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Fraction representations of non-linear systems and non-additive state 
feedback 

JACOB HAMMERt 

The problem of constructing right-coprime fraction representations is considered for 
non-linear discrete-time systems possessing a continuous realization. It is shown 
that, given a static, possibly non-additive, state feedback that stabilizes the 
input/state part of the realization, a right-coprime fraction representation of the 
entire system can be constructed. The resulting coprime fraction representation has 
a particularly simple factorization space, and can be used to derive stabilizing 
controllers for the original system without state access. The construction of 
appropriate static state feedbacks is described in a companion paper (Hammer 
1989 b). 

1. Introduction 
A right-fraction representation of a non-linear system L is a representation of the 

form :I: = PQ - 1
, where P and Q are stable systems. Right-fraction representations play 

a fundamental role in the theory of stabilization of non-linear systems (see e.g. 
Hammer 1986). Over the last few years, several methods for the computation of 
fraction representations of non-linear systems have been presented in the literature 
(Hammer 1984, Desoer and Kabuli 1988, Sontag 1988). Generally speaking, these 
methods rely on the theory of additive feedback for non-linear systems. In order to 
compute a fraction representation using these methods, one has to find an additive 
feedback compensator that stabilizes the system. Once the stabilizing feedback 
compensator is known, the desired fraction representation can be computed in a 
straightforward way. The basic difficulty involved in the use of these methods is the 
need to find an additive feedback controller that stabilizes the system. As it turns out, 
in many cases, it is much easier to construct a stabilizing feedback controller that is 
non-additive (Hammer 1989 b). The purpose of the present note is to show that non­
additive feedback controllers can also be employed in the construction of right­
coprime fraction representations of non-linear systems. When a right-coprime 
fraction representation of the system is known, it can be used to devise control 
configurations that internally stabilize the system, and allow the assignment of 
desirable dynamical behaviour for the closed loop (Hammer 1987, 1988, 1989 a). The 
basic methodology presented in this note can be qualitatively outlined as follows. 

Consider a non-linear system :I: that can be described in the form 

xk+ 1 = f(xb ud } 
Yk = h(xk), k = 0, 1, 2, ... 

( 1.1) 

where { uk}o is the input sequence, consisting of m-dimensional real vectors; {Ydo is 
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the output sequence, consisting of p-dimensional real vectors; { xk }g> is an intermediate 
sequence, consisting of q-dimensional real vectors; and f and h are continuous 
functions. If a system L can be represented in the form (1.1), we say it has a continuous 
realization; if his the identity function, we call :E an input/state system. Now suppose 
that the system Lis described by ( 1.1), and let Ls be the input/state system induced by 
the recursion xk+ 1 = f(xk, uk), k = 0, 1, 2, ... , namely, the input /state part of :E. 
Assume that the system :Es is enclosed in a closed-loop configuration of the form 
shown in Fig. 1. 

V 
cr(x, v) 

u 
Ls 

X 
- -

' 

Figure 1. 

Here <J is a continuous function through which the feedback loop is closed, and we 
denote by :Esa the input /output relation induced by the closed loop. Assume now that 
a is such that Lsa is stable. The objective of the present paper is to show that, using <J, a 
right-coprime fraction representation of the original system L can be derived. Once 
such a fraction representation is known, the methods developed by Hammer (1986, 
1988, 1989 a) can be used to obtain a control configuration that internally stablizes L 
and allows desirable dynamics assignment, without the need to access the state x. 
Thus the state feedback function a is used only as a means of obtaining a fraction 
representation, and the actual control configuration that stabilizes :E requires no 
access to the state. This approach circumvents the need to employ observers. 

Our main motivation in writing the present paper derives from some recent results 
on the stabilization of non-linear systems by static state feedback (Hammer 1989 b). 
These results indicate that, for a non-linear system, it is quite easy to compute non­
additive static state feedback controllers that globally stabilize the system. In the 
present paper these feedback controllers are used to construct right-coprime fraction 
representations of non-linear systems possessing continuous realizations. 

The first part of the present paper is devoted to the discussion of non-linear 
input/state systems, and, later, in the last part of§ 2, the computation of right-coprime 
fraction representations for non-linear systems possessing continuous realizations is 
described. As before, the term input/state system refers to a system having a recursive 
representation of the form 

( 1.2) 

where x 0 , x 1 , x 2 , ••• is a sequence of p-dimensional real vectors, serving as the output 
sequence of the system; u0 , u1 , u2 , ... is a sequence of m-dimensional real vectors, 
serving as the input sequence of the system; and f: IRP x !Rm-+ !RP is a continuous 
function, called the recursion function of the system. The initial condition x 0 of 
the system has to be specified in order for the recursion to be well defined; however, 
it can be any vector within the domain over which stabilization is achieved (see 
Hammer 1989 b). Let l: denote the system represented by (1.2), and assume :E is 
inserted for :Es in the closed-loop configuration shown in Fig. 1. In this figure, 
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v = {v0 , v1 , v2 , ••• } is a sequence of m-dimensional real vectors, serving as the input 
sequence of the closed loop system, and the feedback function a: IRP x !Rm~ !Rm is 
continuous. The input/output relation induced by the closed-loop system is denoted 
by I:O', and a recursive representation for it is given by 

xk+ 1 = f(xk, a(xk> vk)), k = 0, 1, 2, ... ( 1.3) 

In particular, if the function a is of the form 

a( X, V) = V - qJ ( X) ( 1.4) 

then the configuration represents additive feedback. However, there is no reason to 
expect that a non-linear input/state system can be globally stabilized by using static 
additive feedback, and in fact it is shown by Hammer (1989 b) that static additive 
feedback is mostly useful for local stabilization. Thus it is necessary to consider non­
additive static feedback configurations. When doing so, it is desirable to preserve as 
many as possible of the fundamental properties of additive feedback. One such 
property is reversibility, which refers to the fact that an additive feedback operation 
can be reversed, or 'undone', by another additive feedback operation, applied to the 
closed loop. To be more specific, consider the closed loop La, and assume that an 
additional feedback loop is closed around it, using the feedback function w. Denote by 
Law the resulting system, and let !aw be its recursion function. Then the feedback 
operation induced by a is reversible if a feedback function w can be found for which 
!aw= f; namely, the feedback operation through w reverses the feedback operation 
induced by a, and restores the original system. 

In order to analyse the situation in more detail, the following notation is 
convenient. For a function h: !RP x IRm ~ !Rm, (x, u)1--+h(x, u), and a fixed element 
x E IRP, denote by hx the function IRm--+ !Rm given by hx(u) == h(x, u), i.e. the partial 
function. Letting w be the input of the system Law, direct computation shows that 

( 1.5) 

(for details see Hammer 1989 b). In order for the feedback operation induced by a to 
be reversible, we need 

faw(x, w) = f(x, w) ( 1.6) 

It is then easy to see that the class of continuous feedback functions that induce 
reversible feedback operations, namely the class of reversible feedback functions, is 
given by the following definition (Hammer 1989 b). 

Definition 1.1 
Let L be an input/state system with the recursive representation xk+ 1 = f(xk, uk). 

A reversible feedback function for :E is a continuous function a: !RP x !Rm~ !Rm, 
(x, v)1--+a(x, v) for which the partial function ax: !Rm~ !Rm is injective for any possible 
state x. 

The class of reversible feedback functions was introduced by Hammer (1989 b) 
simply as a means to generalize the reversibility property of additive feedback to more 
general feedback configurations. In the context of our present discussion, reversible 
feedback functions are of critical importance. As we shall see later, only reversible 
feedback operations induce right-coprime fraction representations, and thus the 
sequel depends heavily on the notion of a reversible feedback function. 
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2. Fraction representations 
We start with a description of our basic set-up and notation. As usual, we denote 

by !Rm the set of all m-dimensionai real vectors. For a vector a = ( a 1, a2
, ••• , am) E [Rm 

let lal==max{la 1 1,la2 1, ... ,laml}. By S(!Rm) denote the set of all sequences 
u == {u0 , u1 , u2 , ••• } of vectors ui E !Rm, i = 0, 1, 2, .... On this space of sequences we 
define two norms. The first one is the usual 100 norm, given, for every element 
u E S(!Rm), by lul == supi~o {luil}. The second one is a weighted 100 norm p, given by 
p(u) == supi~o (2-ilud} for all u E S(!Rm). The topology induced by p is our basic 
underlying topology, and, unless explicitly stated otherwise, all notions of closure, 
continuity etc. are with respect to this topology. Adopting the input/output approach, 
a system is regarded simply as a map 1:: S(!Rm)-+ S(IRP), transforming input sequences 
of m-dimensional vectors into output sequences of p-dimensional vectors. For an 
input sequence u E S(!Rm) denote by I:u]k the kth vector of the output sequence 1:u, 
and by I:u]{, j ~ i, the output vectors I:uL 1:ul+ 1 , ... , I:uL. 

In order to discuss bounded sequences of vectors, it is convenient to denote by 
S({r) the set ofall sequences u E S(!Rm) for which lul ~ 8. Also, given a system I:: S(!Rm) 
-+S(!RP) and a subset Sc S(!Rm), denote by l:[SJ the image of the set Sunder 1:. Then 
a system I:: S( !Rm)-+ S( [RP) is BIBO ( bounded-input bounded-output) stable if for every 
real number () > 0 there is a real number M > 0 such that 1:[S(£Jm)J c S(MP). The 
system I:: S(IRm)-+ S(!RP) is a stable system if it is BIBO stable, and if for every real 
number()> 0 the restriction I:: S( em)-+ S( [RP) is a continuous map with respect to the 
norm p. Let S1 cS(IRm) and S2 cS(IRP) be two subsets, and let M:S 1 -+S 2 be a 
system. The system Mis unimodular if it has a set-theoretic inverse M - 1

, and if Mand 
M - 1 are both stable systems. 

Of particular importance to our discussion is the class of homogeneous systems, 
which is defined as follows (Hammer 1987). 

Definition 2.1 
A system l::S(!Rm)-+S(!RP) is a homogeneous system if for every real number ex> 0 

and for every subset S c S( cxm) the following holds: whenever there is a real number 
() > 0 such that l:[SJ c S(£JP), the restriction of I: to the closure S of the set S is a 
continuous map I::S-+S((JP) (with respect top). 

The notion of a homogeneous system is convenient in studies of stability, since, by 
definition, a homogeneous system is stable (i.e. bounded and continuous) whenever it 
is BIBO stable. As it turns out, most systems of practical interest are homogeneous 
systems. In particular, in view of the following statement, which is reproduced from 
Hammer ( 1987), all the systems considered in the present paper are homogeneous 
systems. 

Proposition 2.2 
A system 1:: S(!Rm)-+ S(IRP) having a continuous realization is a homogeneous 

system. 

The main topic of this paper is the construction of right-coprime fraction 
representations of non-linear systems, so we now review some of the basic notions of 
this subject. A right-fraction representation of a system 1:: S(!Rm)-+ S(W) is determined 
by an integer q > 0, a subset Sc S(IRq) and a pair of stable systems P: S-+ S(!RP) and 
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Q: S-+ S(!Rm), where Q is a set isomorphism and :E = PQ- 1
• The subset Sis then called 

the factorization space of the fraction representation I: = PQ- 1. Most important for 
the theory of non-linear control are coprime right-fraction representations, which 
are fraction representations :E = PQ- 1 in which the stable systems P and Q are 
right-coprime according to the following definition (Hammer 1987) (for a map 
P: S(!Rm)-+ S(IRP) and a subset Sc S(IRP) we denote by P*[S] the inverse image of 
the set Sunder P, namely the set of all input sequences u E S(!Rm) for which Pu ES). 

Definition 2.3 

Let Sc S(IRq) be a subset. Two stable systems P: S-+ S(IRP) and Q: S--+ S(!Rm) are 
right-coprime if the following conditions hold: 

(i) for every real number r > 0 there exists a real number()> 0 such that 

( ii) for every real number r > 0 the set Sn S( rq) is a closed subset of S( rq) ( with 
respect to the topology induced by p). 

An intuitive discussion of the notion of right-coprimeness is given by Hammer 
( 1987). From the control-theoretical point of view, right-coprime fraction 
representations play a critical role in the construction of compensators that robustly 
stabilize a non-linear system. Specifically, let :E: S(1Xm)-+ S(IRP) be a system, where IX 

> 0 is a real number describing the largest amplitude of input sequence the system :E 
can accept. Let I:= PQ- 1 be a right-coprime fraction representation and let Sc S(!Rq) 
be its factorization space. As discussed by Hammer ( 1987), the construction of 
compensators that stabilize the system :E involves the computation of two stable 
systems A: Im :E-+ S( IRq) and B: S( IXm} -+ S( IRq) satisfying the equation 

AP+BQ=M (2.1) 

where M: S-+ Sis a unimodular system. To review this point, consider the configur­
ation shown in Fig. 2. 

u v- y 
rr - L 

_j 

<p -
L (rr, cf,) 

Figure 2. 

Here I: : S( IRm) -+ S( [RP) is the given system that needs to be controlled; 
n: S( !Rm) -+ S( !Rm) is a dynamic precompensator and ¢: S( [RP)-+ S( !Rm) is a dynamic 
feedback compensator, which is connected additively. The closed-loop system is 
denoted by I:(1t,4')· As we have discussed in previous papers, it is particularly 
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convenient to choose the compensators in the form 

11: = n- 1
} 

<P = A 
(2.2) 

where A: S(!RP)-+ S(!Rm) and B: S(!Rm)-+ S(!Rm) are stable systems, with B being a set 
isomorphism. Of course, A and n- 1 have to represent causal systems. For this form of 
the compensators, the input/output relation induced by the closed-loop system is 
given by (for details see Hammer 1986) 

L<1t,t1>> = P[AP + BQ]- 1 (2.3) 

Now, if the stable systems A and B are chosen so that AP + BQ = M, where M is a 
unimodular system, the input/output relation of the closed loop becomes 

I.<1t,tf>> = PM- 1 (2.4) 

and it is stable. As discussed in detail by Hammer ( 1986), the closed-loop system will 
in fact be internally stable under these circumstances, if the systems A and B satisfy 
some additional mild assumptions. 

The following aspect of (2.4) is of particular interest to us here. In general, the 
space of input sequences of the closed-loop system L(,r,tf>J is required to be of the form 
S(Bm), where e > 0 is a real number, describing the desired bound on the amplitudes of 
the input sequences. In view of (2.4), this implies that the domain of M - 1

, which is the 
codomain of M, is required to be S(Bm). Recalling that Sis the factorization space of 
the coprime fraction representation L = PQ - 1 and that M = AP+ BQ, it follows that 
M: S'-+ S(Bm), where S' is an appropriate subset of the factorization space S (for 
further details see Hammer 1986). Thus we are required to find a subspace S' of the 
factorization space S that is homeomorphic to S(Bm), and to construct the appropriate 
homeomorphism M. Clearly, a substantial simplification results if the factorization 
space S is of the form S(/r) for some real /J > 0, since the construction of 
homeomorphisms M: S(/Jm)-+ S(Bm) is a straightforward task. 

In the present paper we develop a procedure for the derivation of right-coprime 
fraction representations I.= PQ - 1 whose factorization space is of the form S(/Jm), 
fJ > 0. The critical tool used in this procedure is the theory of static state feedback for 
non-linear systems developed by Hammer ( 1989 b ). As it turns out, through this 
theory, right-coprime fraction representations with factorization space S(/Jm) can be 
constructed for any non-linear system L possessing a continuous realization, provided 
that the input/state part L5 of I. is stabilizable by the configuration shown in Fig. 1. 
Necessary and sufficient conditions for the latter are given by Hammer (1989 b). We 
start with a consideration of non-linear input/state systems. 

Let I.: S(!Rm)-+ S(IRP) be an input/state system with the recursive representation 
xk+ 1 = f(xb uk), where f: [RP x !Rm-+ [RP is a continuous function, and let e > 0 be a 
real number. Assume that there is a reversible feedback function a: [RP x !Rm-+ [Rm for 
which the system La: S(fr)-+ S(!R.P) of Fig. 1 is stable. Necessary and sufficient 
conditions for the existence of a, as well as methods for its construction whenever it 
exists, are described by Hammer ( 1989 b). Now, referring to Fig. 1, let v E S( em) be an 
input sequence of the closed-loop system and let u E S(!Rm) be the corresponding input 
sequence of the system L, so that 

u = a(Lu, v) (2.5) 

by which we mean simply that uk = a(I.u]b vk) for all integers k ~ 0. In view of the 
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definition Qf a reversible feedback function, the partial function (J X: [ - e, er~ 
(J X [ - e, or is a set isomorphism for every state X, and thus has an inverse func­
tion (J; 1 :(Jx[-O,er~[-e,eJm. Denote (J*(x,u):=(J; 1 (u). Let Su denote the set 
of all sequences u E S(IRm) that appear as input sequences of the system l: in the closed 
loop shown in Fig. 1 when v varies over S( om); namely, 

Then we can write 

v = (J*(Lu, u) 

for all sequences u E Su. Let l: Su~ S(Om) be the system given by 

l( u) := (J*(Lu, u) 

(2.6) 

(2.7) 

(2.8) 

so that v = l(u). In this notation LU= Lulu for all u E Su, and it follows that the 
restriction l:: Su~ S(IRP) satisfies l: = Lui. Now assume for a moment that l has a 
stable inverse z-1 : S(Om) ~ Su, and denote 

(2.9) 

Then, recalling that Lu is stable, and setting 

(2.10) 

we obtain the right-fraction representation 

l: = PQ- 1 (2.11) 

which is valid over the input space Su and which has the factorization space S(Om). As 
it turns out, this fraction representation is in fact coprime, and thus a coprime fraction 
representation having the factorization space S(Om) is obtained, in line with our basic 
objective. To complete this discussion, we first show that l is invertible. Recall that a 
system is bicausal if it is invertible and if it and its inverse are both causal systems. 

Lemma 2.1 

The system l:Su ~ S( em) of (2.8) is a bicausal isomorphism. 

Proof 

From the definition of Su it follows directly that l is surjective. To show that l is 
also injective, let u and w be two sequences in Su for which lu]0 = lw ]0 for some 
integer n;:::: 0. We now show by induction that this implies that u]0 = w]0. Indeed, 
lu]0 = lw]0 means that (J*(x0 , u0 ) = (J*(x0 , Wo), where x 0 is the initial condition of L. 
Since (J* is invertible in its second variable, it follows that u0 = w0 • In preparation for 
induction, assume that u~ = w~ for some i E {O, 1, ... , n - 1 }. Then, by the strict 
causality of the system l:, we have l:ul+ 1 = :Ewl+ 1 =: xi+ 1 . Combining this with the 
equality lu]o=lW]o, which entails /ul+1=/Wl+1, We find (J*(xi+1,Ui+1) 
= (J*(xi+i, wi+d· Using again the fact that (J* is invertible in its second variable, this 
implies that Ui+ 1 = Wi+ 1 · By induction, we conclude that u]o = wJo, 

Now, if lu = lw then, by setting n = oo in the conclusion of the previous paragraph, 
we find that u = w, and 1 is injective. Since I is also surjective, it follows that z-1 

: 

S( em)~ Su exists. Moreover, the conclusion of the first paragraph implies directly that 
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1- 1 is a causal system. Since l itself is causal by its definition (2.8), we conclude 
that l: Su-+ S( em) is a bicausal isomorphism. D 

Next, we show that the system Q in the fraction representation (2.11) is stable. (It 
can in fact be shown that Q is a unimodular system, but we do not need this fact 
presently. The role of Q can then be interpreted as a transformation of the space Su, 
which describes a set of input sequences over which Lis stable, into the standard input 
space S( em).) 

Lemma 2.2 
The system Q : S( em) -+ Su is a stable system. 

Proof 
First note that Q can be represented in the form 

[
Wk+ 1] = [a(f(xb wk), vk}~, [w0] = [a(x 0, v0)] l 
xk+ 1 f(xb wk) J x0 x 0 

Uk= Wk 

(2.12) 

k = 0, 1, 2, ... , where v E S(8m) is the input sequence of Q, and u = Qv is the output 
sequence of Q. In view of the continuity of the functions f and a, this implies that the 
system Q has a continuous realization, and hence, by Proposition 2.2, it is a 
homogeneous system. Thus, in order to show that Q: S(8m)-+ Su is stable, we only have 
to show that there is a real number f3 > 0 such that Q[S(8m)] c S(/3m). Now, since the 
feedback function a is such that Lu is stable, there is a real number b > 0 such that 
Lu[S(8m)] c S(JP). But then, since xis the output sequence of the closed-loop system 
Lu, it follows that x E S(JP). Also, since u = a(x, v), it follows that u E a[S(c5P) x S(8m)J, 
and, by the continuity of the function a: !RP x !Rm-+ !Rm, it follows that there is a real 
number f3 > 0 such that u E S(/3m). Thus Q[S(8m)] c S(/3m), and Q is a stable system by 
Proposition 2.2. D 

Finally, we show that the fraction representation (2.11) is in fact right-coprime. 

Lemma 2.3 
The systems P : S( em) -+ S( !RP) and Q : S( em) -+ Su of ( 2.11) are righ t-coprime. 

Proof 
Since the factorization space here is given by S = S( em), it is clear that Sn S( rm) is a 

closed subset (with respect to the topology induced by p) for every real number r > 0. 
Thus we only have to show that for every real number r > 0 there exists a real number 
y > 0 such that P*[S( rP)] n Q*[S( rm)] c S(ym). However, in our case this inclusion is 
a direct consequence of the fact that the factorization space S, i.e. the domain of P and 
Q, is simply S = S(8m), which implies that the inclusion is valid for /3 = 8. D 

Thus, using the stabilizing reversible feedback function a, we have constructed a 
right-coprime fraction representation of the system L. The main advantage of this 
fraction representation over the fraction representations derived by Hammer ( 1987) is 
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that the present fraction representation has the factorization space S( (r). As discussed 
earlier in this section, the latter is highly instrumental in the construction of 
compensators that yield stabilization and desired dynamics assignment for the closed­
loop system illustrated in Fig. 2. It is also important to note that the numerator P 
and the denominator Q of our fraction representation are both implementable systems 
(by (2.10), ( 1.3) and (2.12)), and that Q is bicausal (by Lemma 2.1 and (2.9)). 

We turn now to the computation of right-coprime fraction representations 
for systems possessing continuous realizations. The method we use is a direct applic­
ation of the idea& developed so far in this section. Consider a non-linear system 
L:S(IRm)-+S(IRP) having the continuous realization (1.1), wheref:IRq x IRm-+IRq and 
h: IRq-+ !RP are continuous functions, and where u E S(IRm) is the input sequence of 
L, y = Lu is the output sequence and x E S(IRq) is an intermediate sequence. 
Then the system L5 : S(IRm)-+ S(IRq) given by the recursion xk+ 1 = f(xk, ud, k = 0, 
1, 2, ... , is an input/state system, serving as the input/state part of L. Assume that 
there is a reversible feedback function a: IRq x IRm-+ IRm for which the closed-loop 
system Lsu:S(8m)-+S(1Rq) is stable. Using the function a, we can construct a 
right-coprime fraction representation for the input/state system Ls, as in (2.11). 
Let Ls = P s Q- 1 be the resulting fraction representation, and note that its factoriz­
ation space is given by S((r). Specifically, 

Ps = Lsu: S(8m)-+ S(IRq), Q = z-l :S(Om)-+ Sul 

Su:= {u E S(IRm): U = a(LsU, v), VE S(8m)} 

l:Su-+S(Bm): l(u) == a*(Lu, u) for all u E Su 

But then, by the continuity of the function h, it follows that the system 

P == hPs: S(8m)-+ S(IRP) 

(2.13) 

(2.14) 

given, for all v E S(Bm), by Pv]k = h(P5 v]k), k = 0, 1, 2, ... , is a stable system, and 

L = PQ- 1 (2.15) 

Thus we have obtained a right-fraction representation of the system L. A continuous 
realization of the system P is given by 

xk+ 1 = f(xb a(xk, vk))} 

Yk = h(xk) 
(2.16) 

where v E S(8m) and y = Pv. A continuous realization of Q is described by (2.12). An 
argument very similar to that used in the proof of Lemma (2.3) further shows that the 
fraction representation (2.15) is in fact right-coprime, and we obtain the following. 

Theorem 2.1 
Let L: S(IRm)-+S(IRP) be a system having a continuous realization of the form (1.1) 

and let Ls:S(IRm)-+ S(IRq) be the input/state system induced by the recursion 
xk+ 1 = f(xk, uk), where f is from ( 1.1). Let a: IRq x IRm-+ IRm be a reversible 
feedback function that stabilizes the system Ls. Then the fraction representation 
L = PQ- 1 :Su-+S(IRP) of (2.15) is right-coprime and has the factorization space 
S(Bm). Furthermore, the systems P: S(Bm) ~ S(IRP) and Q: S(Bm) ~ Su both possess 
continuous realizations, and Q is bicausal. 
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Note that the computation of the space Su is of no importance here. From the 
control-theoretic point of view, only the factorization space of the coprime fraction 
representation is of importance, as we have discussed earlier in this section. The space 
Su, which forms the input space of the system I: within the closed loop, is 
automatically generated by the closed-loop system. As can be seen from (2.13), the 
space Su depends on the state feedback function a, and may vary from one fraction 
representation to another. To conclude, once a reversible stabilizing feedback function 
a for the input/state part L5 of I: is known, a right-coprime fraction representation of 
the entire system I: can be directly computed. For some explicit examples of the 
computation of stabilizing reversible feedback functions see Hammer ( 1989 b). 
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