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Fraction representations of non-linear systems: a simplified approach 

JACOB HAMMERt 

A non-linear system l:: has a right fraction representation if it can be represented as 
l:: = PQ- 1

, where P and Q are stable systems, and it has a left fraction representation 
if it can be represented as l:: = G- 1 T, where G and Tare stable systems. We develop 
here a theory of right and of left fraction representations for discrete-time non-linear 
systems with bounded input sequences. We indicate the connection between fraction 
representations and the stabilization problem for non-linear systems. 

1. Introduction 
In the present paper we provide a simplified version of the theory of right fraction 

representations and right coprimeness of non-linear systems developed in Hammer 
(1985 a), and we develop a theory of left fraction representations of non-linear systems. 
We restrict our attention to the case of discrete-time systems. The simplification in the 
theory of right fraction representations achieved in our present paper is the result of 
an assumption that we make concerning the conditions under which our systems 
operate. The assumption is that the systems are operated only by bounded input 
sequences, namely, that for each system L under consideration, there is a real number 
ex > 0 such that all input sequences to L are of amplitude ex or less. This assumption, 
which is rather realistic from an engineering point of view and is satisfied in most 
practical applications, has a dramatic effect on the simplification of the proofs of some 
of the main results in the theory of fraction representations of non-linear systems. 
Under it, the proofs of our main results become relatively short and simple, and they 
utilize only standard rudimentary results regarding the topology of metric spaces, 
most of which can be found in the introductory text Kuratowski (1961). Indeed, it 
seems that the attempt in Hammer ( 1985 a) to attain uttermost generality and not to 
invoke our present assumption, carried us unnecessarily in several instances into 
major complications. Still, the basic concepts and techniques introduced in Hammer 
(1985 a) also form the basis of our present theory. We start with a discussion of our 
main motivation for studying fraction representations of non-linear systems. 

Let :Ebe a non-linear system. We say that Lhasa right fraction representation if 
there exists a pair of stable systems P and Q, where Q is invertible, such that :E = 
PQ- 1

• We say that Lhasa left fraction representation if there exists a pair of stable 
systems G and T where G is invertible, such that :E = G- 1 T. Right and left fraction 
representations play a fundamental role in the theory of stabilization of non-linear 
systems, as discussed in Hammer (1986). In order to describe the role of right and of 
left fraction representations in more detail, we briefly review some basic aspects of the 
stabilization theory developed in Hammer (1986). 

Let :Ebe a non-linear system. In order to stabilize the system L, we connect it in a 
closed-loop configuration of the classical form shown in Figure 1, where n is a causal 
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Figure 1. 

precompensator and where <pis a causal feedback compensator. We denote by L(n,<pJ 

the input /output relationship induced by the closed-loop system, and we assume that 
it is well defined. The closed-loop system is always well defined when L is a strictly 
causal system, so we assume for the moment that I: is strictly causal (i.e. that I: induces 
a delay of at least one step in the propagation of changes from its input to its output). 
As shown in Hammer (1986), it is particularly effective to choose the precompensator 
n and the feedback compensator <pin the form 

(1.1) 

where A and Bare stable systems, where Bis invertible, and where A and B- 1 are 
causal. Assume further that I: has a right fraction representation, namely, a fraction 
representation L = PQ- 1

, where P and Q are stable systems and where Q is invertible. 
Then, using the compensators ( 1.1), and noting that, by the definition of a sum of 
systems, one has J + APQ- 1 B- 1 = (BQ + AP)Q- 1 B- 1

, the input/output relationship 
induced by the closed-loop system becomes (see, for example, Hammer 1984 b) 

Lc1r,<pJ = I:n[l + <pI:nr 1 = LB - 1 [1 + ALB - 1 r 1 = PQ- 1 B- 1 [1 + APQ - 1 B- 1 r 1 

=PM- 1 

where 
M:= AP+BQ 

(1.2) 

(1.3) 

is a stable and invertible system. Thus, if the stable systems A and Bare chosen so that 
the inverse system M- 1 is stable, then, by the stability of P, the composite system 
Lc1r,<pJ = PM- 1 becomes input/output stable. An invertible system M for which Mand 
M- 1 are both stable is called a unimodular system. 

In view of the fact that I:c1r,<pJ = PM- 1
, it follows that the system M influences the 

dynamical properties of the closed-loop system Lc1r,rpJ, and consequently, in practical 
situations, M is determined through the design objectives prescribed for the desired 
final system Lc1r,rpJ· Thus, M can be regarded as given, and the design procedure 
consists of the computation of an appropriate pair of stable systems A and B for which 
AP+ BQ = M. This leads us to the following fundamental problem. 

Coprimeness equation problem 
Find all pairs of stable systems A, B satisfying the equation AP+ BQ = M, where 

M is a specified unimodular system, and where P and Q originate from a right 
fraction representation I: = PQ- 1 of the system I: which needs to be stabilized. 
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Before continuing with our discussion, we remark that even though only 
input/output stability was mentioned in the previous paragraphs, a slight modifi­
cation of the stability requirements imposed on the systems A and B of (1.1) will yield 
internal stability of the configuration shown in Figure 1. A detailed discussion of this 
point is provided in Hammer (1986), where the theory of internal stabilization is 
developed. 

The resolution of the problem above involves the fundamental concept of right 
coprimeness introduced in Hammer (1985 a), and which we shall review in detail in§ 3 
of the present paper. Qualitatively speaking, a pair of stable systems P and Q (having 
in common their space of input sequences) is right coprime if, for every unbounded 
input sequence u, at least one of the output sequences Pu or Qu is unbounded (see § 3 
for an accurate definition). For linear systems, this condition reduces to the 
requirement that P and Q have no unstable zeros in common. As one would expect 
from the analogy to the theory of linear systems, our problem is meaningful only when 
P and Q are right coprime, and, when P and Q are right coprime, one can find, for any 
unimodular system M (having the same input space as P and Q), a pair of stable 
systems A and B satisfying AP+ BQ = M. This result, which is a cornerstone of our 
theory of non-linear systems, and which was discussed in Hammer (1985 a), will be 
discussed again in our present paper, and we shall provide here a new and simple 
proof of it. Considering that P and Q arise from the fraction representation L = PQ- 1 

of the given system L, we conclude that L must possess a right coprime fraction 
representation, i.e., a representation of the form L = PQ- 1 where P and Qare stable 
and right coprime systems. Thus, our stabilization theory applies only to systems L 
possessing right coprime fraction representations. 

In general, not every non-linear system L possesses a right coprime fraction 
representation. Nevertheless, as it turns out, most systems commonly encountered in 
applications do possess such fraction representations. Of basic significance to the 
theory of right coprime fraction representations is the concept of a homogeneous 
system. Qualitatively speaking, a system L is homogeneous if it behaves as a 
continuous map on sets of (bounded) input sequences which produce bounded output 
sequences. We show(§ 3 below and also Hammer 1985 a) that a system L possesses a 
right coprime fraction representation if and only if it is a homogeneous system. 
Fortunately, most systems appearing in nature are homogeneous. As an example of a 
rather large class of homogeneous systems, consider the following. A system L is called 
a recursive system if there is a pair of integers 17, µ ~ 0 and a function f such that, 
for every input sequence u = (u0 , u1 , u2 , ... ), the corresponding output sequence 
y=(y 0 ,y 1 ,y 2 , ... )=Lu can be computed recursively in the form YH,,+i= 
f(yk, ... , YH,,, uk, ... , uk+µ) for all integers k = 0, 1, 2, ... . The initial conditions 
y 0 , ... , y,, must, of course, be specified and fixed. The function f is called a recursion 
function of L. It can be shown (§ 3 below) that every recursive system having a 
continuous recursion function f is a homogeneous system. Recalling that homog­
eneous systems have right coprime fraction representations, this implies that the class 
of systems possessing right coprime fraction representations includes most systems 
encountered in engineering practice. 

As we can infer from our brief discussion up to this point, the main objective of the 
theory of right coprimeness is to provide us with the means of constructing one pair of 
stable systems A, B satisfying AP+ BQ = M, whenever P and Q are right coprime. 
The question of finding all pairs of stable systems A, B satisfying the equation 
AP+ BQ = M requires some further consideration. Crucial to the solution of this 
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latter question is the theory of left fraction representations of non-linear systems 
developed in the present paper. It is rather easy to see how left fraction representations 
enter into the discussion, as follows. 

Let L be a homogeneous system, let L = PQ - 1 be a right coprime fraction 
representation of I:, and assume that L also has a left fraction representation 
I: = G- 1 T. Then, we clearly have G - 1 T = PQ- 1

, or 

TQ=GP (1.4) 

Assume further that one pair of stable systems A, B satisfying AP + BQ = Mis known. 
To find additional pairs of stable systems A, B satisfying the same equation, we can 
proceed in a manner closely resembling linear methods. We choose an arbitrary stable 
system h, having appropriate input and output spaces, and we define the pair of stable 
systems 

A'=A-hG} 

B'=B+hT 

Then, by (1.4), we have hTQ = hGP, so that 

(1.5) 

A'P+ B'Q = (A-hG)P+ (B+ hT)Q =AP+ BQ + (hTQ-hGP) = AP+ BQ = M 

and we have obtained a new pair of stable systems A', B' satisfying A'P + B'Q = M. In 
fact, infinitely many pairs of stable systems A', B' satisfying A' P + B'Q = M can be 
obtained in this way, one pair for each choice of h. Moreover, we shall see in§ 4 that, 
using this simple method, one can actually obtain all solutions of the equation A' P 
+ B'Q = M. Considering (1.2) and (1.3), we see from our discussion in the present 
paragraph that a theory of left fraction representations would be instrumental for the 
parametrization of the set of compensators stabilizing the system I: through the 
configuration shown in Fig. 1. Thus, we may conclude that left fraction represen­
tations are of fundamental significance to the stabilization problem of non-linear 
systems just as much as they are of fundamental significance to the theory of 
stabilization of linear systems. 

In § 4 we discuss the existence of left fraction representations, namely, of 
representations of the form I: = G- 1 T, where G and T are stable systems. We show 
there that a homogeneous system, in addition to having a right coprime fraction 
representation, as we have mentioned before, also has left fraction representations. In 
view of the previously mentioned fact that every recursive system with a continuous 
recursion function is a homogeneous system, we see that the theory developed in the 
present paper applies to most systems encountered in engineering applications. 

We conclude this section with a few background remarks. The present paper is a 
continuation of the work reported in Hammer (1984 a, b, 1985 a, b, 1986). The theory 
of non-linear systems developed in these papers draws on basic ideas employed in the 
transfer matrix approach to linear system theory, as conceived in Rosenbrock (1970), 
in Desoer and Chan (1975), in Hammer (1983 a, b), in the references cited in these 
works, and in other related publications. Some recent alternative approaches to the 
study of non-linear systems can be found in Vidyasagar (1980), Sontag (1981), Desoer 
and Lin (1984), and the references cited in these papers. 

2. Terminology and basics 
Our discussion in this paper is stated within the mathematical framework 

developed in Hammer (1984 a, b, 1985 a, b, 1986). We devote the present section to a 
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review and refinement of some basic aspects of this framework. As in the previous 
reports, our discussion is stated for the case of discrete-time systems. We remark that 
the theory can be extended to the case of continuous-time systems as well. We start by 
reviewing the spaces of input and output sequences of our systems. 

Let R denote the set of real numbers. As usual, for an integer m ~ 0, we denote by 
Rm the set of all m-tuples of real numbers when m > 0, and we set R 0

: = 0. We let 
S0 (Rm) be the set of all infinite sequences of the form u = { u0 , u1 , ... , ui, . .. }, where 
ui E Rm for all integers j ~ 0, and where the index j is interpreted as the time-marker. 
Given a sequence u E S0 {Rm) and an integer i ~ 0, we denote by ui the ith element of 
the sequence. Given a pair of integers j ~ i ~ 0, we denote by u{ the elements 
ui, ui+ 1 , ... , ui of the sequence. By a system I: we simply mean a map ~: S0 {Rm) 
-+ S0 (RP), transforming input sequences of m-dimensional vectors into output 
sequences of p-dimensional vectors. We denote by Im I: the set of all possible output 
sequences of the system I:, and, for a subset Sc S0 (Rm), we denote by I:[S] the set of 
all possible output sequences of the restriction of L to S. In the space of sequences 
S0 (Rm), we define the (standard) operation of addition elementwise so that, for every 
pair of sequences u, v E S0 (Rm), the sum sequence w: = u +vis given by wi = ui + vi for 
all integers i ~ 0. For a pair of systems I: 1 , L 2 :S0 {Rm)-+ S0 (RP), the sum is the system 
L := L 1 + L 2 : S0 (Rm)-+S 0 (RP) defined pointwise so that, for every input sequence 
u E S0 (Rm), the output sequence of L is LU:= L 1 u + L 2 u E S0 (RP). Given a system 
L: S0 {Rm)-+ S0 {RP) and an input sequence u E S0 {Rm), we denote by I:uL =:yi the ith 
element of the output sequence y = LU, and by Lu]{ the elements Yi, Yi+i, ... , Yi, where 
j ~ i ~ 0 are integers. 

Of particular importance to our discussion are sets of bounded sequences, defined 
as follows. Let e > 0 be a real number. We denote by [ - e, eJm the set of all 
m-dimensional real vectors a= (a 1 , ... , am) the components of which satisfy lad~ e, 
i = 1, ... , m. We denote by S0 (8m) the set of all sequences u E S0 (Rm) for which 
ui E [ -8, eJm for all integers i ~ 0. Thus, S0 (8m) consists of all sequences bounded by 
e. A sequence u E S0 (Rm) is said to be bounded if there is a real e > 0 such that 
u E S0 (8m), and u is unbounded if no such e exists. Adopting classical terminology, we 
say that a system L: S0 (Rm)-+ S0 (RP) is BIBO (Bounded-Input Bounded-Output)­
stable if, for every real e > 0, there is a real M > 0 such that L[S 0 (Bm)] c S0 (MP). In 
other words, a BIBO-stable system is a system transforming bounded input sequences 
into bounded output sequences. 

Next, we review our definition of stability. Following the spirit of the Liapunov 
definition of stability, we say, in qualitative terms, that a system is stable if it is BIBO­
stable and if the map it induces is a continuous map. In order to study continuity of 
maps defined on our spaces of sequences, we induce a metric on these spaces as 
follows. Let a= (a 1 , ... , am) be an element of Rm. We denote lal := max {la1 I, ... , laml}. 
Given a sequence u E S0 {Rm), we denote p(u) := supi;:i:o {2-iluil}. Using p, we define a 
metric on S0 (Rm) given, for every pair of elements u, v E S0 (Rm), by p(u, v): = p(u - v). 
Whenever discussing continuity, we shall always refer to continuity with respect to the 
topology induced by the metric p, unless explicitly stated otherwise. We can now 
define the notion of stability that we shall employ in our discussion. We say that a 
system L: S0 {Rm)-+ S0 (RP) is stable if it is BIBO-stable and if, for every real e > 0, the 
restriction L: S0 {8m)-+ S0 (RP) is a continuous map. 

As we have mentioned in§ 1, we develop in the present paper a theory of fraction 
representations for systems L allowing only bounded input sequences. Thus, we shall 
assume throughout our discussion that the systems L whose fraction representations 
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we derive, have the set S0 (am) as their domain, where a> 0 is a fixed, but otherwise 
arbitrary, real number, so that L: S0 (am)--+ S0 (RP). In practical situations, the number 
a is determined, for instance, by the maximal input amplitude for which the 
mathematical model of L is valid, or by saturation effects of the system generating the 
inputs of L. Clearly, a system L: S0 (am)--+ S0 (RP) is stable if there is a real number 
M > 0 such that Im L c S0 (MP) and if L is a continuous map. Of course, if L is not 
stable, its outputs may be unbounded. 

Most of our examples as well as much of our motivation in developing the present 
theory are related to the study of recursive systems, so we provide now a formal 
definition of such systems. A system L: S0 (Rm)--+ S0 (RP) is recursive if there exists a 
pair of integers r,, µ ~ 0 and a function f: (RP)"+ 1 x (Rm)µ+ 1 --+ RP such that, for every 
input sequence u E S0 (Rm), the output sequence y: = Lu satisfies 

Yk+,,+ 1 = f(yk, ... , Yk+,,, Uk, ... , Uk+µ) 

for all integers k ~ 0. Of course, the initial conditions y0 , ... , y,, must be specified and 
fixed. The function f is called a recursion function of L. Our interest in recursive 
systems stems from the fact that they are among the systems most commonly 
encountered in engineering applications. 

For the sake of completeness, we provide now a briefreview of the standard notion 
of causality. A system L: S0 (Rm)--+ S0 (RP) is causal (respectively, strictly causal) if it 
satisfies the following condition. For every integer i ~ 0, and for every pair of input 
sequences u, v E S0 (Rm) satisfying u~ = v~, the output sequences satisfy Lu]~= Lv]~ 
(respectively, Lu]~+ 1 = Lv]~+ 1 

). 

We next provide a listing of a few standard results, taken from, e.g., Kuratowski 
(1961), and adapted to our present framework. We shall use these results repeatedly 
throughout our discussion without referencing. 

Theorem 2.1 

(i) For every real e > 0, the set S0 (8m), as well as any closed subset of it, is a 
com pact set. 

(ii) Let a, f3 > 0 be a pair of real numbers, let Sc S0 (am) be a closed subset, and let 
F: S--+ S0 ({3m) be a continuous function. Then, there is a continuous extension 
F x: S0 (am)--+ S0 (/r) of F. 

(iii) Let a, f3 > 0 be a pair of real numbers, let Sc S0 (am) be a closed subset, and let 
F: S--+ S0 ({3m) be a continuous function. If F is injective, then the restriction 
F' : S--+ Im F is a homeomorphism, and Im F is a compact set. 

Most of the results on fraction representations of a system L derived in our present 
paper are derived under the assumption that the system Lis an injective system. We 
conclude this section with a discussion showing that the injectivity assumption is not 
really restrictive from the control theoretic point of view, in the sense that, through a 
minor modification of our basic control configuration (Fig. 1), the problem of 
stabilizing any strictly causal system can be transformed into a problem of stabilizing 
an injective system. This would imply that, from the stabilization point of view, it is 
enough to consider injective systems. Basically, we proceed as follows. We transform 
the given strictly causal system L into a new system Le which is injective, and then we 
stabilize the injective system Le using the configuration of Fig. 1. Due to the nature of 
the transformation, this will result in the stabilization of the original system L in a 
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control configuration that is slightly different from Fig. 1. In qualitative terms, Le is 
obtained by adding to L the identity system. We now construct Le. Let I:: S0 (Rm) 
~s 0 (RP) be a strictly causal system. We denote q := max {m, p}, and we define a pair 
of identity injections J 1 and J 2 as follows. If m ~ p, we identify S0 (Rq) = S0 (W) = 
S0 (Rm) x S0 (Rq-m), we let J 1 : S0 (W) ~ S0 (Rq) be the identity map, and we let 
J 2 : S0 (Rm) ~ S0 (Rq) be the identity injection satisfying J 2 [S0 (Rm)J = S0 (Rm) x 0, 
where the zero is the zero of the space S0 (Rq-m). If m > p, we identify S0 (Rq) = 
S0 (Rm) = S0 (RP) x S0 (Rq-p), we let J 1 : S0 (RP) ~ S0 (Rq) be the identity injection satis­
fying J 1 [S0 (RP)J = S0 (RP) x 0, where the zero is the zero of the space S0 (Rq-p), and 
we let J 2 : S0 (Rm) ~ S0 (Rq) be the identity map. We now define the system 

(2.2) 

and we note that this system is basically the sum of the original system :E and the 
identity system, with appropriate formal adjustments related to the dimensions of the 
spaces. 

The transformation which takes a strictly causal system L into the system Le has a 
natural control theoretic interpretation. Indeed, when one uses the configuration of 
Fig. 1 to stabilize the system Le, one also obtains stabilization of the system L in a 
slightly different control configuration, which qualitatively looks as the one in Fig. 2. 

1'C. 
y 

Figure 2. 

Thus, instead of considering the stabilization of the system L, we can consider the 
stabilization of the system Le. However, in view of the next lemma, the latter requires 
the stabilization of an injective system, and it follows that, from the stabilization 
theory point of view, we can restrict our attention to injective systems. 

Lemma 2.3 
Let L: S0 (Rm) ~ S0 (RP) be a strictly causal system, and let J 1 and J 2 be the two 

identity injections defined above. Then, the system Le:= J 2 + J 1 L: S0 (Rm) ~ S0 (Rq) 
(where q = max {m, p}) is an injective system. 

Proof 
We slightly abuse the notation by denoting J 1 y = y and J 2 u = u. Let u, v E S0 (Rm) 

be two sequences for which Leu= Lev. Now, by the strict causality of L, we have 
Lu] 0 = Lv] 0 , so that, since LeuJ 0 = u0 + Lu] 0 = Lev] 0 = v0 + Lv]0 , we obtain that 
u0 = v0 • Preparing for induction, assume that u]i = v]i for some integer k ~ 0. Then, 
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by the strict causality of I:, we have I:uJk+ 1 = I:v]k+ 1 , and, since l:euJk+ 1 = uk+ 1 

+ I:uJk+ 1 = I:evJk+ 1 = vk+ 1 + I:vJk+ 1 , we obtain that uk+ 1 = vk+ 1 • By induction this 
implies that uk = vk for all integers k ~ 0, so that u = v, and I:e is injective. D 

Finally, a notational remark. Given a map P:S 1 -+S 2 , and a subset Sc S2 , we 
denote by P*[SJ the inverse image of the set S, namely, the set of all elements u ES 1 

satisfying Pu ES. 

3. Right fraction representations and coprimeness 
In the present section we develop a theory of right fraction representations and 

coprimeness for non-linear systems I:: S0 (ctm)-+ S0 (RP), where ct> 0 is a fixed, but 
otherwise arbitrary, real number. The results that we obtain here parallel the 
discussion of Hammer (1985 a), except that presently we restrict ourselves to systems 
allowing only inputs bounded by ct, whereas in our previous report we considered 
systems with unbounded inputs. As mentioned in§ 1, the restriction to systems with 
bounded inputs leads to a major simplification of our discussion, and, at the same 
time, it is a rather natural restriction from an engineering point of view. We say that a 
system l:: S0 (ctm)-+ S0 (RP) has a right fraction representation if there is an integer 
q > 0, a subset Sc S0 (Rq), and a pair of stable maps P: S-+ Im I: and Q: S-+ S0 (ctm), 
where Q is invertible, such that I:= PQ- 1

• We emphasize that we do not require that 
the systems P and Q of the fraction representation I:= PQ- 1 have only bounded 
input sequences; the only assumption we make in this regard is that the original 
system l:, the fraction representation of which we study, has S0 (ctm) as its domain of 
input sequences. Given a fraction representation I:= PQ- 1

, where P: S-+ Im I: and 
Q: S-+ S0 (ctm), we call S the factorization space of the representation. (We remark that 
there is a slight abuse of notation in writing I: = PQ- 1

, since the codomain of I: is 
S0 (RP) whereas the codomain of Pis Im I:, but we adopt this notation for the sake of 
brevity.) 

Now, let I:: S0 (ctm)-+ S0 (RP) be a system, and let I:= PQ- 1 be a right fraction 
representation, where P: S-+ Im I: and Q: S-+ S0 (ctm), and where the factorization 
space Sis contained in S0 (Rq). Also, let M: S-+ S be a stable map. The main question 
that we consider in the present section is under what conditions can one find a pair of 
stable maps A: Im I:-+ S0 (Rq) and B: S0 (ctm)-+ S0 (Rq) satisfying the equation 

AP+BQ=M (3.1) 

Using the insight that we gained from the linear theory, we expect that the possibility 
of solving (3.1) for an arbitrary stable map M: S-+ S would involve a certain condition 
of'right coprimeness' of the maps P and Q. In Hammer (1985 a) we saw that a natural 
definition of the notion of right coprimeness in our present situation is as follows. 

Definition 3.2 
Let Sc S 0 (Rq) be a subset. Two stable maps P: S-+ S0 (RP) and Q: S-+ S 0 (Rm) are 

right coprime if the following conditions hold: 

(i) For every real r > 0 there exists a real () > 0 such that 

P*[S 0('rP)J n Q*[S 0(rm)J c S0 (8q) 

(ii) For every real r > 0, the set Sn S0 (rq) is a closed subset of S0 (rq). 
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In intuitive terms, condition (i) of Definition 3.2 means that, for every unbounded 
input sequence u ES, at least one of the output sequences Pu or Qu is unbounded. 
Condition (ii) of the definition is a natural topological requirement, essential for the 
technical viability of the concept of right coprimeness . In the linear case, condition (i) 
reduces to the requirement that P and Q have no unstable zeros in common, whereas 
condition (ii) holds automatically by linearity. We say that the system l::: S0 (cxm) 
-> S0 (RP) has a right coprime fraction representation if it has a right fraction 
representation L = PQ- 1 in which the stable systems P and Q are right coprime. In 
Theorem 3.4 below we show that, when l: = PQ- 1 is a right coprime fraction 
representation, then the coprimeness equation problem in§ 1 has at least one solution. 
Before that, we discuss some properties of right coprime fraction representations. First, 
some terminology. Let M:S 1 ->S 2 be a map, where S1 c S0(Rm) and S2 c S0 (RP). We say 
that M is a unimodular map if M is invertible and if M and M- 1 are both stable maps. 
If there is a unimodular map M: S 1 -> S2 , then we say that the spaces S 1 and S 2 are 
S-morphic (stability-morphic). Now, let I:: S0 (cxm)-> S0 (W) be an injective system, and 
assume it has a right coprime fraction representation I: = PQ- 1

, where P: S-> Im I: 
and Q: S-> S0 (cxm), and where S c S0 (Rq). In view of the injectivity of I:, the map P is 
injective and, since it is evidently also surjective, it follows that Pis invertible. It is easy 
to see intuitively that p- 1 must be BIBO-stable. Indeed, assume there is a bounded 
sequence u E Im l: for which p- 1u is not bounded. Denoting v: = p- 1u and w: = Qv, 
we evidently have that w E S0 (cxm). But then, we have an unbounded sequence v for 
which both of the output sequences Pv = u and Qv = ware bounded, contradicting the 
fact that P and Q are right coprime. Thus, for every bounded sequence u E Im l:, 
the sequence p- 1u must also be bounded. In fact, we show in the next proposition that 
the map p- 1 must actually be stable, so that, in a right coprime fraction 
representation of a system I:: S0 (cxm)-> S0 (RP), the numerator map P is always 
unimodular. This fact is a clear departure from the analogy to the theory of fraction 
representations of linear systems, and it is a consequence of the assumption that the 
input space of the system l: is bounded. In the linear case, it is not possible to assume 
that the input space of the system is bounded, since this would violate the linearity of 
the space. Thus we see that, in a sense, the non-linear theory is simpler than the linear 
theory, and it allows us to take advantage of the actual conditions under which the 
system I: operates. 

Proposition 3.3 

Let I:: S0 (cxm)-> S0 (RP) be an injective system, and assume it has a right coprime 
fraction representation I:= PQ- 1

, where P:S->lm l: and Q:S->S 0 (cxm), and where 
Sc S0 (Rq). Then, the map p- 1 : Im L-> S is a stable map. 

Proof 

Taking r ~ ex in condition (i) of Definition 3.2 of the con.cept of right coprimeness, 
we obtain that there is a real et> 0 such that P*[S 0 (rP)J n Q*[S0 (rm)J c S0 ({8T)q). But 
then, since actually Q*[S 0 {rm)J = S for r ~ ex, this implies that P*[S 0 (rP)J c S0 ((8t)q). 
By the stability of P, the restriction of P to Sn S0 ((8T)q) is a continuous function, and 
whence, by the closure of S0 (rP), the set ST:= P*[S 0 (rP)J is a closed subset of 
Sn S0 ((8T)q). Moreover, since by condition (ii) of Definition 3.2 the set Sn S0 ((8T)q) is a 
closed subset of S0 {{8T)q), it follows that ST also is a closed subset of S0 {(8T)q), and 
whence ST is a compact set. Further, by the injectivity of I:, the map P is injective as 
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well, and consequently, by the continuity of P and the compactness of ST, the 
restriction P: ST-+ (Im 1:) n S0 ('rP) is a homeomorphism, and whence the map 
p- 1 :(Im1:)nS 0 (rP)-+STcS 0 ({8T)q) is continuous for every real r~a. But, since 
evidently S0 (rP) c S0(aP) whenever r < a, this implies that, for every real r > 0, there is 
a real e > 0 such that p- 1 [(Im 1:) n S0 (rP)J c S0 ((8)q) and that the restriction 
p - i :(Im 1:)nS 0 (rP)-+S 0 (8q) is a continuous map. Thus, p - 1 is stable, and our proof 
is concluded. D 

Using proposition 3.3, we can easily construct a solution of the equation AP+ BQ 
= M. Indeed, let 1:: S0 (am)-+ S0 (RP) be an injective system, and assume it has a right 
coprime fraction representation 1: = PQ- 1

, where P:S-+Im 1: and Q:S-+S 0 (am) and 
where Sc S0 (Rq), and let M: S-+ S be any stable map. Then, in view of Proposition 
3.3, the map A:= MP - 1 :Im 1:-+S0 (Rq) is stable. Letting B:= O:S0 (am)-+S0 (Rq) be 
the constant zero map, which is evidently stable, we have AP+ BQ = M p- 1 P + 0 
= M, and we constructed a solution of the equation AP+ BQ = M. We note that this 
particular solution is not applicable to the stabilization procedure outlined in 
(1.1)-(1.3) since the map B here is not invertible and A here may not be causal. 
Nevertheless, this solution is important since, as we show in§ 4, once one solution of 
the equation AP + BQ = M is known, all other solutions can be constructed through 
the straightforward procedure outlined in (1.5). We summarize our discussion in this 
paragraph in the following result. 

Theorem 3.4 
Let 1:: S0 (am)-+ S0 (RP) be an injective system, and assume it has a right fraction 

representation 1:=PQ - 1
, where P:S-+Im1: and Q:S-+S 0 (am), and where 

Sc S0 (Rq). If P and Q are right coprime, then for every stable map M: S-+ S, there 
exists a pair of stable maps A: Im 1:-+ S0 (Rq) and B: S0 (am)-+ S0 (Rq) satisfying 
AP+BQ=M. 

Of course, in our discussion in the previous paragraph, we assumed that a right 
coprime fraction representation 1: = PQ - 1 of the given system 1: is known. As we shall 
see shortly, the construction of right coprime fraction representations for a system 
1:: S0 (am)-+ S0 (RP) is fairly simple, when they exist. We next discuss the basic problem 
of the existence of right coprime fraction representations. 

Of fundamental significance to the theory ofright coprime fraction representations 
of non-linear systems is the concept of a homogeneous system, which, qualitatively 
speaking, is a system that behaves as a continuous map whenever its outputs are 
bounded. The exact definition is as follows. 

Definition 3.5 
A system 1:: S0 (am)-+ S0 (RP) is a homogeneous system if, for every subset 

Sc S0(am) for which there exists a real e > 0 such that 1:[S] c S0((}P), the restriction 
of 1: to the closure S of Sis a continuous map 1:: S-+ S0 (8P). 

The significance of the class of homogeneous systems comes from the fact that it is 
identical to the class of systems possessing right coprime fraction representations, as 
stated in the next result. 
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Theorem 3.6 

An injective system I:: S0 (o:m)--+ S0 (RP) has a right coprime fraction representation 
if and only if it is a homogeneous system. 

Proof 

Assume first that the injective system :E:S 0 (o:m)--+S0 (RP) has a right coprime 
fraction representation I:= PQ- 1

, where P: S--+ Im I: and Q: S--+ S0 (o:m), and where 
Sc S 0 (Rq). Now, let S 1 c S0 (o:m) be any subset for which there exists a real fJ > 0 such 
that :E[S1 ] c S0 (8P). Denote S' := :E[S1 ], and let S' be the closure of S' in S0 (8P). By 
the stability of p- 1 derived in Proposition 3.3, it follows that there is a real r > 0 such 
that P*[S'J c S0 (rq). By the stability of the map P, the restriction P: Sn S0 (rq) 
--+ S0 (RP) is continuous (and bounded), so the set S": = P*[S'J is a closed subset of 
Sn S0 (rq). But then, by condition (ii) of Definition 3.2, the set S" is a closed subset of 
S0 (rq), and whence is compact. Consequently, by the continuity and injectivity of the 
map Q, the restriction Q: S"--+ Q[S"J is a homeomorphism, so Q- 1

: Q[S"]--+ S" is 
continuous and the set Q[S"J is compact. Moreover, since clearly S 1 c Q[S"], the 
latter implies that also S1 c Q[S"], where S1 is the closure of S 1 in S0 (o:m), and it 
follows that the restriction Q- 1 

: S1 --+ Q- 1 [S 1 J is a continuous map. Thus, since 
:E=PQ- 1 and Pis stable, we obtain that the restriction :E:S 1 --+S'cS 0 (8P) is a 
continuous map, and I: is a homogeneous system. 

Conversely, assume that I: is a homogeneous system. Then, a right coprime 
fraction representation of I: can be simply constructed as follows. Define P: Im I: 
-+Im Las P := I, the identity map, and Q:Im :E--+S0 (o:m) as Q := 1:- 1, the inverse 
system (recall that I: is injective, so I:: S0 (o:m)--+ Im I: is a set isomorphism). The map P 
is clearly stable; to show that Q is stable, we proceed as follows. First, Q is evidently 
BIBO-stable since Im Q c S0 (ocm). To show that Q is also continuous, let()> 0 be an 
arbitrary real number, and denote S*: = Q[(lm I:) n S0 (8P)] c S0 (o:m). Then, 
:E[S*J = :EQ[(lm I:) n S0 (8P)J = :E:E-1 [(Im I:) n S0 (8P)] = (Im I:) n S0 (8P) c S 0 (8P), so 
that, by homogeneity, the restriction I:: S*--+ S0 (8P) is a continuous map. But then, by 
the compactness of S* c S0 (o:m) and the injectivity of I:, it follows that the restriction 
:E:S*--+ :E[S*J actually is a homeomorphism, so that 1:- 1 ::E[S*J--+ S* is continuous, and 
:E[S*J is a compact set. Further, since :E[S*J is contained in S0 (8P), we have :E[S*J c 
(Im I:) n S0 (8P). Considering that :E[S*J => :E[S*J = (Im I:) n S0 (()P), it follows that 
:E[S*J = (Im I:) n S 0(()P). Finally, since I:- 1 : :E[S*J--+ S* is continuous, the restriction 
Q ( = 1:- 1

): (Im I:) n S0 (8P)--+ S0 (o:m) is continuous, and Q is a stable map. Thus, since 
clearly PQ- 1 = J(:E- 1 

)-
1 = I: and P, Qare both stable, we constructed a right fraction 

representation I:= PQ- 1
• We next show that this fraction representation is coprime. 

The factorization space of the above representation I: = PQ- 1 is 
S = Im I:; to show that condition (ii) of Definition 3.2 holds, we note that since 
(lm:E)nS 0 ((JP)=:E[S*J is a compact set, the set SnS 0 (()P)=(1m:E)nS 0 (8P) is 
evidently a closed subset of S 0 (0P). To show that condition (i) of Definition 3.2 
holds as well, we note that, for every real r > 0, P*[S 0 (rP)J n Q*[S 0 (rm)J = 
{(Im I:) n S0 (rP)} n :E[S0 (rm) n S0 (o:m)J c (Im I:) n S0 (rP) c S0 (rP), and condition (i) of 
Definition 3.2 holds with () = ·r. Thus, P and Q are right coprime, and our proof is 
concluded. D 

The previous proof provides us with a very simple method of constructing a right 
coprime fraction representation of an injective homogeneous system, and we sum­
marize this fact in the following. 
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Corollary 3. 7 
Let :r: S0 (cxm) ~ S0 (RP) be an mJective homogeneous system. Then, the maps 

P: = J: Im :r ~ Im I:, the identity map, and Q: = :r - 1
: Im :r ~ S0 (am) induce a right 

coprime fraction representation I: = PQ- 1
. The factorization space of this represen­

tation is Im :r. 

As we can see, the construction of a right coprime fraction representation for an 
injective homogeneous system :r: S0 (cxm) ~ S 0 (RP) is a fairly simple matter. From 
Theorem 3.6, we know that homogeneous systems are the only injective systems pos­
sessing right coprime fraction representations. Finally, we recall from our discussion 
at the end of § 2 that, from the control-theoretic point of view, the restriction to 
injective systems does not significantly impair the applicability of our theory to the 
study of stabilization of non-injective systems. Our next objective is to provide some 
examples of homogeneous systems. In fact, in the next statement we show that most 
systems encountered in common engineering practice are homogeneous systems. 

Proposition 3.8 

Let L: S0 (cxm) ~ S0 (RP) be a recursive system. If }: has a continuous recursion 
function, then it is a homogeneous system. 

Proof 
We use in this proof uniform continuity, since all our domains are compact. 

Let YH 11+ 1 = f(yk, ... , Yk+,,, uk> ... , uk+µ) be a recursive representation of}:, where 
f: (RP)"+ 1 x ([ -a, aJm)µ+ 1 ~ RP is a continuous function. We define recursively the 
following functions Fi, j = 0, 1, 2, .... For j = 0, ... , 17, we let Fi:= Yi, where Yo, ... , y11 

are the fixed initial conditions of the system; forj > r,, we set F
11
+k+ 1 :([ -ex, aJm?+µ+ 1 

~RP to be 

F,,+k+1 (u0 , ••• , Uµ+k):= f(Fk, ... , Fk+11, uk> ... , Uk+µ) 

k = 0, 1, 2, ... , where, in the last formula, we have omitted the variables of the functions 
Fk, ... , Fk+11• Clearly, for every input sequence u E S0 (cxm), we have that 
F 11+k+ 1 (u0 , ••• , uµ+k) = Yk+11+ 1 , where y = }:u is the output sequence. By the continuity 
of the function f, it follows that each one of the functions Fi, j = 0, 1, 2, ... , is a 
continuous function over its entire space of definition. Now, let Sc S0 (am) be a subset 
for which there is a real 8 > 0 such that :r[SJ c S0 (8P). In order to show that I: is a 
homogeneous system, we show that (i) }:[SJ c S0 (8P), where Sis the closure of Sin 
S0 (am), and that (ii) the restriction}:: S ~ S0 (8P) is a continuous map. To prove (i), let 
u1, u2

, ••• , be a sequence of elements of the set S converging to a point u* E S0 (cxm). We 
have to show that the output sequence y*: = }:u* also belongs to S0 (8P). In view of the 
fact that the sequence { ui} converges to u*, we have that, for any integer k ~ 0, the 
sequence (u~, ... , u~+k), i = 1, 2, ... , converges to (u~, ... , u;+k) so that, by the continu­
ity of the function F 11+k+i, we obtain Yf+,,+1 =F 11+k+1 (ut ... ,u;+k)=limi .... oo 

F11+k+ 1 (u~, ... , u~+k). But then, since }:ui E S0 (8P) for all integers i ~ 1, we have 
that F ,,+k+ 1 (u~, ... , u~+k) E [ -8, 8JP for all integers i ~ 1, and it follows that 
Yf+11+1 E [ -8, 8JP for all integers k ~ 0. Since the output values y0 , ••• , y11 are the same 
for all input sequences, this implies that }:u* E S0 (8P), and so }:[SJ c S0 (8P), and (i) 
holds. 

To prove (ii), let a> 0 be a real number, and let n > 17 be an integer such that 
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(r")8 < B. By the continuity of the functions F,,+k+ 1 , there is, for each integer k ~ 0, 
a real number !)k > 0 such that IF r,+k+ 1 (u0 , • •• , uµ+k) - F,,+k+ 1 (v0 , ••• , Vµ+k)I < B 

whenever l(u0 , ••• , Uµ+d-(v 0 , ••• , vµ+k)I < !5k. Denoting a:= n - r, - 1, b :=a+µ, 
'Yk: = (2-<ri+k+ 1>)1F,,+k+ 1 (u0 , .•• , uµ+k) - F,,+k+ 1 (v0 , ••. , vµ+k)I, and !5: = (2-b) min 
{!50 , ••• , !5a} > 0, it follows by the definition of our metric p that, for any pair of se­
quences u, v ES satisfying p(u - v) < !5, one has p(Lu - LV) ~ max {Yo, y1 , ... , 'Ya, 
2(2-<n + 1>)8} < B by our choice of !5 and n. Thus, for every real B > 0, there is a real 
!5 > 0 such that p(Lu - LV) < B for all pairs of sequences u, v ES satisfying 
p(u - v) < !5, and the restriction of L to Sis continuous. D 

Considering the fact that most systems encountered in engineering practice are 
recursive systems having continuous recursion functions, it follows from Proposition 
3.8 that the theory of fraction representations and coprimeness that we develop in the 
present paper is of fairly wide applicability. Moreover, the class of homogeneous 
systems also includes systems which are not necessarily recursive, like the class of all 
systems possessing a continuous realization, as described in the following remark. 

Remark 3.9 
A system L: S0 (cxm)-+ S0 (RP) has a continuous realization if there is a pair of 

continuous functions f:(R")"+ 1 x([-cx,cx]m)µ+l-+R" and h:(R")x([-cx,cx]m)-+RP 
such that, for every input sequence u E S0 (cxm), the output sequence y: = l:u can be 
computed from the relations vk+,,+ 1 = f(vk, ... , vk+,,, ub ... , uk+µ), Yk = h(vk, uk), k = 
0, 1, 2, .... Here, vis an intermediate sequence, and the initial conditions v0 , ••• , v,, are 
fixed and given. Using an argument similar to the one proving Proposition 3.8, it is 
easy to see that every system L: S0 (cxm)-+ S0 (RP) having a continuous realization is a 
homogeneous system. 

Returning for a moment to our discussion of the implications of the injectivity 
assumption in § 2, we saw in Lemma 2.3 that the system Le of (2.2) is an injective 
system whenever the original system Lis a strictly causal system. We next show that 
when L is a homogeneous system, so also is Le. Thus, when L is a strictly causal 
homogeneous system, the system Le is injective and homogeneous. This shows that 
the theory of fraction representations developed in our present paper is applicable to 
Le, and thus, modulo the simple transformation leading from L to Le, it is applicable 
to most practical systems. 

Proposition 3. l 0 
Let L: S0 (cxm)-+ S0 (RP) be a strictly causal homogeneous system, and let Le:= f 2 

+.J\L:S 0 (cxm)-+S0 (Rq) (where q=max {m,p}) be the system constructed in (2.2) 
from L. Then, Le is an injective and homogeneous system. 

Proof 

Let Sc S0 (cxm) be a subset for which there is a real number 8 > 0 such that Le [SJ 
c S0 (8q), and let S be the closure of S in S0 (cxm). In order to show that Le is 
homogeneous, we have to show that the restriction Le: S-+ S0 (8q) is a continuous 
function. Now, since .J\L = Le -f 2 , and since Sc S0 (cxm) and Le[SJ c S0 (8q), it 
follows that L[SJ c S0 ((8 + cx)P), and whence, by the homogeneity of L, the restriction 
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L: S--+ S0((8 + C<)P) is a continuous map. But then, by the evident continuity of the 
identity injections f 1 and f 2 , we obtain that the restriction of I:e to Sis continuous as 
well, and our proof is concluded. 0 

We conclude the present section with a discussion of the uniqueness of right 
coprime fraction representations, showing that right coprime fraction representations 
are uniquely determined, up to a unimodular transformation. This is, of course, a 
consequence of Proposition 3.3. 

Theorem 3.11 
Let I:: S0 (C<m)--+ S0 (RP) be an injective homogeneous system, and let L = PQ- 1 

and I: = P' Q' - 1 be two right coprime fraction representations of L, with factorization 
spaces S, S' c S0 (Rq), respectively. Then, there is a unimodular map M: S'--+ S such 
that P' = PM and Q' = QM. 

Proof 

By the injectivity of I:, the maps P: S--+ Im L and P': S'--+ Im I: are both set 
isomorphisms, and whence p- 1 and P'- 1 exist. We define M: = p- 1 P': S'--+ S, and we 
show that Mis unimodular. Since Mis evidently invertible, we only have to show that 
M = p- 1 P' and M- 1 = P'- 1 Pare both stable. But, this is a direct consequence of the 
fact that, by Proposition 3.3, the maps p- 1 and P' - 1 are both stable maps. Also, 
clearly P'=PM, and, since Q'=(Q'P'- 1)P'=(QP- 1)P' by the equality PQ - 1 = 
P'Q'- 1

, we have Q' = Q(P - 1 P') = QM, and our proof is concluded. 0 

Finally, combining Proposition 3. 7 and Theorem 3.11, we obtain the following 
characterization of the factorization space of a right coprime fraction representation. 

Theorem 3.12 
Let L: S0 (C<m)--+ S0 (RP) be an injective homogeneous system. Then, the factoriz­

ation space of any right coprime fraction representation of L is S-morphic to Im L. 

In Summary, we have seen in this section that it is rather simple to develop a 
theory of right coprime fraction representations for systems I:: S0 (cxm)--+ S0 (RP) which 
are homogeneous and injective. We have seen that the class of homogeneous systems 
includes most systems of engineering interest, and at the end of§ 2 and in Proposition 
3.10, we showed that the injectivity assumption does not significantly impair the 
applicability of our results to the study of stabilization of non-injective systems. 

4. Left fraction representations 
In the present section we develop a theory of left fraction representations for non­

linear systems I:: S0 (C<m)--+ S0 (RP). Our main objective in this discussion is to provide a 
means of parametrizing the set of all solutions A, B of the equation AP+ BQ = M, 
where Mis a fixed stable map, and where P and Q arise from a right coprime fraction 
representation I: = PQ - 1 of the given system L. We have discussed this problem in§ 1, 
and we have provided an ourline of the basic idea of our solution in (1.5). 

Let L: S0 (C<m)--+ S0 (RP) be a non-linear system. We say that I: has a left fraction 
representation if there is an integer q > 0, a subspace Sc S0 (Rq), and a pair of stable 
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maps G: Im L-+ Sand T: S0 (<Xm)-+ S, where G is invertible, such that L = G- 1 T. The 
space Sis called the factorization space of the fraction representation L = G- 1 T. We 
adopt the convention of always taking S to be Im T, so that T is always a surjective 
map. Then, when Lis an injective system, Tis both injective and surjective, and thus 
possesses an inverse T- 1

. (Again, as in§ 3, we slightly abuse the notation by writing 
L = G- 1 T, since the codomain of Lis S0 (RP) whereas the codomain of G- 1 is Im L. 
We adopt this notation for the sake of brevity.) 

As it turns out, the theory of left fraction representations for a system L: S0 (<Xm) 
-+ S0 (RP) is extremely simple, due to the compactness of the domain S0 (cxm) of the 
system. In fact, if L has a left fraction representation, then all left fraction 
representations of Lare actually left 'coprime' fraction representations in an intuitive 
sense. The origin of this fact is the following result. 

Proposition 4.1 
Let L: S0 (<Xm)-+ S0 (RP) be an injective system, and assume it has a left fraction 

representation L = G- 1 T, where G:lm L-+S and T:S 0 (<Xm)-+S, and where 
Sc S0 (Rq). Then, the map T- 1 : S-+ S0 (<Xm) is a stable map. 

Proof 

The map T- 1 is BIBO-stable, since evidently T- 1 [S0 (0q) n SJ c T- 1 [SJ c S0 (<Xm) 
for every real e > 0. Thus, it only remains to show that the restriction T- 1

: S0 (8q)nS 
-+ S0 (<Xm) is a continuous map. In view of the fact that Im T = S, it follows by the 
continuity of T that the set S': = T- 1 [S0 (0q) n SJ is a closed subset of S0 (<Xm), the 
domain of T, and whence S' is compact. Considering the injectivity of T this implies, 
again by continuity, that the restriction T: S'-+ S0 (0q) n Sis a homeomorphism, and, 
consequently, the restriction T- 1 : S0 (0q) n S-+ S' c S0 (<Xm) is a continuous map. D 

Proposition 4.1 actually means that, in any left fraction representation :E = G- 1 T 
of an injective system L: S0 (<Xm)-+ S0 (RP), the numerator Tis a unimodular map, since 
T and T- 1 are both stable. Thus, we have a complete description of the structure of 
left fraction representations of injective systems. The fact that Tis always unimodular 
forms a major departure from the analogy to the theory of fraction representations of 
linear systems. It is a consequence of the compactness of the domain S0 (cxm) of the 
system L. Proposition 4.1 also provides us with a complete characterization of the 
class of injective systems L: S0 (<Xm)-+ S0 (RP) possessing left coprime fraction repre­
sentations. Indeed, when L is injective, then the restriction L: S0 (<Xm)-+ Im L is a set 
isomorphism, so :r- 1

: Im L-+ S0 (<Xm) exists. Now, if there is a left fraction represen­
tation :r = G- 1 T, then :r- 1 = T- 1 G, and it follows by Proposition 4.1 and the 
stability of G that :r- 1 is a stable system. Conversely, if L- 1 is a stable system, we have 
that G': = :r-1

: Im L-+ S0 (<Xm) is a stable map, and, setting T': = J: S0 (<Xm)-+ S0 (<Xm), 
the identity system, we obtain the left fraction representation L = G'- 1 T', having the 
factorization space Im L. This proves the following result. 

Theorem 4.2 
An injective system L: S0 (<Xm)-+ S0 (RP) has a left fraction representation if and 

only if :r- 1 : Im L-+ S0 (<Xm) is a stable system. 

From our experience with the theory of linear systems, it would seem that the 
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condition of Theorem 4.2, namely, the requirement that I: - 1 be a stable system, is 
rather restrictive. However, this is not true in the non-linear case, and the class of 
injective non-linear systems I:: S0 (cxm)--+ S0 (RP) for which 1:- 1 is a stable system 
actually is a large class of systems. For instance, it is a direct consequence of Corollary 
3.7 that every injective homogeneous system I:: S0 (am)--+ S0 (RP) satisfies the require­
ment that 1:- 1

: Im l:--+ S0 (am) be a stable system. Thus, the class of systems possessing 
left fraction representations includes all systems having right coprime fraction 
representations. We state this fact in the following result. 

Theorem 4.3 
An injective homogeneous system I:: S0 (am)--+ S0 (RP) has a left fraction 

representation. 

Considering our discussion in the paragraph preceding Theorem 4.2, we see that a 
left fraction representation l: = c- 1 T for an injective homogeneous system l:: S0 (am) 
--+ S0 (RP) can be obtained simply by setting G: = :r- 1

: Im L--+ S0 (am) and T: = 
J: S0 (am)--+ S0 (am), the identity map. 

Another direct consequence of Theorem 4.3 is that, for every strictly causal 
homogeneous system l:: S0 (am)--+ S0 (RP), the system Le of (2.2) possesses a left fraction 
representation since, by Proposition 3.10, it is an injective homogeneous system. Thus, 
all our results in the present paper apply to the system Le. 

Proposition 4.1 also implies that left fraction representations are unique up to a 
unimodular transformation, as follows. 

Theorem 4.4 
Let l:: S0 (am)--+ S0 (RP) be an injective system, and assume it has two left fraction 

representations l: = c- 1 T and I:= G'- 1 T', with factorization spaces S, S' c S0 (Rq), 
respectively. Then, there is a unimodular map M: S--+ S' such that G' = MG and 
T' = MT Also, the factorization space of any left fraction representation of I: is 
S-morphic to Im I:. 

Proof 
By the injectivity of l: and our convention that Im T =Sand Im T' = S', the maps 

T: S0 (am)--+ S and T': S0 (am)--+ S' are both set isomorphisms, and whence T- 1 and 
T'- 1 exist. We define M := T'T- 1 :S--+S', and we show that Mis unimodular. Since 
Mis evidently invertible, we only have to show that M = T'T- 1 and M- 1 = TT'- 1 

are both stable. But, this is a direct consequence of the fact that, by Proposition 4.1, 
the maps r -1 and T' - 1 are both stable maps. Also, clearly T' = MT, and, since G' = 
T'(T' - 1 G') = T'(T - 1 G) by the equality c- 1 T = G' - 1 T', we have G' = (T'T- 1 )G = 
MG. Finally, from the proof of Theorem 4.2 (stated immediately preceding that 
theorem), it follows that, every system I: possessing a left fraction representation, has 
such a representation with the factorization space Im l:. Combined with the previous 
part of the present proof, this implies that the factorization space of every left fraction 
representation of I: is S-morphic to Im l:. 0 

As we have repeatedly mentioned, our main motivation in studying left fraction 
representations of non-linear systems is the need to obtain a simple and transparent 
characterization of the set of all pairs of stable systems A, B satisfying an equation of the 
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form AP+ BQ = M, where P, Q and Mare fixed stable systems. Considering our discus­
sion in§ 1, we are mainly interested in the case where, in the last equation, the systems P 
and Q arise from a right coprime fraction representation I: = PQ- 1 of an injective 
homogeneous system I:: S0 ((Xm)-+ S 0 (RP). As we have seen in (1.5), left fraction 
representations of l: are instrumental in the study of the solutions of this equation. In 
the next theorem we show that, for injective homogeneous systems I:: S0 ((Xm)-+ S0 (RP), 
the simple procedure outlined in (1.5) yields all solutions of the equation. In this way 
we obtain a simple and complete parametrization of the set of all solutions of the 
equation AP+ BQ = M discussed in§ 1. 

Theorem 4.5 
Let l:: S 0 (C<m)-+S0 (RP) be an injective homogeneous system, and let L = PQ- 1 be 

a right coprime fraction representation, where P: S--dm I: and Q: S-+ S0 ((Xm), and 
where Sc S0 (Rq). Let I:= G- 1 T be a left fraction representation of I:, where G: Im I: 
-+SL and T:S 0 ((Xm)-+SL. Let M:S-+S be any stable map, and let A:lm 'I:.-+S0 (Rq) 
and B: S0 ((Xm)-+ S0 (Rq) be a pair of stable maps satisfying the equation AP+ BQ = M. 
Then, a pair of stable maps A':lml:-+S 0 (Rq) and B':S 0 ((Xm)-+S0 (Rq) satisfies 
A'P + B'Q = M if and only if there exists a stable map h:SL -+S 0 (Rq) such that 

A'=A-hG 
and 

B'=B+hT 

Proof 

We have seen in (1.5) that any pair of maps A': Im L-+ S 0 (Rq) and B': S0 ((Xm) 
-+ S 0 (Rq) of the form A'= A - hG and B' = B + hT, where h: SL-+ S 0 (Rq) is stable, 
satisfies A' P + B' Q = M. In order to prove the converse direction of our Theorem, let 
A': Im L-+ S 0 (Rq) and B': S0 ((Xm)-+ S 0 (Rq) be any pair of stable maps satisfying A' P 
+B'Q=M . Then, we have A'P+B'Q=AP+BQ, or (A-A')P=(B-B')Q. 
Composing this equation with Q- 1 on the right, we obtain (A - A')PQ- 1 = B' - B, or 
(A - A')l: = B' - B. Denoting g: = A - A', we have that the map g: Im I:-+ S 0 (Rq) is 
stable, and, by the stability of B and of B', the map gl: = B' - B: S0 ((Xm)-+ S 0 (Rq) is 
stable as well. Consequently, by Proposition 4.1, the map h: = gG- 1 = (g'I:.)r- 1

: SL 
-+ S 0 (Rq) is stable, and g = hG. But then, since g = A - A', we obtain A - A'= hG, or 
A'= A - hG. Finally, since B' - B = (A - A')l: = (hG)(G- 1 T) = hT, we also have 
B' = B + hT, and our proof is concluded. D 

In conclusion, we have developed in the present paper a complete theory of left 
and right fraction representations for injective systems L: S0 ((Xm)-+ S0 (RP). The theory 
is rather simple, possibly even simpler than the linear theory of fraction represen­
tations. Fundamentally, the origin of this simplicity is the fact that the systems l: have 
the compact domain S0 ((Xm). Though the choice of this domain is very natural from the 
practical point of view, it cannot be adopted in the linear theory, since it would violate 
linearity. Our discussion was mostly restricted to injective system, but we have seen in 
§ 2 that the injectivity assumption amounts to a transition from the control 
configuration of Fig. 1 to the control configuration of Fig. 2, and thus is not really 
restrictive from a control-theoretic point of view. The present theory of fraction 
representations provides us with a complete parametrization of the set of all pairs of 
stable systems A, B satisfying the equation AP+ BQ = M, which, as we saw in§ 1, is of 
central importance to the study of the stabilization of non-linear systems. 



472 Non-linear system fraction representation 

ACKNOWLEDGMENT 

This research was supported in part by the National Science Foundation under 
Grant Number 8501536. 

REFERENCES 

DESOER, C. A., and CHAN, W. S., 1975, J. Franklin Inst., 300, 335. 
DESOER, C. A., and LIN, C. A., 1984, Int. J. Control, 40, 37. 
HAMMER, J., 1983 a, Int. J. Control, 37, 37; 1983 b, Ibid., 37, 63; 1984 a, Ibid., 40, l; 1984 b, Ibid., 

40, 953; 1985 a, Ibid., 42, 1; 1985 b, Proc. Symp. on Mathematical Theory of Networks 
and Systems, edited by C. Byrnes and A. Lindquist (Amsterdam: North Holland); 1986, 
Int. J. Control, 44, 1349. 

KuRATOWSKI, K., 1961, Introduction to Set Theory and Topology (New York: Pergamon Press). 
ROSENBROCK, H. H., 1970, State Space and Multivariable Theory (London: Nelson). 
SONTAG, E. D., 1981, Inf Control, 51, 105. 
VIDYASAGAR, M., 1980, l.E.E.E. Trans. autom. Control, 25, 504. 






