and cp : S(RP) - S(Rm) is a 
dynamic feedback compensator, connected additively. 
The closed loop system is denoted by L(Tr ~)· It is partic-
ularly convenient to choose (HAMMER [1985]) 

TI = B-1, 
(2.5) 

cp = A, 
where A: S(RP) - S(Rm) and B: s(Rm) - S(Rm) are 
stable systems, with B being a set isomorphism. Of 
course, A and B- 1 have to be causal. Now, Let L = 
PQ-1 be a right coprime fraction representation, and let 
S c S(R q) be its factorization space. Then (HAMMER 
[1986)), 
(2.6) L(Tr,cp) = P[AP + Bor 1. 
Now, if the stable systems A and B are chosen so 
that 
(2.7) AP + BQ = M, 
where M is a unimodular system, we get 
(2.8) L(Tr,cp) = PM-1, 
and the closed loop is input/output stable . In fact, the 
closed loop system will be internally stable under these 
circumstances, if the systems A and B satisfy some 
additional mild conditions (HAMMER [1986]). Let S' be 
the input domain of M . For consistency of (2.7) and 
(2.8), S' must be contained in the domain of P and Q, 
namely, in the factorization space S, so 
(2.9) S' C S. 

The following aspect of (2.8) is of particular interest. 
In general, the space of input sequences of the closed 
loop LcT[ cp) is of the form S(em), where e > o describes 
the max1mal input amplitude permitted by the physical 
setup. Then, by (2.8), the domain of M- 1, which is the 
codomain of M, must be S(em ), so that M : S' -
S( em), and S' is homeomorphic to S( em) (HAMMER 
[1986)). Now, for stabilization, we need to construct M . 
A substantial simplification results when the f actoriza-
tion space S is itself of the form S(13m) for some real 
f3 > 0, since the construction of homeomorphisms M : 
S(13m) - S(em) is a straightforward task . The basic ad-
vantage of the right coprime fraction represetnations 
constructed in this note is that they all have f actoriza-
tion spaces of the from S(13m) for some real f3 > 0, and 
thus are particularly adequate for use in stablization. 



3. FEEDBACK FUNCTIONS, STABILIZATION, AND 
EI GEN SETS 

We review now the theory of stabilization by static 
state feedback of HAMMER [1989b]. Two fundamental 
properties of feedback are critical to us - continuity and 
reversibility. Continuity is quite obvious - we require 
the feedback function cr to be continuous. Reversibility 
requires the feedback operation to be reversible in the 
sense that it can be 'undone' by another feedback oper-
ation. Specifically, let cr: RPxRm -. Rm, (x,v) - a(x,v), 
be a furn;:tion. For every element x € RP, denote by ax : 
Rm -. Rm the partial function given by ax(v) := 
cr(x,v), v E Rm. When L is given by (1.1), the recursion 
function f O of Lcr is 
(3.1) f cr(x,v) = f(x,ax(v)). 
Assume next that the system L 0 is itself enclosed in a 
feedback loop, using the feedback function w : RPxRm 
__. Rm, (x,w) - w(x,w) = v, so that there a.re now two 
feedback loops around L, and let i: 0 w denote the final 
system. As before, the recursion function f0 w of Lcrw 
is 
(3.2) f0 w(x,w) = fcr(x,wx(w)) = f(x,axwx(w)). 
Now, require that w 'undoes· the feedback operation 
induced a, so that f crw(x,w) = f(x,w) for all x and w. 
For the latter to hold for any f, we need w = crxwx(w), 
and wx must be a right inverse of crx for every x. 
This implies that crx must be surjective (onto) for all 
x. The function wx, being a right inverse of ax, must 
then be injective (one to one). But then, requirng that 
both cr and w induce reversible feedback operations, 
it follows that ax and wx must both be injective and 
sur jective, i.e., set isornorph1sms. Clearly, ax : Rm -. 
Im crx is a set isomorphism exactly when ax : Rm -. 
Rm is injective. This leads to the following (HAMMER 
[1989b]) 
(3.3) DEFINITION. Let L : S(R m) -. S(RP) be an in-
put/state system. A reversible feedback function for L 
is a continuous function a : RPxRm __. Rm for which 
the partial function ax : Rm - Rm is injective for any 
state x.o 

We turn now to stability. The configuration (1.2) is 
input/output stable (for input sequences bounded by e 
> 0) if the restriction L 0 : S( em) -. S(RP) is stable. As is 
well known, the notion of input/output stability is too 
weak for practical applications. The feedback configura-
ticns discussed here are all internally stable in the sense 
that small noises added to the outputs of L or cr donot 
destroy stability. To incorporate noise effects, let L be 
given by the recursion 

(3.4) 
xk+i = f(xk,uk) + nk+i• k = 0, 1, 2, ... , 

xa = xaa + no, 
where n E S(RP) is a noise sequence, and where x 00 is 
the specified nominal initial condition. Similarly, the 
output of the feedback is given by 
(3.5) uk = a(xk,vk) + 1Jk, k = 0, 1, 2, ... , 
where 11 E S(Rm) is a noise sequence, and v E S(Rm) 
is the input sequence of the closed loop. Denote by 
Lcr,n,v the input/output relation of the closed loop sys-
tem with the noises n and 11 present. Clearly, the 
system Lcr n 11 can be regarded as a system accepting 
the three input sequences V, n, and 1J, so write Lcr n 1J 

: S(Rm)xS(RP)xS(Rm) -. S(RP), where the terms of ih'e 
cross product correspond to v, n, and 1J, respectively. 

The noises n and 1J are assumed to have 'small' am-
plitudes, not exceeding a bound denoted by E. 
(3.6) DEFINITION. The configuration (1.2) is internally 
stable (for input sequences bounded by e) if there is a 
real number E > 0 such that L 0 • n, v : 
S( em) xS(EP) xS(Em) -. S(RP) is a stable system.o 

One of the advantages of our setup is the simplicity 
it yields in the treatment of the notion of stability. 
Specifically, systems that possess a continuous 
realization are homogeneous by Proposotopn (2.2), and 
whence, by Definition (2.1), are stable whenever they 
are BIBO-stable. We emphasize that stability includes 
continuity. From this fact, the following follows 
(HAMMER [1989b]). 
(3.7) PROPOSITION. Let L : S(Rm) -. S(RP) be a system 
having a recursive reresentation of the form xk+i = 
f(xk,uk), where f: RPxRm -. RP is a continuous func-
tion. Let cr : Rm x RP -. Rm be a reversible feedback 
function, and let e > 0 be a real number. Then, the 
system L 0 is internally stable (for input sequences 
bounded by e) if and only if there is a pair of real 
numbers E, 6 > 0 such that Lcrnv[S(em)xS(EP)xS(Em)] c 
S(6P). ' ' 

In order to define a basic notion of our state feed-
back theory, we need some notation. Let E > 0 be a real 
number, and let S c Rn be a set. Denote by Be(S) the 
open neighbourhood of S consisting of all points y E Rn 
for which there is a point x E S such that ly - xi < E. 
Also, let TIP : RPxR.m -. RP be the standard projection 
onto the first p coordinates. 
(3.8) DEFINITION. An eigenset E of a function f : RPxRm 
-. RP is a subset E c RPxRm satisfying f[E] c TI R[E]. 
An £-eigenset t of the function f is a subset I:: c 
RPxRm satisfying the condition f[B£(1::)] c TIP[t'.], where 
E > 0 is a real number.o 

The next important notion of our stabilization the-
ory is the notion of a uniform graph. Recall that the 
graph of a function g : RP -. Rm is simply a subset of 
RPxRm consisting of all points of the form (x,g(x)), x E 
RP. For a set S c RPxRm and a point x € RP, let S(x) 
be the set of all y E Rm for which (x,y) E S. A uniform 
graph is a subset S c RPxRm for which there is a con-
tinuous function g : RP -. Rm and a real number , > 0 
such that :S (g(x)) c S(x) for all x E TI P[S]. The 
function g is then called a graphing function for the 
set S. The notion of a uniform graph is quite simple on 
an intuitive level. First, a uniform graph S contains 
the graph of the continuous function g. Furthermore, it 
also contains the graph of any continuous function g' 
which diff eres from g by less than t, namely, any 
continuous function g' saitsfying lg'(x) - g(x)I < , for 
all x E TI P[S]. The notion of a uniform graph is a natural 
tool for the description of functions whose values may 
be -corrupted by noise. 
(3.9) DEFINITION. A continuous function f: RPxRm __. RP 
is uniformly conductive at a point x 0 € RP if it has a 
bounded E-eigenset t'. for which the set :8£( I::) is a 
uniform graph, and Xo € TI p[t'.].o 

We can now state our main result. 
(3.10) THEOREM. Let L : S(Rm) -. S(RP) be a system 
having a recursive representation xk+i = f(xk,uk) with 
the initial condition x 00 , where f : RPx Rm -. RP is a 
continuous function. Let e > 0 be a real number. Then, 
the following two statements are equivalent. 
(i) There exists a reversible state feedback function o : 
RPxRm -. Rm for which the closed loop system L 0 : 

S( em) -. S(RP) is internally stable. 



(ii) The recursion function f is uniformly conductive at 
the point x~ 0 . 

Thus, we have a complete characterization of in-
ternal stabilizability by static state feedback. The signifi-
cance of this result is twofold. First, from a theoretical 
point of view, it provides a direct link between proper-
ties of the given recursion function f of the system 
that needs to be stabilized, and the existence of a stabi-
lizing state feedback. From a practical point of view, 
eigensets of functions can be quite readily computed 
(HAMMER [1989b]). Once the eigensets are known, one 
can check whether f is uniformly conductive, and, if it 
is, stabilizing feedback functions CJ for the system L 
can be directly derived (HAMMER [1989b]). This yields 
then an explicit procedure for the computation of stabi-
lizing feedback functions CJ. 

The construction of the stabilizing feedback func-
tions proceeds as follows. Let t be a bounded e:-eigenset 
over which the recursion function f of the system L 
is conductive. Then, there is a reversible f dba--ck 
function CJ : RPxRm - Rm satisfying following 
condition for some real number O < C and for all x 
E TI P[B€(t)]. 
(3.11) CJx[-a,e]m c;st(l::)(x). 
It can be shown (HAMMER [1989b]) that the feedback 
function cr internally stabilizes the system L, as 
follows. 
(3.12) THEOREM. Let L : S(Rm) - S(RP) be a system 
having a recursive representation xk+l = f(xk,uk) with 
the initial condition x 00 , where f : RPxRm - RP is a 
continuous function, and let e > 0 be a real number. 
Assume that the recursion function f is uniformly 
conductive at the point x 00 , and let t be an e:-eigenset 
of f for which B€(t'.) is a uniform graph and x 00 E 
TI) t'.]. Then, every reversible feedback function CJ : 
RPxRm - Rm satisfying (3.11) yields an internally sta-
ble closed loop system L0 : S(em) - S(RP). 

Generally speaking, in order to find a feedback 
function CJ that satisfies (3.11), one has to construct a 
continuous family { CJ x} of homeomorphisms CJ x : 
[-e,e]m - Im CJx, for which Im CJx c Bt(t)(x) for all x 
€ Tip[B€(t)]. Quite usually, the construction of all 
possible families {CJx} is not an easy problem, and, as 
well known, it is the subject of homotopy theory. 
However, some of the families {CJx} are quite easy to 
construct; One such family {CJ x}, i.e., one reversible 
feedback function CJ, is the following (HAMMER 
[1989b]). 
(3.13) COROLLARY. In the notation of Theorem (3.12), let 
g be a graphing function for B€Ct'.). Let r : Rm - R be 
a continuous scalar positive valued function satisfying 
the following conditions: (i) There is a real number K > 0 
such that r(x) :::: K for all x € Rm, and (ii) There is a 
real number O < C < e: such that, for every x € 
TI P[B€(t'.)], the ball Br(x)(g(x)) c Bt[t](x). Define the 
function 

CJ(x,v) := [r(x)/e]v + g(x). 
Then, cr is a reversible feedback function, and the 
closed loop system L 0 : S( em) - S(RP) is internally 
stable. 

The stabilizing feedback functions of the Corollary 
can be readily constructed in practice. Finally, when 
the given system L is a linear finite-dimensional time-
invariant system, the class of feedback functions 
described by Corollary (3.13) includes the classical linear 
state feedback functions (HAMMER [1989b]). 

4. THE CONSTRUCTION OF EIGENSETS AND FEEDBACK 
FUNCTIONS 

The process of computing a static state feedback 
function that stabilizes a given nonlinear input/state 
system can be divided into the following three main 
steps. Let L be the system that needs to be stabilized, 
and let f be its recursion function. 
1) Find an appropriate e:-eigenset t of f. 
2) Find a graphing function for I::. 
3) Find a stabilizing state feedback function cr, using 
Theorem (3.12) or Corollary (3.13). 

Of course, all this is under the assumption that the 
function f is uniformly conductive; otherwise, by The-
orem (3.10), stabilization is impossible. 

The computation of e:-eigensets of functions involves 
the solution of certain sets of inequalities. More specifi-
cally, let L : S(Rm) - S(RP) be an input/state system 
with the recursive representation xk+l = f(xk,uk), where 
f : RPxRm - RP is a continuous function. Assume that 
the system L needs to be stabilized over a range of 
output amplitudes lxl 6. Then, we need to find an e:-
eigenset t of the function f for which the projection 
TI P[t] onto the state space is bounded by 6. This can be 
handled in the following way. Find a subset )( c RP 
and a real number C > 0 for which the subsequent 
conditions hold. (i) )( c [-6,6]P; (ii) For each element x E 
BC()() there is a nonempty bounded subset 'U(x) c Rm 
such that f[Bc(x),Bc('U(x))] c X; and (iii) There is a real 
number ex > 0 such that 'U(x) c [-cx,cx]m for all x € 
X. Then, it follows directly from the definitions that the 
set 
(4.1) I:: := {(x,u) € RPxRm : x € )( and u € 'U(x)}, 
is an e:-eigenset of the function f for e: = C. This proce-
dure will, in general, yield a class IE of e:-eigensets of 
the function f, where IE is empty in case no such e:-
eigensets exist. Now, there are two possibilities - either 
IE contains an e:-eigenset t for which B€(t) is a uni-
form graph, or it does not. In the first case, let tg € IE 
be an e:-eigenset for which BE( cg) is a uniform graph, 
and let g(x) be a graphing function for B€(t'.g). Then, a 
stabilizing feedback function cr for the system L can 
be directly computed using Theorem (3.12) or Corollary 
(3.13). Otherwise, if IE does not contain an e:-eigenset E 
for which B .. (E) is a uniform graph, it follows by Theo-
rem (3.10) that the system L cannot be internally 
stabilized with output amplitude bounded by the speci-
fied bound 6. However, it may still be possible to inter-
nally stabilize the system L if the output amplitude 
bound 6 is increased. 

In qualitative terms, condition (ii) of the previous 
paragraph is a controllability type condition. It requires 
that, for every state x € X, there be a set 'U(x) of in-
put values u that steer the state so that it stays 
within the set X, even if errors (of amplitudes not ex-
ceeding c) in x or in u are present. Condition (iii) 
simply requires all relevant input values to have 
bounded amplitudes, and is usually just a formality. 
EXAMPLE. Consider the system L : S(R) - S(R 2 ) 
described by the recursion 



where x 1 , x2 are the coordinates of the state vector, 
and where the nominal initial condition is x 00 = 0. The 
recursion function is then 

f(x,u) = 

The output sequences of the closed loop system 
(including the noise) are required to be bounded by the 
real number 6 > O; the input sequences are taken from 
S(e), where e > 0 is a specified real number. 

Using the methods described in the previos section, 
a stabilizing and reversible state feedback function for 
this system is computed in HAMMER [1989b]. The re-
sulting function is given by 

cr(x,v) := >,.(x)v + g(x), 
where 

_ (n2-n 1)/2-[(x 1)2+x 2]2-sinx 2 
g(x) - 1 +(x2)2 ' 

and 

2(1 +(x2) 2 ]a · 

Here, n1 and n2 are constants, which depend on 6 
and e. The feedback function cr internally stabilizes 
the system L, subject to the above requirements. 

As we have seen throughout our discussion, and, in 
particular in Theorem (3.10), the notion of a uniformly 
conductive function is the most fundamental notion of 
the theory of static state feedback for nonlinear sys-
tems. An input/state system is internally stabilizable if 
and only if its recursion function is uniformly conduc-
tive. Some further simple and explicit characterizations 
of uniformly conductive functions are provided in 
HAMMER [1989b]. 

5. FRACTION REPRESENTATIONS 

In the present section we discuss the construction of 
right coprime fraction representations L = PQ-1 whose 
factorization space is of the form S(13m), 13 > 0, following 
HAMMER [198 9c]. The construction is based on the the-
ory of static state feedback reviewed in the previous 
sections, and the results apply to systems L possessiong 
a continuous realization, for which the input/state part 
Ls is stabilizable. We consider first the case of in-
put/state systems. 

Let L be an input/state system, and assume there 
is a reversible feedback function cr : RPxRm -+ Rm for 
which the system L0 : S(em) -+ S(RP) of (1.2) is stable. 
The existence of cr was discussed in the previous sec-
tion. Now, referring to (1.2), let v € S(am) be an input 
sequence of the closed loop sys terr., and let u E S(R m) 
be the correponding input sequence of the system L, so 
that 
(5.1) u = cr(Lu,v), 
by which we simply mean that uk = cr(Lu]k,vk) for all 
integers k 0, where LU]k is the k-th element of the 
output sequence LU. In view of the definition of a re-
versible feedback function, the partial function cr x : 
[-e,e]m -+ crx[-e,e]m is a set isomorphism for every 
state x, and thus has an inverse function a~ 1 · 

crx[-e,e]m -+ [-e,e]m. Denote cr*(x,u) := cr;/(u). Let Su 
denote the set of all sequences u E S(R m) that appear 
as input sequences of the system L in the closed loop 
(1.2) when v varies over S(em), namely, 
(5.2) Su := (u E S(Rm) : u = cr(Lu,v), v E S(em)}. 

I 

Then we can write 
(5.3) v = cr*(Lu,u) 
for all sequences u E Su. Let e : Su -+ S(em) be the 
system given by 
(5.4) Hu) := cr*(Lu,u), 
so that v = Hu). In this notation, LU = Lo-eu for all u 
E Su, and it follows that the restriction L : Su -+ S(RP) 
satisfies L = L0 e. Now, assume for a moment that e 
has a stable inverse e-1 : S( em) -+ Su, and denote 
(5.5) Q := e-1 : S(em) -+ Su. 
Then, recalling that L 0 is stable, and setting 
(5.6) P := L

0 
: S(em) -+ S(RP), 

we obtain the right fraction representation 
(5.7) L = po-1, 
which is valid over the input space Su., and which has 
the factorization space S(em). As it turns out, this 
fraction representation is in fact coprime, and thus a 
coprime fraction representation having the factorization 
space S(em) is obtained, in line with our basic objec-
tive. In HAMMER [1989c] we proved the following 
statement, which shows that e is in fact bicausal, and 
thus invertible. Recall that a system is bicausal if it is 
invertible, and if it and its inverse are both causal sys-
tems. 
(5.8) LEMMA. The system e : Su - S(em) of (5.4) is a 
bicausal isomorphism. 

The following statement guaranties the stability of 
Q in the fraction representation (5.7) (HAMMER 
[1989cD. 
(5.9) LEMMA. The system Q : S(em) -+ Su is a stable 
system. 

Moreover, an explicit representation of Q was de-
rived in the above reference, and it is 

(5.10) 
Uk= Wk, 

k = 0, 1, 2, ... , where v E S(em) is the input sequence 
of Q and u = Qv is the output sequence of Q. 

An uttermost important property of the fraction 
representation (5.7) is the following (HAMMER [1989c]). 
(5.11) LEMMA. The systems P : S(em) -+ S(RP) and Q: 
S( em) -+ Su of (5.7) are right coprime. 

Thus, using the stabilizing reversible feedback func-
tion cr, we have ,constructed a right coprime fraction 
representation of the system L. The main advantage of 
this fraction representation over the fraction represen-
tations derived in HAMMER [1987) is that the current 
fraction representation has the factorization space 
S(em). As discussed earlier in this note, the latter is 
highly instrumental in the construction of compen-
sators that yield stabilization and desired dynamics as-
signment for the closed loop system (2.4) (HAMMER 
[1988 and 1989aD. It is also important to note that the 
numerator P and the denominator Q of our fraction 
representation are both implementable systems ((5.10), 
(5.6), (1.3)), and that Q is bicausal (Lemma (5.8)). 



\Ve turn now to the construction of right coprime 
fraction representations for systems possessing continu-
ous realizations, using the results discussed so far in this 
section. Consider a nonlinear system L : S(Rm) -+ S(RP) 
having the continuous realization (1.1), where f : 
RqxRm -+ Rq and h : Rq -+ RP are continuous func-
tions, and where u € S(Rm) is the input sequence of L, 
y = LU is the output sequence, and x € S(Rq) is an 
intermediate sequence. Then, the system L 5 : S(Rm) -
S(Rq) given by the recursion xk+l = f(xk,uk), k = 0, 1, 2, 
... , is an input/state system, serving as the input/state 
part of L. Assume there is a reversible feedback f unc-
tion cr : RqxRm _. Rm for which the closed loop system 
Lso : S(em) - S(Rq) is stable. Using the function cr, we 
can construct a right coprime fraction representation 
for the input/state system Ls, as in (5.7). Let Ls = 
P so-l be the resulting fraction representation, and note 
that its factorization space is given by S(em), as before. 
But then, by the continuity of the function h, it follows 
that the system 
(5.12) P := hP 5 : S(em) - S(RP), 
given, for all v E S(em), by Pv]k = h(P 5v]k), k 0, 1, 2, 
... , is a stable system, and 
(5.13) L = PQ-1. 
Thus, we have obtained a right fraction representation 
of the system L, which can be shown to be right 
coprime (HAMMER [1989c]). A continuous realization of 
the system P is given by 

(5.14) 
xk+l = f(xk,cr(xk,vk)), 

Yk = h(xk), 
where v € S(em) is the input of P, and y = Pv is the 
output. A continuous realization of Q is described by 
(5.10). Thus, the num-2rator and denomintor of our right 
coprime fraction representation are both computable 
and implementable systems. We can summarize our 
discussion in the following 
(5.15) THEOREM. Let L : S(Rm) - S(RP) be a system 
having a continuous realization of the form (1.1), and 
let Ls : S(Rm) - S(Rq) be the input/state system in-
duced by the recursion xk+tn= f(xk,uk), where f is from 
(1.1). Let cr : RqxRm - R be a reversible feedback 
function that stabilizes the system Ls· Then, the frac-
tion representation L = PQ-.L : Su _. S(RP) of (5.13) is 
right coprime, and has the factorization space S(em). 
Furthermore, the systems P : S(em) _. S(RP) and Q : 
S(em) - Su both possess continuous realizations, and Q 
is bicausal. 

Notice that though the space Su might be quite 
complicated, its computation is of no importance here. 
From the control theoretic point of view, only the 
factorization space of the coprime fraction 
representation is of importance, as we have discussed 
earlier. The space Su, which forms the input space of 
the system L within the closed loop, is automatically 
generated by the closed loop system. To conclude, once a 
reversible stabilizing feedback function cr for the 
input/state part Ls of L is known, a right coprime 
fraction representation of the entire system L can be 
directly computed. 
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